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Abstract 

 

  Lithium sulfur (Li-S) battery is new generation system. Sulfur is widely known as a high 

theoretical capacity (1672 mAh g
-1

) and high theoretical energy density (2600 Wh kg
-1

). The attractive 

features of sulfur are low cost, abundant resources and nontoxic. Sulfur (S) is utilized as a cathode 

material and Li metal is an anode in Li-S cells. Since Li metal has high theoretical capacity of about 

3860 mAh g
-1

 and the most electropositive (-3.04V versus standard hydrogen electrode), a high 

energy density can be achieved. During the discharge process, elemental sulfur (S8) electrochemically 

reduces to soluble long-chain polysulfides and the resulting polysulfides can be dissolved into the 

electrolyte. Dissolved long-chain lithium polysulfide can diffuse to the Li anode and short-chain 

intermediate species (insoluble Li2S2 and Li2S) may deposit on the anode, leading to the formation of 

unstable and non-uniform solid electrolyte interphase (SEI) layer. It can cause considerable capacity 

fading and safety concern related to the dendritic Li generated by non-uniform current distribution of 

the Li anode. These are important issues about thermal stability in all battery systems. In this study, 

we aim to understand thermal properties of sulfur cathodes and improve electrochemical performance 

of Li-S cells. 

  In chapter II, we investigate exothermic peaks for sulfur cathode according to different depth of 

discharge and fully charge step compared to delithiated lithium metal oxide cathode in a Li-ion 

battery by using the DSC technique. The exothermic peak of lithiated and delithiated sulfur cathode in 

the battery is considerably reduced at around 360 
o
C. Also surface changes of the sulfur cathode were 

clearly demonstrated by ex-situ XPS technique during the different depth of discharge and fully 

charge processes. The thermal reaction between lithium metal and sulfur generated catastrophic 

exothermic heat in the presence of the ether-based electrolyte, but, the mixture of Li metal and lithium 

sulfide (Li2S) showed greatly reduced exothermic peak. 

  In chapter III, we demonstrate the positive impact of the protective film on electrochemical 

properties of lithium metal anode in Li-S cells. Li metal, which is very reactive anode material, 

readily undergoes the reactions with polysulfides dissolved from the sulfur cathode. It is expected that 

the introduction of a protection layer based on the crosslinked gel polymer (semi-IPN structure) 

prevents unwanted reactions with polysulfide. Li-S cells without the protection layer show significant 

overcharge behavior during 10cycles, while the cell with protection layer effectually mitigates the 

overcharging.  
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CHAPTER I  

 

1. Introduction  

 

1.1 New generation battery system : Li-S battery 

 

According to meet the stringent requirements of emerging market, the rapid demanding of power 

sources for portable devices and electric vehicles calls for the advanced batteries with high specific 

energy density likewise long life and cost effective. That’s why rechargeable lithium ion batteries 

already being commercialized are being developed because of their specific energies in the range 100-

150 Wh kg
-1

 as shown in Table 1 and Fig. 1.
1,2

 Lithium sulfur batteries were introduced in the 

1960s.
3,4

 Lithium-sulfur redox behavior, one of the most promising candidates, has high theoretical 

capacity of elemental sulfur as cathode electrode and lithium metal as an anode material, which 

corresponds to 1672 and 3860 mAh g
-1

 respectively and also has high theoretical energy density (2600 

Wh kg
-1

).
1,2

 It is about 3~5 times higher than any commercialize lithium ion batteries, which is widely 

used in our society.
5
 The average operation voltage is 2.15V that is suitable for low voltage electronic 

devices.
6
 In addition, lithium sulfur batteries have many attractive features such as natural abundance, 

low cost and non-toxic. Also this system is allowed to operate at low-temperature up to -60 °C.7,8,9 

General LIB (lithium ion battery) operates by oxidation of Li ion from metal oxide cathode (LCO, 

NCM, LMO2, etc.) to anode (graphene structure) on charge step through liquid electrolyte. Moved 

lithium ions are inserted between layers of the graphite. In discharge process, inserted lithium ions are 

moved back to the cathode as shown in Fig. 2.
2
 This whole reaction can be called intercalation and de-

intercalation cycle.
10

 Contrary, lithium sulfur cells operate by reduction of Li ion from anode (purity 

Li metal foil) to cathode (elemental cyclo-S8, starting material) on discharge step. It usually occurs 

two plateaus in discharge voltage profile. At the first plateau (∼2.3 V vs. Li
+
/Li), sulfur is reduced 

from S8 to S4
2−

, during which various electrolyte-soluble long polysulfides (Li2Sn, n = 4-8) form (Eq. 

1). The second plateau (∼1.95 V vs. Li
+
/Li) corresponds to the transformation from Li2S4 to insoluble 

Li2S2 and finally Li2S (Fig. 3(a) and Eq. 2).
8
 The reaction is as follow :

11
 

 

Cathode reduction reactions  :     S8 → Li2S8 → Li2S6 → Li2S4 → Li2S2 → Li2S      (1) 

                               (solid)      (solid + liquid)        (solid) 

                                 



２ 

 

Overall electrochemical reaction  :     16Li + S8 → 8Li2S↓ (insoluble species)       (2) 

    In charge process, the soluble short-chain lithium polysulfides will diffuse back to the cathode 

partially and then be reoxidized to long-chain lithium polysulfides. This so-called internal shuttle 

mechanism as shown in Fig. 3(b).
12,13,14,15

  

 

1.2 Mechanism of lithium sulfur battery. 

 

    It is very difficult to define the exact charge-discharge mechanism of lithium sulfur system and 

still controversial. Some researchers discuss many complex intermediate-lithium polysulfides species 

such as S8
2-

, S6
2-

, S4
2-

, S3
2-

, S3
∙-, S2

2-
 respectively.

