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Abstract 

 

The crystal structures and electrochemical performance of 4,4’-biphenyldicarboxylate sodium salts is 

first introduced as an anode for Na-ion batteries. The structural modification of 4,4’-

biphenyldicarboxylate sodium salts showing different degree of deprotonation and the coordination of 

a water molecule are deliberately accomplished through various precipitation and solvothermal methods, 

resulting in the formation of three different crystal structures even though they are composed of the 

same organic (bpdc) and inorganic (Na+) building blocks. The crystal structures are determined by 

single-crystal X-ray diffraction. The powder X-ray diffraction patterns showed the good agreemen

t with the corresponding simulated patterns, indicating that the phase pure powders have     

the same crystal  s t ructure as  the single crystals .  The level of deprotonation in 4,4’-

biphenyldicarboxylate sodium salts affects not only electrochemical performance but also reaction 

mechanisms. The fully deprotonated 4,4’-biphenyldicarboxylate disodium salt (Na2bpdc) exhibits 

promising electrochemical performance including reversible capacity of 220 mA h g-1 at ca. 0.5 V vs. 

Na/Na+, negligible capacity fading over 150 cycles, and excellent rate performance delivering about 

100 mA h g-1 even at a 20C rate, which is better than monosodium 4,4’-biphenyldicarboxylate (NaHb

pdc) that is partially deprotonated. This better rate performance of Na2bpdc salts is definitely attributed 

to the smaller particle size (short diffusion length) of that compared to NaHbpdc. However, even the 

dehydrated disodium 4,4’-biphenyldicarboxylate monohydrate (h-Na2bpdc) having similar size to 

NaHbpdc exhibited better rate performance than NaHbpdc. This means that the rate performance is 

affected by the degree of deprotonation in 4,4’-biphenyldicarboxylate sodium salts. Carboxylic group 

causes the large amount of electrolyte decomposition to form thick solid electrolyte interphase 

(SEI) layers, resulting in the increase of polarization due to large charge-transfer resistance. 

Also, the de/sodiaiton of Na2bpdc salts proceeds in a two-phase reaction, regardless of the degree of 

deprotonation. And, the amorphization of Na2bpdc salts occurred during cycling, even though the 

crystal structure is maintained. However, unlike the fully deprotonated showing reversible phase 

transition during sodiation and desodiation, the partially deprotonated exhibits irreversible phase 

transition during cyclings. It seems to be occurred the partially phase transition to Na2bpdc which is 

fully deprotonated due to the ion-exchange between Na+ and H+. 
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1. Introduction 

  

1.1. Lithium-ion batteries 

 

For several decades, lithium ion batteries (LIBs) are considered the most efficient energy storage 

system and governed the market of electronic devices.1-2 The lithium ion batteries are firstly 

commercialized in 1991 by Sony that are using LiCoO2 for cathode and graphite for anode. LiCoO2 

showed quite good reversible capacity of 140 mAh/g which is deintercalated of Li ions up to 0.5Li and 

charged to 4.2V (vs. Li/Li+). Graphite is theoretically reacted with one Li per six carbon, and appeared 

the 372 mAh/g theoretical capacity, 0~0.25V (vs. Li/Li+). During charge process, Li ions, which are 

deintercalation from LiCoO2 (cathode), migrate into graphite (anode) through an electrolyte. Discharge 

process is vice versa. Schematic illustration of the first Li-ion battery is showed in figure.1.3 

 

After the commercialization of LiCoO2 and graphite, lots of electrode materials are developed and 

researched to alternate these materials for LIB (figure.2).4 As a structural perspective, cathode materials 

are mainly categorized into layered structure, spinel structure, and olivine structure materials. Firstly, 

layered structure materials are LiCoO2, LiNiO2, LiNi0.5Mn0.5O2, and LiNixCoyMnzO2(x+y+z=1). LiNiO2 

has the higher reversible capacity than LiCoO2 and lower cost, so it is considered as an alternative to 

LiCoO2. However, delithiated LiNiO2 showed the safety problems due to structural instability, resulting 

in decomposition of oxide reacted with organic electrolytes. LiNi0.5Mn0.5O2 exhibited the high 

reversible capacity of 200 mAh/g (2.5V~4.5V window vs. Li/Li+) and also showed better thermal 

stability than other layered oxide materials (LiCoO2, LiNiO2). However, it showed cation disorder 

between the 3a and 3b sites due to the similar size of Ni+2 and Li+, resulting in disturbance of Li diffusion. 

One of the most promising materials for commercialization is LiNixCoyMnzO2(x+y+z=1). This 

materials are compensating each metal’s disadvantages, optimizing of each metal’s advantages. 

Secondly, the spinel LiMn2O4 offers good safety and structural stability due to 3D lattice. Furthermore, 

Mn is low cost and environmentally friendly. Unfortunately, it showed severe problem that Mn 

dissolution into electrolytes resulting in deposition to anode. Thirdly, LiFePO4 is polyanion-based 

cathode material of olivine structure. It has some advantages that thermal stability, low material cost, 

abundant material supply and better environmental compatibility. The disadvantages of LiFePO4, 

however, indicate low theoretical capacity, low density, poor electronic and ionic conductivity.2,4,5 

Lithiated graphite has been the most commonly utilized lithium ion batteries anode material. To 

alternative graphite, many materials are researched as alkali metal-insertion host materials of 

carbonaceous compounds, alloy composites, metal oxides/sulfides, and organic compounds containing 

carbonyl groups.   
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Figure. 1 Schematic illustration of the first Li-ion battery (LiCoO2/Li+ electrolyte/graphite). 

