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In this paper we present a probability generating function (PGF) approach for analyzing stochastic
reaction networks. The master equation of the network can be converted to a partial differential equa-
tion for PGF. Using power series expansion of PGF and Padé approximation, we develop numerical
schemes for finding probability distributions as well as first and second moments. We show numer-
ical accuracy of the method by simulating chemical reaction examples such as a binding-unbinding
reaction, an enzyme-substrate model, Goldbeter-Koshland ultrasensitive switch model, and G2/M
transition model. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729374]

I. INTRODUCTION

In recent years stochastic modeling has been used for an-
alyzing biochemical reaction networks. In the stochastic mod-
eling, the system is described by so-called chemical master
equation,

d

dt
p(n, t) =

∑
k

Qk(n − Vk) · p(n − Vk, t)

−
∑

k

Qk(n) · p(n, t), (1)

for n(t) = (n1(t), n2(t), . . . , ns(t)), where ni(t) is the molecular
number of ith species at time t. Here Qk is a propensity func-
tion for the kth reaction and Vk is the kth column of the sto-
ichiometric matrix V whose (i, j)th entry represents changes
of stoichiometric amount of the ith species when the jth reac-
tion occurs. The propensity can be computed by mass-action
kinetics or other kinetics.1 Since the master equation (1) is
linear, the large size of the system makes it very difficult, if
not impossible, to find solutions except for simple cases. The
finite state projection (FSP) method deals with the linear ex-

pression of (1),
dp

dt
= Ap, where p is the vector of probability

of each state and A is the transition rate matrix of states or the
state reaction matrix.2 The FSP method proposes to truncate
the original linear ODE (ordinary differential equation) sys-
tem to a reduced system and approximate the exact solution
by finding the solution of the reduced system. If the system
has a large number of reactions and species, the transition
matrix A is very huge, and in this case, it is a challenging
problem to approximate the solution of the master equation
by applying the FSP method. The situation does not differ
for numerical approximation. Accordingly, researchers often
turn their attention to finding the first and second moments in-
stead and try to describe stochastic properties such as average
and fluctuations. But even the two moments are not simple
to find in most cases.3 To overcome these difficulties in han-
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dling master equations, we suggest a probability generating
function (PGF) approach in this paper.

The PGF approach gives an alternative way of finding
probability distribution as well as mean and variance.4 While
PGF has been used for the analysis of stochastic kinetics since
1960s,5, 6 it has not been directly applied to numerical com-
putation of probability distributions to the best of the authors’
knowledge.

Introducing PGF, one can convert the master equation
(1) into a partial differential equation (PDE). Such PDE is
parabolic and the statistical information that we want to de-
rive, such as the probability distributions and the mean, can
be found as a combination of derivatives of the solution of the
PDE.

For the case of the one state variable, both initial and
boundary conditions for the PDE can be properly assigned
and conventional numerical schemes such as a finite differ-
ence method become available. If there are more than two
independent state variables, one has to solve an initial value
problem on the open domain which is no more trivial for nu-
merical simulation. We develop a symbolic method based on
power series expansion and Padé approximation in order to
handle such higher dimensional cases.

An outline of the paper is as follows. In Sec. II, we study
the properties of PDEs that PGF should satisfy. Section III
presents the PGF method that approximate solutions of such
PDEs. In what follows, we illustrate numerical accuracy of the
method by simulating examples such as a binding/unbinding
reaction, an enzyme-substrate reaction model, the Goldbeter-
Koshland ultrasensitive switch model, and the G2/M transition
model.

II. PROBABILITY GENERATING FUNCTION

For z = (z1, . . . , zs) and n = (n1, n2, . . . , ns), let us denote

zn = z
n1
1 z

n2
2 · · · zns

s .

Probability generating function is defined as

G(z, t) =
∞∑

n=0

znp(n, t), (2)
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where zi ∈ [−1, 1]. We differentiate (2) with respect to t. After
application of Eq. (1) and manipulation of the index, one can
derive a PDE

Gt = F (z1, . . . , zs,G,DG,D2G, . . . ,DmG). (3)

Here DkG denote any kth order partial derivatives of G as

DkG = Gi1...ik = ∂

∂zi1

∂

∂zi2

· · · ∂

∂zik

G,

for 1 ≤ ij ≤ s, j = 1, . . . , k. We can easily confirm from Eq.
(1) that the resulted PDE is linear and has the same order as
the reaction order, m. The dimension of the domain is s, the
number of the species.

