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We present electron trapping in an ellipsoidal bubble which is not well explained by the

spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation

of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of

the laser pulse is large compared to the plasma wavelength. First, we introduce the relation

between the bubble size and the field slope inside the bubble in longitudinal and transverse

directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the

electron trapping condition by numerical integration of the equations of motion. We found that the

ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical

bubble model. The trapping condition is compared with three-dimensional particle-in-cell

simulations and the electron trajectory in test potential simulations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4822344]

I. INTRODUCTION

Since Tajima and Dawson first suggested the concept of

the plasma-based laser wake-field acceleration and calcu-

lated the efficiency of the acceleration comparing it to com-

mercial acceleration methods,1 many people have

investigated that field by theory, computer simulations, and

experiments.2–9 Recently, significant experimental results

came out showing quasimonoenergetic dense bunches of rel-

ativistic electrons with up to GeV-class energy.3,4

The generation of the accelerating wake-field comes from

the ponderomotive force of the driving laser pulse. In this

mechanism, electrons are first expelled by the ponderomotive

force of the laser pulse and then are attracted back to their ori-

gins by the electric field induced by the charge separation.

When the power of the driving laser pulse exceeds a certain

threshold value, i.e., P > Pc ¼ 30½GW� � ðs½fs�=k½lm�Þ2, this

process forms a bubble, which is a spherically shaped

electron-free region, having a sheath of higher electron

density than that of the background in its rim. The bubble

formed in this way propagates with the group velocity of the

laser pulse so that v0=c ’ 1� 1=2c2
0 ðc0 ’ x0=xpÞ, where

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=m

p
is the electron plasma frequency, x0 is the

laser frequency and v0, n0, m, c0 are the laser group velocity,

the background electron density, the electron mass, and the

relativistic factor of the bubble, respectively.

Differently from conventional accelerators, in many

experiments and simulations of the electron acceleration in

the bubble regime, people do not use a separate beam injec-

tor, but instead the electrons are mostly self-injected into

the bubble from the background plasma. Depending on the

position and duration of such self-injection, most of the

important beam parameters like the beam energy, energy

spread, emittance, and beam charge are determined. Thus,

understanding the self-injection mechanism is the key point

in the laser plasma acceleration study. In other contexts, to

make a large amount of electrons be self-injected, various

additional techniques have been proposed such as two coun-

ter propagating laser pulses,5,15 density transition,16,17 ioni-

zation injection,18 etc.

From the numerical studies, it has been observed that

electrons can be trapped by a large bubble with R > 4, where

R is the normalized bubble radius to c=xp.2 After that

Kostyukov et al. derived the trapping condition for a spheri-

cal bubble, c0 < R=
ffiffiffi
2
p

, where c0 is the gamma-factor of the

bubble’s backside.10 As another mechanism of the electron

trapping, it was theoretically suggested that the bubble defor-

mation (usually the bubble’s expansion) also traps elec-

trons.11 Moreover, it was shown in the same reference that

subsequent bubble shrinking after the expansion makes a

quasi-monoenergetic energy peak in the electron beam. Such

a bubble expansion is actually dominant in longitudinal

direction, so a longitudinally ellipsoidal bubble theory was

introduced.12

In this article we describe the electron trapping condi-

tion in a transversely elongated ellipsoidal bubble, compar-

ing it with the spherical one. As an overall feature, we show

the evolution of the ellipsoidal bubble in Fig. 1, where we

traced the longitudinal and transverse bubble size separately,

and also the electron trapping by a three dimensional parti-

cle-in-cell (PIC) simulation. As can be seen from Fig. 1,

the bubble starts with a transversely long ellipsoidal shape

Ry > Rx and then it slowly changes into a sphere ðRx ’ RyÞ.
Here, the PIC simulation suggests that the trapping of elec-

trons occurs not only in the spherical regime but also in the

ellipsoidal regime, which is not explained by the previous

spherical bubble model. To explain this, we generalized the

bubble shape in the spherical bubble theory in Ref. 10. First,

we introduce the relationship between the ratio of the longi-

tudinal bubble size to the transverse one and the ratio of thea)Electronic mail: mshur@unist.ac.kr
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longitudinal field slope inside the bubble to that in the trans-

verse direction. By numerically integrating particle trajecto-

ries around such an ellipsoidal bubble potential, we obtained

a modified trapping condition for an ellipsoidal bubble.

Then, the newly obtained condition was verified by three-

dimensional PIC simulations.

This article is organized as follows. In Sec. II, we pres-

ent the generalized ellipsoidal bubble model. In Sec. III, the

modified electron trapping condition is derived with the help

of numerical integration of the Hamiltonian equation. In Sec.

IV, the newly obtained trapping condition is compared with

PIC simulations. Finally a summary is given in Sec. V.