 

 

 

 

 

Figure. 2 Voltage versus capacity for positive- and negative-electrode materials presently used or under 

serious considerations for the next generation of rechargeable Li-based cells. 
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1.2. Sodium-ion batteries 

 

Despite of the success of LIBs in portable electronics markets, their large scale applications (e.g., 

electric vehicles, the electrical grid system) have been limited due to performance and cost issues.6 

Since lithium resources are limited and geometrically constrained, world’s growing demand for energy 

will eventually drive up the prices.7 With the natural abundance, low toxicity, and low redox potential 

(-2.71 V vs SHE), sodium ion batteries (SIB) are considered one of the promising post-LIB systems 

that are cheap, environmentally benign, and sustainable. Moreover, sodium also belongs to alkali metals 

located directly below lithium on the periodic table. Therefore the similar synthetic or electrochemical 

approaches applied to LIBs could have been adapted to SIB system. For example, sodium analogues of 

cathodic materials have been synthesized including layered transition metal oxides (NaMnO2, NaCoO2) 

and polyanions (NaFePO4).  

  

However, the larger ionic radius of Na+ (1.02 Å ) causes structural changes of electrode materials 

and brings typically slow kinetics compared to Li+ (0.76 Å ) analogues. For example, sodium cation 

cannot intercalate into graphite, which is the representative anodic material of LIBs. Hard carbons with 

disordered structures have been tested for anodic applications to accommodate Na+ ions, however, they 

showed inferior cyclabilities and specific capacities compared to graphite in LIBs.8 

 

Lots of electrode materials are researched for sodium ion batteries, their voltage-capacity plots are 

shown in Figure.4.9 

 

 

 

Figure. 3 Schematic illustration of sodium ion battery.10 
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Figure. 4 Voltage-capacity plots of (A) negative and (B) positive electrode materials for SIBs. 
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1.3. Organic electrode materials 

 

The history of organic compounds is as old as electrode materials for lithium ion batteries. However, 

they are not concerned comparing to inorganic electrode materials. Until now, lots of inorganic electrode 

materials are developed, but it is hard to find new inorganic electrode materials for both lithium ion 

batteries and sodium ion batteries. Organic compounds offer low-cost production, recyclability, and 

structural diversity. Especially, the structural richness of organic electrode materials give a lot of new 

electrode materials for both cathode and anode materials that can be easily tuned electrochemical 

properties and diversities. Organic compounds are categorized into organic sulfurs, disulfides, nitroxide 

radicals, and conjugated carbonyl derivatives (figure.5).11 

 

Nonetheless, organic compounds have some challenges such as small volumetric capacity, low 

cyclability, and poor electrical conductivity.9 In 2009, Tarascon et al. introduced conjugated 

dicarboxylate anodes (dilithium terephthalate, Li2TP) for lithium ion batteries to solve those problems. 

It showed good electrochemical performance no other organic compounds which are large initial 

capacity of approximately 290 mAh/g, low redox potential of 0.8V vs. Li/Li+, and stable cycle 

performance.12 
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Figure. 5 Electrochemical performance of organic compounds for LIBs: (A) average discharge 

potential vs. discharge capacity plot and (B) power density vs. energy density plot.  
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Figure. 6 Chemical structure of dilithium terephthalate 

 

 

 

 

 

 

 

 

Figure. 7 Voltage profiles during initial 10 cycles and cycle performance (inset) of Li2TP for li ion 

batteries 
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1.4. Organic anode materials for sodium-ion batteries 

 

A variety of electrode materials such as non-graphitic carbons,10,13,14 alloys (e.g., Sn and Sb),15-18 

metal oxides,19-23 and phosphorus24,25 have been shown to exhibit promising electrochemical 

performances as an anodes for Na-ion batteries. Recently, a few organic compound-based materials 

such as conjugated and aromatic compounds containing carbonyl groups or N-heterocycles have been 

reported as promising anode materials because of their attractive features such as good electrochemical 

performance, low-cost production, recyclability, and structural diversity.12,26-30 For example, organic 

electrode materials can be produced from commonly used recycled materials such as polyethylene 

terephthalate (PET). In particular, disodium terephthalate (Na2TP) were firstly introduced as organic 

anode materials for sodium ion batteries which has a space group of Pbc21. It showed remarkably 

excellent electrochemical properties. Na2TP reversibly delivered about 250 mAh g-1 at about 0.4 V vs. 

Na/Na+. It showed high capacity retention over 90 cycles with excellent (>98%) coulombic efficiency.  

Furthermore, Several sodium terephthalate derivatives with amino- and bromo-groups have been easily 

synthesized owing to the structural diversity of organic architecture, resulting in controllable redox 

potential changes through inductive and resonance effects.31 Despite structural richness of organic 

electrode materials, even only a few organic compounds have been examined as Na-ion batteries.32-34 
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Figure. 8 Proposed reversible Na-ion insertion/deinsertion mechanism and voltage profiles. 
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2. Experimental 

 

2.1. Synthesis method  

 

[(Na2bpdc)∙H2O]n (hyd-Na2bpdc): To an aqueous suspension (3.2 mL) of 4,4’-biphenyldicarboxylic 

acid (H2bpdc) (0.258 g, 1.06 mmol), an aqueous solution (0.8 mL) of NaOH (0.137 g, 3.43 mmol) was 

added. After the completion of the reaction, the solution was filtered, and the clear pale yellow filtrate 

was exposed to ethanol vapor inside a refrigerator (2 oC) to crystallize the products. After two days, 

block-shaped pale yellow single crystals of [(Na2bpdc)∙H2O]n (h-Na2bpdc) started to form at the surface 

of the solution. The crystals were filtered off after seven days, washed with ethanol, and dried in air. 