Let us take an example of a system of two species. If the
involved reaction is at most second-order, the function F in
Eq. (3) contains as much second-order derivatives and there-
fore can be written as

Gt = F (z1, z2,G,G1,G2,G11,G12,G22). (4)

Now, the initial condition of the PDE (3) is given as

G(z, t = 0) = zn0 ,

where n0 is the initial condition of n. There are some addi-
tional conditions that always hold for z

G(z = 0, t)=p(n = 0, t), and G(z = 1, t) =
∑

n

p(n, t) = 1.

(5)

Once the solution G to the PDE (3) is found, we can de-
rive the statistical information for the reaction networks.4

Mean and variance:

Mk(t) = Gk(z = 1, t) = E[nk(t)], (6)

Vij (t) = Gij (z = 1, t)

=
{

E[ninj ] if i �= j(
E

[
n2

i (t)
] − E[ni(t)]

)
if i = j,

(7)

where E[ · ] denotes the expectation of a random variable.

Probability distribution:

pni
(k, t) = 1

k!

∂kG(z, t)

∂zk
i

∣∣∣∣
zi=0,zj =1,j �=i

, (8)

where pni
(k,t) denotes the marginal probability of ni at time t.

III. PGF APPROXIMATION METHOD

The difficulties of numerical simulation of the PDE (3)
mainly lie in two areas; complicated form of the PDE and lack
of boundary conditions. Although the resulted PDE is always
linear, it has variable coefficients, which often makes numeri-
cal approximation poor. Moreover, conventional schemes are
not directly applicable since there are generally no appropri-
ate boundary conditions.

It is notable that there is an exception for boundary con-
ditions. In some cases we can reduce the number of the state
variables, using conservation laws. We may use the above
condition (5) as a boundary condition of G, especially if G

has only one state variable; Let n = n0 + V m, where m is
the extent of reactions.7 Here components of the extent are
always non-negative integers. If V m = −n0 has a solution,
then p(n = 0, t) must have a positive probability at certain
time t. Otherwise, p(n = 0, t) = 0. That is, if V m = −n0 has
no non-negative solutions, then we get

G(z = 0, t) = p(n = 0, t) = 0,

which constitutes a boundary condition with G(z = 1, t) = 1.
In order to handle the difficulties mentioned above, we

take a semi-analytic approach. It is based on the power series
expansion and Padé approximation. Let us explain its mathe-
matical framework.

In this paper, we consider bounded stochastic systems.
We say the stochastic system described in (1) is bounded if
there is a constant positive integer vector M such that p(n,
t) = 0 for any n with ‖n‖ ≥ ‖M‖ and any t ≥ 0. (Here

the norm ‖ · ‖ is defined as ‖n‖ =
√

n2
1 + · · · + n2

s for n =
(n1, . . . , ns).) For example, any closed reaction networks are
bounded stochastic systems. It is clear that, for bounded sys-
tems, the probability function p(n, t) is analytic for any t ≥
0, since bounded systems have finite number of states and the
corresponding probability function p(n, t) is the solution of
dp

dt
= Kp. One can find the formal solution p(n, t) = eKtp(0)

analytic with respect to t, and therefore, so is G(z, t) from (3).
This observation enables us to set G(z, t) as a power ex-

pansion with respect to t as

G(z, t) =
∞∑

n=0

fn(z)tn, (9)

where fn, n = 0, 1, . . . , are polynomials of z. Note that the
initial condition determines the first coefficient as f0(z) = zn0 .
By plugging (9) into both the sides of (3) and comparing both
the power series, one can derive a recursive relation between
fn−1 = fn−1(z) and fn = fn(z) as

fn = Hn(z1, . . . , zs, fn−1,Dfn−1,D
2fn−1, . . . , D

mfn−1),

(10)

n = 1, 2, . . . ,

where m is the highest reaction order. Note that the recursive
equation Hn depends on n as well. Now, we apply the rela-
tion (10) and construct coefficient functions f1(z), f2(z), . . . ,
fN(z) from f1(z) = zn