II. MODEL OF THE ELLIPSOIDAL BUBBLE FIELDS

The electromagnetic field in a bubble has a linearly

increasing region around the center and a thin sheath region

near the bubble’s edge. Such a field shape is well approxi-

mated by the following function:10,13

FðrÞ ¼ k
r

4
1� tanh

r � R

d

� �
; (1)

where R is the bubble radius, d the sheath thickness at the

bubble boundary, and k the scale factor of the field slope of

the bubble. Then, the electromagnetic field inside the bubble

becomes Ex ¼ FðrÞ; Ey ¼ �Hz ¼ FðrÞ=2. It is actually

observed that Eq. (1) matches well the results from three-

dimensional PIC simulations for a long enough simulation

period. Integrating Eq. (1) with r, we obtain the bubble

potential U as follows:

UðrÞ ¼ k

�
r2

8
� rd

4
ln exp

r � R

d
þ exp

�ðr � RÞ
d

� �

þ 1

4

ðr

0

dr0ln exp
r0 � R

d
þ exp

�ðr0 � RÞ
d

� ��
: (2)

Actually the bubble potential is defined as U ¼ Ax � / using

the gauge of Ax ¼ �/, where Ax and u are the x component

of a vector potential and a scalar potential, respectively (see

Sec. III). By splitting the integration range at r¼R, the final

form of the potential for the region of r � R becomes

UðrÞ ¼ k

�
r2

4
� rd

4
ln 1þ exp

2ðr � RÞ
d

� �

� d2

8
Li2 �exp

2ðr � RÞ
d

� �

þ d2

8
Li2 �exp

�2R

d

� ��
þ U0; (3)

and for the region of r > R,

UðrÞ ¼ k

�
R2

4
þ d2p2

48
þ d2

8
Li2 �exp

�2R

d

� �

� rd

4
ln 1þ exp

�2ðr � RÞ
d

� �

þ d2

8
Li2 �exp

�2ðr � RÞ
d

� ��
þ U0; (4)

where Li2ðxÞ ¼
Ð 0

x dt lnð1�tÞ
t is dilogarithm function and U0

¼ 1� R2=4 is the potential at r¼ 0 to make the potential

unity at r¼R. When an ellipsoidal potential is assumed, we

use different values for the radii in x and y directions in

Eq. (4), being marked by Rx and Ry. Then by assuming that

the potential is constant around the bubble rim, we can set

the potential as follows:

UðRx þ 2dx; k ¼ kxÞ ¼ UðRy þ 2dy; k ¼ kyÞ: (5)

Here the factor of two in front of the sheath thickness d is

just to ensure that the distance is far enough from R. We also

use separate values for the field slopes in x and y directions,

i.e., kx and ky. Then from Eqs. (4) and (5), we obtain the rela-

tionship between the field slopes and the bubble sizes in x
and y directions as follows:

Ry ¼
ffiffiffiffi
kx

ky

s
Rx; (6)

dy ¼
ffiffiffiffi
kx

ky

s
dx: (7)

Equation (6) tells us that the elongation of the ellipsoidal

bubble is determined by the ratio of the bubble’s field slope

in each direction. This relation is well justified in Fig. 2,

where it is shown that measured values Rx, Ry, kx, and ky

from a three-dimensional PIC simulation satisfy well the the-

oretical relationship, Eq. (6). Here, we notice that the scale

factor kx or ky is obtained as the ratio of the slope of corre-

sponding electric field component and the maximal value of

the field slope (1/2 for Ex and 1/4 for Ey, see Ref. 13). Note

that kx and ky do not exceed unity.

Equations (3) and (6) along with appropriate kðhÞ (see

Eq. (14)) yield the following potential that, in turn, corre-

sponds to elliptical shape of the bubble

FIG. 1. Electron trapping as the bubble evolves temporally in its longitudi-

nal (Rx) and transverse (Ry) sizes during an entire simulation. The solid box

indicates the trapping region of an ellipsoidaly shaped bubble, and the

dashed box indicates that of a spherically shaped bubble. The previous

spherical bubble model is not sufficient to explain the electron trapping in

the ellipsoidal region.
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U ¼ kx

4
x2 þ ky

4
y2 þ U0: (8)

In Eq. (8), we neglected the screening terms that are impor-

tant only near the bubble rim. Even though this result comes

from phenomenological field slopes, the potential shape

matched well the PIC simulation result as shown in Figs. 2

and 5.

