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Abstract: When a porous material is inserted into a uniform magnetic field, spatially 

varying fields typically arise inside the pore space due to susceptibility contrast between 

the solid matrix and the surrounding fluid. As a result, direct measurement of the field 

variation may provide a unique opportunity to characterize the pore geometry. The 

sensitivity of nuclear magnetic resonance (NMR) to inhomogeneous field variations 

through their dephasing effects on diffusing spins is unique and powerful. Recent theoretical 

and experimental research sheds new light on how to utilize susceptibility-induced internal 

field gradients to quantitatively probe the microstructure of porous materials. This article 

reviews ongoing developments based on the stimulated echo-pulse sequence to extend  

the characterization of porous media using both spatially resolved and unresolved 

susceptibility-induced internal gradients that operate on a diffusing-spin ensemble. 

Keywords: gradients; susceptibility; diffusion; decay due to diffusion in the internal field 

(DDIF); porous media; trabecular bone 
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1. Introduction  

Magnetic susceptibility contrast-induced inhomogeneous magnetic fields show a fingerprint of the 

underlying pore geometry when porous media are subjected to an external, uniform magnetic field. 

Nuclear magnetic resonance (NMR) provides a unique opportunity for nondestructively detecting such 

internal field variations, and susceptibility contrast-based NMR methods hold great promise for 

investigating the structural and functional properties of porous media. 

For example, fluid-filled rocks, soils, or tissues (e.g., bones), which are comprised of at least  

two phases with different magnetic susceptibilities, give rise to an inhomogeneous internal magnetic 

field across their pores when embedded inside a uniform magnetic field. The presence of a nonuniform 

field often influences NMR-relaxation experiments and diffusion measurements. This effect was first 

recognized by Brown [1]. Since then, a large amount of effort has gone into understanding the effects 

of internal gradients on various grain-packing geometries and designing pulse sequences that minimize 

their effects [2–6]. Recent theoretical and experimental research [7–9] sheds light onto utilizing 

susceptibility-induced internal gradients to probe the detailed structures of porous materials, such as 

the pore size of oil-bearing rocks and the surface-to-volume ratio of trabecular bones [8–12]. 

In the context of biological tissues, when a superparamagnetic contrast agent, such as iron-oxide 

particles [13–16], is confined to a vascular or blood-bearing space, inhomogeneous and localized fields 

develop around the capillary vessels due to susceptibility differences between the vessel space, 

interstitium, and the outside tissue in the uniformly applied magnetic field. The presence of these 

induced fields may accelerate conventional T2
*- and T2-relaxation rates. As a result, Dennies et al. 

reported that the size of tumor microvessels can be determined by measuring the in vivo ratio between 

susceptibility contrast-induced T2
* and T2 in the presence of an iron-oxide intravascular contrast  

agent [17], a technique known as vessel-size imaging. Because the vessel geometry is a significant 

determinant of susceptibility contrast, in-depth characterization of the internal gradients in the 

microvessel structure may provide important information about the morphology of abnormal tumor 

vessels [18–20]. 

The sensitivity of NMR for measuring internal field variations led to the development of several 

pulse sequences to characterize them. Traditionally, the signal of the gradient echo is reduced below 

the spin-spin relaxation limit due to dephasing of the magnetization from the inhomogeneous field, 

which is known as relaxation. Therefore, asymmetric spin-echo sequences, which sample the 

magnetization away from the point of maximum spin coherence, are sensitive to effects of 

susceptibility contrast [21,22]. The decay due to diffusion in the internal field (DDIF) method uses a 

stimulated echo sequence and the fact that the internal field, which is modulated by spatial variations 

in susceptibility, causes signal decay when sampled by a diffusing spin ensemble. DDIF essentially 

monitors the time-dependent evolution of magnetization in the internal magnetic field and determines 

the distribution of its decay constants in order to obtain quantitative information on the pore structure. 

The structural parameters of a fluid-filled porous medium, such as the pore size of oil-bearing rocks 

and the surface-to-volume ratio of a network of trabecular bones, can be estimated by the decay 

characteristics of magnetization in the presence of internal gradients using bulk DDIF contrast [7–9]. 

In this paper, we will review several recent extensions of the DDIF method that use microimaging 

to verify that the strength and orientation of the susceptibility-induced internal gradients can be 
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faithfully mapped using stimulated echo-based NMR relaxometry [8,23–25]. When the pore size is 

larger or comparable to the image voxel, spatially resolved DDIF contrast provides detailed 

information about the strength and orientation of the internal gradients by measuring susceptibility 

contrast across the pores. For smaller pores, the variation in the internal gradient may be unresolved 

because the signals from multiple pores are averaged across a single image voxel. However, even in 

this case, DDIF-encoded relaxation data still contains salient structural information that can be inferred 

using proper analytical techniques, such as Laplace inversion or spectrum heterogeneity [9,26]. 

An alternative quantitative description of the internal field can be obtained through self-correlation 

of the field. This approach is useful when the pore size of the underlying microstructure is significantly 

smaller than the size of the magnetic resonance imaging (MRI) voxel, which is the case for fine-grain 

rocks and tissue microvessels. In these cases, the statistical properties of the internal field may be used 

to determine relevant structural parameters. For example, Audoly et al. showed that the structural factor 

(i.e., 2-point density correlation function) of porous media can be approximated using the  

self-correlation function of the internal magnetic field [27]. They further argued that this correlation is 

closely related to the fluid transport properties of the material. Cho et al. demonstrated that a  

pulsed-field gradient (PFG) method involving both applied and internal field gradients, can be used to 

obtain spatial magnetic correlation functions that are in good agreement with theoretical  

simulations [28]. For biological applications, such as brain imaging, Jensen et al. showed that temporal 

magnetic field correlation (MFC) functions can be measured using the asymmetric spin-echo sequence 

with a range of asymmetric time shifts followed by Gaussian fitting. They further argued that MFC is a 

more specific metric of the microscopic field inhomogeneities compared with conventional relaxation 

parameters, such as T2 or T2
* [21,22]. Thus, a range of techniques and applications exist that use 

internal fields to increase their microstructural sensitivities. 

