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We performed density-functional theory calculations to study the electronic structures at the

interfaces between graphene and organic molecules that have been used in organic

light-emitting diodes. In terms of work function, graphene itself is not favorable as either anode

or cathode for commonly used electron or hole transport molecular species. However, the

formation of charge transfer complex on the chemically inert sp2 carbon surface can provide a

particular advantage. Unlike metal surfaces, the graphene surface remains non-bonded to

electron-accepting molecules even after electron transfer, inducing an improved Fermi-level

alignment with the highest-occupied-molecular-orbital level of the hole-injecting-layer

molecules. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4709428]

Graphene, a two-dimensional monolayer of sp2-bonded

carbons, has inspired a wide variety of research activities,

from practical materials engineering to pure scientific studies

of electron gas in low dimensions.1–4 Many potential appli-

cations have been suggested, including composite mate-

rial,5,6 energy storage,7 and high-speed semiconductors.8,9

Among them, the feasibility of graphene as a transparent

electrode is particularly intriguing.10–12 Transparent electro-

des are key components in modern flat panel displays, con-

ductive films used in touch screens, and photovoltaic devices

such as solar cells. Indium-tin-oxide (ITO) is the most

widely used material for transparent conductors. However,

the scarcity of indium resources necessitates an urgent search

for alternatives. The problem of indium migration into the

active layers of organic electronics has caused researchers to

look for alternative transparent electrodes without these

drawbacks.10 Most importantly, because ITO has about 100

times lower conductivity than metals such as Ag and Al, thin

metal films have recently been proposed for use as semi-

transparent electrodes for photo-electronic devices with com-

promised transparency. Because of its monatomic thickness,

graphene exhibits absolute transparency for a wide range of

light frequencies.13 In addition, the excellent electric con-

ductivity of graphene, as well as its chemical and mechanical

stability, can be additional advantages as transparent

electrode.

The band alignment at the interface between metal and

semiconductor determines whether the contact is Ohmic or

Schottky in type. Smaller interface energy barriers result in

lower power consumption and higher conductance. In the

present work, we investigate the features of graphene and

their suitability for applications as electrode materials that

interface directly with organic molecules. We show that the

work function of graphene itself is not favorable for use as

anodes or cathodes of organic devices with conventional or-

ganic molecules. However, because of the chemical inertness

of the sp2 carbon surface, graphene has a particular advant-

age in the formation of charge-transfer complex with

electron-accepting molecules.14 Despite electron transfer

interactions with electron-accepting molecules, the graphene

surface remains non-bonded, and the Fermi-level is well-

aligned with the hole-injecting molecules.

For computations, we used the Vienna Ab initio Simula-

tion Package (VASP) to calculate the ground state of many

electrons system in the framework of density functional theory

(DFT).15–18 A plane-wave basis set with an energy cut-off of

400 eV and Perdew-Burke-Ernzerhof (PBE)-type gradient-

corrected exchange-correlation potential were employed.19

The ions were described by the projector augmented wave

(PAW) potentials. All the atomic positions of graphene and

adsorbate molecules were relaxed within residual forces

smaller than 0.01 eV/Å.

Prior to modeling the interface between the graphene

and the organic molecules, we investigated the work func-

tion of perfect graphene and thin metal layers. As model

of thin metal layers, we chose four different types of metal

slabs with thickness of three layers. Figures 1(a)–1(e)

show the plane-averaged local potential plotted perpendicu-

lar to the surface (z-axis) of Pt(111), Au(111), graphene,

Ag(111), and Ca(111), respectively. Here, the surfaces are

in the xy plane. We placed a vacuum region about 10 Å

along the perpendicular direction to the planes. As is typi-

cal, the work function is calculated by the energy differ-

ence between the Fermi level and the vacuum level which

is the value of the flat potential at a far-separated region

from the surface. Since the 2-D band structure of graphene

has sharp linear dispersion around the K point (Dirac

point), we controlled either the supercell size or the

meshes for k-point sampling to include the Fermi point in

the self-consistent field (SCF) procedure. Smearing width

in the occupation factor near the Fermi level was tested
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with 0.005 and 0.05 eV which resulted in almost the same

result.

For efficient hole-injection, the anode surface is required

to have a large work function. ITO has been severely oxi-

dized to achieve such objective. On the other hand, inert

noble metal (such as Pt or Au) can be deposited to increase

the work function of the ITO surface.20 For cathode elec-

trode, a metal with a small work function is desired to

achieve lower barrier for electron injection. Ca or alkaline

can be selected as a cathode electrode. To characterize the

feature of graphene, the work function of thin metals was

calculated with the same computational scheme, as shown in

Fig. 1. The overall result tells that, in terms of the work func-

tion, graphene is not suitable for use as the anodes or catho-

des of typical organic devices. As shown in Fig. 1, the work

function of graphene is about 1.3 (1.6) eV larger (smaller)

than that of Ca (Pt). This magnitude of the work function is a

critical demerit of graphene as an electrode, on either side of

the anode and cathode, because it leads to a large Schottky

barrier.

