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Abstract

While accelerators often generate impressive speedup at the kernel level, the speedup

often do not scale to the application-level performance improvement due to several

reasons.

In this paper we identify key factors impacting the application-level performance

of CGRA (Coarse-Grained Reconfigurable Architecture) accelerators using stream

programs as the target application.

As a practical remedy, we also propose a low-cost architecture extension focusing on

the nested loops appearing very frequently in stream programs.

We also present detailed application-level performance evaluation for the full StreamIt

benchmark applications, which suggests that CGRAs can realistically accelerate

stream applications by 3.6∼4.0 times on average, compared to software-only execu-

tion on a typical mobile processor.
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CHAPTER I

Introduction

To continue on the exponential performance growth without dissipating too much power, re-

searchers are actively considering even disruptive innovations. Reconfigurable architectures with

word-level granularity, called coarse-grained reconfigurable architectures, are one of them, and

hold a promise as they have both extremely low power consumption and high performance for

certain application domains [2]. With recent developments in compiler technology for CGRAs,

they are a step closer to realizing their potential.

However, previous work on compilation [3, 5, 8, 16, 17] for CGRAs addresses only the prob-

lem of mapping loops to the architecture, and the problem of how to scale kernel speedup to

the application level received little attention. As summarized in Table I.1, most previous works

report only the kernel IPC, without any consideration of application speedup. One exception

is [2], where the kernel portion (before acceleration) is calculated to be about 83% on average,

giving the average application speedup of about 2 times compared to their 4-way VLIW main

processor execution. While application-level performance improvement is likely very important

to prospective users, it is not only largely unknown in the literature but also heavily dependent

on many factors including the number and sizes of kernels and the details of the compilation

method such as how the kernels and the rest of the application communicate.

On some level, this emphasis on kernel speedup in CGRA research is understandable. CGRAs
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Table I.1: Results of previous work on CGRA mapping
Ref. (CGRA size) Target Kernel IPC
[16] (8x8) DSP kernels (idct, fft, etc.) 12 – 28.7
[17] (4x4) 214 loops from H.264, AAC, MP3 9.6
[2] (4x4, 4-way) Software Defined Radio 8.76 – 11.05
[5] (4x4 or 8x8) DSP kernels 11 – 29
[3] (4x4) Kernels from media and embedded 10 – 15
[8] (4x4) Kernels from DSP and multimedia N.A.

are originally proposed as malleable hardware that could replace hard-wired ASIC accelerators.

As such, only a few kernels, typically compute-intensive ones, are mapped to run on the low-

power accelerator. Also, in embedded systems, where CGRAs are primarily used, application

programs are often aggressively tweaked for more performance or lower power, which may jeop-

ardize any realistic and objective application-level performance evaluation of CGRAs. Finally,

almost all applications spend most of their execution time on loops anyway.

The last point is particularly interesting and persuasive, since Amdahl’s law says that

90% of kernel portion and 10 times kernel speedup, for instance, may generate up to 5X

(= 1/(0.1 + 0.9/10)) performance improvement at the application level, an expectation that

is hardly met on larger benchmarks. There are several factors contributing to this gap between

expected vs. achieved performance levels. The Amdahl’s law assumes infinitely parallel work

during parallel sections, which is far from true in many embedded applications. Also the law

only gives an upper bound, ignoring all the control, communication, and other overheads on

implemented architectures. Further, though most application runtime is spent on loops, not

many of the loops may be mappable to CGRAs—to be mappable, a loop must be both recog-

nized by the compiler as a loop and supported by the architectural features. Our preliminary

study reveals that while over 99% of the runtime1 is typically due to any repeating sequences

of instructions, the loops that could be mapped to a CGRA account for far less—less than 50%

on average for MiBench applications.