Yield: 0.17 g (53%). FT-IR (ATR): νO-C=O(carboxylate), 1579(s), 1 390(s); νO-H(guest water) cm–1. Anal. calcd 

for Na2C14H10O5 (304.21): C, 55.27; H, 3.31. Found: C, 53.26; H, 3.27. 

 

[(Na2bpdc)]n (Na2bpdc): To a stirred aqueous suspension (25 mL) of 4,4’-biphenyldicarboxylic acid 

(2.42 g, 0.01 mol), an aqueous solution (7 mL) of NaOH (1.20 g, 0.03 mol) was added. After the 

completion of the reaction, the solution was filtered, and ethanol (20 mL) was added to the filtrate, 

resulting in white precipitates. The solution was then allowed to stand in a refrigerator for several hours. 

The white precipitate obtained was filtered, washed with ethanol, and dried in air. Yield: 2.04 g (71%). 

1H-NMR (deuterium oxide): δ ppm 7.85 (d, 4H). 7.67 (d, 4H). FT-IR (ATR): νO-C=O, 1578(s), 1394(s) 

cm–1. Anal. calcd for Na2C14H8O4 (286.19): C, 58.76; H, 2.82. Found: C, 57.48; H, 2.84. 

 

[NaHbpdc]n (NaHbpdc): NaNO3 (0.026 g, 0.30 mmol) was dissolved in methanol (2 mL) and H2bpdc 

(0.036 g, 0.15 mmol) was dissolved in DMA/H2O (5.1 mL, 4:1.1 v/v). The two solutions were placed 

in a glass jar and sealed together, and the mixture was heated at 100 ºC for 48 h. The solution was then 

cooled to room temperature. The plate-shaped colorless crystals obtained were filtered, washed briefly 

with methanol, and dried in air. Yield: 0.029 g (74%). FT-IR (ATR): νC=O(carboxylic acid), 1672 cm-1; νO-

C=O(carboxylate), 1605, 1399 cm-1. Anal. calcd for Na1C14H9O4 (264.21): C, 63.64; H, 3.43. Found: C, 64.07; 

H, 3.88.  
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2.2. Characterization  

 

All chemicals and solvents used in the syntheses were of reagent grade and they were used as received 

without further purification. The IR spectra were recorded using a ThermoFisher Scientific Nicolet 

6700 FT-IR spectrophotometer. Elemental analyses (EA) were performed at the UNIST Central 

Research Facilities (UCRF) in Ulsan National Institute of Science and Technology (UNIST). 

Thermogravimetric analyses (TGA) were performed under N2 (g) atmosphere at a scan rate of 5 oC/min 

using a Q50 (TA instruments). PXRD data were recorded using a Bruker D2 PHASER automated 

diffractometer at 30 kV and 10 mA for Cu Kα (λ = 1.54050 Å ), with a step size of 0.02º in 2θ. Scanning 

electron microscopy was carried out using a cold FE-SEM (Hitachi). Single crystals of hyd-Na2bpdc 

and NaHbpdc, coated with Paratone-N oil, were mounted on a loop, and the diffraction data were 

collected at 95 K with synchrotron radiation ( = 0.64999 Å  for hyd-Na2bpdc; 0.69999 Å  for NaHbpdc) 

using a ADSC Quantum-210 detector at 2D SMC with a silicon (111) double crystal monochromator 

(DCM) at Pohang Accelerator Laboratory, S. Korea. The ADSC Q210 ADX program was used for the 

data collection, and HKL3000 (Ver. 703r) was used for the cell refinement, reduction, and absorption 

correction. The structures of hyd-Na2bpdc and NaHbpdc have been deposited in the CCDC database, 

reference numbers 944127 and 944128, respectively.  

 

 

2.3. Electrochemical measurements 

 

The samples of electrochemically active materials (57.1 wt%) were mixed with carbon black (Super P, 

28.6 wt%) and carboxymethyl cellulose (CMC, 14.3 wt%). The electrochemical performance was 

evaluated using 2032 coin cells with a Na metal anode and 0.8 M NaClO4 in a mixture of ethylene 

carbonate and diethyl carbonate (1:1 v/v) electrolyte solution. The galvanostatic experiments were 

performed at 30oC, and specific current densities of 18.7 mA g-1 (ca. 0.1 C) and 20.3 mA g-1 (ca. 0.1 C) 

were applied to evaluate the cycle performances of NaHbpdc and Na2bpdc, respectively. For the rate 

performance evaluation, the discharging (desodiation) current density was fixed at 0.1 C, and the 

charging current was varied. The GITT experiments were performed between 0.1 and 2.5 V vs. Na/Na+ 

by applying a current corresponding to a C/20 rate in intervals of 1 h, separated by a rest period of 1 h. 

The electrochemical impedance spectroscopy (EIS) study was performed using a BIO Logic SP 150. 