To more explicitly gauge whether graphene can replace

conventional metal electrodes in organic electronic devices, we

investigated the electronic structure at the interface between

the graphene and typical hole-injection layers in the organic

light-emitting diode (OLED). Cases with N; N0 � Bis � ð1
�naphthalenylÞ � N; N0 � bis � phenyl � ð1; 10 � biphenylÞ
�4; 40 � diamine (NPB) are shown in Figs. 2(a) and 2(b).21,22

As expected, the Fermi level of the graphene is 0.4 eV higher

than the highest-occupied-molecular-orbital (HOMO) level of

the NPB, as shown in Fig. 2(b). It is noteworthy that the Fermi

level of the graphene is not well aligned with the HOMO of

NPB, and therefore, a large Schottky barrier (in terms of hole

injection) is expected between graphene and NPB if graphene

is employed as an anode electrode for NPB.

Shallow co-evaporation of strong electron acceptors

such as tetrafluoro-tetracyano-quinodimethane (F4-TCNQ)

has been used to induce efficient hole injection at the anode

interface.14 As an analogy, we investigated the electronic

structure of graphene interfaced with the monolayer of NPB

and F4-TCNQ, as shown in Fig. 2(c). Both molecules tend to

self-arrange in a flat configuration on graphene, which is the

most stable configuration on metal surfaces because more

functional atoms of molecules interact with the surface

atoms.23 Unlike the case of NPB alone, we confirmed that

the HOMO level of the NPB sits very close to the Fermi

level of the graphene, as shown in Figs. 2(b) and 2(d). This

energy level rearrangement is caused by the partial electron

acceptance of F4-TCNQ from the graphene and the NPB. As

a result, the Schottky barrier for hole injection from the gra-

phene electrode to the NPB layer becomes negligible. If the

nominal Schottky barrier is less than 0.2 eV at the metal-

semiconductor interface, the contact-type can be considered

as Ohmic near room temperature.24

We performed similar studies of copper phthalocyanine

(CuPc), as shown in Figs. 2(e)–2(h).25–27 In this case, the

Fermi level of graphene is 0.6 eV higher than the HOMO

level of CuPc, as shown in Figs. 2(e) and 2(f).28 Similarly to

the case of NPB, such a large mismatch between the Fermi

levels of graphene with the HOMO level will lead to a large

Schottky barrier between graphene and CuPc if graphene is

employed as an anode material. The effect of the electron

acceptor is more efficient in this case. With the presence of

FIG. 1. The plane-averaged local potentials plotted along the perpendicular

direction of thin metal surfaces. (a) Pt(111), (b) Au(111), (c) mono-layer

graphene, (d) Ag(111), and (e) Ca(111) surfaces. (f) The dashed parallelo-

gram indicates the computational unit cell of the (111) metal surfaces. The

energies in the vertical axes are shown with respect to the Fermi level, which

is indicated by dotted lines.

FIG. 2. (a) Side view of the NPB-adsorbed graphene and (b) the partial den-

sity of states (PDOS) for NPB. (c) Side view of the graphene with the

adsorbed NPB and F4-TCNQ, and (d) PDOS of NPB. (e) Side view of the

CuPc-adsorbed graphene, and (f) the PDOS for CuPc. (g) Side view of the

graphene with the adsorbed CuPc and F4-TCNQ, and (h) the PDOS for

CuPc (solid line) and F4-TCNQ (dotted line). In the insets of (a), (c), (e),

and (g), the top views of molecules are shown while graphene is not shown

for clarity. The downward arrows in (b), (d), (f), and (h) indicate the posi-

tions of the HOMO levels of NPB or CuPc.
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F4-TCNQ, the HOMO level of CuPc becomes almost

aligned with the Fermi level, as shown in Fig. 2(h). We note

that the chemical inertness of graphene is an important com-

ponent for the aforementioned band alignment. Even after

the charge transfer from graphene to F4-TCNQ, they remain

non-bonded only aligning the energy level. Such a strong

electron transfer across the p� p stacking distance (�3.4 Å)

has also been widely observed in the pairs of F4-TCNQ and

various other hole transport materials.29 Below, we show

that this advantage is due to the formation of charge-transfer

complex and cannot be expected for the cases of metal surfa-

ces with similar or smaller work functions.

For the cases of metal surface, the co-evaporation of

electron-accepting molecular layers also reduced the hole-

injection barrier.14 In such cases, electrostatic effect was

dominant. After close examinations of the electronic struc-

ture, we found that the aforementioned energy level align-

ment cannot be simply attributed to electrostatic effect only.

Instead, orbital coupling between graphene, F4-TCNQ, and

CuPc (or NPB) is delicately involved. The co-adsorbed F4-

TCNQ attracted electrons not only from CuPc but also from

graphene, forming a type of charge-transfer complex.