As a practical way to drastically improve achieved application-level performance, we explore

using explicitly parallel programs, such as stream programs. Stream programs provide natural

representations for important target application domains of CGRAs, such as multimedia and

DSP, and also exhibit ample parallelism explicitly stated in the programs. Yet, they are devoid

of problems plaguing C-based compilation such as global pointers, unbounded arrays, dynamic

memory allocation, and recursive functions. As a result, stream applications have much higher

1In terms of dynamic instruction count.
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portions of exploitable loops (90% on average for StreamIt applications), which provides a strong

basis for expecting higher application-level performance.

In this paper we first show that stream applications, due to their higher kernel portions, can

be realistically accelerated using CGRA by 3.6∼4.0 times on average, over software-only execu-

tion. This is significant, since our evaluation uses entire stream applications from the StreamIt

benchmark suite [19], whose sizes are on a par with those of MiBench applications, and there is

no manual code change necessary to realize the performance. Our evaluation results also shows

that application performance is strongly impacted not only by kernel portion but also by various

overheads due to control, DMA, and configuration fetch.

To increase kernel portion and decrease overhead, we propose mapping entire loop nests directly

to CGRA using loop flattening [6]. While loop flattening itself does not always improve perfor-

mance due to extra operations it introduces, our low-cost architecture extension, which supports

arbitrary-depth nested loops with rectangular iteration space, can effectively eliminate the extra

operations. Our experimental results demonstrate that our optimizations can very effectively

increase performance of kernels (by 56%, on average) and stream applications containing nested

loops (by 35%, on average), compared with mapping inner-most loops only. Over software-only

execution, on average 3.6∼4.0 times speedup at the application level is obtained.

Our results can be interpreted in two ways: (1) as a predictor of application level perfor-

mance of using CGRA after manual code rewrite, (2) demonstration of the efficacy of using

stream programs as a front-end for programming CGRA architectures.

3



CHAPTER II

Related Work

As mentioned earlier, previous work on CGRA mapping [3, 5, 8, 16, 17] has mainly focused

on kernel performance only, and the inner-most loop in particular.

Currently there are only a few options of mapping a nested loop on a CGRA. First, only the

innermost loop can be selected as a kernel executing on the CGRA while outer loops execute on

the main processor. While straightforward, this option incurs repeated overheads due to CGRA

invocation, pipeline filling/draining, and variable initialization. This overhead is magnified if the

trip count of the innermost loop is low while that of an outer loop is high. Second, one may fully

unroll the innermost loop, which then becomes a straight-line code. This loop transformation

can be useful if the innermost loop’s trip count is very low; otherwise, it may not be practical

due to the increased code size. Third, software pipelining can be performed directly along an

outer loop using Single-dimension Software Pipelining (SSP) [18]. SSP generalizes and improves

single-loop software pipelining by allowing to pipeline a loop nest at any loop level. However,

choosing an outer loop means that inner loops must be executed without software pipelining

(such as using branch instructions), which may be difficult or impossible on a CGRA. Lastly, a

CGRA may be architecturally modified to support multiple levels of loops [13], which however

requires not-so-small hardware extension and that the number of loop levels must be fixed a

priori at design time.
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Stream applications have been researched extensively, including efficient realizations on

the Cell processor [14], GPU [10], FPGA [7, 9], and other reconfigurable architectures [11].

Those techniques often focus on exploiting task-level parallelism (TLP) and balancing work-

loads among multiple processors. Our target architecture, CGRA, does not lend itself easily

to such TLP due to its lock-step execution model among PEs. Instead we focus on how to

run each actor efficiently. Also to the best of authors’ knowledge, no prior work has examined

application-level performance of stream programs on CGRA this thoroughly.
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CHAPTER III

Target Architecture

CGRA: The basic idea of CGRA is to use ALU-like processing elements (PEs), as opposed

to LUTs (look-up tables), as a basic unit of configuration. The PEs are arranged in a 2D array,

connected via mesh-like interconnects, and operate in lock steps, making it important to avoid

stalls in any PE. Arithmetic and logic operations are usually performed by any PE, but expen-

sive operations such as multiplication/division/memory operations may be performed by some

PEs only. For memory-accessing PEs, a multi-banked scratchpad memory serves as the local

memory, which provides guaranteed access time with no memory stall. Thus it is the compiler’s

responsibility to ensure that the data accessed by memory PEs are present in the CGRA’s local

memory.

