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Abstract: The FDTD method has been successfully used for many 
electromagnetic problems, but its application to laser material processing 
has been limited because even a several-millimeter domain requires a 
prohibitively large number of grids. In this article, we present a novel 
FDTD method for simulating large-scale laser beam absorption problems, 
especially for metals, by enlarging laser wavelength while maintaining the 
material’s reflection characteristics. For validation purposes, the proposed 
method has been tested with in-house FDTD codes to simulate p-, s-, and 
circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the 
simulation results are in good agreement with theoretical predictions. 
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1. Introduction 

Since the FDTD algorithm was first developed by Yee in 1966 [1], it has been extensively 
used for a variety of electromagnetic problems [2–6]. Recently, there have been some efforts 
in the laser material processing community to use the FDTD method for simulating laser 
material interaction problems [7, 8]. Because accurate predictions on laser absorption in 
materials is by far the most important in better understanding of the processes, the direct 
solving of the Maxwell equations by the FDTD method seems like an ideal method. 

However, due to its very stringent requirement on wavelength-dependent grid density, this 
method has been considered inappropriate for simulating light interaction with materials, 
because the domain size is extremely large compared to the wavelength of the light. In fact, 
Ki et al. [7, 8] simulated femtosecond laser interaction with silicon targets using the FDTD 
method, but in order to reduce the total grid number, they employed the body-of-revolution 
(BOR) FDTD method assuming a radially polarized laser beam. Besides, the domain size was 
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only about 50 μm in their studies. If a full three dimensional code needs to be applied to a 
typical laser manufacturing process, however, a conventional FDTD method is still far from a 
viable option. In a typical laser welding problem, for example, an Nd:YAG or CO2 laser is 
generally irradiated on a metal plate that is at least several millimeters thick. In the case of a 
Nd:YAG laser, the typical wavelength is 1.06 μm, and assuming that 10 grids per wavelength 
is required and the plate thickness is 1 mm, the grid number in one dimension is roughly 
10,000, which leads to ~1012 grids in three dimensions. If a CO2 laser beam is used, which has 
a wavelength of 10.6 μm, the total grid number can be decreased to ~109, but even this grid 
number can be handled only by the most powerful supercomputing systems. 

In this article, we propose a FDTD based scheme of simulating laser absorption in metals 
that can be used for relatively large scale problems, such as laser manufacturing processes. In 
this method, instead of using the original wavelength of the laser beam, a scheme to use a 
much enlarged wavelength has been developed, where the angle-dependent absorption 
characteristic is not altered or minimally changed. For validation purposes, we have tested the 
method with both the original Yee algorithm (or standard FDTD, hereafter) and an FDTD 
algorithm for dispersive media with the Drude model [6] (or dispersive FDTD, hereafter). We 
have also proposed a scheme that enables the use of the standard FDTD method for dispersive 
media by obtaining a new set of refractive index and extinction coefficient. Numerical tests 
have been performed for 1.06 μm laser beam interaction with iron (Fe) and tin (Sn) targets. 
The obtained simulation results are in good agreement with the theoretical predictions. 

2. Changing wavelength for standard FDTD algorithm 

Light absorption in a metal can be determined by the metal’s complex refractive index and the 
incident angle as shown by the reflectance (R) formulas for s- and p- polarized lights 
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where subscripts s and p denote s- and p-polarizations, n and κ are the real and imaginary 
parts of the complex refractive index n  (i.e., refractive index and extinction coefficient), 

 ,n n iκ= +  (3) 

and iθ  is the incident angle [9]. Therefore, a material’s absorption characteristic can be 

completely understood if n and κ are known ( iθ  is not a material property). Here, as well 
known [10], n and κ can be expressed in terms of primitive variables as 
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where c  is the speed of light in free space; ε , μ , and σ  are permittivity, permeability, and 

electrical conductivity of the material; and λ  is the laser wavelength in free space. If we look 
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at Eqs. (4) and (5) carefully, we can learn that wavelength λ  can be altered without changing 
n and κ if σλ  remains unchanged. In other words, if we want to use a wavelength that is 100 
times larger than the actual wavelength, we can decrease the electrical conductivity σ  100 
times and still the angle-dependent absorption characteristic of the material remains exactly 
the same. Note that, in Eqs. (4) and (5) with n and κ values fixed, there are two equations in 

two unknowns, με  and 
2 c

μσλ
π

, so these unknowns can be completely determined., i.e., 

 1 2and .
2

a a
c

μσλμε
π

= =  (6) 

Now, we can choose λ, ε, μ, and σ values by using Eq. (6). Note that in this study we let 

0μ μ=  and 0ε ε≥  for the stability of the code because the algorithm could become unstable 

when either 0μ μ<  or 0ε ε< . 