16,17,18,19
 Recently, Fannie Alloin et al. reported a 

possible sulfur reduction mechanism of three multi-steps. They proved intermediate sulfur species in 

reduction cycle by using UV and HPLC data.
20

 The equations are as follow : 

 

EQUATIONS 

∙ 1
st
 step (~2.4V vs. Li

+
/Li) 

Electrochemical reaction:                  S8 + 2e
-
 → S8

2-
 (slow) 

Concurrent disproportionation:              S8
2-

 → S6
2-

 +  /4S8 (fast) 

Overall electrochemical reaction:          S8 + 2e
-
 → S6

2-
 + 1/4S8 

                                      (S6
2-

 → 2S3
∙-) 

                                      (2S6
2-

 → S5
2-

 + S7
2-

) 

∙ 2
nd

 step (~2.1V vs. Li
+
/Li) 

Electrochemical reaction:                  2S6
2-

 + 2e
-
 → 3S4

2-
 (fast) 

Concurrent disproportionation:              2S3
∙- → S6

2-
 (slow) 

Overall electrochemical reaction:          4S3
∙- + 2e

-
 → 3S4

2-
 

                                       (2S4
2-

 ↔ S3
2-

 + S6
2-

) 

 

∙ 3
rd

 step (~2V vs. Li
+
/Li) 

Electrochemical reactions:                  3S4
2-

 + 2e
-
 → 4S3

2-
 

                                       2S3
2-

 + 2e
-
 →3S2

2-
 

                                       S2
2-

 + 2e
-
 → 2S

2-
 



３ 

 

Or                                    S4
2-

 + 2e
-
 → 2S2

2-
 

                                      (S2
2-

 + S4
2-

 ↔ 2S3
2-

) 

                                      S2
2-

 + 2e
-
 → 2S

2-
 

Overall electrochemical reaction: S4
2-

 + 6e
-
 → 4S

2-
 

 

S3•- radical is produced due to disproportionation reaction. All intermediate species are continuously 

formed. 
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Table 1.  

Characteristics of several types of rechargeable lithium batteries.
1
 

Li battery couple     Theoretical       Practical        Theoretical       Practical 

                     specific energy     specific energy    specific capacity   specific capacity 

  (Wh/kg)      (Wh/kg total cell)   (mAh/g          (mAh/g total cell) 

                                 active material)  

Li/LixMn2O4       428              120             285 (x=2)             100-120 

LiC6/LixCoO2      570              180             273 (x=1)             136 

Li/LixV6O13        890              150             412 (x=8)             309 

Li/LixTiS2         480              125             225 (x=1)             58 

Li/S             2600               -               1672                  > 200
a 

a 
Based on positive electrode only, with 50% sulfur. Capacity data is for cycle regimen yielding the 

longest cycle. 
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Figure 1. Various new generation battery system required for future.
2
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Figure 2. A schematic of typical charge and discharge work of lithium ion batteries.
2
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Figure 3. A schematic illustration of (a) various intermediate species in voltage profile (top),
8
 and (b) 

multi-step electrochemical process for lithium/sulfur batteries (bottom).
Sion power
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2. Improvements of sulfur battery system 

 

2.1. Sulfur cathode 

 

    In spite of many attractive features of lithium sulfur batteries, there are still many problems to be 

overcome for practical applications. Elemental sulfur (S8) cannot be used alone as cathode material. 

The electrical conductivity of sulfur is too low as 5 x 10
-30

 S/cm at 25°C.
21

 Such a low conductivity 

causes poor electrochemical contact of the sulfur and leads to low utilization of active materials in the 

cathode.
6
 The sulfur, including porous carbon and conducting agent is significantly improved 

electrical conductivity of sulfur.
5,12,22

 A wide variety of conducting agents can transport electrons 

between current collector and active materials. S8 and soluble long chain lithium polysulfides (Li2Sn, n 

= 4−8) can dissolve in ether-based electrolyte easily. Dissolved intermediate-lithium polysulfieds can 

diffuse to the lithium anode and form insoluble Li2S2 or Li2S. And then this can deposit on the anode 

and elsewhere.
8,23,24

 This acts as an insulator, part of insulating reaction products cover the sulfur 

particles and prevent further electrochemical reaction.
25

 In order to improve the disadvantages of 

cathode property, many efforts have been made to improve the performance of sulfur by using various 

conducting substrates and new carbon/sulfur composite structure to prevent dissolution of soluble 

polysulfides in electrolyte. 

 

2.2. Lithium metal anode 

 

     Lithium as an anode electrode is very reactive material. During charge and discharge cycling, 

dendrites on the lithium surface are constantly created and forms unstable SEI layer as shown in Figs.  

4(a) and 4(b). It gives rise to thermal runaway and leads to an explosion hazard during operation, 

resulted in poor cycle performance and low active material utilization due to the insoluble Li2S2 or 

Li2S. The introduction of unique additive like a LiNO3 and protection layer can effectively protect on 

the lithium surface.
6,26,27,28,29,30

 These can control morphology of SEI layer, suppressing dendrite 

formation and possible controlling decomposition products. Also passivation layer is role of blocking 

the reaction of lithium metal with polysulfides (Li2Sn). 
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Figure 4. The SEM images of (a) fresh Li metal surface before cycle (on the left) and of (b) dendritic 

lithium layer on Li surface after cycles (on right side).   
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3. Research objectives 

  

    This dissertation is divided into two kinds of subjects. In chapter II, it can be explained about 

thermal stability of sulfur cathode with 1.3M LiN(SO2CF3)2 in tetra(ethylene glycol) dimethyl ether 

(TEGDME) according to different of depth as well as fully discharge and fully charge process during 

first cycle by using differential scanning calorimetry (DSC). In addition, it is indicated a detailed 

investigated of the electrochemical reaction products on the sulfur cathode by means of ex-situ X-ray 

photoelectron spectroscopy (XPS). Through this experiment, it can be compared the thermal reactions 

of a lithiated and delithiated sulfur and oxide based cathode material with 1.3M LiPF6 in carbonated 

based co-exist electrolytes. 

    In chapter III, here is the most important subject that protection and enhance the lithium surface. 

It can be explained about stability of lithium interfacial between lithium metal and liquide electrolytes 

including soluble long chain lithium polysulfides. Though galvanostatic cycling performance for Li-

symmetric cell, it shown that FEC-based electrolyte in crosslinked gel polymer (semi-IPN structure) 

is stable on the surface of lithium anode. By introducing the crosslinked gel polymer on lithium 

surface, it can be reduced the reaction between lithium and lithium polysulfides, which is diffused 

from cathode electrode. Therefore, severe capacity fading and overcharge process can be improved 

during long cycling. One more important study, various types of crosslinkers have a unique cycling 

behavior, depending on density of cross-linking. This part also used 1.3M LiN(SO2CF3)2 in 

tetra(ethylene glycol) dimethyl ether (TEGDME) as bulk electrolyte. 
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CHAPTER II 

 

Thermal reactions of lithiated and delithiated sulfur electrodes in lithium 

sulfur batteries 

 

1. Introduction 

 

1.1. Thermal stability of lithiated and delithiated sulfur cathode 

 

    Elemental sulfur has been extensively investigated as a promising candidate for cathode 

materials, largely on the basis of its high theoretical specific capacity of 1672 mA h g
-1