This article is organized as follows: first, the basic concept of stimulated echo-based internal field 

contrast will be introduced along with its extension to an imaging module, followed by the basic  

data-analysis method used for bulk (i.e., spatially unresolved) and imaging experiments. DDIF 

imaging experiments that use a 2-dimensional (2D) cylindrical phantom will be discussed to show the 

direct correlation between spatially resolved DDIF contrast and the strength of a local  

susceptibility-induced internal gradient [23]. Furthermore, the feasibility of measuring the local axis of 

orientation of the cylindrical microstructure from directional measurements of its internal gradient 

distribution will be discussed. Illumination of the origin and the contrast mechanism that were 

previously reported for porous media, such as trabecular bone and which complement the interpretation 

of the bulk DDIF technique, will be reviewed along with spatially resolved DDIF. Finally, a  

pulsed-field gradient-NMR (PFG-NMR) method that utilizes an asymmetric, stimulated echo sequence 

to extract the magnetic field correlation function will be discussed, describing the connections between 

the statistical properties of the internal field and a porous material’s structural 2-point correlation 

function. Representative examples in a system of randomly packed beads will be described using a pair 

of symmetric and asymmetric stimulated echoes [28]. Finally, these examples will be discussed in the 

broader context of microstructurally sensitive MR techniques, and future applications will be considered. 
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2. Utilization of the Internal Magnetic Field for Studying Porous Media 

2.1. Diffusion in the Presence of Internal Field Gradients 

NMR measurements of the apparent diffusion coefficients (ADC) of molecules have provided 

unique structural details on porous media since the advent of PFG-NMR [29,30]. Once spatially 

encoded with a magnetic field gradient, diffusing molecules give rise to an effective signal reduction 

of the NMR spin echoes, which enables an accurate estimation of ADC with given known field 

gradients. In addition to their absolute values, directional anisotropy of ADC values has been observed 

and provides useful structural contrast in porous and biological media [31,32]. It has also been 

theoretically and experimentally shown that the time-dependent diffusion coefficient of porous media 

contains information about the surface-to-volume ratio [33,34].  

The influence of the internal magnetic field gradients generated by variations in magnetic 

susceptibility on NMR-diffusion measurements has also been recognized. If the internal gradient 

significantly interferes with the external PFG gradients, the apparent extracted diffusivity can be 

altered. Various methods have been suggested as ways to overcome this interference [3–5]. On the 

other hand, susceptibility-induced internal gradients contain the fingerprint of the underlying structures, 

and thus several techniques that focus on quantifying the effects of diffusion within internal gradients 

alone have been developed to extract such properties as the pore size or the surface-to-volume ratio 

from porous media [9,35–37]. In this review, we focus on describing the decay of the echo signal 

through diffusing molecules in the presence of internal gradients (and in some cases external gradients) 

using stimulated echo-based pulse sequences. As we will discuss below, the translational motion of the 

spins is a vital component of these techniques, although the diffusivity itself is sometimes an implicit 

parameter rather than an explicitly measured quantity. 

DDIF is a stimulated echo-based relaxation measurement that utilizes susceptibility-induced 

internal magnetic field gradients and molecular diffusion to probe the structures of porous media [7,9]. 

Imagine that the magnetic field,  is higher in one part of the pore and lower in another due to the 

susceptibility contrast of the medium. The first step of DDIF is to establish a spatial magnetization 

profile that represents the inhomogeneous local magnetic field across the pore. A schematic DDIF 
pulse sequence is shown in Figure 1a. Transverse spin magnetization after the first -pulse develops a 

spatially dependent phase due to variations in the local internal magnetic field during the encoding 

period ( ). At the end of the encoding period, the encoded transverse magnetization is flipped to the 

longitudinal direction and the spins diffuse during the diffusion period ( ). This movement of 

diffusing spins across different regions of the internal magnetic field causes a reduction in the 
magnetization profile. This reduction in the magnetization can be detected using a third -pulse, which 

produces a stimulated echo. The decay of these amplitudes typically demonstrates multi-exponential 

decay behavior for variable diffusion times ( ) due to the distribution of field gradients in the sample. 
When the molecules diffuse a distance ( 2 ) equal to the pore size, the spatial nonuniformity 

of the magnetization diminishes, and the magnetization decay is dominated by spin-lattice relaxation 

(T1). Figure 1b shows the pulse sequence used to measure the spin-lattice relaxation times as a 

reference experiment to DDIF contrast. The -pulse in the middle of the encoding period unwraps the 

spatially dependent phase acquired during  due to the inhomogeneous magnetic field and  
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re-establishes a uniform magnetization. This suppresses the effect of the inhomogeneous field on the 

variable , while retaining the same spin-spin (T2) relaxation present in the DDIF-encoded sequence 

for convenient normalization. The combination of DDIF and reference scans allows a stronger 

distillation of the internal field contrast from the total magnetization. 