3. Changing wavelength for dispersive FDTD algorithm 

For many metals with high reflectance values, extinction coefficient κ is larger than refractive 
index n, and therefore, Eqs. (4) and (5) become inappropriate and the strategy presented in 
Section 2 cannot be employed. (Comparing Eqs. (4) and (5), everything is exactly the same 
except for the sign between the two terms in parentheses, so the latter cannot be larger than 
the former.) In this case, the standard FDTD method cannot be used to simulate metals, and 
the dispersive FDTD method needs to be used [6]. In this section, we will present a scheme to 
use an enlarged wavelength, which can be used with the dispersive FDTD method. 

The parameters for the dispersive FDTD are obtained from the Drude model [6] with the 
given n and κ values. Equations (4) and (5) can be re-written as 
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where ε1 and ε2 are the real and imaginary parts of complex dielectric constant rε  and rμ  is 
relative permeability. Also, the Drude model for the complex dielectric constant can be 
expressed as 
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where ωp is plasma frequency, γp is damping constant, and ω is the angular frequency of the 
laser beam, which is related to the beam wavelength as follows: 
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Note that our objective is to increase λ (i.e., decrease ω) while maintaining the same n and 
κ values. From Eqs. (7)-(10), if 1rμ =  is assumed, we can increase λ as long as ε1 and ε2 are 
unchanged. In other words, from Eq. (9), when ω is changed, we can select proper values of 
ε∞ , pω , and pγ  that will result in the same ε1 and ε2 values, which will in turn lead to the 

same n and κ values. 
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4. Using standard FDTD Scheme for n ≤ κ 

In the previous two sections, we have discussed methods to increase wavelength for both 
standard and dispersive FDTD methods without changing the metal’s absorption 
characteristics. The standard FDTD algorithm (Yee’s original algorithm), however, can be 
employed only when n κ>  (as is shown from Eqs. (4) and (5)), although it is simpler to 
implement than the dispersive FDTD algorithm, which can be used for virtually all n and κ 
values. In this section, we will present a scheme that enables the use of the standard FDTD 
scheme for n κ≤  cases. 

 

Fig. 1. Reflectance contour lines obtained from Eqs. (1) and (2) assuming an incident angle of 
0°. At this angle, p- and s-polarizations cannot be distinguished. 

In order to figure out the afore-mentioned issue when n κ≤ , let’s take a look at Eqs. (1) 
and (2). If the incident angle is fixed and the reflectance value is assigned, the two equations 
become quadratic equations in terms of n and κ. Here, for the sake of simplicity, the incident 
angle will be fixed at 0o

iθ =  (i.e., at normal incidence), where p- and s-polarizations become 
identical. Figure 1 shows the reflectance value contour lines plotted using Eqs. (1) and (2). In 
this figure, for a reflectance value, there exist infinitely many sets of n  and κ , shown as a 
contour line. Furthermore, out of these infinite sets, we can notice that n κ>  cases always 
exist. In other words, although n κ≤  for the given material, we can always find a different set 
of n  and κ  with the same reflectance and n κ> . With a newly obtained set of n  and κ  
with n κ> , now we can use the standard FDTD method instead of the dispersive FDTD 
method. 