, abundance, 

low cost, and environmentally benign characteristics.
24,31,32,33

 However, achieving long-term cycle life 

of lithium-sulfur (Li-S) batteries is formidable because of the electrical insulating nature of elemental 

sulfur and the formation of long chain polysulfide intermediates (Li2Sn, n = 4~8), which are soluble in 

the electrolyte.
15,23

 Interestingly, non-lithiated sulfur cathode materials provide improved safety 

because they cannot be overcharged, unlike lithium metal oxides. LiCoO2, which has been the main 

Li-ion battery cathode material, suffers from safety issues. LiCoO2 charged up to 4.5V vs. Li/Li
+
, 

showed an extremely sharp exothermic peak at around 212
o
C and large exothermic heat of 2785 J g

-

1
.
34

 Thermal runaway is caused by thermal reactions between the electrolyte and lithiated anodes or 

between the electrolyte and delithiated cathode in the battery. To the best of our knowledge, there 

have been no studies on the thermal reactions between various polysulfide intermediates formed 

during cycling of Li-S batteries and a liquid electrolyte. During the lithiation process, sulfur is 

electrochemically reduced to Li2Sn (n = 4–8) at the upper potential plateau region (~2.3 V vs. Li/Li
+
); 

this Li2S4 is further reduced to insoluble Li2S2 and finally Li2S at the lower plateau region (~2.1 V vs. 

Li/Li
+
).

35,36
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1.2. Research objectives 

 

    In this study, we attempt to broaden the understanding of the thermal reactions of long- and 

short-chain polysulfide intermediates formed by electrochemical reduction of the sulfur cathode in Li-

S batteries. The thermal reactions of a lithiated and delithiated sulfur electrode with 1.3M 

LiN(SO2CF3)2 in tetra(ethylene glycol) dimethyl ether (TEGDME) are investigated by differential 

scanning calorimetry (DSC). In addition, we have conducted a detailed investigation of the 

electrochemical reaction products on the sulfur cathode by means of ex-situ X-ray photoelectron 

spectroscopy (XPS).  
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2. Experimental 

 

2.1. Lithum sulfur cell preparation and assembling 

 

    For the electrochemical tests, a mixture of 70 wt% elemental sulfur (100 mesh, Aldrich) and 20 

wt% super P (as a carbon additive for conductivity enhancement, Timcal Inc.) was ball-milled, and 

then a 10 wt% poly(vinylidene fluoride) (PVDF) (Mw = 534,000, Aldrich) binder in anhydrous N-

methyl-2-pyrrolidinone (NMP, Aldrich) was added to the mixture. After mixing the cathode slurry by 

using thinky mixer during 10min, it was cast on a piece of aluminum foil (20 m) and then dried in a 

convection oven at 90 
o
C for 1 h. The thickness of all cathode films was about 28 m and the sulfur 

loading was 0.7 mg cm
-2

. As the count electrode, fresh Li metal foil (700 m) used on the copper foil 

current correcter. Cell assembly was performed in glove box with 1.3M lithium bis(trifluoromethane 

sulfonyl)imide (LiTFSI) in tetra(ethylene glycol) dimethyl ether (TEGDME) (received from 

Soulbrain Co. Ltd.).  

 

2.2. Electrochemical cycling test 

     

    Galvanostatic discharge and charge cycling (WonATech WBCS 3000 battery measurement 

system) was performed in a potential window from 1.5 to 2.8 V versus Li/Li
+
 with a two-electrode 

2032 coin-type cell. The sulfur cathode electrode functioned as the working electrode and the Li metal 

foil as the counter electrode. The first lithium insertion and extraction capacities were measured at a 

current density of 83.6 mA g
-1 

(C/20 rate) at 30 °C. 

 

2.3. Preparation of samples for DSC measurement 

 

   To measure the thermal properties of cycled sulfur cathodes with electrolytes, coin full-cells at 

various discharged and charged states were carefully opened in a dry room. The retrieved electrodes 

were transferred into a hermetic stainless steel pan (Perkin Elmer) without a rinsing process. Thermal 

analyses of lithiated and delithiated sulfur cathodes and electrolytes were conducted by using a 

differential scanning calorimetry technique (DSC, Mettler Toledo). Each sample was scanned at a 

heating rate of 5 
o
C min

-1
 within an appropriated temperature range under a nitrogen atmosphere. The 

amount of entrapped electrolyte was 50 wt% based on the sulfur and Li2S powder. 
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2.4. Ex-situ X-ray photoelectron spectroscopy 

 

    The cells were carefully opened in a glove box to retrieve their electrodes. The electrodes were 

then rinsed in 1,3-dioxolane to remove the residual LiTFSI-based electrolyte, and the resulting 

materials were dried. Ex-situ X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha 

system) measurements for dried electrodes were performed with Al K (h=1486.6 eV) radiation 

under an ultrahigh vacuum. XPS spectra were taken using a 0.10 eV step and 50 eV pass energy. 

Samples were prepared in a glove box and sealed with an aluminum pouch film under a vacuum 

before use. The samples were then rapidly transferred into the chamber of the XPS instrument to 

minimize any possible contamination. All XPS spectra were energy calibrated by the hydrocarbon 

peak at a binding energy of 284.8 eV. 

 

2.5. FE-SEM  

 

    The surface morphology of the pristine or cycled sulfur cathodes along discharge and charge 

depth and Li metal anodes was observed by means of a field emission scanning electron microscope 

(FE-SEM; JEOL JSM-6700F). During the acquisition of the SEM image, an energy dispersive 

spectrometer (EDS) was also used to determine the kind of chemical components in the region under 

investigation. Sulfur cathodes and Li metal anodes retrieved from cells were put on a SEM holder in a 

glove box and the prepared samples were sealed with an aluminum pouch film under a vacuum. The 

samples were transferred from an aluminum pouch bag into a vacuum chamber for the SEM/EDX 

observation with exposure to atmosphere for 3 sec. 
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3. Results and discussion 

 

3.1. Morphology of sulfur cathodes and Li metal anode surface along different depth of 

discharge and charge 

 

    Fig. 5(a) shows the voltage profile of the first discharge and charge of a Li-S cell. 

Electrochemical reduction of cyclooctasulfur (cyclo-S8) in a Li-S cell is a multistep phase 

transformation process that forms various intermediate species (Li2Sn, n=1~8), as depicted in Fig. 5(b). 