Figure 1. (a) Decay due to diffusion in the internal field (DDIF) and (b) reference pulse 

sequences.  and  are the encoding and diffusion time periods, respectively. Stimulated 

echoes were detected by DDIF and free induction decay for the reference scan. Reproduced 

from Reference [12] with permission. 

 

Extensions of DDIF contrast, including its use in imaging modules, can be implemented in order to 

obtain spatially resolved information regarding the distribution of the internal field gradient. In this 

article, we review its extension to 2D spin-warp imaging, as shown in Figure 2, but the basic DDIF 

pulse sequence can be attached as a precursor to other imaging modules. In such a sequence, the DDIF 

pulse sequence encodes the magnetization contrast and an imaging technique is applied to observe its 

spatial distribution. The concept of DDIF imaging is thus similar to that of Т1-, Т2-, and  

diffusion-weighted imaging. In particular, the stimulated echo sequence can precede any fast imaging 

modality, such as RARE or BURST, to accelerate the acquisition of spatially resolved DDIF  

contrast [38]. In the case of spin-warp imaging, as shown in Figure 2, field gradients are applied during 
soft -pulses for slice selection. The use of pulsed spoiler gradients during  ensures the selection of 

the stimulated echo pathway. Read and phase gradients are applied just before the stimulated echo 

formation to minimize unwanted diffusion-weighting from these gradients. 

Because applied field gradients also cause signal decay, one needs to be cautious during the design 

of pulse sequences to minimize any encoding gradients before  because they will interfere with 

internal field encoding. Read and phase gradients can occur after , and they induce, at most,  
-independent diffusion-weighting. However, an unfocused slice gradient during the second -pulse 

or a crusher gradient before the second -pulse can induce -dependent diffusion-weighting and 

interfere with the internal gradient during . For example, the effective decay rate of the  
slice-selective gradient of the second -pulse (see Figure 2) can be estimated according to the equation, 

, where, τp , Gs and  correspond to the pulse length, slice-gradient strength, and 

diffusivity, respectively.  is the gyromagnetic ratio. When τp = 2 ms and Gs = 4 G/cm, this estimation 

D
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produces an additional decay rate of 0.3 (1/s). The total background decay rate of the DDIF imaging 

sequence in Figure 2 can be estimated as 0.7 (1/s), assuming the T1 relaxation of free 

(unrestricted) water molecules. This correction is one example of the need to separate internal and 

external field effects when interpreting DDIF data. Future examples in this review will carry this  

idea further and illustrate the constructive and destructive interference patterns of the internal and 

external gradients. 

Figure 2. Slice-selective 2-dimensional (2D) spin-warp DDIF imaging sequence. The 

spoiler gradient was applied during  to remove the unwanted coherence pathway signal. 

The readout gradient was applied just before stimulated echo acquisition to reduce signal 

decay due to the external field gradients at different diffusion times. A pulsed-field 

gradient can be applied during  to extract cross-terms between the internal and external 

gradients. Reproduced from Reference [23] with permission. 

 

2.2. Data Analysis 

Before explaining the appropriate data-analysis techniques used to analyze bulk and imaging DDIF 

contrast, it is worthwhile to introduce the length scales relevant to the DDIF experiment: imaging 

voxel size (∆x), structural scale (ls), and diffusion length (lD). The structural scale (ls) refers to the 
average pore size of the medium, and the diffusion length (lD) is defined as, 2  where D is 

the diffusion constant and  is the diffusion time, respectively [39,40].  

For bulk DDIF measurements, when ∆x  ls, lD, the decay of the echo amplitudes typically shows 

multi-exponential behavior for short , reflecting the internal gradient distribution in the sample. In 

these cases, the DDIF signal is essentially a sum of weighted exponential functions  

(i.e., a Laplace transformation), as given by Equation (1). 

 −= ττ τ deftS t /)()(
 (1) 
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As  grows longer, the echo amplitude eventually follows regular spin-lattice relaxation as the 

spatial nonuniformity of magnetization disappears. To illustrate this behavior, representative DDIF and 

reference (T1) data on 3 different bovine trabecular bone samples are shown in the bottom panel of 

Figure 3a. The difference in magnetic susceptibility between the solid and liquid phase of a  

water-filled trabecular bone gives rise to field variations and contributes to DDIF signal decay over 

short . The corresponding trabecular structure of each sample is shown in the top panel, obtained 

from high-resolution microscopic computed tomography (μCT). Qualitatively, a faster initial decay 

rate is apparent in the time domains of the DDIF echo amplitudes of sample B with respect to samples 

A and C. In the bottom panel of Figure 3b, the corresponding DDIF spectra are shown for each 

sample [12]. 

To obtain the DDIF spectra, Laplace inversions are performed on the echo amplitudes that are 

acquired at logarithmically spaced . Reference data (R) are subtracted from the DDIF data ( ) to 

remove the relaxation contribution, as shown in Equation (2). 

RaEEs 00 −=  (2) 

The Laplace inversion procedure is then applied to the subtracted amplitudes ( ) to obtain the 

spectra of the decay times. Since an individual inversion can be numerically ill-conditioned, proper 

consideration of noise sensitivity is helpful. The uncertainty of the DDIF spectrum can be verified 

using a number of Laplace inversions of the original data combined with different simulations of the 

Gaussian-distributed noise, whose amplitude matches the measured echo amplitudes standard 

deviation. Inversion consistency can be maintained by using a constant regularization parameter for 

each data set. As shown in the bottom panel of Figure 3b, the DDIF spectra clearly show larger 

weights for the short, fast decay times of sample B, which is consistent with the faster decay of its 

time-domain DDIF decay signal shown in Figure 3a [12]. 