0 for sufficiently large N. It is important
in a computational aspect that all fn(z) generated from (10)
are polynomials, since the initial function f0(z) and all ev-
ery coefficient of the PDE (2) are polynomials. This reduces
computational cost dramatically, compared to general recur-
sive computations. One may expect that the above procedure
leads to an approximated solution

G̃(z, t) =
N∑

n=0

fn(z)tn. (11)

By applying this to Eqs. (6)–(8), we can obtain approxima-
tions for the corresponding statistical quantities. One of the
examples is the approximated mean of the ith species along
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time

Mi(t) = G̃i(z = 1, t). (12)

However, the power series expansion such as (12) is generally
slow in convergence and takes more computational cost to ob-
tain an approximation at a desirable level, especially when the
solution is expected to converge an equilibrium. To speed up
the convergence and reduce the cost, we use Padé approxima-
tion instead. In general, Taylor expansion can be accelerated
quite greatly or even turned from divergent to convergent, by
being rearranged into a ratio of two series expansions in Padé
approximation. In the formal form of power series, we write
Padé approximation8 as

∞∑
k=0

ckt
k =

∑L
k=0 akt

k∑M
k=0 bktk

+ O(tL+M+1). (13)

That is,( ∞∑
k=0

ckt
k

) (
M∑

k=0

bkt
k

)
=

L∑
k=0

akt
k + O(tL+M+1). (14)

Equating the coefficients of 1, t, t2, . . . , tL and setting b0 = 1
in (14), we find

a0 = c0,

a1 = c1 + c0b1,

a2 = c2 + b1c1 + b2c0, (15)

... = ...

aL = cL +
min(L,M)∑

i=1

bicL−i .

Also, equating the coefficients of tL+1, . . . , tL+M in (14), we
obtain a system⎡⎢⎢⎢⎣

cL−M+1 cL−M+2 · · · cL

cL−M+2 cL−M+3 · · · cL+1
...

...
...

...
cL cL+1 · · · cL+M−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

bM

bM−1
...
b1

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
cL+1

cL+2
...

cL+M

⎤⎥⎥⎥⎦ ,

(16)

where we define, for consistency, ck = 0 for negative k. Thus,
we can determine the coefficient of the Padé approximation
by using Eqs. (15) and (16).

In the examples in Sec. IV, we use the Padé approxima-
tion order L = M = N/2 for some even number N, from an
expectation that the systems eventually converge to constant
equilibria.

Convergence of the PGF method is guaranteed by the
Taylor’s theorem. In practice, to determine an appropriate or-
der N, one may observe differences between results from con-
secutive even orders. Let us use

dN
i (t) = GN

i (t) − GN−2
i (t),

where GN
i (t) and GN−2

i (t) are the approximations of the ith
mean of order N and N−2, respectively. Note that computa-
tion of an higher order approximation includes those of lower
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g 10

| d
N i

 |

 

 

N=10
N=30
N=50

FIG. 1. The graphs of dN
1 (t) for a binding reaction in Sec. IV A are illus-

trated. dN
1 (t) denotes difference between the approximations of consecutive

orders N and N−2. It gradually diminishes as N increases.

orders and therefore evaluating dN
i requires only a simple sub-

traction. Considering that Cauchy convergence implies con-
vergence in complete metric spaces, one can use dN

i as a good
criterion for error estimation and choice of N as well. Figure 1
illustrates the graph of dN

1 (t) for some values of N in a binding
reaction in Sec. IV A.

IV. APPLICATIONS

A. Binding reaction

We consider a binding/unbinding reaction

A + B
c1−→←−
c−1

C.