When the cell was discharged to point A, there was a significant color change in the electrolyte 

solution, as presented in photo A of Fig. 6. The color change indicates that the cyclooctasulfur 

molecule, S8, is electrochemically transformed to Li2Sn (n=8). The surface morphology of the sulfur 

cathode discharged to point A was analogous with the noncycled cathode, showing a distribution of 

carbon black that is responsible for the electronic conduction. This is because the formed soluble 

polysulfide species were removed by the rinsing process for SEM observation. The SEM image of the 

Li anode surface reveals that non-uniform micropores were produced by Li stripping. At point B, the 

color of the electrolyte changed from dark orange to orange. This indicates the formation of different 

products by phase transformation. Li2S8 formed at the first discharging plateau is reduced to Li2S4 

during the further discharge process. Indeed, the surface of the sulfur cathode discharged to point B 

was covered with partly insoluble polysulfide species, as shown in the SEM image of Fig. 6. The 

surface morphology of the Li anode at point B was similar with that at point A. After the cell was 

fully discharged to 1.5V, the color of the electrolyte became light green-yellow rather than colorless.
36

 

This indicates that a Li2S2 or Li2S compound with an insulating nature may block electron transfer to 

the interior of the sulfur cathode material and prevent complete reduction of short-chain polysulfides 

to Li2S2 or Li2S. Therefore, soluble lithium polysulfide intermediates, which are not transformed to 

Li2S2 or Li2S, exist in the cathode at a fully discharge state. As clearly seen in the SEM image of Fig. 

6 (point C), the sulfur cathode was mostly covered with a thick velvety layer composed of an 

insoluble phase (Li2S2 or Li2S), unlike the sulfur cathode at point B. SEM images of Fig. 6 reveal that 

the fully charged sulfur cathode did not return to its original surface morphology and had a velvety 

insoluble layer (Li2S2 or Li2S), which is apparently formed at a fully discharged state. This indicates 

that the Li2S2 or Li2S solid phase precipitated on the cathode during discharging hinders the complete 

oxidation of polysulfide back to elemental sulfur and partly insoluble short-chain polysulfide coexists 

with elemental sulfur in the sulfur cathode at a fully charged state. At point D, the color of the 

electrolyte was more deeply orange compared to the color at point C. This indicates the existence of 

soluble long-chain polysulfide species in the electrolyte solution. 
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Figure 5. (a) First discharge and charge profiles of a Li-S cell between 1.5 and 2.8 V vs. Li/Li
+
 at a 

current density of 83.6 mA g
-1

 (C/20). (b) Schematic drawing for a multistep phase transformation 

process of cyclo-S8 to form various intermediate species (Li2Sn, n=1~8). 
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Figure 6. Photo of electrolyte solutions on the Li anodes at A, B, C, and D points (top). SEM images 

of the non-cycled sulfur cathode and the sulfur cathodes at A, B, C, and D points (middle). SEM 

images of the non-cycled Li anode and the Li anodes at A, B, C, and D points (bottom). All points are 

represented in Fig. 5(a). 
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3.2. Surface analysis of sulfur cathode at different depth of discharge and charge 

 

    To identify the solid products on the sulfur cathode at various discharged and charged states, the 

surface chemistry of the cathodes was investigated prior to conducting a DSC analysis. The C1s XPS 

spectra obtained from the cathodes at points A and B show three types of carbon (Figs. 7(a) and (b)): 

carbon black (284 eV), carbon bonded to hydrogen (CH2-CF2 (binder); 286 eV), and carbon bonded to 

fluorine (-CF2- (binder); 290.8 eV).
37

 The C1s XPS spectra of Fig. 7(c) clearly exhibit that the peak 

intensity assigned to the binder (CH2-CF2) at around 286 eV and 290.5 eV decreased after the cell was 

fully discharged to 1.5V, compared to Figs. 7(a) and (b). This is likely because solid products such as 

short-chain polysulfide species formed during the discharge process cover the cathode surface. In 

addition, a new peak, which can be assigned to Li-O-C- formed from reductive decomposition of the 

electrolyte during discharging, appeared at 288.7 eV.
38,39,40

 After the cell was fully charged up to 2.8V 

(Fig. 7(d)), the peak intensity at around 286 eV was much stronger than that of Fig. 7(a). This implies 

that the decomposition of the TEGDME solvent takes place and solid products containing the C-O-C 

group deposit on the cathode surface. After the full charging process, a very weak peak assigned to 

LiF at around 685 eV was observed, as shown in Fig. 7(d). This may be formed by reductive 

decomposition of LiTFSI salt (LiN(SO2CF3)2 + ne
-
 + nLi

+
 → Li3N + LiF + Li2S2O4 + LixC2Fy).

37,41,42
 

This peak was not observed at the fully discharged state presumably due to a thick layer (insoluble 

short-chain polysulfide) covering the cathode surface, as shown at point C of Fig. 1(b). As clearly 

seen in the S2p XPS spectra of Fig. 7, the peaks from 160 eV to 164 eV (Li-S bond) gradually 

increased during the discharging process and then disappeared after the cell was fully charged to 2.8V. 

This indicates that solid products (Li2S2 or Li2S) are formed during the discharge process and they are 

electrochemically oxidized to soluble polysulfide (not detected on the washed cathode surface) and 

sulfur during the charge process. In addition, peaks assigned to S-O3 from oxidation of the polysulfide 

appeared at 167eV and 168.5eV during the first cycle and a peak attributed to –SO2 from LiTFSI salt 

at 170eV was observed. Ex-situ XPS of the sulfur cathodes during the first cycle reveals that the 

electrochemical reduction of sulfur and the electrochemical oxidation of insoluble short-chain 

polysulfide intermediate species reversibly occur, and the polysulfide species can be oxidized by 

reacting with the electrolyte.  
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Figure 7. C1s, F1s, S2p XPS spectra of sulfur cathodes (a) discharged up to 2.3V, (b) discharged up to 

2.02V, (c) fully discharged up to 1.5V, (d) fully charged up to 2.8V. 
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3.3. Thermal stability characteristics of sulfur cathode 

 

 Fig. 8 shows the DSC heating curves for the sulfur cathodes at various discharged and fully 

charged states. In addition, the DSC heating curves for TEGDME/1.3M LiTFSI electrolyte and for 

sulfur and Li2S in the presence of an electrolyte are displayed at the bottom of Fig. 8. The cycled 

sulfur cathodes with the electrolyte were transferred into a hermetic DSC cell without a rinsing 

process. The very weak endothermic peak at 110 
o
C of Fig. 8(a) (A point) is ascribed to the melting of 

residual sulfur, which does not participate in electrochemical reduction to form soluble long-chain 

polysulfide species, because the elemental sulfur powder shows melting transition peaks at 110
o
C and 