The AC impedance measurements were recorded using a signal with amplitude of 5 mV and a frequency 

range from 300 kHz to 1 mHz.  
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3. Results and discussion 

 

H2bpdc ligand and sodium cations were reacted under three different reaction conditions to afford 

three different types of bpdc-sodium salts. Disodium bpdc monohydrate (hyd-Na2bpdc), 

{Na[Na(H2O)](bpdc)}n, was synthesized by the reaction of NaOH with H2bpdc in water, and single 

crystals of the product were obtained by slow diffusion of ethanol at ca. 2 oC. NaOH was employed in 

this reaction as a source of Na ions and a strong base for deprotonating the carboxylic acid (COOH) 

groups of H2bpdc. On the other hand, interestingly, non-hydrated disodium bpdc (Na2bpdc) was 

synthesized as a microcrystalline solid by the rapid reaction of NaOH with H2bpdc in a mixture of water 

and ethanol at room temperature. The partially deprotonated sodium salt, monosodium bpdc (NaHbpdc), 

[Na(Hbpdc)]n, was synthesized by the solvothermal reaction of NaNO3 and H2bpdc in a mixture of 

methanol, N,N-dimethylacetamide (DMA), and water at 100 oC. Under these conditions, only one of 

two carboxylic acid (COOH) groups of H2bpdc was deprotonated. Thus, the three bpdc-sodium salts 

were composed of the same organic (bpdc) and inorganic (Na+) building blocks, but had different 

compositions and crystal structures. 

 

Because hyd-Na2bpdc and NaHbpdc could be obtained as single crystals, their crystal structures 

were directly determined and compared via single-crystal X-ray diffraction results. The lattice 

parameters, agreement factors, and detailed structural information of hyd-Na2bpdc and NaHbpdc are 

listed in Table 1. hyd-Na2bpdc crystallized in the monoclinic P21/c space group. As shown in Figure. 

9a, the structure of hyd-Na2bpdc consisted of Na-O layers as the secondary building units (SBUs), and 

the bridging ligands, bpdc2-, formed a three- dimensional (3D) network. The Na-O layers resulted from 

the coordination between Na+ ions and O atoms of carboxylate groups (COO-) and water molecules. 

The crystal structure of hyd-Na2bpdc possessed two Na+, two halves of bpdc2- ligand, and one 

coordinating water molecule, which are crystallographically independent. Figure. 9c reveals the 

coordination modes of carboxylates (COO-) in hyd-Na2bpdc to be as follows: the O1-C1-O2 group acts 

as a tetradentate ligand forming a four-membered chelate ring, and the O3-C8-O4 group coordinates to 

four Na ions without chelation. Na1 and Na2 exhibited a distorted trigonal bipyramidal and an 

octahedral coordination geometry, respectively. The bpdc2- ligand was planar with a dihedral angle of 

0o between the two phenyl rings.  

 

NaHbpdc crystallized in the triclinic P-1 space group. The crystal structure of NaHbpdc showed 

two crystallographycally independent Na+ ions and one bpdc2- ligand. The Na+ ions were bridged by 

carboxylate groups (COO-) to form one-dimensional (1D) Na-O chains as SBUs, which were linked by 

bpdc2- ligands to form a 3D network (Figure. 9b). Na1 and Na2 showed distorted octahedral and square 
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planar geometry, respectively. Unlike hyd-Na2bpdc, the phenyl rings in the bpdc2- ligand of NaHbpdc 

were tilted by 30.69(5)o. Because the carboxylic acid (COOH) groups in NaHbpdc were partially 

depronated, the deprotonated O1-C1-O2 group coordinated to three Na ions using both the oxygen 

atoms. In contrast, only the O3 atom in O3-C8-O4-H44 acted as a bidentate ligand (Figure. 9d).  
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Table 1. X-ray crystallographic data of {Na[Na(H2O)](bpdc)}n (h-Na2bpdc) and [Na(Hbpdc)]n 

(NaHbpdc). 

Compound {Na[Na(H2O)](bpdc)}n [Na(Hbpdc)]n 

formula Na2C14H10O5
 Na1C14H9O4

 

crystal system Monoclinic Triclinic 

space group P 21/c P-1 

fw 304.21 264.21 

a, Å  27.720(6) 3.6550(7) 

b, Å  5.8060(12) 11.214(2) 

c, Å  7.5530(15) 12.985(3) 

V, Å 3 1214.2(4) 529.54(18) 

Z 4 2 

calcd, g cm-3 1.665 1.657 

temp , K 95(2) 100(2) 

, Å  0.64999 0.69999 

, mm-1 0.185 0.156 

goodness-of-fit (F2) 1.037 1.003 

F(000) 616 272 

reflections collected 16907 5662 

independent reflections 5223 [R(int) = 0.0448] 2827 [R(int) = 0.0307] 

completeness to max, % 98.6 93.2 

data/parameters/restraints 5223/190/0 2827/179/0 

 range for data collection, deg 3.28-33.36 1.55-29.55 

diffraction limits (h, k, l) -42h  41, -8k  8,                

-12l  12 

-5h  5, -15k 15,                 

-18l  18 

refinement method Full-matrix least squares on F2 Full-matrix least squares on F2 