Let n = (n1, n2, n3), where n1, n2, n3 denote the number of
molecules of species A, B, C, respectively. Set the initial con-
dition n(0) = (a0, b0, c0). Since n1(t) + n3(t) = a0 + c0 and
n2(t) + n3(t) = b0 + c0 for all t > 0 by the conservation law,
there is only one independent variable among n1, n2, n3. We
choose n1 for one independent variable and the random vec-
tor n can be represented by only n1. The master equation for
species A is

dpa(t)

dt
= c1[(a + 1)(b0 − a0 + a + 1)pa+1(t)

− a(b0 − a0 + a)pa(t)]

+ c−1[(a0 + c0 − a + 1)pa−1(t)

− (a0 + c0 − a)pa(t)], (17)

where pa(t) = Prob{n1(t) = a}, a = 0, 1, 2, . . . . Let G(z, t) =∑
azapa(t) be the PGF of pa(t). Using (17), we can derive a

PDE for G(z, t) as follows:

Gt = c1z(1 − z)Gzz − (c−1z
2 + [c1(b0 − a0 + 1) − c−1]z

− c1(b0 − a0 + 1))Gz

+ c−1(a0 + c0)(z − 1)G . (18)

We find the initial and boundary conditions for (18) as
follows:

Downloaded 05 Aug 2013 to 114.70.7.203. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



234108-4 P. Kim and C. H. Lee J. Chem. Phys. 136, 234108 (2012)

0 0.05 0.1
8

10

12

14

16

18

20

t

μ

μ

0 0.05 0.1

0

0.5

1

1.5

2

2.5

t

V
ar

Var.

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

1.2

t

p

p(n)

 

 
p(10)
p(11)
p(15)
p(20)

0 0.05 0.1
−18

−17

−16

−15

−14

−13

−12

−11

−10

t

lo
g 10

(|
E

rr
or

|)

Error in μ

0 0.05 0.1
−18

−17

−16

−15

−14

−13

−12

−11

−10

t

lo
g 10

(|
E

rr
or

|)

Error in Var.

0 0.05 0.1
−18

−17

−16

−15

−14

−13

−12

−11

−10

t

lo
g 10

(|
E

rr
or

|)

Error in p(10)

FIG. 2. Upper three figures are mean, variance, and marginal probability of the number of species A obtained from the PGF method for binding/unbinding
model. In the figure of probability distribution p, each p(i) denotes the marginal probability that the number of A is i. Lower three figures illustrate the errors
in log10 generated from the PGF method, that is, log10 |exact solution − approximate solution|. The initial condition a0 = 20, b0 = 10, c0 = 0, and parameters
c1 = 1, c−1 = 0.1 (arbitrary units) are assumed. The exact probability, mean, and variance are obtained directly by solving Kolmogorov equation dp/dt = Kp.3

Some parts of the error graphs are not properly marked because the corresponding errors are lower than the machine precision.

� Initial condition: G(z, t = 0) = zn1(0).
� Boundary condition: G(z = 1, t) = 1 and G(z = 0, t)

= 0.

Figure 2 illustrates the result of the PGF method with N =
100. The comparison with the exact solution is done for the
mean, the variance, and the probability distributions. One can
confirm that the method reproduces the solution at a high pre-
cision level.

B. Enzyme kinetics

The enzyme-substrate reaction is one of the fundamental
and important biochemical reactions, in that most real bio-
chemical systems contain such reactions. In this section we

consider an enzyme-substrate system

E + S
c1−→←−
c−1

ES, ES
c2→ E + P,

where E, S, ES, and P denotes enzyme,substrate, enzyme-
substrate complex, and product, respectively. Let n1, n2, n3,
and n4 be the molecular numbers of E, S, ES, and P, re-
spectively. The governing equation of the stochastic enzyme-
substrate system is

dp(n1, n2, n3, n4, t)

dt

= c1(n1 + 1)(n2 + 1)p(n1 − 1, n2 − 1, n3 + 1, n4, t)
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FIG. 3. Upper three figures are mean, variance, and marginal probability of the number of enzyme E obtained from the PGF method for the enzyme-substrate
model. In the figure of probability distribution p, each p(i) denotes the marginal probability that the number of enzyme is i. Lower three figures illustrate the
errors in log10 generated from the PGF method, that is, log10 |exact solution − approximate solution|. In the figures, the condition n1(0) = 5, n2(0) = 10, and a0
= 5, and parameters c1 = c2 = 0.1, c3 = 1 are assumed. The exact probability, mean and variance are obtained directly by solving Kolmogorov equation dp/dt
= Kp. According to the figures, the error gets bigger as the system approaches its steady state, but it is still very small, compared to the magnitudes of mean,
variance, and probability.