Conversely, when the voxel size of interest is much smaller than the relevant structural length scale 

(∆x  ls), a constant gradient within each high-resolution voxel may be assumed and the decay of the 

echo amplitude of each imaging voxel can be fit to a single exponential model. Consequently, the echo 

decay rate of each voxel can be modeled as shown in Equation (3) [41,42]. 

DtG
TT

e
22

int
2

backDDIF

11 γ+=  (3) 

Equation (3),  is the background relaxation time, including  and diffusion-weighting of the 

slice gradient,  is the gyromagnetic ratio,  is the strength of the internal gradient,  is the 

encoding time, and D is the diffusion constant. Note that this formula omits directionally dependent 

cross-terms between the internal and external gradients; this effect will be discussed in upcoming 

sections. In order to experimentally extract the DDIF decay rates affected by the internal gradients, 

these background rates can be subtracted after fitting a single exponential function to the individual 

pixels of the image. It is worthwhile to estimate the noise level of the signal-free region of the image 

and include only data points with amplitudes larger than the noise level. In the DDIF-imaging 

experiment, it was also observed that the signal decay that was obtained at low resolution, in some 

cases, demonstrated multi-exponential behavior when there was a significant gradient distribution 

within each voxel. Ideally, Laplace inversions could be applied to the data in each voxel; however, 

backT 1T

γ int
G
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voxel-wise data sets may not be sufficiently sampled in time ( ) or possess insufficient signal-to-noise 

ratio (SNR) to support Laplace inversions. In these cases, reasonable comparisons can be made by 

limiting the fit to a shorter diffusion time over which most of the voxels display single exponential 

behavior. This initial rate represents the overall average rate of the entire voxel. 

Figure 3. In the top panel, high-resolution microscopic computed tomography (μCT) 

images of 3 trabecular bone samples with different yield stresses are shown. Transverse 

and longitudinal slices are shown in the first and second rows, respectively. A 3D 

rendering of a cubical subvolume is shown in the third row. Images were acquired at an 

isotropic spatial resolution of 34 µm. In the bottom panel, section (a) shows the 

corresponding decay in the raw echo amplitudes as a function of the diffusion time of each 

sample. Section (b) shows the corresponding DDIF spectra obtained from Laplace 

inversions. Reproduced from Reference [12] with permission.  
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2.3. DDIF Microimaging with a 2D Cylindrical Phantom 

Some varieties of porous media (e.g., vascular capillary bundles, axonal nerve fibers, myofibers) 

possess some degree of symmetry and collective anisotropy, which are closely related to their 

integrities and functions. In some cases, DDIF may be employed to sensitize MR to microstructural 

anisotropy via its influence on the internal field pattern. Furthermore, in the simplest case, the 

cylindrical symmetry of a bundle of capillary tubes (i.e., “fibers”) makes it essentially a 2D object, so 

that exact comparisons with theoretical calculations can be performed. When intrinsic or extrinsic 

susceptibility contrast exists between the fiber and the surrounding medium, internal gradients arise at 

the interface around the fiber. Quantitative characterization of these gradients may provide important 

tools to infer the fibrous microstructure, such as the directions of the nerve pathways in brain, cardiac 

or skeletal muscle architecture, or the tortuosity of cancerous microvasculature. To that end, 

techniques can be employed to offset the internal and external gradients and maximally sensitize DDIF 

to anisotropy. 

The susceptibility-induced internal gradient profile of a single capillary tube in the presence of a 
magnetic field, , along the axial direction (z) of the cylinder offers insights into the anisotropy of the 

internal field (Figure 4). The difference in susceptibility ( χΔ ) between the wall of the cylinder and the 

rest of the medium is the source of the internal gradient and can be analytically described as shown in 

Equation (4). 

 
(4) 

Figure 4. (a) Capillary cylinder in the presence of  (diameter: 1.55 mm; wall thickness: 

0.2 mm); (b) Calculated susceptibility-induced internal gradients along the x, y and z 
directions. Reproduced from Reference [43] with permission. 
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Figure 4b plots the profiles of the corresponding susceptibility-induced gradients along the x, y and 

z-axes, respectively. Note that no internal gradients exist when the field is applied along  

the z-axis of the cylinder. Also, for a transversely applied field, the internal gradient is oppositely 

oriented on either side of the cylinder and is absent within it. 

In order to experimentally obtain spatially resolved information on the susceptibility-induced 

internal gradients, a DDIF-imaging experiment was performed. Figure 5 shows an expanded  

spin-density image of a randomly packed water-filled glass capillary phantom (inner radius: 0.58 mm, 

outer radius: 0.77 mm), and Figure 5b shows the corresponding DDIF signal decay of the individual 

voxels denoted in Figure 5a. The details of this acquisition have been previously described [43]. The 

susceptibility-induced internal field is approximately constant inside the cylinders, and DDIF decay 

rates of 0.76 (1/s) for point 1 inside the cylinder is in good agreement with the sum of background 
contributions from  (0.4 (1/s)) and the uncompensated slice gradients (0.3 (1/s)).  

Figure 5. (a) Spin-density image of the pore space in packed cylindrical capillary tubes;  

(b) Signal decay rates of each point labeled in (a). Reproduced from Reference [23]  

with permission. 

 

Figure 6 shows a direct comparison between spatially resolved DDIF rates and theoretically 

calculated internal gradient values at corresponding positions in the randomly packed capillary tubes. 