118
o
C. The sulfur cathodes discharged to points A and B of Fig. 1 exhibit a large exothermic peak at 

around 360 
o
C in the presence of an electrolyte. Note that sulfur and Li2S with the electrolyte solution 

do not show an exothermic peak at around 360
o
C, as presented in Fig. 8. Therefore, the exothermic 

peak with a peak temperature of about 360
o
C is attributed to the thermal decomposition of long-chain 

polysulfide in the presence of the electrolyte, as depicted in Fig. 8(e). In the case of the fully 

discharged sulfur cathode with the electrolyte, the exothermic heat generation began at 170
o
C and 

very broad exothermic peaks were observed from 170
o
C to 300

o
C, as seen in Fig. 8(c). These 

exothermic peaks are analogous with peaks from thermal reactions of Li2S with the electrolyte, as 

shown in the bottom of Fig. 8. Since Li2S powder without an electrolyte does not produce any 

exothermic peak until 400 
o
C (Fig. 10(a)), broad exothermic peaks from 170 

o
C to 300 

o
C are 

attributed to thermal decomposition reactions between Li2S and the electrolyte. Interestingly, the 

exothermic peak at about 360
o
C attributed to thermal decomposition between the electrolyte and long-

chain polysulfide (Li2Sn, n=4-8)-intermediate reaction species formed during the discharge process 

mostly disappeared in Fig. 8(c). These results suggest that when the cell is discharged to 1.5V, most 

of the long-chain polysulfide species are reduced to Li2S2 or Li2S. Exothermic heat above 380 
o
C may 

originate from thermal decomposition of the electrolyte solution. Importantly, cycled sulfur cathodes 

exhibit no significant exothermic peaks from 200 
o
C to 300 

o
C except the broad exothermic peaks by 

the thermal reactions between Li2S2/Li2S and the electrolyte, as shown in Figs. 8(c) and (e). It should 

be noted that delithiated cathodes for Li-ion batteries deliver large exothermic heat at this temperature 

range.
34,43

 To compare the thermal stability of sulfur cathodes with that of lithium metal oxide-based 

cathodes, thermal properties of over-lithiated layered oxides (OLO), a cathode material that has 

recently received attention, were investigated in the presence of EC/EMC/DMC (3/4/3) with 1.3M 

LiPF6. Delithiated OLO charged up to 4.6V displays a very sharp and pronounced exothermic peak at 

242
o
C in Fig. 8. The DSC results reveal that lithiated and delithiated sulfur cathodes with the 

electrolyte are thermally stable compared to lithium metal oxide-based cathodes. The fully charged 

sulfur cathode showed no broad exothermic peaks from 170 
o
C to 300 

o
C, which were observed at a 
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fully charged state, as shown in Fig. 8(d). This implies that the Li2S2/Li2S formed at point C mostly 

oxidized to elemental sulfur and polysulfide. Additionally, a small exothermic peak, which may be 

ascribed to the thermal reactions between long-chain polysulfide and the electrolyte (schematic 

representation for point D of Fig. 8(e)), appeared at around 360 
o
C. This peak is ascribed to residual 

long-chain polysulfide species (which did not undergo complete oxidation to elemental sulfur during 

the full charge process) that co-exist with elemental sulfur and thermally decompose.  

 To understand thermal runaway of Li-S batteries under harsh conditions, thermal properties of 

Li2S/Li and S/Li mixtures in the presence of an electrolyte were investigated, as shown in Figs. 9(a) 

and (d). The comparison of Figs. 9(a) and (b) clearly shows that the intensity of exothermic peaks for 

the Li2S/Li mixture with the electrolyte is greatly reduced above 330 
o
C. This is likely because Li2S 

hinders the thermal reactions between the Li metal and the electrolyte at around 370
o
C. Importantly, 

the mixture of S and Li metal with the electrolyte presented a pronounced exothermic peak at 176
o
C 

after the sulfur melted, as seen in Figs. 9(d) and (g). This sharp exothermic peak is thought to be 

generated from thermal reactions between cyclooctasulfur and Li metal to form various polysulfide 

species (Li2Sn, n=1-8). Although the mixture of S and Li metal contains no electrolyte, it showed a 

large exothermic peak, similar to the S/Li/electrolyte mixture, as displayed in Figs. 9(d) and 10(d). 

This indicates that the noncycled Li-S cell can produce catastrophic exothermic heat at elevated 

temperatures. However, the Li2S/Li mixture as the fully discharged cell shows highly reduced 

exothermic peaks and an endothermic peak attributed to Li melting at 183 
o
C in the presence of an 

electrolyte (Fig. 9(a)). This means that fully discharged Li-S cells are more thermally stable than 

noncycled cells. The Li2S/Li mixture without an electrolyte generated exothermic heat at elevated 

temperatures of above 350 
o
C (Fig. 10(c)). It is surmised that this exothermic peak is produced by 

thermal reactions of Li2S and Li metal, because Li2S shows no exothermic peaks at elevated 

temperatures (Fig. 10(a)). 
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Figure 8. DSC heating curves of (a) sulfur cathode discharged to 2.3V, (b) sulfur cathode discharged 

to 2.02V, (c) sulfur cathode fully discharged to 1.5V, (d) sulfur cathode fully charged to 2.8V. All 

cathode samples for DSC measurements contain the electrolyte solution (1.3M LiTFSI in TEGDME). 

(e) Schematic for the thermal reactions of lithiated and delithiated sulfur cathodes in presence of 

TEGDME/1.3M LiTFSI. OLO represents over-lithiated layered oxides (LixMnyCozNiaO2 cathode). 
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Figure 9. DSC heating curves of (a) Li2S + Li metal with an electrolyte, (b) Li metal with an 

electrolyte, (c) Li2S with an electrolyte, (d) S + Li metal with an electrolyte, (e) S with an electrolyte, 

(f) 1.3M LiTFSI in TEGDME electrolyte. (g) Comparison between S + Li metal with an electrolyte 

showing the exothermic peak at 176
o
C and Li2S + Li metal with an electrolyte. 
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Figure 10. DSC heating curves of (a) Li2S powder, (b) Sulfur powder, (c) Li2S + Li metal, (d) S + Li 

metal in absence of an electrolyte. 
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4. Conclusions 

 

    The chemical structure of sulfur cathodes were clearly demonstrated by XPS analyses during the 

first discharge and charge processes. By using the DSC technique, we have shown that exothermic 

peaks for lithiated and delithiated sulfur cathodes in a Li-S battery are drastically reduced compared to 

a delithiated lithium metal oxide cathode in a Li-ion battery. The thermal reactions between Li metal 

and sulfur powder to form various lithium polysulfides generate catastrophic exothermic heat in the 

presence of the electrolyte, while the Li2S/Li/electrolyte mixture showed greatly reduced exothermic 

heat by thermal reactions. 
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CHAPTER III 

 

The introduction of crosslinked gel polymer structure on a lithium anode for improving 

electrochemical performance of lithium sulfur batteries 

 

1. Introduction 

 

1.1. Li metal as an anode 

 

    Lithium has high energy density due to the lightest metal (equivalent weight = 6.94 g mol
-1

, 

specific gravity = 0.53 g cm
-3

) and also has high specific capacity (3860 mAh g
-1

) as shown in Fig. 