We now show detailed electronic structures, as a result

of spin-polarized calculations. Figures 3(a) and 3(b) show

the electronic structure for the isolated CuPc and F4-TCNQ,

which were calculated in large supercell with vacuum region

being longer than 10 Å. One electron localized on the Cu site

remained unpaired, as denoted by the upward arrow in Fig.

3(a). We calculated the electronic structure of the model ge-

ometry used for Fig. 2(g) only removing the graphene layer,

as shown in Fig. 3(c). In this case, the charge transfer from

CuPc to F4-TCNQ formed a charge transfer complex.

Because of this electron transfer, the spin-up and the spin-

down orbitals split, and one state of them sits on the Fermi

level, as indicated by the down-ward arrow in Fig. 3(c). In

the spin-polarized DFT results, when CuPc and F4-TCNQ

formed independent co-planar structure without sub-layer,

the spin directions of CuPc and F4-TCNQ are opposite, as

shown Fig. 3(c), and the overall magnetization is found to be

0.45. However, when they are placed on the graphene plane,

the spin direction for both molecules is aligned parallel, as

shown in Fig. 3(d). This clearly demonstrates that all three

constituents (graphene, CuPc, F4-TCNQ) form a delicately

involved charge-transfer complex. The features of exchange

interaction, which is thought to be mediated by the graphe-

ne’s p electron and favors the aligned spins, required an in-

dependent in-depth study in view of organic magnetism.

To determine whether such co-evaporation is also

effective on metal surfaces, we investigated the same co-

evaporation on the Ag (111) surface, which has a work func-

tion similar to that of graphene, as shown in Fig. 1(d). As

expected from the similarity of the work function, the

HOMO of CuPc is about 0.36 eV below the Fermi level of

the Ag (111) surface (Fig. 4(b)). This amount is likely to

induce a substantial Schottky barrier at the interface between

the Ag and the accumulated layer of CuPc. After co-

evaporation of the CuPc and F4-TCNQ, the response of the

Ag(111) surface is different from that of graphene. The four

nitrogen terminals in the F4-TCNQ develop chemical bonds

with the Ag atoms on the surface. Consequently, as shown in

Fig. 4(c), the plane of the F4-TCNQ molecules bends toward

the Ag(111) surface.

As a result, the HOMO level of CuPc remains distinct

from the Fermi level of silver even with the presence of F4-

TCNQ, as shown in Fig. 4(d). The electron-attracting feature

of the F4-TCNQ largely disappears after forming a chemical

bond with the Ag atoms. Therefore, the layer of F4-TCNQ is

not effective for the alignment between the HOMO of CuPc

and the Fermi level of silver. In previous paragraphs, we

showed that the deposition of some electron acceptors on

graphene makes it possible to modify the carrier injection

barrier due to the presence of an interfacial dipole. But this

work is diminished on the silver surface. The difference

between graphene (Fig. 2) and Ag(111) (Fig. 4) is attributed

to differences in chemical reactivities. In this type of applica-

tion, the chemical inertness of graphene is an obvious

advantage. In addition, such chemical inertness implies that

the conductance of purified graphene can be robustly pre-

served against chemical perturbations.

In summary, using the first-principles computation

methods, the interface between graphene and molecules of

hole-injection layers in OLED (such as NPB or CuPc) was

FIG. 3. Electronic structures of (a) CuPc and (b) F4-TCNQ in vacuum and

(c) the layer of F4-TCNQ and CuPc without graphene layer and (d) with the

graphene layer. The model geometry for (d) is the same as Fig. 2(g). Solid

and dotted lines are for CuPc and F4-TCNQ, respectively. Upper and lower

planes in (a)–(d) show the spin-up and spin-down states, respectively.

Arrows indicate the non-paired orbitals which give rise to magnetic moment

in the spin-polarized calculation. The numbers written as “Mag” denote the

magnetization per unit cell.

FIG. 4. (a) Side view of CuPc on the Ag(111) surface, and (b) the PDOS for

CuPc molecules. (c) Side view of CuPc and F4-TCNQ molecules in contact

with Ag(111) surface, and (d) the PDOS for CuPc (solid line) and F4-TCNQ

(dotted line). The downward arrows in (b) and (d) indicate the positions of

the HOMO level of CuPc.
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investigated. We showed that the chemical inertness of the

graphene surface is a good advantage of graphene as an elec-

trode. After a trace of charge transfer to the electron-

accepting molecule (F4-TCNQ), the Fermi level of graphene

is well aligned with the HOMO of the hole-injection mole-

cules (NPB or CuPc). This is a unique merit of the sp2-

bonded carbon, which is absent in thin metal layers. We sug-

gest that a proper choice of charge transfer complex can

decently tune energy level of organic molecules with the gra-

phene Fermi level.
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