R1, wR2 [I>2(I)] 0.0351a, 0.0996b 0.0623a, 0.1720c 

R1, wR2 (all data) 0.0375a, 0.1011b 0.0748a, 0.1859c 

largest peak, hole, eÅ -3 0.870, -0.363 0.533, -0.887 

aR =Fo - Fc/Fo. 
bwR(F2) = [w(Fo

2- Fc
2)2/w(Fo

2)2]½  where w = 1/[2(Fo
2) + (0.0518P)2+ 

(0.7461)P], P =(Fo
2+ 2Fc

2)/3.cwR(F2) = [w(Fo
2- Fc

2)2/w(Fo
2)2]½  where w = 1/[2(Fo

2) + 

(0.1536P)2+ (0.0000)P], P =(Fo
2+ 2Fc

2)/3. 
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Figure. 9 Single-crystal X-ray structures of hyd-Na2bpdc and NaHbpdc, which were constructed by 

connecting the SBUs (purple) by bpdc2- ligands. 3D network of (a) hyd-Na2bpdc and (b) NaHbpdc; 

coordination modes of bpdc2- ligands to sodium ions in (c) hyd-Na2bpdc, and (d) NaHbpdc. Color 

scheme: C (grey), O (red), H (white), Na (purple). 
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The PXRD patterns of the as-synthesized hyd-Na2bpdc and NaHbpdc powders were compared to 

the simulated patterns based on the single crystal XRD data. As shown in Figures. 10a-d, the XRD 

patterns of both the bulk powders showed good agreement with the corresponding simulated patterns, 

indicating that the phase pure powders have the same crystal structure as the single crystals. On the 

other hand, because Na2bpdc was obtained as microcrystals, which are not suitable for single crystal 

XRD analysis, its PXRD pattern (Figure. 10e) was compared to those of hyd-Na2bpdc and NaHbpdc. 

Na2bpdc showed a different PXRD pattern, indicating that the crystal structure of Na2bpdc was different 

from those of hyd-Na2bpdc and NaHbpdc. However, the structure of Na2bpdc was found to be the same 

as that of hyd-Na2bpdc after the coordinating water molecules were removed (Figure. 10f). hyd-Na2bpdc 

was dehydrated by heating at 120 oC under vacuum. The dehydration results in a weight loss of 5.98% 

below 100 oC in the thermogravimetric analysis (TGA) curves of hyd-Na2bpdc (Figure. 11). The amount 

of weight loss corresponded to one water molecule per molecular formula. The incorporation of water 

molecules in the structure of Na2bpdc may depend on the reaction temperature as well as the type of 

solvent used. 

 

Further, the structural similarity between hyd-Na2bpdc and Na2bpdc is indirectly supported by the 

TGA curves because they show the same thermal behavior except for the water loss in hyd-Na2bpdc 

below 100 oC (Figure. 11). Although both hyd-Na2bpdc and Na2bpdc are decomposed at ca. 600 oC, 

Na2bpdc did not show any weight loss around 100 oC indicating that this compound is not hydrated. On 

the other hand, NaHbpdc exhibited no weight loss around 100 oC, which is consistent with the single-

crystal XRD data of NaHbpdc, which is not hydrated. The structure of NaHbpdc is rapidly decomposed 

above 300 oC. The lower thermal stability of NaHbpdc compared to hyd-Na2bpdc and Na2bpdc is 

attributed to the weak coordination between Na+ ions and the carbonyl group of carboxylic acid (COOH) 

groups, which were not deprotonated. This indicates that a higher degree of deprotonation is required 

to improve the thermal stability of organic electrode materials. 
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Figure. 10 PXRD patterns of (a) hyd-Na2bpdc and (c) NaHbpdc, simulated patterns from single-crystal 

XRD data of (b) hyd-Na2bpdc and (d) NaHbpdc, and PXRD patterns of (e) Na2bpdc and (f) dehydrated 

hyd-Na2bpdc dried at 120 oC. 
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Figure. 11 TGA curves of hyd-Na2bpdc, NaHbpdc, and Na2bpdc. 
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The acid-base reactions of H2bpdc with NaOH to produce hyd-Na2bpdc, Na2bpdc and NaHbpdc 

were further verified by Fourier transform infrared (FT-IR) spectroscopy. As shown in Figure. 12, the 

spectrum of H2bpdc showed typical C=O stretching and O-H bending vibrations of carboxylic acid 

(COOH) groups at 1668 and 922 cm-1, respectively. However, after the formation of the metal-

carboxylate coordination (COO-Na) compounds via complete deprotonation by NaOH, the carbonyl 

(C=O) stretching vibration of the carboxylate groups (COO-) in hyd-Na2bpdc was shifted and split into 

two bands at 1579 and 1390 cm-1, which were assigned as asymmetric (vas) and symmetric (vs) stretching 

vibrations, respectively (Figure. 12). Moreover, the characteristic O-H bending vibrations for the 

carboxylic acid groups around 920 cm-1 disappeared. The weak peak at 1690 cm-1 in the spectrum of 

hyd-Na2bpdc corresponds to the O-H bending vibration of water. This observation agrees with the 

existence of guest water molecules, as suggested by single-crystal XRD and TGA data. Na2bpdc showed 

the same FT-IR spectrum as hyd-Na2bpdc, except for the peak around 1690 cm-1. As expected from the 

XRD and TGA results, the FT-IR spectrum of NaHbpdc, containing both of the protonated and 

deprotonated form of carboxylic acid groups, showed peaks characteristic of both COOH and COO- 

groups, i.e., C=O stretching and O-H bending vibrations of carboxylic acid at 1672 and 923 cm-1, 

respectively, and vas and vs of the carboxylate groups at 1605 and 1399 cm-1, respectively (Figure. 12). 
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Figure. 12 FT-IR spectra of H2bpdc, hyd-Na2bpdc, Na2bpdc and NaHbpdc; all the spectra were 

measured by using attenuated total reflectance (ATR) technique.  
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As shown in Figure. 13, Na2bpdc and NaHbpdc, which have different crystal structures and degrees 

of deprotonation of the organic ligands, were examined as anode materials for Na-ion batteries. The 

cycle performance of hyd-Na2bpdc was not examined separately because it transforms into Na2bpdc 

during the preparation of the electrodes. The electrodes were dried at 120 oC under vacuum to remove 

the adsorbed water molecules on the surface of powders that is related to electrolyte decomposition 

during charging/discharging. This drying process leads to the dehydration of hyd-Na2bpdc to afford 