In fact, this result is true only when the incident angle is 0° in the whole computational 
domain. For simple problems like a flat plane vacuum-material interface, there is only one 
incident angle in the whole domain, and a single set of n and κ can be used to maintain the 
exact same reflectance according to Eqs. (1) and (2). In most problems, however, this is not 
the case and the incident angle cannot be assumed constant because the structure geometry 
could be very complicated: the incident angle can assume any values between 0° and 90°, and 
thus, different sets of n  and κ  values will be required at different locations and times, 
therefore, this scheme is virtually impossible to implement. 
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Then, naturally a question arises as to if there exists a certain representative incident angle 
*
iθ  that, when used in Eqs. (1) and (2), can resemble the original reflectance characteristic of 

the material very closely over the entire range of incident angle. To answer this question, let’s 
consider an iron target irradiated by a 1.06 μm laser, where n = 3.81 and κ = 4.44 [9]. In this 
case, apparently n κ≤ , and we need to come up with a new set of n and κ, which reproduces 
the reflection characteristic of Fe at 1.06 μm over the entire range of incident angle. Figure 2 
shows angle-dependent reflectance values of iron (Fe) under 1.06 μm irradiation. Here, the 
red curves represent the actual reflectance patterns of Fe constructed for s- and p-polarizations 
by using Eqs. (1)-(2) and n = 3.81 and κ = 4.44. In this case, the reflectance value at normal 
incidence is found to be 0.644. 

Now, let’s choose * 0iθ = ° , and evaluate Eqs. (1) and (2) assuming 0.644p sR R= = . 

Then, from the obtained quadratic equations we can take infinitely many sets of new n and κ, 
several of which are listed in Table 1. Using these new n and κ values, we can re-evaluate 
Eqs. (1) and (2) as a function of incident angle iθ , which are shown as blue lines in Fig. 2. 
Here, we can notice two important things. First, for s-polarized lights, regardless of n and κ 
values, the calculated angle-dependent reflectance curves are very close to the actual 
reflectance curve of Fe at 1.06 μm irradiation (red curve) over the entire incident angle range 
from 0° to 90°. Secondly, for p-polarized lights, as the n value increases from the smallest to 
the largest, the reflectance curve approaches the actual reflectance curve from above and 
passes it eventually. Therefore, in between, there exist some n and κ values that very closely 
approximate the actual reflectance pattern of the material. Here, our strategy is to find a set of 
n and κ, which gives the most accurate approximation to the actual and also satisfies n κ> . 
For example, when n = 4.62 and κ = 4.51, the approximated reflectance curve is reasonably 
close to the actual especially if the incident angle is away from the minimum reflectance 
point. 

 

Fig. 2. Reflectance versus incident angle for Fe under 1.06 μm irradiation. Red lines are 
analytical solutions of Fe for s- and p-polarized lights (n = 3.81 and κ = 4.44). Blues lines are 

generated from Eqs. (1) and (2) assuming θi* = 0° and 0.644
p s

R R= = . 

Table 1. Several selected n and κ values that lead to the same reflectance at normal 
incidence (θi* = 0°) as the actual reflectance value of iron under 1.06 μm irradiation (n = 

3.81, κ = 4.44). Bold faced cases are shown in Fig. 2 as blue lines. 

n 0.11 0.111 1.01 1.91 2.82 4.62 5.53 6.43 7.33 8.23 9.14 
κ 0.0 0.111 2.71 3.61 4.14 4.51 4.42 4.14 3.61 2.71 0.0 
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Here, the choice of * 0iθ = °  was totally arbitrary, and our goal is to obtain the best 

approximation. Therefore, we need to know what *
iθ  gives the best result. From the above 

result, because the error is the largest near the minimum reflectance point, we will try to use 
Brewster’s angle Bθ , which is 75.2° in this case. If Eqs. (1) and (2) are evaluated using 

*
i Bθ θ=  and 0.644p sR R= = , now we have two different quadratic equations for different 

polarizations. Figure 3(b) shows the contours of a reflectance value of 0.644 for s- and p-
polarizations. The original n and κ values of Fe are shown at the intersection of two curves as 
a green circle. In finding a new set of n and κ values that satisfies n κ> , even though it is 
always possible, we notice one problem. Because now the two polarization cases have 
different quadratic curves, for different polarizations a different set of n and κ values need to 
be used. If a light polarization is well defined and fixed in a given problem, it is not a problem 
at all. However, in most problems, light polarization is arbitrary and/or changes from one 
place to another, so that having to select different n and κ values for different polarizations is 
impractical. Furthermore, as shown in Fig. 4, the calculated reflectance curves, especially for 
p-polarization, is much worse except when * 75.2iθ = ° . In this study, we have also tested 

other *
iθ  values (30°, 45°, and 82°), but * 0iθ = °  were found to be the most desirable because 

of the same reasons explained above. 