The interconnect architecture connects the output port of one PE to its neighboring PEs’ in-

put ports. Each PE’s output is registered, and the PEs all operate in lock-step. Hence, pipelined

execution is a natural way to exploit the parallelism of a CGRA. The instruction of a PE is

called configuration, which can be quickly changed to another thanks to the distributed config-

uration cache. Section 5.3 contains more detailed description of our target architecture.

Overhead: The minimum overhead in invoking CGRA execution typically includes the

following: (1) the MP performing a series of write instructions to set key parameters of CGRA

execution, such as configuration address, initiation interval, and prolog/epilog size, and (2) in-

6



Actor2 

Splitter 

Actor2 

Actor3 

Actor1 

Joiner 

… 

void -> int filter Actor1(){ 
    int i, v; 
    work push 6 { 
        for(i=0; i<6; i++) 
           push(v++); 
    } 
} 
 
int -> int filter Actor2(){ 
    int tmp, i; 
    work pop 8 push 1 { 
        for(i=0; i<8; i++) 
           tmp += pop(); 
        push(tmp); 
    } 
} 
 
int -> void filter Actor3(){ 
    work pop 1 { 
        println(pop()); 
    } 
} 

while(1){ 
   init_variables(); 
 
/*SIRFilter name=Actor1*/ 
    for (w = 0; w< 8; w+= 1)  
      { 
        for(i=0; i<6; i++) 
           (_BUFFER_1[PUSH_1++] = (v++)); 
      } 
 
/*SIRFilter name=Actor2*/ 
    for (w = 0; w< 6; w+= 1)  
      { 
         int tmp, i; 
         for(i=0; i<8; i++) 
            (tmp += _BUFFER_1[POP_2++]); 
         (_BUFFER__2[PUSH_2++] = tmp); 
      } 
 
/*SIRFilter name=Actor3*/ 
    for (w = 0; w< 6; w+= 1)  
      { 
         printf( "%d", _BUFFER_2[POP_3++]); 
         printf("\n"); 
      } 
} 

Actor1 

Actor2 

Actor3 

Figure 3.1: Our compilation flow for stream programs.

terrupt or polling latency for the MP to resume execution at the end of a CGRA execution.

Those overheads are referred to as control overhead.

CGRAs are equipped with configuration caches to enable quick configuration switch, typi-

cally at zero-cycle overhead. However, if the total size of the configurations needed to execute an

application is greater the capacity of the configuration cache, dynamic reloading of configuration

from the main memory is necessary. As StreamIt applications contain many actors, dynamic

reloading of configuration is necessary in almost all the applications of the StreamIt benchmark

suite.

First the main processor (MP) issues instructions to perform data transfers for scalar/array

values between main memory (or a cache) and the CGRA’s local memory, either directly or

via DMA. Second, MP performs a series of write instructions to set key parameters of CGRA

execution, such as configuration address, initiation interval, and prolog/epilog size. Third at the

end of a CGRA execution, MP is given back the control, which can be done via interrupt or

polling.
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CHAPTER IV

Application Mapping Flow

4.1 Stream Program

Many applications that run on infinite streams of data can be naturally represented as

stream programs. A stream program consists of actors communicating with each other via ex-

plicit FIFO channels. Explicit representation of data flow and dependence between actors makes

it easy to extract the parallelism in the program, including task parallelism (among actors) and

loop parallelism (inside an actor). Stream programs are a good target for CGRAs because each

actor is a loop, since it should be able to run indefinitely, which helps make the kernel ratio

very high.