11.
44,45

 So this metal is very proper anode electrode lithium sulfur battery system. But, lithium as an 

anode electrode is very reactive material, which causes electrochemical reaction with polysulfides 

dissolved electrolyte, leading to form an unstable and non-uniform solid electrolyte interphase (SEI) 

layer. This response is more sustainable, function inside the cell is deteriorated such as fading specific 

capacity and cell explosion.
23,26

 Fig. 12 shows how to form of dendrite on the lithium.  

 

1.2. Problems of lithium metal electrode 

 

∙ Generation of dead lithium 

During first charge, the deposited lithium is surrounded with the decomposed products and thus 

cannot participate in the discharge reaction. 

∙ Consumption of active lithium 

During 1
st
 charge and discharge, both the deposited lithium and a part of lithium electrode is oxidized 

and thus the cavity in the surface of electrode is generated. 

∙ Formation of dendritic lithium 

Non-uniformity of the current distribution in the surface of lithium electrode makes the morphology 

of deposited lithium dendritic. 

∙ Growth of SEI layer 

The SEI layer continuously grows by the passivation of organic solvent and salt during repeated 

charge process. 
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    Through these reactions, it can lead to various problems in lithium sulfur batteries. In lithium 

anode side: the non-uniform reaction of lithium surface, the risk of safety and increase of cell 

resistance of the battery due to the formation of a thick film of lithium dendrite. In sulfur cathode side: 

because of further reaction of between lithium and dissolved polysulfide, it is caused shuttle 

phenomenon (overcharge process) and alter structure of the lithium surface film. 

    The introduction of crosslinked gel polymer layer on lithium surface is expected to prevent 

further side reaction. Additionally, formation of dendritic layer can be suppressed during many 

cycling. This polymer type is crosslinked semi-IPN structure (semi-interpenerating polymer network). 

6,23,26,27,46
 Many researchers reported the structure of various kind of crosslinkers. They have 

ethylenically unsaturated groups such as allyl, acrylate or vinyl groups.
47,48

 Through thermal radiation 

by UV-curing, crosslinker is experienced polymerization (the part of chain is made up of a saturated 

hydrocarbon chain). It gives rise to improve the strength of the protective film. Also functional groups 

(oxygen bonds) in crosslinker are greater compatibility with electrolytes and then can reduced 

resistance of the cell. In addition, mobility of Li ion can be improved to pass through the protection 

layer.
49

 Unlike typical polymer film, gel-polymer has sufficient liquid electrolyte. The space of 

crosslinked gel polymer can trap electrolyte, which is no side reaction with interfacial 

lithium/polymer film and it can also help mobility of Li cations during cycling. Generally, ionic 

conductivity of crosslinked gel polymer is around 10
-3

 S cm
-1

 at 20 
o
C. In addition, the window of 

potential stability is good up to 4.5V vs. Li/Li
+
.
48

 Therefore, it is possible to introduce to lithium 

anode surface as protective layer for improved lithium sulfur batteries properties. In this study, we 

demonstrated the effect of crosslinked gel polymer protection layer on the lithium anode and here the 

expected results as follows : 

 

1.3. The role of the protection layer on lithium anode 

 

∙ Morphology control of SEI layer. 

∙ Suppressing dendrite formation 

∙ Controlling decomposition products 

∙ Blocking the reation of lithium metal with polysulfides (Li2Sn)  

∙ Improved long cycling performance and coulombic efficiency. 
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        Figure 11. The graph of potential vs capacity of various cathode and anode materials.
45

 

. 

 

 

 

     Figure 12. The non-uniform current distribution and high reactivity for lithium metal anode. 
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1.4. Researcher objectives 

 

    In this study, we introduce the protection layer of type for crosslinked gel polymer for lithium 

anode to prevent further reaction between lithium metal and polysulfide. Though Li symmetric 

cycling performance, FEC-based functional electrolyte in protection layer is good stability on 

interfacial lithium. After UV-curing polymerization, crosslinked gel polymer layer can effectively 

improve long cycling performance and coulombic efficiency during 100cycles at 0.1C rate. 

Depending on the cycle, the morphology change of lithium anode can be found. Protection layer can 

control of morphology of SEI and suppress dendrite formation during cycling. 
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2. Experimental 

 

2.1. Preparation of semi-IPN gel-polymer matrix 

     

    Components are purified THF solvent (Aldrich), PVDF-co-HFP (Mw=400,000, Aldrich) linear 

polymer, photoinitiator (2-Hydroxy-2-methylpropiophenone, Aldrich), crosslinkers (1,4-butanediol 

diacrylate, trimethylolpropane ethoxylate triacrylate (Mw = 428), Aldrich), functional liquid electrolyte 

(1.3M LiTFSI / FEC, received from Soulbrain Co. Ltd.) as shown in Table 2. The mixture of linear 

polymer and THF solvent was stirred for 4 h at 60 °C. PVDF-co-HFP can act the role of thin film 

matrix and provide flexibility of protective film. And then, functional liquid electrolyte, crosslinkers 

and photoinitiator were added in mixed solution for 1 h at 25 °C. The well blended solution was fully 

coated on surface of lithium anode and dried for 10 min due to remove THF solvent. Go through this 

process, the matrix with liquid electrolyte trapped between spaces of polymer chain remained on 

lithium surface. After UV-curing in 2min, polymerization process, the type of semi-interpenetrating 

network (IPN) polymer structure was formed. This structure based on linear polymer and crosslinked 

polymer. Photoinitiator was added 0.6 wt% based on curable monomer. All process was procedure in 

glove box under vacuum condition. There shown the composition of protection layer as list of Table 3. 

 

2.2. Lithum sulfur cell preparation and assembling 

 

    For the electrochemical tests, a mixture of 70 wt% elemental sulfur (100 mesh, Aldrich) and 20 

wt% super P (as a carbon additive for conductivity enhancement, Timcal Inc.) was ball-milled, and 

then a 10 wt% poly(vinylidene fluoride) (PVDF) (Mw = 534,000, Aldrich) binder in anhydrous N-

methyl-2-pyrrolidinone (NMP, Aldrich) was added to the mixture. After mixing the cathode slurry by 

using thinky mixer during 10min, it was cast on a piece of aluminum foil (20 m) and then dried in a 

convection oven at 90 
o
C for 1 h. The thickness of all cathode films was about 29 m and the sulfur 

loading was 0.7 mg cm
-2

. As the count electrode, fresh Li metal foil (700 m) used on the copper foil 

current correcter. Cell assembly was performed in glove box with 1.3M lithium bis(trifluoromethane 

sulfonyl)imide (LiTFSI) in tetra(ethylene glycol) dimethyl ether (TEGDME) (received from 

Soulbrain Co. Ltd.). Fig. 13 shows the schematic of internal lithium sulfur system. 