The signal decay rate is slower at the center of the cylinder and at the extracylindrical pore center and 

faster near the walls, indicating higher internal gradients near the walls of the cylinder. Agreement 

between the theoretical calculations of the internal gradients and the DDIF measurements is excellent. 

This work demonstrates the sensitivity of DDIF imaging is sufficient to directly characterize 

susceptibility-induced internal gradients. 
  

1T
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Figure 6. (a) Measured DDIF decay rates in packed cylindrical capillary tubes;  

(b) Calculated strength of the internal gradients in the corresponding pore space;  

(c) Experimental measurements of DDIF decay rates along the lines across the pores 

denoted in (a). (d) Theoretical calculation of the squared internal gradient across the lines 

in the same pore space denoted in (b). Reproduced from Reference [23] with permission. 

 

It is worthwhile to note that the DDIF-imaging method essentially measures the squared value of 

the local internal gradient (Gint
2), as shown in Equation (3). As a result, any directional information 

regarding the internal gradient is lost. In general, the gradient of the magnetic field vector is a  

second-rank tensor. In the presence of a strong magnetic field along the z-axis, only 3 partial 

derivatives  of the -component of the susceptibility-induced magnetic field  

are of interest because the others ( , …) correspond to fields in the rotating frame and do not 

affect the long-term spin dynamics. As a result, three partial derivatives characterize the relevant 
internal gradient for NMR measurements of an isotropic-susceptibility constant . Because the 
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internal magnetic field gradient is a vector quantity, not only the strength but also the orientation of the 

internal gradient should provide the maximum amount of information about the underlying structural 

geometry. Conventional DDIF measurement, as illustrated thus far, only reflects the magnitude of the 

gradient, not the orientation.  

To determine the orientation of the internal gradient, an external field gradient can be applied to 

generate a cross-term between the external and internal gradients. Let us imagine that a pulsed-field 

gradient of arbitrary direction is applied during encoding period ( ) of the pulse sequence, as shown in 

Figure 2. The spins experience both internal and external gradients during the encoding period and, 

thus, magnetization decays following a new, effective decay rate ( ) as the diffusion time ( ) 

increases.  

 

extint
2
ext

2
int

2
total 2 GGGGG


⋅++=  (5) 

The squared magnitude of this gradient ( ) contains a cross-term (vector dot product) of the 

internal and external gradients, as shown in Equation (5). The orientation of the internal gradient in an 

image voxel can be estimated by varying the interference effects of the internal  and external 

gradients on the magnetization decay as the direction of the external gradient is changed. In 

fact, three measurements with independent, external field gradient directions, and one without an 

external gradient, are sufficient for determining the local  vector within an imaging voxel 

according to Equation (5). 

Figure 7 illustrates the significant changes that occur in the spatially resolved DDIF rates as the 

direction of the applied field gradient (5 mT/m; which is on the order of the internal gradient used in 

this experiment) is changed from an axial to a transverse orientation relative to the cylindrical axis. 

When the external gradient is applied perpendicularly to the cylindrical axis (a), the fastest decay rates 

are observed in the regions where the internal and external gradients have the same direction. When 

the external gradient is applied parallel to the cylindrical axis (c), no apparent effect on the cross-term 

is observed because no internal gradient is present along the direction of the cylindrical axis. In the 

bottom panel, comparisons between the experimental and theoretical calculations and histogram 

analyses of the decay rates for both cases are shown to illustrate the differences in the distributions of 

the decay rates when the direction of the external gradient is varied. The absence of an axial 

component in the internal gradient suggests the feasibility of determining the direction of the 

cylindrical capillaries using the cross-term between the external and internal gradients, similar to 

recent findings [43]. 
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Figure 7. In the top panel, sections (a–c) show spatial maps of the DDIF cross-term rates, 

respectively, when external pulsed-field gradient (PFG) is applied along different 

directions. In the bottom panel, sections (d) and (e) compare the internal gradient strength 

across the pore denoted in (c) determined from experimental DDIF rates with that derived 

from theoretical calculations. (f) Histogram distribution of the measured internal gradient 

strengths along the [100] and [001] directions, respectively. Reproduced from Reference [43] 

with permission. 

 

It is worthwhile to note that internal gradients may contribute to non-Gaussian diffusion-weighted 

behavior. For example, in the case of a 2D cylindrical phantom, the diffusion-weighted signal follows 

a single exponential temporal decay when the external gradient is applied along the z-direction.  

On the other hand, a clear deviation from single exponential behavior is observed when the external 

gradient is applied along either the x- or y-direction, where broad distributions of internal gradients 

exist, as shown in Figure 8 [43]. Capuani et al. also recently reported spatiotemporal anomalous 

diffusion in heterogeneous porous media and hypothesized that the internal gradients act as 

contributing factors [44]. While different control variables (diffusion time, applied diffusion weighting) 

may have been applied in these examples, the underlying mechanism of internal gradients inducing 

apparent non-Gaussian diffusion is a potential common theme. 
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Figure 8. (a) Calculated decay characteristics of the unresolved DDIF signal when the 

external gradient is applied along the x, y and z directions, respectively; (b) Corresponding 

experimental measurements of the DDIF-signal decay. Reproduced from Reference [43] 

with permission. 

 

2.4. Comparison between Bulk and Resolved DDIF Contrast in Trabecular Bone 

Spatially resolved internal gradient profiles of porous media provide rich information regarding the 

underlying structures and complement conventional DDIF-relaxation measurements. For example, in 

this review, we compared bulk and spatially resolved DDIF contrast in trabecular bone.  