While many stream programming languages exist, in this paper we use StreamIt [19], which

facilitates backend optimization by supporting hierarchical structure, based on three operators,

pipeline, splitjoin, and feedbackloop. The leaf nodes of the hierarchy are called filters. Filters do

the actual work, which is represented by one or more phases (i.e., loops) that are cycled through

during the steady state.
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4.2 Kernel Mapping

Since we focus on loop parallelism, we can use the conventional kernel-based mapping flow.

Using the StreamIt-to-C translator [19], we first convert a StreamIt program into a C program,

from which suitable1 innermost loops, or kernels, are identified and mapped to the CGRA, while

the rest of the C program is mapped to the main processor.

4.3 Application Level Mapping

Going from kernel-level to application-level involves making sure that the CGRA has all the

configuration, data, and control information necessary to execute each kernel.

Configuration: The configuration cache is a distributed hardware cache, whose block size

is equal to the size of the configuration bits to program all PEs for one cycle. Thus to execute a

loop scheduled with the initiation interval of n, n blocks of configuration are required. The sim-

plest scheme to bring configuration from the main memory is on-demand loading, which works

as follows. The MP first invokes the CGRA by providing the start address of the configuration

and the initiation interval. The CGRA first checks if the requested address range is already

present on the configuration cache. If it is a hit, then the CGRA can proceed to execute the

loop using the existing configuration; otherwise, it requests DMA (Direct Memory Access) to

load the configuration from the main memory, which delays the CGRA execution until config-

uration loading is completed.

Data: There are two issues related to data: (i) transfer of input/output data (i.e., arrays)

for a kernel and (ii) the management of data if they are too large to fit in the local memory

of the CGRA. The first can be done by performing DMA before/after a kernel execution. The

second issue arises from the limited capacity of the CGRA’s local memory, which is a scratch-

pad. A typical solution is loop tiling ; however, arrays with irregular access patterns (e.g., array

A in A[B[i]]) must still be loaded in their entirety, which may disqualify some loops from being

CGRA-mappable.

Control: Control has two components. First, scalar variables may need to be transferred.

Start addresses of arrays on the CGRA’s local memory are a typical example. Second, to execute

a kernel on the CGRA, the CGRA must know the kernel parameters such as the configuration

1Typically, any inner-most loop with a known trip count that does not include any function call.
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address (serving as the kernel ID), the initiation interval, the prolog (epilog) length, and the trip

count. These variables and parameters can be passed by the main processor using a sequence

of store instructions.1 We assume that once a kernel is finished, it takes only a few cycles to

synchronize between the main processor and the CGRA.

4.4 Configuration Prefetch

For applications with many actors, the configuration cache may not be able to retain all

the configuration data necessary. In such a case the performance of on-demand loading quickly

deteriorates, but this configuration loading latency can be easily hidden for stream applications

by a simple prefetch. When the parameters for the current kernel are passed to the CGRA, the

next kernel, as determined by compiler to be the one appearing next in the stream program,

can be scheduled to be prefetched. This requires only two more parameters to be added to the

kernel parameters, increasing the control overhead marginally.

1To shorten the control overhead, static information (such as II and prolog length) could be retrieved directly
from the memory or cache. However its effect is not expected to be high.

10



CHAPTER V

Optimizations

5.1 Pipelining of Nested Loop

Stream programs consist of actors which are mostly nested loops. The loops are formed from

at least two sources: scheduling between actors for rate matching, and accessing input/output

channels. Consequently, most actors in stream programs are at least 2- or 3-deep nested loops.

Further, due to the indefinite stream-based nature of the applications, there is one large loop

at the outermost level, which could be tiled—for more efficient implementation, for instance—

creating another level of loop.

