Supporting Information

Highly Efficient Plasmonic Organic Optoelectronic Devices Based on a Conducting

Polymer Electrode Incorporated with Silver Nanoparticles

Seo-Jin Ko,^a Hyosung Choi,^a Wonho Lee,^c Taehyo Kim,^a Bo Ram Lee,^d Jae-Woo Jung,^e

Jong-Ryul Jeong,^e Myung Hoon Song,^d Jeong Chul Lee, ^b Han Young Woo, *^c and Jin Young

Kim*,a,b

^a Interdisciplinary School of Green Energy and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon, Ulsan, 689-798, South Korea. Fax: +82-52-217-2909; Tel: +82-52-217-2911; Email: <u>jykim@unist.ac.kr</u>

^b KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea.

^c Department of Cogno-Mechatronics Engineering (WCU), Pusan National University, Miryang 627-706,

South Korea. Email: <u>hywoo@pusan.ac.kr</u>

^d School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, South Korea

^e Department of Materials Science and Engineering Graduate School of Green Energy Technology,

Chungnam National University, Daejeon 305-764, South Korea

Fig. S1 Simulated extinction spectra of Ag NPs with a size of 3-9 nm and electromagnetic field distribution around Ag NPs at the bottom and center position from a glass substrate.

Fig. S2 Absorption spectrum of active layer (PTBT:PC₆₁BM:ODT).

Fig. S3 *J-V* characteristics of ITO-free PTBT:PC₆₁BM-based PSCs with Ag@NMP:PH500 electrodes by increasing concentration of Ag NPs.

Table S1 Summary of device properties of ITO-free PTBT:PC₆₁BM-based PSCs with Ag@NMP:PH500 electrodes by increasing concentration of Ag NPs.

Device configuration	Concentration of Ag NPs	$J_{\rm SC}$ (mA cm ⁻²)	V _{OC} (V)	FF	PCE (%)
Glass/Ag@NMP :PH500/PTBT:PC ₆₁ BM/Al	1%	5.30	0.76	0.30	1.21
	3%	8.93	0.76	0.45	3.03
	5%	9.26	0.78	0.53	3.85
	10%	9.00	0.78	0.49	3.44

Fig. S4 *J-V* characteristics of ITO-free P3HT:PC₆₁BM-based PSCs with NMP:PH500 and Ag@NMP:PH500 electrodes.

Table S2 Summary o	f device properties	of ITO-free P3HT	:PC ₆₁ BM-based PSCs.
--------------------	---------------------	------------------	----------------------------------

Device configuration	$J_{\rm SC}$ (mA cm ⁻²)	$V_{\rm OC}({ m V})$	FF	PCE (%)
Glass/NMP:PH500/ P3HT:PC ₆₁ BM/Al	8.89	0.54	0.43	2.00
Glass/Ag@NMP:PH500/P3HT:PC ₆₁ BM/A1	9.34	0.55	0.53	2.74

Fig. S5 Temporal stabilities of devices with ITO, NMP:PH500 and Ag@NMP:PH500 electrodes.

Table S3 Summary of device properties of ITO-coated and ITO-free $PTBT:PC_{61}BM$ -based PSCs on PET substrate.

Device configuration	$J_{\rm SC}$ (mA cm ⁻²)	V _{OC} (V)	FF	PCE (%)
PET/ITO/PEDOT:PSS/PTBT:PC ₆₁ BM/A1	9.00	0.87	0.44	3.40
PET/NMP:PH500/PTBT:PC ₆₁ BM/Al	7.50	0.66	0.31	1.55
PET/Ag@NMP:PH500/PTBT:PC ₆₁ BM/Al	8.22	0.64	0.39	2.06

Fig. S6 (a) Photoluminescence spectra of SY films on NMP:PH500 and Ag@NMP:PH500 electrodes and (b) confocal laser scanning microscopy image of SY film on Ag@NMP:PH500.