Bone tissue is a solid mineral matrix, filled with soft bone marrow that is comprised of a mixture of 

liquid and adipose (fatty) tissue. Human bone is normally classified as cortical or trabecular. Cortical 

bone, which usually comprises the shaft of a long bone, is very dense with low porosity. Trabecular 

bone (spongy bone) is a complex network of plates and rods with a typical thickness of the order of 

100 µm that occurs for example in vertebral bodies, and femoral, or tibial joints. These load-bearing 

zones are often at high risk of fracture in patients with abnormal bone remodeling, such as those with 

osteoporosis. Total bone density is commonly accessed with dual X-ray absorptiometry (DEXA), 

which senses the amount of bone without regard to its microscopic arrangement. The bone 

microstructure of trabeculae can be characterized using X-ray-based μCT; however, the high dose of 

radiation necessary for current X-ray technology, limits its clinical application. Because MRI provides 

superior soft tissue contrast without ionizing radiation, there is a great deal of interest in developing 

clinical MRI methods that can be used to probe the trabecular bone structure in vivo; in that spirit, 

methods that employ the internal field signature via its effect on free induction decay, as well as direct 

microimaging of the trabecular bone structure in certain anatomical zones, are gaining 

prominence [45–56]. 

Because the susceptibility difference between the solid bone matrix and the intervening 

composition of fluid, marrow, and fat gives rise to magnetic field variations in trabecular bone, several 

MRI methods were developed to characterize the relationship between the strength and linewidth 
(  of bone tissue. Several studies consistently show a prolonged  value in osteoporosis patients 

that increases as the intertrabecular space reduces the surface area where the susceptibility-induced 

field exists. 
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Research on bulk-DDIF measurement of bovine trabecular samples [12] (Figures 3 and 9) shows 

higher spectral weights in short-decay regions of bone samples with high surface-to-volume ratios. For 

the full range of samples examined in that study, it was shown that the integrated weight of the  
short-decay region (20 ms < < 500 ms) of the DDIF spectra of each sample correlates well with 

the projected surface-to-volume ratio (PSVR) that was determined using both independent PFG-NMR 

measurements as well as the mean intercept length (MIL) of the trabecular bone samples obtained 

using μCT image analysis, as shown in Figure 9. MIL was found by averaging the lengths of the line 

segments between trabeculae across the whole structure. MIL and other related metrics, such as 

trabecular density, are well-known measures of the integrity of trabecular bone structures.  

Figure 9. (a) DDIF results and PFG-PSVR measurements as a function of yield stress for 

17 trabecular bone samples; (b) Calculated mean intercept lengths of the corresponding 

samples. (c) Calculated projected surface-to-volume ratio (PSVR) values of the μCT 

images. (d) Calculated trabecular number for corresponding sample. Reproduced from 

Reference [12] with permission. 
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The concept of PSVR is similar to that of ADC in an anisotropic medium along the direction of the 

applied gradient. The leading order behavior of the time-dependent diffusion coefficient in an 

anisotropic medium ( ) is described by , where  corresponds to 

PSVR along the direction of the applied external gradient [33]. 

To independently measure PSVR using NMR, in comparison with DDIF measurements, the  
time-dependent diffusion coefficient ( ) was measured using PFG-NMR on the same trabecular 

bone samples along different directions of the applied external gradient. PSVR was obtained from the 
slope of the 

 
data, as suggested by Mitra et al. [33]. The MIL values of each sample were found 

by drawing a line in the proposed direction through the 3D image volume and averaging the distances 

between trabecular plates along the line of that orientation through the whole sample volume.  

In Figure 9a, PSVR measurements of the time-dependent diffusion measurements and the 

corresponding DDIF weight for short-decay times are plotted against the mechanical yield stress for 

the full range of samples. DDIF weight is seen to closely resemble PSVR measurements along the  

Bz-direction. In Figure 9b, 9c and 9d, calculated PSVR, inverse MIL and trabecular number from high-

resolution (34 µm) μCT images of the same bone samples are plotted to show the close correlation 

between DDIF measurements and PFG-NMR measurements. Direct calculation of the internal 

magnetic field of the trabecular bone samples also sheds some light on the origin of DDIF contrast. We 

noted that deviations in the internal magnetic field from the applied field mainly occurred near plates 

that were oriented perpendicular to the applied field (Bz) direction. 

Spatially resolved DDIF experiments with high (125 µm) and low (1.2 mm) resolution images of 

the trabecular bone samples also provide direct insight into DDIF contrast [24]. Figure 10 shows the 

experimental micro-imaging results of trabecular bone samples B and C [24]. Three different types of 
images—a spin-density image, a 

 
rate map, and a DDIF rate map—of four different cases are 

plotted: two axial images of two samples, one coronal image intercepting both samples, and one  

low-resolution coronal image. One-dimensional profiles of spin density and DDIF decay rates were 

extracted for quantitative comparison, as shown in Figure 10. For both samples and orientations, clear 

DDIF decay rates maxima and spin-density minima were observed near the trabecular surfaces. 
Spatially resolved 

 
maps were found to be quite uniform for both samples B and C in both slice 

orientations. On the other hand, the DDIF rate maps show striking contrast between the two samples. 

Overall, higher DDIF rates were observed in both the high- and low-resolution image experiments with 

sample B, which has a higher surface-to-volume ratio than sample C. 