Often those loop nests have low trip counts at the innermost loop, which, if mapped to

CGRA directly, can result in high overhead in terms of control and main processor cycles, in

addition to increased prolog/epilog overhead in CGRA execution. To reduce these overheads

we apply loop flattening (or loop collapsing) [6] transforming a nested loop into a single level

loop, which can be very efficiently executed in loop accelerators such as CGRA. The original

iterators, if necessary, can be computed from the new iterator using modulo and division opera-

tions. The outer loop computation (including iterator update and loop control) is now done on

the CGRA itself instead of the main processor, and there being only one1 instance of software

1Our flow requires loop fission in some cases, which results in multiple flattened loops.
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pipelining for the entire loop nest, the loop control and prolog/epilog overhead can be minimized.

While straightforward in concept, the critical challenge is in maximizing performance when

the loop is imperfect and/or recurrent. Transforming imperfect loops into perfect ones using

guarded statements [4] can sometimes be detrimental to performance, since it increases the

number of operations in the innermost loop, due to the outer loop operations moving into the

innermost.

From the performance standpoint, the idea of regenerating the original iterators, in the first

place, already introduces new operations into the innermost loop, which can negatively impact

performance. Recurrence, which is frequently manifested in accumulation and index calculation,

only complicates the problem, as it limits certain loop transformations such as loop fission.

Lastly for a general trip count that is not a power of two, regenerating the original iterators

requires expensive operators such as modulo and division. In summary, loop flattening increases

the total number of operations on the CGRA though it can eliminate the repeated overhead of

calling the CGRA.

5.2 Special Operators

For the above-mentioned reasons, loop flattening alone is not always beneficial in mapping

nested loops, as demonstrated in our experiments. But since nested loops appear frequently in

stream applications, there is an incentive to apply application-specific architecture optimiza-

tions to mitigate the impact of new operations added by flattening. The newly added operations

have very similar patterns, which makes it easy to define and implement specialization via spe-

cial operators. Moreover, we find that the special operators we introduce can also be used for

other common computations (e.g., accumulation) that are not related to iterator update or loop

control.

The family of special operators that we propose is referred to as Universal Regular Itera-

tor and Accumulator (URIA), to which these computations can be efficiently mapped: iterator

update, index update, and reduction operations (such as summation). URIA operator has five

parameters in addition to the operator type (see Table V.1). We classify the URIA operators

12



Table V.1: URIA operator parameters (values are for the examples)
Parameter Nested Iterator Resetting Accum. Leaping Index

α 0 (initial value) 0 (reset value) N (leap value)
δ 1 (increment) increment increment
ρ Nk Nj Nj
ω Nj – 1 — (unused) —
op add add add

into two groups, namely, iterator and accumulator.

Iterator: With URIA operators, the original iterators are directly computed rather than

regenerated using expensive operators. URIA can support any iterator of a rectangular iteration

space, such as iterator j in the following code in C.

for ( i =0; i<Ni ; i++)

for ( j =0; j<Nj ; j++)

for ( k=0; k<Nk; k++)

Statements . . .

In general an iterator of a rectangular iteration space repeats the following sequence (j’s exam-

ple, parentheses added for readability):

((0, 0, · · · , 0), (1, 1, · · · , 1), · · · , (Nj − 1, Nj − 1, · · · , Nj − 1))+ where each value is repeated Nk

times before incremented. Implementing this through regeneration requires both modulo and

division operations while it can be generated directly using one URIA operator, with parameters

listed in Table V.1.

Accumulator: Index update, which is a special case of accumulation, happens frequently

in stream applications when actors access channels. In other applications index update can also

be used as pointer update. Accumulation is another very frequent operation in DSP applications.

Fig. 5.3 shows the skeleton code for an accumulator operation. Note that the RHS of the

accumulation statement may be either a constant or an expression. Again such an accumulator

can be implemented using one URIA operator (including the resetting or leaping behavior),

with parameters listed in Table V.1.