Na2bpdc. Both Na2bpdc and NaHbpdc electrodes showed similar reversible capacities of approximately 

200 mA h g-1 at ca. 0.5 V vs. Na/Na+, which is larger than the theoretical specific capacity of 187 mA 

h g-1 corresponding two Na+ ions storage, as shown in Scheme 1. The excess capacity (about 30 mA h 

g-1) is attributed to carbon additive (super P) that can reversibly store Na+ ions and delivers about 100 

mA h g-1 (Fig. 14). The gravimetric specific capacity of bpdc-sodium salts is relatively small compared 

to other anode materials. Moreover, the densities of Na2bpdc and NaHbpdc are 1.566 g cm−3 and 1.657 

g cm−3, respectively, based on X-ray single crystallographic data, which causes a low volumetric energy 

density. However, these organic electrode materials are cheap, indicating that organic electrode 

materials have an advantage of low cost/energy density. Above all, organic electrode materials are 

environmentally benign and reproducible, and this makes organic electrode materials attractive in spite 

of their relatively low energy density. Also, they showed a stable cycle performance of negligible 

capacity fading over 150 cycles. Notably, unlike Na2bpdc, NaHbpdc showed a large amount of 

irreversible capacity at the first cycle. The coulombic efficiencies of Na2bpdc and NaHbpdc at the first 

cycle were 81% and 47%, respectively. The poor coulombic efficiency of NaHbpdc (large sodiation 

capacity at the first cycle) is attributed to its irreversible electrolyte decomposition on the surface of 

NaHbpdc possessing carboxylic acid groups. The same behavior, i.e., a large amount of irreversible 

capacity at the first cycle, was also observed in a partially deprotonated monosodium terephthalate,33 

while a fully deprotonated disodium terephatalate showed good coulombic efficiency similar to 

Na2bpdc. 
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Scheme 1 Schematic diagram for the electrochemical redox reaction mechanism of Na2bpdc. 
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Figure. 13 Voltage profiles of (a) NaHbpdc and (b) Na2bpdc; cycle performance of (c) NaHbpdc and 

(d) Na2bpdc. 
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Figure 14. Voltage profiles of super P carbon.  
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The rate performances of Na2bpdc and NaHbpdc were also compared, as shown in Figures. 15 and 

16. Na2bpdc showed a better rate performance than NaHbpdc, and even at a 20 C rate (3.74 A g-1), 

Na2bpdc sustained 50% of reversible capacity delivered at a 0.2 C rate. This superior rate performance 

of Na2bpdc is definitely attributed to the smaller particle size (diffusion length) of Na2bpdc compared 

to NaHbpdc, as shown in Figure. 17. The particle sizes of Na2bpdc and NaHbpdc are a few μm and 

approximately 10 μm, respectively. However, even the dehydrated hyd-Na2bpdc, which has a size 

similar to NaHbpdc, exhibited a better rate performance than NaHbpdc, indicating that the rate 

performance is affected by both the degree of deprotonation and the particle size of the bpdc-sodium 

salts. Electrodes with carboxylic groups cause a large amount of electrolyte decomposition, forming 

thick solid electrolyte interphase (SEI) layers, which result in the increase in polarization because of a 

large charge-transfer resistance. This is supported by the electrochemical impedance spectroscopy (EIS) 

analysis. The measurement was performed using the symmetric cells comprised of working electrode 

(bpdc salt)/working electrode (bpdc salt). The working electrodes were half-sodiated charging state 

after pre-cycling. As shown in Fig. 18, the semicircle of NaHbpdc is larger than that of hyd-Na2bpdc, 

indicating that the charge-transfer resistance of NaHbpdc is larger than that of hyd-Na2bpdc because the 

semicircle corresponds to charge-transfer resistance that is dependent on SEI layers. Moreover, while 

both the Na+ cations present in the structure of Na2bpdc can act as charge carriers for the solid state 

diffusion of Na+ ions, the proton present in the structure of NaHbpdc cannot act as a charge carrier 

because it is strongly bound to the carbonyl group through covalent bonding. This indicates that the 

reduced amount of charge carriers in NaHbpdc compared to Na2bpdc causes slower ionic diffusivity of 

Na+ ions, resulting in poorer rate performance. 
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Figure. 15 Rate performance of hyd-Na2bpdc, Na2bpdc and NaHbpdc. 
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Figure 16. Rate performance of NaHbpdc, h-Na2bpdc, and Na2bpdc: voltage profiles of (a) NaHbpdc, 

(b) h-Na2bpdc, and (c) Na2bpdc. 
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Figure. 17 SEM images of (a) NaHbpdc, (b) hyd-Na2bpdc, and (c) Na2bpdc 
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Fig. 18 Nyquist plots of bpdc electrode/bpdc electrode symmetric cells 
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To observe the structural changes upon sodiation/desodiation, ex situ XRD analysis of Na2bpdc was 

performed, and it showed that the reversible sodiaiton/desodiation of Na2bpdc proceeds in a two-phase 

reaction, as shown in Figure. 19. Upon sodiation, the intensity of PXRD peaks corresponding to 