Figure 11 shows the theoretically calculated DDIF decay map of coronal images of both samples 

based on high-resolution μCT images. These results include binarized high-resolution images and 

downsampled, partial-volume averaged, low-resolution images. Again, high-resolution DDIF rate 

maps show pronounced maxima near the surfaces that are transverse to the applied field direction. The 

coarsening of resolution appears to spread contrast throughout the structure. A qualitative resemblance 

is clearly observed between the calculated low-resolution DDIF maps and the corresponding 

experimental DDIF maps, shown in Figure 10. 
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Figure 10. Experimental DDIF microimaging. Spin-density images are shown in the first 

column. The second column shows a map of the spin-lattice relaxation rate. The third 

column shows a map of DDIF decay rates. The fourth column shows 1D profiles through 

the centers of each image, as indicated by the vertical lines. The first and second rows 

show axial images of samples C and B, respectively. The third row shows high-resolution 

coronal images of both samples B and C together, and the fourth row shows low-resolution 

coronal images of samples B and C. Reproduced from Reference [24] with permission. 
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Figure 11. Calculated local DDIF contrast (internal gradient map) of samples B and C. For 

each sample, the upper left is the binarized high-resolution μCT image. The upper right is 

the high-resolution calculated DDIF map. The lower left is the downsampled  

low-resolution image, and the lower right is the calculated low-resolution DDIF map. 

Reproduced from Reference [24] with permission. 

 

The in vitro studies performed on water-saturated trabecular bone highlight the presence and 

information content of DDIF contrast in particular biological structures. However, depending on the 

composition and skeletal location, bone marrow-water diffusion is restricted by adipose cells  

(which also have low rates of diffusion), which may reduce the achievable DDIF contrast [57–60]. 

However, preliminary in vivo studies have demonstrated DDIF contrast in human trabecular bone, and 

studies exploring the influence of marrow composition and/or distribution in the pore space have shed 

promising light on the in vivo source of DDIF contrast [61,62]. Recently, it has been also shown that 

DDIF contrast is apparent in fresh bone specimens with intact bone marrow [63]. Future work may 

build upon these results to determine the optimal clinical role of internal field diffusion-weighting in 

trabecular bone and its potential to infer structural markers of mechanical strength in arbitrary  

skeletal locations. 

2.5. Measurement of Magnetic Field Correlation Functions 

When the pore size is much smaller than the spatial resolution, statistical description and 

characterization of the internal magnetic field are compelling alternatives to microimaging. Signal 

decay due to diffusing spins in the presence of an internal field provide statistical measurements of 

internal field variation at the microscopic level. Correspondingly, important structural parameters, such 

as the structural factors of the porous medium, may be approximated by bulk, low-resolution NMR 

measurements. Audoly et al. first calculated the field correlation function of the internal magnetic field 

of a sample of randomly packed spheres and demonstrated a similarity between the field correlation 

function and the structural correlation function [27]. This work shows that the statistical features of 
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internal magnetic fields are closely and quantitatively related to the corresponding features of the 

underlying geometry. 

It was recently shown that a pair of symmetric and asymmetric stimulated echo PFG-NMR 

experiments can be used to directly measure the correlation function of the internal magnetic field [28]. 

First, we used PFG-NMR to select spins by their translational diffusion displacements without effects 

from the internal field. Then, a similar experiment was performed that included the effects of the 

internal field. For a group of spins with specific diffusion displacements, the magnetic field difference 

across this displacement resulted in additional decay in the second experiment. 

Let us consider a conventional internal field-compensated stimulated echo sequence,  

- - - - - -  - - - -echo, as shown in Figure 12a. Bipolar external field gradient pulses 

of length  are applied during the  periods. The -pulse in the middle of the first and second  
-pulses refocuses the phase evolution of the spins due to field inhomogeneities when = . The 

echo signal of the ensemble of diffusing spins at the echo time is then given by Equation (6). 

rderPqE rqi  

 ⋅Δ=Δ ),(),(   (6) 

Figure 12. Pulse sequences used to measure the pair correlation function of the internal 

magnetic field. (a) Balanced sequences used to nullify the effect of the internal field;  

(b) Imbalanced sequence used to introduce the effect of the internal field. Reproduced from 

Reference [28] with permission. 

 

In Equation (5),  is the wave vector due to the external field gradient.  is the diffusion 

time. A Fourier transform of the echo signal, with respect to , will produce the average propagator 

 In the second experiment, the timing of the -pulse is adjusted so that −  =  is nonzero; 

we call this sequence unbalanced, as shown in Figure 12b. In this case, the spins experience the 

internal field during the unbalanced encoding periods (  ≠ ) causing a net phase accumulation due 

to the internal field. The echo signal will be further weighted by the internal field effects of the 

diffusing spins. In this case, the echo signal can be written as shown in Equation (7), within the 

average propagator formalism. 
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When the full q-space is mapped, followed by 3D Fourier transformation, the ratio between the 

unbalanced and balanced measurements will yield the following.  

 (8) 

The second moment ( ) and the field correlation function ( ) of the 

susceptibility-induced internal magnetic field ( ) can then be obtained along arbitrary directions of 

the diffusing spins in the porous medium. The bracket refers to an ensemble average. 

For an isotropic sample, a single gradient-direction experiment may be sufficient to measure the 

propagator because the 3D isotropic propagator can be written as a product of the propagator in each 

direction. Then, the ratio of the 1D Fourier transformation data between the balanced and unbalanced 

sequences will yield the following. 
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)(1 22
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where , and the bracket refers to an ensemble average. Since has two 

components, parallel to ( ) and perpendicular ( ) to the applied gradient direction, the integration of 

means that C1 is only a function of . 