13



for ( i =0; i<Ni ; i ++){
sum = 0 ;
for ( j =0; j<Nj ; j++)

sum += . . .
}

(a) Resetting accumulator

for ( i =0; i<Ni ; i ++){
index += N;
for ( j =0; j<Nj ; j++)

index += . . .
}

(b) Leaping index

Figure 5.1: Skeleton C code for accumulators.

Down 
Counter 

ρ_REG 

α_REG 

 
 

RF 

 
 

ALU 

Imm. Value 

=0"

A B 

ALU 

α_REG 

reset_sel 

="

ω_REG 

max_val_done 

repeat_done 

mux_sel 

reset_mux 

leap_mux 

Figure 5.2: Extended PE, It has only one instance of α REG though it seems as if there are two.

5.3 Architecture Extension

It is straightforward to define the semantics of the special operators. For instance, following

is the definition of the resetting accumulator, where x is the output of the operator, kept in a

register:

x←

α, if the current iteration is ρ’s multiple

x op δ, in other iterations.

This definition presumes that the operator is evaluated once every iteration, which can be done

in a way similar to updating a rotating register file every II (Initiation Interval) cycles [12].

Finding out if the current iteration is ρ’s multiple can be implemented using a simple counter.

The op symbol above represents any arithmetic operation supported by the underlying PE,

which means that the iterators/accumulators can be based on not only addition, but also sub-

traction, multiplication, or any Boolean operation.

The URIA operators can be easily implemented on top of any PE architecture that supports

14



a local register file and has an ALU and input muxes (i.e., parts shown in white in Fig. 5.2).

Though our new operators have several parameters, only some of them are encoded in the

configuration, with α, ρ, and ω being written directly into the corresponding registers. This way,

the new operators can be encoded with little impact on the configuration bit-width. The area

overhead is very small, as it adds only 1 down-counter and 3 registers plus small combinational

circuitry as highlighted in the figure. The controller of a PE must be extended but the change

is minimal, since all the control signals for our extension can be statically determined by the

operator type, and the controller extension is stateless except for the nested iterator that requires

1-bit state only. The critical path is affected only by the mux (reset mux ), which adds little

delay to the cycle time of a PE.1
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(a) Resetting accumulator
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(b) Resetting Accumulator with another PE
as operand.
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(c) Resetting Accumulator with Periodic
Update.
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(d) Leaping accumulator.

Figure 5.3: Mapping of 4 new instructions.

5.4 Mapping Flow for Nested Loop

While a perfectly nested loop can be easily flattened into a single-level loop, most loops are

imperfect. Hence, regardless of whether URIA operators are used, we need a mapping flow to

transform an imperfect loop into one or more perfect loops. Imperfect statements can be either

guarded using predicates or fissioned into a new loop.2 The former can degrade performance

1Even when the PE works as a nested iterator (enabling α to be selected when the ALU output reaches ω),
the mux is used in a later iteration than the comparator (max val done).

2While full unrolling of a loop can be another way to handle imperfect loops, it is impractical unless the trip
count is very small; thus, we regard loop unrolling as an independent optimization that can be enabled at the
designer’s discretion.
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Figure 5.4: Decision flow for transforming imperfect nested loops.

by increasing the initiation interval of the pipeline, but the latter incurs some control overhead

and may not be applicable for recurrent loops. Since which option will generate higher perfor-

mance is not obvious, we generate estimates for both cases and choose the better. To manage

complexity, we do this decision-making recursively, starting from the second-innermost loop to

outer loops.

Fig. 5.3 illustrates our decision flow for a 2-deep nested loop. If a loop is imperfect, it should

be one of these two types: (i) one that has only one inner loop, and (ii) one that has multiple

inner loops in a sequence. For the second type, loop fission is the only way to map the loop nest

to a CGRA, unless some of the inner loops are completely unrolled. Therefore after checking

inter-iteration dependence, we either fission each inner loop into a new loop nest, or (if it is

impossible due to dependence cycle(s)) conclude that the loop nest, in its entirety, cannot be

mapped to a CGRA. The fissioned loops must be either perfect or of the first type.