 

Fig. 3. Lines of constant reflectance (R = 0.644) for s- and p-polarized lights shown as blue 
dashed lines and red solid lines, respectively. 
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Fig. 4. Reflectance versus incident angle for Fe under 1.06 μm irradiation. Red lines are 
analytical solutions of Fe for s- and p-polarized lights (n = 3.81 and κ = 4.44). Blues lines are 

generated from Eqs. (1) and (2) assuming θi* = 75.2° and 0.644
p s

R R= = . 

In order to estimate the error generated from this approximation, the following definition 
is used: 
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Here, , ( )s pR θ  is the actual reflectance curve for p- or s-polarizations calculated by Eqs. (1) 

and (2), and *
, ( )s pR θ  is the approximated reflectance curve with a new set of n and κ values. 

Figure 5 presents the relative errors for s- and p-polarizations as a function of the newly 
chosen n value. Here, we considered two *

iθ  values, 0° and 75.2°. As shown clearly, near the 
original value of n the error is small and it increases as it moves away from this point. The 
minimum errors occur at around n  = 3.81 (original value), and this is understandable. Also, 

we can notice that when * 0iθ = °  errors are smaller than when * 75.2iθ = ° . We can see that for 
s-polarized lights the error is very small for the almost entire range of n values while for p-
polarization errors are much larger but still reasonably small if n is chosen near the original n 
value. For n = 4.62 and κ = 4.51, the relative errors for s- and p-polarizations are 0.04% and 
3.4%, respectively. For p-polarization, the relative errors will be much smaller if the incident 
angle is not very large. Note that, although the scheme has been explained for a Fe target 
under 1.06 μm irradiation it can be used for other metal/wavelength combinations. 
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Fig. 5. Overall relative errors generated when a different n and κ values are used to 
approximate the material’s reflectance patterns. Errors are calculated for Fe under 1.06 μm 
irradiation. 

5. Results and discussion 

For validation purposes, we have implemented the presented schemes in our in-house 3-D 
FDTD codes. We considered Sn targets under 1.06 μm irradiation (n = 4.7 and κ = 1.6 [9]) 
and Fe targets under 1.06 μm irradiation (n = 3.81 and κ = 4.44). For both materials, four 
types of simulations were performed: (a) standard FDTD simulation with the given 
wavelength, (b) dispersive FDTD simulation with the given wavelength, (c) standard FDTD 
simulation with an increased wavelength, and (d) dispersive FDTD simulation with an 
increased wavelength. In the case of the Sn target, n is already larger than κ, so a new set of n 
and κ does not have to be obtained for standard FDTD simulations ((a) and (c)). On the other 
hand, for the Fe target, a new set of n and κ needs to be used because n κ< . For all 
simulations, we calculated the laser beam absorptance as the incident angle changes from 0° 
to 70° at an interval of 10°. Note that 80° and 90° incident angles were not simulated because 
these require extremely large domain size to capture the entire reflection phenomena. Figure 6 
shows the schematic diagram of the computational domain with dimensions when the original 
wavelength is used. When the wavelength is enlarged, we proportionally increased the 
domain size. In this study, the laser beam propagates in the negative z-direction, and the 
surface tilting angle θ is increased from 0° to 70°. For all cases, p-, s-, and circularly polarized 
Gaussian beams were considered. 
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Fig. 6. Schematic diagram of the computational domain. 

Table 2 and Table 4 present the parameters used for the standard FDTD simulation of Sn 
and Fe, respectively, and in Table 3 and Table 5 are presented the parameters for the 
dispersive FDTD simulations of Sn and Fe, respectively. All these parameters were obtained 
by using the methods presented in Sections 2 to 4. For the Sn target, the wavelength has been 
increased to 31.8 μm (30 times larger), and we have used a wavelength of 21.2 μm (20 times 
larger) for the Fe target. These wavelengths were selected arbitrarily, and of course, much 
larger wavelengths can be used as long as the electrical conductivity is large enough to absorb 
the electromagnetic waves near the material interface. For all simulations, uniform grids with 
a grid spacing of / (10 )nλ  was used, and a 12 core high performance computer was used. 
Running times varied from 4 to 8 hours depending on the problem size. 