 

2.3. Electrochemical cycling test 

 

    Galvanostatic discharge and charge cycling (WonATech WBCS 3000 battery measurement 

system) was performed in a potential window from 1.5 to 2.8 V vs. Li/Li
+
 with a two-electrode 2032 



３１ 

 

coin-type cell. The sulfur cathode electrode functioned as the working electrode and the Li metal foil 

as the counter electrode. The first lithium insertion and extraction capacities were measured at a 

current density of 83.6 mA g
-1 

(C/20 rate) and long-life capacity were measured at a current density of 

167.2 mA g
-1

 (C/10 rate) at 30 °C. In addition, Li/Li symmetric cells were assembled 2016 coin cell. 

Cycling performance was measured at Li utilization 2% of 2.3 mAh and Li utilization 25% of 29 mAh 

(0.3C rate) at 30 °C. 

 

2.4. Electrochemical analysis 

 

2.4.1. FE-SEM 

 

    The surface morphology of Li metal anodes was observed by means of a field emission scanning 

electron microscope (FE-SEM; JEOL JSM-6700F). During the acquisition of the SEM image, an 

energy dispersive spectrometer (EDS) mapping image was also used to determine the distribution of 

sulfur atom in the region under investigation. Li metal anodes retrieved from cells were put on a SEM 

holder in a glove box and the prepared samples were sealed with an aluminum pouch film under a 

vacuum. The samples were transferred from an aluminum pouch bag into a vacuum chamber for the 

SEM/EDS observation with exposure to atmosphere for 3 sec. 

 

2.4.2. EIS and ATR-FTIR 

 

    To determine the resistance according to various amounts of functional electrolyte in protective 

layer, EIS (Electrochemical Impedance spectroscopy, HS Technologies) was used. Also, attenuated 

total reflectance-Fourier transform infrared (ATR-FTIR) spectra was recorded the presence of double 

bonds in crosslinkers at 1637 cm
-1

 and 812cm
-1

. The range of measured vibration frequency was from 

4000 cm
−1

 to 650
−1

 under a nitrogen atmosphere. 

 

2.4.3. Refrigerated Bath Circulator 

 

    Ionic conductivity of crosslinked gel-polymer protection layer contained two types of 

crosslinkers was measured by Refrigerated Bath Circulator (made by DAIHAN Scientific Co., Ltd.) 

under the control of temperature from 0 °C up to 60 °C. Dried polymer electrolyte in a rectangular 

frame for 2 h was prepared and samples were vacuum sealed with an aluminum pouch film in dry 

room. 
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Table 2. Chemical structure of linear polymer, crosslinkers, and photoinitiator for protection 

layer. 

 

 

 

 

 

 

Table 3. Composition of protection layer. 

                         Crosslinking agent 
         a

PVDF-co-HFP
 
          

b 
FEC 300% 

                                                   wt (%) 

Reference                       -                     -                     - 

 

Protection layer 1               16.66                 16.66                  69.68 

c
 (BDDA) 

 

Protection later 2               16.66                 16.66                  69.68 

d
 (TMPETA 428) 

 

a 
PVDF-co-HFP is Poly(vinylidene fluoride-co-hexafluoropropylene). It is linear polymer. 

b 
FEC300% (1.3M LiTFSI/FEC, 300wt% based on curable monomer and linear polymer) is functional 

electrolyte in protection layer. 

c 
BDDA is 1,4 butanediol diacrylate and 

d 
TMPETA 428 (Mw =428) is trimethylolpropane ethoxylate 

triacrylate as curable monomer respectively. 
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Figure 13. Schematic of internal lithium sulfur system of (a) non-protected lithium and (b) protected 

lithium anode.  
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3. Results and discussion. 

 

3.1. Effect of fluoroethylene carbonate (FEC) based electrolyte on interfacial lithium anode 

 

    The positive effect of a fluoroethylene carbonate (FEC) based solvents is widely known to 

stabilize lithium anode surface.
23,50,51

 Fig. 14 presents the voltage profile of Li-Li symmetric cells with 

tetra(ethylene glycol) dimethyl ether (TEGDME) and fluoroethylene carbonate (FEC) based 

electrolytes. When using 100% FEC solvent, lithium stripping/deposition potential revealed good 

stability during cycling. The FEC, functional solvents in protection layer, can build-up of LiF-based 

SEI stabilizing the Li/electrolyte interface during repetitive charge and discharge. FEC is appropriate 

to the role of the functional electrolyte. The content of all FEC was based on weight (%) of curable 

monomer and linear polymer respectively. As clearly seen in Fig. 15(a), Li-S cell with 300% FEC- 

based electrolyte delivered the highest discharge capacity at precycle. This is likely because of low  

SEI resistance after precycle, as presented in Fig. 15(b). In addition, Fig. 15(c) revealed that the best 

long-cycle life was obtained for a Li-S cell with 300% FEC-based electrolyte. This indicates that 300% 

FEC-based electrolyte is more effective to prevent unwanted reaction between lithium surface and 

lithium polysulfide dissolved from the sulfur cathode during cycling. It is thought that the amount of 

150% FEC-based electrolyte is not sufficient to ensure good Li ion mobility in a protective layer and 

to suppress the migration of polysulfide toward a Li anode. Eventually, a Li-S cell with 300% FEC-

based electrolyte led to relatively low capacity and more significant overcharge behavior compared to 

other cells. Li-S cell with 400% FEC-based electrolyte increased the SEI resistance as well as Ct 

(charge transfer). This is probably because excess amount of the electrolyte in a protection layer does 

not maintain the mechanical stability of the protection layer when a Li anode contracts and expands 

during discharge and charge processes. From there results, we could confirm that the 300% FEC-

based electrolyte is appropriate amount to prevent undesirable reaction between polysulfide and a Li 

anode, and form a stable SEI layer on the Li anode. 