Na2bpdc decreased, and new peaks corresponding to the sodiated phase of Na2bpdc gradually appeared 

at ca. 11, 20, 23 and 31o (and vice versa for the desodiation). Despite two plateau steps in the voltage 

profile of desodiation during the first cycle, the ex situ XRD patterns showed that only one type of a 

two-phase reaction occurred during the desodiation. This agree well with the galvanostatic intermittent 

titration technique (GITT) curves, as shown in Figure. 20. Although two plateaus were observed during 

the first cycle, the second plateau is attributed to larger polarization because of a higher mass transfer 

resistance in Na-deficient compositions. This type of polarization behavior gradually disappeared on 

cycling, and may be closely related to the amorphization of Na2bpdc during the cycling. As shown in 

the ex situ XRD patterns of the electrodes during cycling (Figure. 19c), broader PXRD peaks were 

observed after the cycling, indicating that the amorphization of Na2bpdc occurred during cycling. In 

general, materials that are more amorphous show less polarization owing to the faster ionic diffusion at 

grain boundaries. 
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Figure. 19 Ex situ XRD analysis of Na2bpdc: (a) voltage profiles, (b) corresponding XRD patterns, and 

(c) XRD patterns of desodiated electrodes during the various cyclings.  
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Figure. 20 GITT curves of Na2bpdc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

Unlike Na2bpdc, NaHbpdc showed an the irreversible phase transformation during the sodiation and 

desodiation, as shown in Figure. 21. NaHbpdc proceeds in a two-phase reaction during the sodiation 

and desodiation; however, the mixture phases of NaHbpdc and Na2bpdc were observed after the 

desodiation. This indicates that the ion exchange occurred between the proton of carboxylic acid group 

in NaHbpdc and sodium ions in electrolytes during cycling. Similar behavior has been observed in the 

partially deprotonated monosodium terephthalate, which was transformed into the fully deprotonated 

disodium terephthalate due to the ion exchange between the proton and sodium during sodiation and 

desodiation.33 The ion exchange of NaHbpdc powders was not observed when NaHbpdc powders were 

stored in electrolytes for 3, 5, and 10 days without passage of current, as shown in Fig. 22, and thus, the 

ion exchange is merely related to electrochemical sodiation and desodiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

Figure. 21 Ex situ XRD analysis of NaHbpdc: (a) voltage profiles and (b) corresponding XRD patterns. 
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Figure 22. XRD patterns of NaHbpdc powders after storage in electrolytes for 3, 5, and 10 days. 
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4. Conclusion 

 

In conclusion, the crystal structures and electrochemical performance of bpdc-sodium salts as anode 

materials for Na-ion batteries have been evaluated for the first time. The different degrees of 

deprotonation and differently coordinated water molecules in the bpdc-sodium salts were obtained 

through deliberate synthesis such as precipitation and solvothermal methods, resulting in the formation 

of bpdc-sodium salts with three different crystal structures. Their crystal structures were determined 

using single-crystal XRD. The bpdc-sodium salts exhibited a promising electrochemical performance 

with a reversible capacity of 220 mA h g-1 at ca. 0.5 V vs. Na/Na+, negligible capacity fading over 150 

cycles, and an excellent rate performance of approximately 100 mA h g-1 even at a 20 C rate. The 

sodiation/desodiation of bpdc-sodium salts proceeds in a two-phase reaction. In addition, the degree of 

deprotonation in bpdc-sodium salts not only affected the electrochemical performance, but also affected 

the corresponding reaction mechanisms. The fully deprotonated bpdc-disodium salt (Na2bpdc) showed 

better coulombic efficiency and rate performance than the partially deprotonated bpdc-monosodium 

salt (NaHbpdc). Unlike Na2bpdc, which showed reversible phase transition during sodiation and 

desodiation, NaHbpdc exhibited an irreversible phase transition during the cycling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 

 

References 

 

 

1.  Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657. 

 

2.  Ellis, B. L.; Lee, K. T.; Nazar, L. F., Positive Electrode Materials for Li-Ion and Li-Batteries†. 

Chemistry of Materials 2010, 22 (3), 691-714. 

 

3.  Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the 

American Chemical Society 2013, 135 (4), 1167-1176. 

 

4.  Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 

2001, 414 (6861), 359-367. 

 

5.  Whittingham, M. S., Lithium batteries and cathode materials. Chemical Reviews 2004, 104 (10), 

4271-4302. 

 

6.  Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: A battery of choices. 

Science 2011, 334 (6058), 928-935. 

 

7.  Ellis, B. L.; Nazar, L. F., Sodium and sodium-ion energy storage batteries. Current Opinion in Solid 

State and Materials Science 2012, 16 (4), 168-177. 

 

8.  Stevens, D.; Dahn, J., The mechanisms of lithium and sodium insertion in carbon materials. Journal 

of The Electrochemical Society 2001, 148 (8), A803-A811. 

 

9.  Lee, K. T.; Hong, S. Y.; Kim, Y.; won Park, Y.; Choi, A.; Choi, N.-S., Charge Carrier in 

Rechargeable Batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013. 

 

10.  Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, 

K.; Fujiwara, K., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon 

Electrodes and Application to Na-Ion Batteries. Advanced Functional Materials 2011, 21 (20), 3859-

3867. 

 

 



38 

 

11.  Liang, Y.; Tao, Z.; Chen, J., Organic electrode materials for rechargeable lithium batteries. 

Advanced Energy Materials 2012, 2 (7), 742-769. 

 

12.  Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J.-M., 

Conjugated dicarboxylate anodes for Li-ion batteries. Nature materials 2009, 8 (2), 120-125. 