Table 2. Parameters used for the standard FDTD simulation of Sn 

λ (μm) n κ εr μr σ (S/m) 
1.06 4.7 1.6 19.53 1.0 236477 
31.8 4.7 1.6 19.53 1.0 7882.6 

Table 3. Parameters used for the dispersive FDTD simulation of Sn 

λ (μm) n κ ε∞ ωp (rad/s) γp (rad/s) 
1.06 4.7 1.6 20.0 3.901 × 1016 5.688 × 1015 
21.2 4.7 1.6 20.0 1.951 × 1015 2.844 × 1015 

Table 4. Parameters used for the standard FDTD simulation of Fe 

λ (μm) n κ εr μr σ (S/m) 
1.06 4.62 4.51 1.0043 1.0 655220 
21.2 4.62 4.51 1.0043 1.0 32761 

Table 5. Parameters used for the dispersive FDTD simulation of Fe 

λ (μm) n κ ε∞ ωp (rad/s) γp (rad/s) 
1.06 3.81 4.44 2.0 2.293 × 1016 8.359 × 1015 
21.2 3.81 4.44 2.0 1.146 × 1015 4.177 × 1014 

Figure 7 shows the simulation results showing electric fields for different tilting angles. In 
this simulation, the dispersive FDTD algorithm was used for a Fe target with an enlarged 
wavelength and the beam was s-polarized. In this figure, we can clearly see how the beam 
reflection changes as the tilting angle increases. Note that the tilting angle is equal to the 
incident angle, and when it is larger than 50°, the z dimension has to be increased to capture 
the whole reflection phenomena. For an incident angle of 80°, as mentioned earlier, the 
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required domain becomes extremely large, so that case was omitted. However, the authors 
believe that the simulation results for larger angles will be qualitatively similar. 

In Fig. 8, the calculated reflectance versus incident angle for all simulations is presented. 
In this study, the reflectance was calculated by using the energy flux difference between the 
incident waves and reflected waves in terms of the Poynting vector. As shown clearly in the 
figures, for both Sn and Fe, for all polarizations, and for all simulation methods, the obtained 
results are in good agreement with the analytical solutions. Considering that uniform grids 
were used and the surface is not aligned with any of the grid lines, we believe that the 
simulation results are reasonably accurate. 

 

Fig. 7. Electric fields in the computational domain showing the reflection patterns at different 
tilting angles. Simulations were performed for Fe with an enlarged wavelength using the 
dispersive FDTD code assuming the laser beam is s-polarized. The width of the computational 
domain is 200 μm. 
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Fig. 8. Simulated reflection curves with analytical solutions. 

In order to validate the method with a more complex geometry, we considered a three 
dimensional problem, where a 1.06 μm Gaussian beam irradiates on the upper side of a 
cylinder made of Fe. Figure 9 shows the schematic diagram of the computational domain with 
dimensions when the original wavelength is used. The same problem was also solved with a 
20 times larger wavelength (21.2 μm), and in this case all the dimensions were increased 
proportionally. In this study, we have conducted four types of simulations for validation 
purposes: (a) standard FDTD simulation (new n and κ) with λ = 1.06 μm, (b) dispersive 
FDTD simulation with λ = 1.06 μm, (c) standard FDTD simulation (new n and κ) with an 
increased wavelength of 21.2 μm, and (d) dispersive FDTD simulation with an increased 
wavelength of 21.2 μm. For each case, three different polarizations were considered: p-, s-, 
and circular polarizations. Apparently, if the electric field of the beam is aligned in the y-
direction, even though the cylinder surface is curved, the laser beam is 100% s-polarized. 
Also, if the electric field is in the x-direction, the laser beam is entirely p-polarized. All 
simulation parameters are listed in Table 4 and Table 5. 
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Fig. 9. Schematic diagram of the computational domain. 