III. ELECTRON TRAPPING IN AN ELLIPSOIDAL
BUBBLE

In this section, we describe the electron trapping condi-

tion under the general shape of the bubble described above,

i.e., Rx 6¼ Ry. When the group velocity of the driving laser

pulse is close to the speed of light so that c2
0 ¼ 1=ð1� v2

0=c2Þ
� 1, the averaged electron motion in a slowly varying

electromagnetic field is determined by the averaged

Hamiltonian14

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðPþ AÞ2 þ �a2

q
� v0Px � /; (9)

where P is the canonical momentum of the electron, �a the

vector potential of the laser field, and A and u the slowly

varying vector and scalar potentials, respectively. We change

the variables from (x, Px) to ðn;PnÞ using n ¼ x� v0t and

Pn ¼ Px. The gauge is chosen as Ax ¼ �/. Then, by defining

the wake potential U ¼ Ax � /, the Hamiltonian equation of

motion is given by13

dPx

dt
¼ �vx

@Ax

@n
� vy

@Ay

@n
þ @/
@n
¼ � 1

2
ðvx þ 1Þ @U

@n
; (10)

dPy

dt
¼ �vx

@Ax

@y
� vy

@Ay

@y
þ @/
@y
¼ � 1

2
ðvx þ 1Þ @U

@y
; (11)

dn
dt
¼ px

c
� v0 ¼ vx � v0; (12)

dy

dt
¼ py

c
¼ vy; (13)

where p is the kinematic momentum, and c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ p2
y

q
.

Here, we assume that A? and �a are negligible.

To represent an ellipsoidal potential U for Eqs. (10)–(13),

we introduce angle dependence of k in Eqs. (3) and (4) such

that

kðhÞ ¼ kx cos2 hþ ky sin2 h; (14)

where h is the angle measured from the x-axis. Then we

numerically integrated Eqs. (3), (4), and (10)–(13) to calcu-

late the electron trajectories around the bubble potential to

examine the trapping or non-trapping of electrons depending

on the initial conditions of the bubble. Fig. 3 shows one

example of such integration, where it is shown that an elec-

tron, which traces a non-trapping route around a spherical
FIG. 2. Evolution of (a) the bubble sizes in longitudinal and transverse

directions, and (b) the bubble field slopes in longitudinal and transverse

directions. The “calculated Ry” is calculated from Rx

ffiffiffiffiffiffiffiffiffiffiffi
kx=ky

p
. For this simu-

lation, the laser pulse spot size is rL ¼ 1:9kp.

FIG. 3. Trajectories of electrons in (a) the ellipsoidal and (b) the spherical

bubble potentials. The gamma factor of the bubble is c0 ¼ 4:5, the bubble

radius is Rx¼ 4.2, and the field slopes are (a) kx¼ 1, ky¼ 0.3, and (b)

kx¼ ky¼ 1.0, for which the condition is non-trapping in the spherical bubble

model.
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bubble, can actually be trapped if the bubble is elongated

transversely for the same longitudinal bubble conditions

such as the bubble speed and the longitudinal bubble size.

To obtain a trapping condition for the ellipsoidal bubble,

we performed a series of trajectory calculations numerically,

where we tried to determine the maximum value of c0 to trap

the electron for a given ky and Rx. Note that as c0 decreases,

electrons can be trapped more easily. Those numerical

results are shown in Fig. 4 for diverse values of Rx and ky.

Then finally the fitting of those numerical results yielded the

following condition for electron trapping:

c0 �
Rxffiffiffiffiffiffiffi
2ky

p ¼ Ryffiffiffi
2
p ; (15)

with parameters kx¼ 1 and d¼ 0.05 (here we ignore d).

Interestingly, the trapping condition is determined by just the

transverse radius (Ry). When Rx < Ry, even though the fo-

cusing field becomes weaker than that of a spherical bubble,

i.e., ky < 1, the electrons can still be trapped.

This result could be verified from the test potential cal-

culation with more diverse ky and Ry as shown in Table I. In

this table, note that a kx is fixed as unity, Rx decreases with

decreasing ky for a given Ry. Table I shows that the trapping

condition does not change much as long as Ry is fixed though

Rx changes, which is indicated in Eq. (15). This point pro-

vides us with an important insight regarding the trapping,

since the transversely elongated ellipsoidal bubble appears

quite often in the early stage of the bubble formation, which

is the regime that the spherical theory does not explain the

trapping.

Unfortunately we could not find more general relation

of kx, ky and bubble radius except kx¼ 1, so we confine the

theory for the case of sufficiently large kx � 1. However this

is a good approximation, since usually the longitudinal field

slope reaches the maximum value earlier than the transverse

field.

IV. NUMERICAL SIMULATIONS

We carried out three-dimensional PIC simulations to ver-

ify the theoretical result in Eq. (15). A detailed explanation

and some benchmarks of the PIC code are described in Ref.