 

13.  Shao, Y. Y.; Xiao, J.; Wang, W.; Engelhard, M.; Chen, X. L.; Nie, Z. M.; Gu, M.; Saraf, L. V.; 

Exarhos, G.; Zhang, J. G.; Liu, J., Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon 

Foams. Nano Lett. 2013, 13 (8), 3909-3914. 

 

14.  Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. 

V.; Yang, Z. G.; Liu, J., Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. 

Nano Lett. 2012, 12 (7), 3783-3787. 

 

15.  Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S., Electrochemical Performance of Porous Carbon/Tin 

Composite Anodes for Sodium-Ion and Lithium-Ion Batteries. Adv. Energy Mater. 2013, 3 (1), 128-

133. 

 

16.  Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L., Better 

Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected 

Electrochemical Mechanism. J. Am. Chem. Soc. 2012, 134 (51), 20805-20811. 

 

17.  Baggetto, L.; Allcorn, E.; Manthiram, A.; Veith, G. M., Cu2Sb thin films as anode for Na-ion 

batteries. Electrochem. Commun. 2013, 27, 168-171. 

 

18.  Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. 

B., Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and 

Electrolyte Reservoir. Nano Lett. 2013, 13 (7), 3093-3100. 

 

19.  Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, 

L. Q.; Huang, X. J., A zero-strain layered metal oxide as the negative electrode for long-life sodium-

ion batteries. Nat. Commun. 2013, 4. 

 

 

 



39 

 

20.  Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacin, M. R., Na2Ti3O7: Lowest 

Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mat. 2011, 23 (18), 

4109-4111. 

 

21.  Sun, Q.; Ren, Q. Q.; Li, H.; Fu, Z. W., High capacity Sb2O4 thin film electrodes for rechargeable 

sodium battery. Electrochem. Commun. 2011, 13 (12), 1462-1464. 

 

22.  Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, 

L. Q.; Huang, X. J., Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 

anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4. 

 

23.  Woo, S. H.; Park, Y.; Choi, W. Y.; Choi, N. S.; Nam, S.; Park, B.; Lee, K. T., Trigonal Na4Ti5O12 

Phase as an Intercalation Host for Rechargeable Batteries. J. Electrochem. Soc. 2012, 159 (12), A2016-

A2023. 

 

24.  Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T., An 

Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion 

Batteries. Adv. Mater. 2013, 25 (22), 3045-3049. 

 

25.  Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X., High Capacity and Rate Capability of 

Amorphous Phosphorus for Sodium Ion Batteries. Angew. Chem.-Int. Edit. 2013, 52 (17), 4633-4636. 

 

26.  Liang, Y.; Tao, Z.; Chen, J., Organic Electrode Materials for Rechargeable Lithium Batteries. Adv. 

Energy Mater. 2012, 2 (7), 742-769. 

 

27.  Geng, J.; Bonnet, J.-P.; Renault, S.; Dolhem, F.; Poizot, P., Evaluation of polyketones with N-

cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine 

unit. Energy Environ. Sci. 2010, 3 (12), 1929. 

 

28.  Han, X.; Qing, G.; Sun, J.; Sun, T., How many lithium ions can be inserted onto fused C6 aromatic 

ring systems? Angewandte Chemie 2012, 51 (21), 5147-51. 

 

29.  Liang, Y.; Zhang, P.; Chen, J., Function-oriented design of conjugated carbonyl compound 

electrodes for high energy lithium batteries. Chemical Science 2013, 4 (3), 1330. 

 



40 

 

30.  Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; 

Takui, T., Organic tailored batteries materials using stable open-shell molecules with degenerate 

frontier orbitals. Nature materials 2011, 10 (12), 947-51. 

 

31.  Park, Y.; Shin, D. S.; Woo, S. H.; Choi, N. S.; Shin, K. H.; Oh, S. M.; Lee, K. T.; Hong, S. Y., 

Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 2012, 24 (26), 

3562-7. 

 

32.  Zhao, L.; Zhao, J. M.; Hu, Y. S.; Li, H.; Zhou, Z. B.; Armand, M.; Chen, L. Q., Disodium 

Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low-Cost Room-Temperature 

Sodium-Ion Battery. Adv. Energy Mater. 2012, 2 (8), 962-965. 

 

33.  Abouimrane, A.; Weng, W.; Eltayeb, H.; Cui, Y. J.; Niklas, J.; Poluektov, O.; Amine, K., Sodium 

insertion in carboxylate based materials and their application in 3.6 V full sodium cells. Energy Environ. 

Sci. 2012, 5 (11), 9632-9638. 

 

34.  Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H.; Kaskel, S.; Eckert, J., Aromatic 

porous-honeycomb electrodes for a sodium-organic energy storage device. Nat Commun 2013, 4, 1485. 

 

 

 


	1. Introduction 
	1.1. Lithium-ion batteries 
	1.2. Sodium-ion batteries 
	1.3. Organic electrode materials 
	1.4. Organic anode materials for sodium-ion batteries 

	2. Experimental 
	2.1. Synthesis method 
	2.2. Characterization 
	2.3. Electrochemical measurements 

	3. Results & Discussion 
	4. Conclusion 
	5. References 


<startpage>11
1. Introduction  1
 1.1. Lithium-ion batteries  1
 1.2. Sodium-ion batteries  3
 1.3. Organic electrode materials  5
 1.4. Organic anode materials for sodium-ion batteries  8
2. Experimental  10
 2.1. Synthesis method  10
 2.2. Characterization  11
 2.3. Electrochemical measurements  11
3. Results & Discussion  12
4. Conclusion  36
5. References  37
</body>