 

3.2. ATR-FTIR analysis of crosslinked polymer 

 

    The crosslinked gel polymer based on semi-IPN structure for protection layer on lithium anode is 

formed by UV-curing method. As can be seen in the SEM image as shown in Fig. 16, the crosslinked 

protective layer about 5.5μm on surface of lithium anode can be successfully formed. To verify the 

cross-linking of the protective film, we analyzed by the FT-IR equipment. Figs. 17(a) and (b) shown 

the ATR-FTIR spectra of crosslinkers (BDDA, TMPETA 428), and after UV-curing in 2min as shown 

in Figs. 17(c) and (d). The peak formed at 1637 cm
-1

 and 812cm
-1

 of all double bonds in monomers 
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disappeared by UV-curing.
26
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Figure 14. Galvanostatic cycling of Li symmetric cells with FEC- and TEGDME-based electrolytes. 
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Figure 15. . (a) Voltage profile of precycle at a rate of C/20. (b) EIS spectra of cells with various 

amounts of FEC-based electrolyte in a protection layer. (c) Cycling performance of Li-S cells with 

various amounts of FEC- based electrolyte in protection layer at a rate of C/10 . 
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Figure 16. SEM images of (a) fresh lithium metal surface, (b) crosslinked protective layer and (c) 

image of cross-section about thickness of protective layer. 

 

 

 

 

 

Figure 17. ATR-FTIR spectra for (a) BDDA, (b) TMPETA 428 crosslinkers. Spectra of crosslinked 

protection layer in present of (c) BDDA and (d) TMPETA 428 crosslinkers (after UV-curing). 
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3.3. Electrochemical properties in accordance with the crosslinkers in protection layer 

 

    The characteristic of long-life cycling performance of Li-S cells with and without a protective 

layer at 30 °C is shown in Figs. 18(a) and (b). In the case of Li anode without a protection layer, 

charge capacity was significantly increased by severe overcharging phenomena during 10cycles. On 

the other hand, the Li-S cells with a protection layer effectively inhibited overcharge behavior by the 

unwanted reaction between the Li anode and polysulifdes and thereby showed greatly improved 

coulombic efficiency (> 80%). BDDA and TMPETA 428 used as a crosslinkers for the formation of 

the protection layer delivered similar discharge capacity and coulombic efficiency during 100cycles, 

as shown in Fig. 18. This implies that protection layers formed by these two crosslinkers effectively 

suppress the shuttle phenomena by polysulfide. Fig. 19 shows the SEM images of Li surface after 

cycles. Surface morphology of cycled Li anode was observed after removing a protection layer. Fig. 

19(a) is the SEM image of fresh Li metal. Non-protected Li metal suffered from a severe overcharge 

reaction after precycle. However, protected Li anode was clean compared to non-protected Li anode. 

Only after 10cycles, the surface of non-protected Li anode was non-uniform and rough via significant 

reactions with the bulk electrolyte and polysulfides. On the contrary, it is clearly seen that the 

presence of the protection layer on the Li anode prevents unwanted reactions between a Li metal and 

polysulfides/electrolytes, and thereby makes Li anode surface more clean. Fig. 20 shows the surface 

morphology of protection layers on cycled Li anodes. After 100cycles, the protection layer was 

gradually damaged. However, they physically stayed on the Li anode during cycling, as presented in 

Fig. 20. According to many cycles, color of protection layer surface changed dark, as shown in Fig. 21. 

Fig. 22 presents the electrolyte color on a separator with the cycle number.
36

 It seems that soluble 

lithium polysulfide dissolved from the sulfur cathode deposits on the protection layer without direct 

contact with the Li anode. Fig. 23 shows a photo of Li anode surface color after dismantling the cell. 

The region of removed polymer layer is bright colors, but protection layer is dark. Comparing to 

elemental S mapping results, distribution density of S is much higher. This indicates that protection 

layer effectively prevents the migration of polysulfides toward the Li anode during cycling. 

 

  



４０ 

 

3.4. The characteristic of C-rate according to protection layer 

 

    Fig. 24(a) shows the discharge capacity retention of Li-S cells with two different protection 

layers at various discharge rates at 30°C. The Li-S cell with the protective layer based on TMPETA 

428 crosslinker exhibited relatively good rate capability. As shown in Fig. 18, the cycling 

performance behavior between BDDA and TMPETA 428 is similar at a low rate of C/10. However, 

TMPETA 428 can more swell when contacted with the bulk electrolyte due to presence of functional 

group with good compatibility with polar electrolyte components. Therefore, it is thought that ether 

functional groups of TMPETA 428 crosslinker make the migration of Li ions more easy at high C 

rates.
49

 In addition, ionic conductivity of crosslinked polymer used TMPETA 428 is higher than that 

of BDDA-based protection layer, as shown in Fig. 25. Also, the Li-S cell with the protective layer 

based on TMPETA 428 presented much higher discharge capacity of 180 mAh g
-1

 at a high rate of 3 

C, compared to BDDA-based protection layer. The discharge capacity retention was analogous for 

two kinds of protection layers at low rates. Interestingly, discharge capacity rate and coulombic 

efficiency are increased together, as shown in Fig. 24(b). This indicates that high C rates can mitigate 

the movement of polysulfides dissolved from the sulfur cathode toward Li anode. 
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Figure 18. Cycling performance according to type of crosslinkers and in the presence of protection 

layer in lithium anode. (a) Voltage vs specific capacity profile, (b) charge capacity, (c) discharge 

capacity, (d) coulombic efficiency during 100cycles at a C/10 rate at 30 °C.  
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Figure 19. SEM images of lithium surface morphology. SEM images of (e) ~ (j) are lithium surface 

removed protection layer according to cycles. 

 

 

 

 

Figure 20. SEM images of lithium surface morphology. SEM images of (a) ~ (g) are morphology of 

protection layer on lithium surface according to cycles. 
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Figure 21. Change the color of the protection layer surface according to cycles. (a) precycle, (b) 

5cycles, (c) 10cycles, (d) 30cycles. 

 

 

 

 

 

 

 

 

 

Figure 22. Change the color of the separator surface with the cycle number. (a) precycle, (b) 5cycles, 

(c) 10cycles, (d) 30cycles. 
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Figure 23. Comparison of the elemental S mapping images of (a) exposed lithium surface and of (b) 

protection layer surface after 10cycles. 
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Figure 24. C-rate characteristics according to the kind of crosslinkers. (a) discharge capacity, (b) 

coulombic efficiency. 
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Figure 25. Comparison of the ionic conductivity of the crosslinked gel polymer according to the kind 

of the crosslinkers. 
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4. Conclusions 

 

    Li metal as anode electrode in lithium sulfur battery is very reactive material. During charge and 

discharge, dendritic lithium is formed by decomposition of electrolyte. Also the reaction between 

lithium metal and polysulfides causes overcharge process and capacity fading. We have confirmed the 

effect of protection layer coated lithium surface. Crosslinked gel polymer can prevent further reaction 

with polysulfide as well as creating a stable SEI layer on lithium anode. Gel-polymer can control of 

dendrite formation and morphology of lithium surface. Protection layer can be maintained after 

100cycles, additionally, at a low and high-rate, long-life cycling performance shown good property 

compared to non-protected lithium. 
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