19. To generate an ellipsoidal bubble, we used a pulse spot

size larger than the plasma wavelength, i.e., 1:9kp. It is clearly

observed in Fig. 5 that the bubble takes a transversely elon-

gated shape in the early stage. Simulation parameters were as

follows; the plasma density was n0 ¼ 1:0� 1019 cm�3, the

TABLE I. Maximum value of c0 obtained from the test potential calcula-

tions with fixed kx¼ 1 and varying ky and Ry.

ky

Ry 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

5.0 … … 3.1 3.2 3.2 3.1 3.1 3.1

6.0 … 3.9 3.9 3.9 3.9 3.8 3.8 3.8

7.0 4.5 4.7 4.6 4.6 4.6 4.6 4.6 4.5

8.0 5.5 5.5 5.4 5.4 5.4 5.4 5.4 5.4

9.0 6.2 6.3 6.3 6.3 6.3 6.2 6.2 6.2

FIG. 4. The numerical calculation of the electron’s trapping condition. The

red solid line is the condition from the spherical model and the black solid

line is a fitting curve with Rx=
ffiffiffiffiffiffiffi
2ky

p
for Rx¼ 4 and Rx¼ 7. Other parameters

are d¼ 0.05 and kx¼ 1.

FIG. 5. The distribution of the electron density in the x–z plane from a three-

dimensional PIC simulation. The measured laser pulse spot sizes are (a)

rL ¼ 1:9kp, and (b) rL ¼ 0:95kp, when the laser pulse passes through 340 k
in the plasma.
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laser pulse was linearly polarized in the y direction with a

Gaussian envelope, the wavelength was k ¼ 0:8 lm, the nor-

malized vector potential of the laser pulse was a0¼ 3, and the

pulse duration was 26.6 fs. The simulation stopped when the

laser pulse passed the distance of 769 k inside the plasma.

As the pulse propagates through the plasma, the field

slope of bubble starts to increase. When the spot size of the

pulse is larger than the plasma wavelength, the transverse

field slope is somewhat tardy in growth in comparison with

the longitudinal field slope, because the edge field of the

laser pulse makes it hard for the electrons to gather around

the bubble’s sides. In this way, the retarded growth of the

transverse field slope forms a transversely elongated ellipsoi-

dal bubble. However as the transverse field slope eventually

catches up with the longitudinal field slope, the bubble

deforms to the sphere and subsequently the longitudinally

elongated bubble.

To compare the theoretical trapping condition (15) with

the PIC simulations, the gamma factor c0 of the bubble

should be calculated. For that purpose, we tracked all the

individual particles for an entire simulation period. Trapped

particles were initially positioned at the vertical (transverse)

edge of a bubble with a low momentum, and they began to

be trapped near the backside of the bubble. Then, the gamma

factor of the backside of the bubble can be calculated by10

c0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

2dx=dx0

s
; (16)

where x is the last position and x0 the initial position of the

trapped electrons in the trapping process. From the measured

slope in x vs. x0 graphs as in Fig. 6(b), and using Eq. (16), the

gamma factor of the bubble’s backside can be calculated,

which is the grey solid line in Fig. 6(d). The dashed line in

Fig. 6(d) indicates the threshold value for the trapping in the

spherical bubble model, i.e., Rx=
ffiffiffi
2
p

. If we follows Rx=
ffiffiffi
2
p

; c0

is larger than this value during the time t from 100 through

250, so there should be no trapping according to the spherical

model, while significant particle trapping was observed as in

Fig. 6(c). However that range is actually the ellipsoidal re-

gime, and c0 is located at the similar level of or below the

modified threshold value Ry=
ffiffiffi
2
p

, so the electron trapping in

that temporal range is well explained by the ellipsoidal trap-

ping condition. After the pulse passes through the non-

trapping range around t¼ 260, the bubble took the spherical

shape and satisfied both the original and the modified trapping

conditions.

V. SUMMARY

We have demonstrated by the theory and simulations

the self-injection of electrons in the ellipsoidal bubble. Such

a transversely elongated bubble appears commonly in the

early stage of the pulse propagation, when the pulse spot size

is larger than the plasma wavelength. Numerically we found

a trapping condition for such ellipsoidal bubbles, where the

trapping threshold of c0 is described more appropriately by

Rx=
ffiffiffiffiffiffiffi
2ky

p
instead of Rx=

ffiffiffi
2
p

and consequently is just

described by Ry=
ffiffiffi
2
p

. We have confirmed this result by nu-

merical integration of test electron trajectories and full three-

dimensional PIC simulations. Our result also implies that

increasing the spot size of the driving laser pulse enhances

early trapping of the electrons. However a more systematic

study is required for the optimal bubble and pulse shapes,

and the analytic origin of kx and ky relating the bubble den-

sity and Maxwell’s equation, which are actually under

progress.
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