For the first type, we only need to take care of the imperfect statements before/after the

only inner loop, which can be again fissioned out (dependence permitting) or moved into the

inner loop with proper guards. Depending on which ones are fissioned out as separate loop(s),

there are four possible cases, which are evaluated to choose the best one. Evaluating each case

involves transforming the loop body at the data flow graph (DFG) level and scheduling the

modified DFG on the target CGRA to find out the initiation interval and the overall execution

16



time of a loop.

Once all the loop levels are successfully examined, finally the original loop nest can be trans-

formed into one or more perfect loop nests, which are individually flattened and mapped to the

CGRA.
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CHAPTER VI

Experiments

6.1 Experimental Setup

To evaluate application-level performance, we use SimpleScalar cycle-accurate simulator [1],

which supports multiple levels of caches and virtual memory. For accurate bus and memory

timing, we integrate DRAMsim [20], and extend the simulator with DMA and CGRA models.

Table VI.1 summarizes key architecture parameters. In addition, our CGRA has homogeneous

PEs, but memory operations can be performed by four specific PEs only, which are connected

to the CGRA’s 4-bank local memory via a crossbar switch. The load latency is 4 CGRA cycles,

fully pipelined. Configuration cache has 64 blocks, each of which can configure the PE array for

one cycle. The increased cycle time of our special PE is assumed to be 5% slower than the base

CGRA.

We use StreamIt programs, which are first converted into C using StreamIt-to-C trans-

lator [19], and fed to LLVM [15] integrating our CGRA scheduler. After CGRA mapping is

Table VI.1: Architecture parameters
Component Parameters
Main Proc 720 MHz, in-order, 2-instruction issue

Cache L1 (16+16KB), L2 (128KB)
CGRA 520 MHz, 4x4 PE array, mesh+diagonal

Bus+DRAM DDR-333 (32-bit), pipelined bus (64-entry)
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Table VI.2: Cases compared
Case Description Difference

A Software only Use MP (Main Proc.)
B Mapping inner-most loop only (IML) +CGRA
C IML, with configuration prefetch +Conf. prefetch
D Mapping nested loop (NL) +Nested loop mapping
E NL, with special PEs +Special PEs

Table VI.3: Kernel experiment results (see text for explanation of heading)
Loops Case C Case D Case E

ID Application N/K #n #e #n #e #n #e #x
1 channelvocoder 34/72 9 9 19 17 13 13 4
2 filterbank 40/90 9 9 17 14 11 11 3
3 mpeg2-subset 21/32 12 11 23 20 15 14 4
4 tde pp 47/48 46 59 61 73 55 67 6
5 fft 25/29 17 17 23 21 18 17 2
6 dct 16/34 11 11 24 22 16 16 4
7 bitonic-sort (2x) 19/44 20 20 24 23 20 20 2
8 vocoder 16/59 7 17 32 29 22 19 6

finished, the mapping results as well as the corresponding control/prefetch/DMA code are

back-annotated into the C source code, which is recompiled using SimpleScalar-GCC to gener-

ate executable for main processor (MP). The CGRA compiler implements modulo scheduling

based on [17] without rotating register file support, but with predicated execution support for

conditionals within loops. One application, serpent full, is not used in our experiments because

our compiler back-end fails to schedule some loops due to their large size.

Table VI.2 lists the five cases we consider. We perform two experiments. In the first exper-

iment, we select one kernel from each application, and evaluate our two nested loop mapping

approaches (without or with URIA operators, i.e., Case D or E) compared to the conventional

mapping (inner-most loops only; Case C). In the second experiment, we evaluate the entire

benchmark applications.

6.2 Mapping Nested Loops

Nested loops are frequently found in stream applications, as evidenced in Column 2 of

Table VI.3, which lists the number of all kernels (K) and that of kernels in a nested loop (N).