For comparison with this type of measurement, numerical evaluation of the internal magnetic field 

of a densely packed hard sphere model can be performed by the superposition of the magnetic fields 
from the dipoles located at the center of the each sphere. When a single sphere of radius  and 

permeability  is embedded into a medium with permeability  in the presence of an external 

magnetic field ( ), the magnetic dipole moment ( ) of the sphere due to susceptibility mismatch is 

given by Equation (9) [64–67].  

 (10) 

If we only consider small and isotropic susceptibilities, then the dipole moment along the direction 
of  can be approximated as , where the susceptibility difference between the 

grain and the medium is . The internal magnetic field at position  is given by the 

superposition of the dipole fields of each sphere and can be calculated as show in Equation (11).  

 (11) 

In Equation (11), 
 
is the center of each sphere. As before, if we take the -field along  

the z-direction, the z-component of the internal field is the only relevant component of the 

NMR experiment. 

Now, the correlation function of the internal magnetic field is analogous in form to that derived 

from a single PFG direction experiment. Specifically, the magnetic field correlation function, derived 

from the calculated internal field distribution is described by Equation (12). 
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 (12) 

In Equation (12),  (  is the direction of the applied field gradient),  is the number 

of coordinate pairs with distance , and  is the component of  that is perpendicular to the 

direction of applied gradient. P( ) is the probability function that weights each contribution to the 

sum by the number of coordinate pairs whose projected separation perpendicular to the field gradient 
direction is . In that sense P is similar to an experimentally measured propagator but in this 

expression is evaluated purely numerically. 
Figure 13a shows the numerically calculated internal field correlations ( ,  // z),  

where z is the direction of the main magnetic field) as a function of the porosity of a random packing 

of spheres. The porosity of the bead pack is changed by randomly removing beads from the pack. The 

initial slope decreases as the porosity increases, which also reduces the surface-to-volume ratio.  

Figure 13b shows a linear relationship between the initial slope of the calculated field correlation 

function and the surface-to-volume ratio of the system of packed spheres, which is consistent with 
previously reported findings ( ) [27]. On the other hand, strong anisotropy was 

observed when the direction of  was changed in the calculation. The slope A was found to be 1.5, 

1.1, and 1.1 along , and y, respectively. Audoly et al., reported A = 1.28 when   
(i.e., the average of the 3D ensemble), which corresponds to the average value of the three orthogonal 

A values in the internal field correlation function. 

Figure 13. (a) Numerically evaluated pair correlation functions of the internal fields with 

varying porosity; (b) Linear relationship between the initial slope of the pair correlation 

function and surface-to-volume ratio obtained by the porosity of the pack [68]. Reproduced 

from Reference [28] with permission. 

 
Figure 14a shows experimental measurements of the field correlation function of a sample of 

randomly packed glass beads using the unbalanced stimulated echo technique. Three independent 
measurements along the  directions of the external gradient are shown. The reduction in 
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[ ] was strongest along the -direction (the direction of the main magnetic field), and 

this reduction was similarly smaller along the - and -directions in the gradient. The anisotropy 

ratio of the reduction in the experimental measurements (2.2:0.92:1) was also in good agreement with 
the theoretical calculations of  (1.8:0.97:1) along z, x and y directions.  

Figure 14. (a) Experimental measurements of the field correlation functions of a randomly 
packed sample of glass beads. Three independent measurements along the  
directions of external gradient are shown. The reduction in [ ] was strongest 

along the z-direction. (b) Comparisons of the experimental measurements with the 

numerical calculations. Reproduced from Reference [28] with permission. 

 

Comparison between the numerically and experimentally measured field correlation functions 
( ) for different bead sizes and gradient directions are shown in Figure 14b. 

The surface-to-volume ratios extracted from the initial slopes of the field correlation function 

measurements were in generally good agreement with the surface-to-volume ratios calculated in 

separate porosity measurements. Full 3D q-space mapping is expected to yield a complete description 

of the correlation function of internal magnetic fields along arbitrary directions and resolve the residual 

discrepancies between theory and experiment in Figure 14. Because the area of comprehensive 3D 

susceptibility mapping is becoming quite important to the in vivo clinical realm [65–67], the proposed 

correlation function mapping may have diagnostic potential. 

3. Conclusions 

Susceptibility contrast is ubiquitous in materials, and MR is uniquely sensitive to magnetic field 

variations caused by susceptibility contrast. Characterization of the internal magnetic field properties 

of porous media and the development of new, relevant MR pulse sequences have the potential to provide 

important structural and functional information regarding porous media via nondestructive techniques. 

This paper reviews the basic concept of DDIF contrast and its extension to imaging. Appropriate 

data-analysis methods for bulk- and DDIF-imaging experiments have been discussed. DDIF-imaging 

experiments with 2D cylindrical phantoms show the direct correlation between DDIF contrast and the 

strength of the local internal gradients due to susceptibility differences. Interpretation of bulk-DDIF 
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contrast in trabecular bone samples was confirmed using both micro-imaging experiments and internal 

field calculations of the same samples. A new PFG-NMR method for measuring magnetic field 

correlations was presented, and representative experiments and theoretical calculations are described 

for a randomly packed system of spheres, showing the potential for utilizing the statistical features of 

internal fields to obtain structural information. Potential applications of this method for use in in vivo 

trabecular bone and microvasculature imaging are in progress. 
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