+ c−1(n3 + 1)p(n1 − 1, n2 − 1, n3 + 1, n4, t)

+ c2(n3 + 1)p(n1 − 1, n2, n3 + 1, n4 − 1, t)

− (c1n1n2 + c−1n3 + c2n3)p(n1, n2, n3, n4, t). (19)

Note that the stoichiometric matrix

V =

⎡⎢⎢⎣
−1 1 1
−1 1 0
1 −1 −1
0 0 1

⎤⎥⎥⎦
has rank 2, which implies that there are two stoichiometri-
cally dependent variables. We choose n3, n4 as two dependent
variables and remove the dependent variables in Eq. (19). The

corresponding PDE of G(z1, z2, t) is found as

Gt = c1(1 − z1z2)G12 + ( − c2z
2
1z2 − c3z

2
1 + (c2 + c3)z1

)
G1

+ (c2a0z1z2 + c3a0z1 − (c2 + c3)a0)G,

where a0 = n1(0) + n3(0). The initial condition on G
is G(z1, z2, t = 0) = z

n(0)1
1 z

n(0)2
2 . Since a complete boundary

condition is hardly found, we use the power series expansion
followed by Padé approximation. In Figure 3, we show the
mean and the variance obtained from the PGF method with N
= 200 and their error.

C. Goldbeter-Koshland (GK) ultrasensitive switch

The GK ultrasensitive switch is the well-known
enzymatic reaction system in which a substrate S produces
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FIG. 4. Mean, standard deviation, and probability obtained from the PGF method and the SSA (stochastic simulation algorithm) under the initial condition
n1(0) = 10, n2(0) = 10, n3(0) = 40, n4(0) = n5(0) = n6(0) = 0. μi and σ i, i = 1, 2, 3 denote the mean and standard deviation of n1, n2, and n3, respectively.
In the figure of probability, each curve p(n1 = i) denotes the time-dependent probability solution that n1 = i, i = 1, 3, 5. The results by the SSA are based on
30 000 realizations.

a product P by an enzyme E, and P produces S by an enzyme
D (Ref. 9),

D + P
c1−→←−
c−1

DP
c2→ D + S, E + S

c3−→←−
c−3

ES
c4→ E + P,

where c1 = 0.05555, c−1 = 0.83, c2 = 0.17, c3 = 0.05,

c−3 = 0.8, and c4 = 0.1. Let n1, n2, n3, n4, n5, n6 be the num-
ber of D, E, P, S, DP, ES, respectively. One can obtain the
master equation,

dp

dt
= c1(n1 + 1)(n3 + 1)p(n + e1 + e3 − e5, t)

+ c−1(n5 + 1)p(n − e1 − e3 + e5, t)

+ c2(n5 + 1)p(n − e1 − e4 + e5, t)

+ c3(n2 + 1)(n4 + 1)p(n + e2 + e4 − e6, t)

+ c−3(n6 + 1)p(n − e2 − e4 + e6, t)

+ c4(n6 + 1)p(n − e2 − e3 + e6, t)

− [c1n1n3+(c−1+c2)n5+c3n2n4+(c−3+c4)n6]p(n, t),

where ei, i = 1, 2, . . . , 6 denote the 6 × 1 unit vector contain-
ing 1 at ith entry and 0 elsewhere.

From the above master equation, we derive a PDE of the
moment generating function G(z1, . . . , z6, t) as follows:

Gt = G5[c−1(z1z3 − z5) + c2(z1z4 − z5)]

+G6[c−3(z2z4 − z6) + c4(z2z3 − z6)]

+G13c1(z5 − z1z3) + G24c3(z6 − z2z4),

where Gi = ∂G

∂zi

, i =1, 2, . . . , 6 and Gij = ∂2G

∂zi∂zj

, i,j = 1,

2, . . . , 6.
In Figure 4, we compare the simulation results obtained

by the PGF method and the SSA.