 

Fig. 10. Simulation results showing a Gaussian beam irradiating on a cylinder made of Fe. 
Here, the dispersive FDTD with an enlarged wavelength of 21.2 μm was used instead of 1.06 
μm. The width and height of the figures are both 240 μm. 

Figure 10 shows the simulation results for Case (d). It turned out that all other results are 
undistinguishably similar to this result, so in this study only one result is shown. In the first 
and second rows, the electric fields on the x-y and y-z planes are presented, respectively, 
where both planes pass through the center of the laser beam. For all three polarization results, 
the electric fields are astonishingly similar, and the laser beams look smaller when viewed 
through the x-z plane because of more complex interference of incident and reflected waves. 
To validate the results, we have analytically calculated the reflectance values of the Fe 
cylinder for s- and p- polarizations as follows: 
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where ℜ  and 0r  are cylinder and beam radii, respectively, and 0E  is the electric field value 
at the center of the Gaussian beam. Note that the reflectance for circular polarization is 
mathematically the average of *

sR  and *
pR . Table 6 presents the simulated reflectance values 

and the corresponding errors with respect to the analytical solutions obtained from Eq. (12). 

Table 6. Calculated reflectance values and errors for p-, s-, and circular polarized 
Gaussian beams irradiated on a half cylinder 

 λ (μm) Rp* error Rs* error R*circular error 

Analytic 
solution 

1.06 0.6906 NA 0.7124 NA 0.7015 NA 

Dispersive 1.06 0.6680 3.27% 0.6947 2.48% 0.6814 2.87% 
Dispersive 21.2 0.6680 3.27% 0.6946 2.50% 0.6813 2.88% 
Standard 1.06 0.6589 4.59% 0.6830 4.13% 0.6710 4.34% 
Standard 21.2 0.6589 4.59% 0.6830 4.13% 0.6710 4.34% 

As we can see from the results, all four cases agree with the analytic solutions well, and 
the maximum relative error is less than 4.6%. Especially, it is clearly shown from the table 
that the result obtained with an increased wavelength is virtually the same as the one from the 
corresponding original-wavelength simulation. This means that the relative errors shown in 
the table (up to 4.6%) are the errors of the FDTD method, and not the errors caused by the 
additional procedures proposed in this study. Moreover, we can notice that the dispersive 
FDTD simulations are found to be slightly more accurate than the standard FDTD ones, 
which is because newly selected n and κ values were used for the standard FDTD simulations 
of Fe. For dispersive and standard FDTD simulations, the maximum errors are 3.27% and 
4.59%, respectively, both of which occurred for p-polarization. Also, from the results, we can 
see that the reflectance for circular polarization is exactly the average of the p- and s- 
polarizations. 

One last comment is that, if an enlarged wavelength is used, the actual wave characteristic 
such as diffraction and interference are also changed although the beam absorption 
characteristic is preserved. However, in many problems, such as in laser processing problems, 
the most important things are the laser beam absorptivity and the beam absorption pattern. 
Besides, in laser manufacturing problems, the focused laser beam diameter is ~500 μm (which 
is much larger than the wavelength), so the beam divergence is generally very small compared 
to the problem size. 

6. Conclusions 

In this article, we have presented and validated an FDTD based method for simulating large-
scale laser beam absorption problems by enlarging laser wavelength while maintaining angle-
dependent absorption characteristics. A method to use the standard Yee algorithm for a 
material with n κ<  has bee also presented. Using these methods, we believe that various 
problems where laser beam absorption is critical can be effectively solved. 

Acknowledgments 

This research was supported by the Basic Science Research Program through the National 
Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future 
Planning (Grant No. NRF-2013R1A1A1A05005248). We also would like to appreciate the 
UNIST supercomputing center for their generous permission to use their high performance 
supercomputing systems. 

 

#196369 - $15.00 USD Received 26 Aug 2013; revised 8 Oct 2013; accepted 8 Oct 2013; published 17 Oct 2013
(C) 2013 OSA 21 October 2013 | Vol. 21,  No. 21 | DOI:10.1364/OE.21.025467 | OPTICS EXPRESS  25479