D. G2/M transition model

The G2/M transition network is the model that describes
the dynamics of regulators of the G2-to-mitosis phase transi-
tion in the eukaryotic cell cycle.10 The mechanism of G2/M
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FIG. 5. Mean, standard deviation, and probability obtained from the PGF method and SSA under the initial condition n1(0) = 10, n2(0) = 9, n3(0) = 5, n4(0)
= 4, n5(0) = 4, n6(0) = 5, n7(0) = n8(0) = n9(0) = n10(0) = 0. μi and σ i, i = 1, 2, 3 denote the mean and standard deviation of n1, n2, and n3, respectively.
In the figure of probability, each curve p(n2 = i) denotes the time-dependent probability solution that n2 = i, i = 1, 3, 5. The results by the SSA are based on
30 000 realizations.

transition network is described by the reaction scheme

X + Yp

c1−→←−
c2

Cx

c3→ Xp + Yp, E1 + Xp

c4−→←−
c5

Ce
x

c6→ X + E1,

Xp + Y
c7−→←−
c8

Cy

c9→ Xp + Yp, E2 + Yp

c10−→←−
c11

Ce
y

c12→ Y + E2.

Here we assume the stochastic parameter values c1 = c4 =
c7 = c10 = 0.2 s−1, c2 = c5 = c8 = c11 = 1 s−1, c3 = c6 =
c9 = c12 = 0.1 s−1.

Let n1, n2, n3, n4, n5, n6, n7, n8, n9, n10 be the number
of Xp, Yp,X, Y,E1, E2, Cx, C

e
x, Cy, C

e
y . We derive the mas-

ter equation

dp

dt
= c1(n2 + 1)(n3 + 1)p(n + e2 + e3 − e7, t)

+ c2(n7 + 1)p(n − e2 − e3 + e7, t)

+ c3(n7 + 1)p(n − e1 − e2 + e7, t)

+ c4(n1 + 1)(n5 + 1)p(n + e1 + e5 − e8, t)

+ c5(n8 + 1)p(n − e1 − e5 + e8, t)

+ c6(n8 + 1)p(n − e3 − e5 + e8, t)

+ c7(n1 + 1)(n4 + 1)p(n + e1 + e4 − e9, t)

+ c8(n9 + 1)p(n − e1 − e4 + e9, t)

+ c9(n9 + 1)p(n − e1 − e2 + e9, t)

+ c10(n2 + 1)(n6 + 1)p(n + e2 + e6 − e10, t)

+ c11(n10 + 1)p(n − e2 − e6 + e10, t)

+ c12(n10 + 1)p(n − e4 − e6 + e10, t)

− [c1n2n3+(c2+c3)n7+c4n1n5+(c5+c6)n8+c7n1n4

+ c8n9c9n9 + c10n2n6 + c11n10 + c12n10]p(n, t),

where ei, i = 1, 2, . . . , 10 denote the 10 × 1 unit vector
containing 1 at ith entry and 0 elsewhere. From the master
equation, we derive a PDE of the moment generating function
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G(z, t) as follows:

Gt = c1G23(z7 − z2z3) + c2G7(z2z3 − z7) + c3G7(z1z2 − z7)

+ c4G15(z8 − z1z5)+c5G8(z1z5 − z8)+c6G8(z3z5 − z8)

+ c7G14(z9 − z1z4)+c8G9(z1z4 − z9)+c9G9(z1z2 − z9)

+ c10G26(z10 − z2z6)+c11G10(z2z6 − z10)

+ c12G10(z4z6 − z10),

where Gi = ∂G
∂zi

, i = 1, 2, . . . , 10 and Gij = ∂2G
∂zi∂zj

, i, j = 1,

2, . . . , 10.

In Figure 5, we illustrate the simulation results obtained
by the PGF method and compare them with results by the
SSA.

V. CONCLUSION

In this work, we developed a numerical scheme based
on PGF for stochastic reaction networks. Advantage of the
PGF method is, rather than struggling with the chemical mas-
ter equation of extremely high order, one can handle a partial
differential equation of low order. Using conventional numer-
ical schemes for PDEs and approximation methods such as
the power series expansion and Padé expansion, the method
enables us to evaluate the probability distribution, the mean,
and the variance accurately. If a system involves fast reac-
tions or contains many molecules, its stochastic simulation
often needs heavy computational work. In that case, the PGF
method can be used to reduce computational load. We expect
that the method proposed in the paper will lead to a new di-
rection to computation of stochastic reaction networks.
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