However, two benchmarks, fm and des, consist of single-level loops only, enclosed only by a

global loop. In another benchmark, beamformer, though there are many nested loops, most of

them have multiple inner loops and recurrence, which cannot be handled by our mapping flow of

Fig. 5.3. These applications are used for the second experiment only. For the other applications,

we choose the most important loop as the kernel, as ranked by the product of initiation interval
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Figure 6.1: Kernel runtimes, normalized to that of Case C (asterisk: kernel for which fission is
required).

(II) of the loop and its execution count. Exceptions are made when an identical kernel would

be selected from different applications, as is the case with channelvocoder and filterbank, and

tde pp and fft ; in those cases, the second-in-rank is chosen in one of the applications to avoid

duplication. The kernel of bitonic-sort has the inner-most loop with a very small body (10

operations) and just 2 iterations, which is unrolled manually.

The right-hand side of Table VI.3 shows how the loop body (or its control-data flow graph)

is changed by our nested loop mapping. Here #n and #e represent the number of operation

nodes and that of data-dependent edges, respectively (in Case C, of the inner-most loop only).

As all the kernels are imperfect loops, we observe that the number of nodes increases often

significantly by loop flattening (Case D). With our special operators, however, the extra nodes

are nearly eliminated. The number of special PEs required is listed in the last column. It turns

out that imperfect statements are best handled by predication rather than fission, which is

due in large part to the large load latency on a PE. In Case E, all kernels are better off with

predication and in Case D, only vocoder is better off with fission. Kernels for tde pp and fft can

only be fissioned due to multiple sub-loops.

Fig. 6.1 shows the kernel runtimes, as normalized to that of Case C. The numbers on the

x-axis indicate the application ID, defined in Table VI.3. Overall, kernel runtimes are reduced

42.8% on average by loop flattening alone, though they sometimes increase. The reduction comes

mostly from control overhead reduction, which is significant in many kernels.1 Loop flattening

also reduces prolog/epilog overhead of pipelining (included in CGRA cycles), which is significant

1Control overhead is sensitive to MP’s memory write speed. In our experimental setting, device write trans-
actions from MP bypass all caches and reach the CGRA in 5∼6 processor cycles per word.
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only when the trip count is small, which explains why we see a negative correlation between

higher CGRA cycle reduction and the amount of control overhead—both are related to the trip

count of the inner-most loop.

While reduced pipelining overhead is often canceled out in Case D by increased node count

of the loop body, we observe in Case E that the CGRA cycles are also reduced. Our special PEs

require initialization of some registers, which adds to the control overhead. But in all cases we

see that the extended PE architecture consistently provides speedup over Case D, reducing the

kernel runtime by 23.3% on average.

6.3 Full Application Performance

Fig. 6.2 shows our cycle-accurate simulation results. First we observe from Case A that the

kernels take about 83.4% of the application runtime. The C programs generated from stream

applications consist of two parts, initialization and a global loop. The initialization is executed

only once, setting up constant tables and preparing other data structures whereas the global loop

is executed indefinitely, representing the steady-state. The execution time in this experiment

include only the latter. First we observe that the kernel portion—which, as reported in this

graph, is accurate—varies considerably depending on the application. vocoder has the smallest,

which is due to math functions used in actors. As expected, kernel portion has a dominant effect

on the achievable speedup of CGRA.1

1The application IDs are given in the decreasing order of kernel portion.
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Cases B and C represent the conventional approach mapping inner-most loops to CGRAs.

The impact of on-demand configuration loading (as opposed to configuration prefetch) is not

high for most applications because due to the large size of configuration cache, all configuration

accesses soon become hit. And while the impact of repeated configuration misses is very high,

a simple prefetch scheme can eliminate it.

Due to the large kernel portion, mapping inner-most loops only already gives an impressive

runtime reduction of 61.7% (Case C over Case A), or about 2.5X speedup over Case A (software

execution). However, this level of performance is far from ideal, due to non-kernel cycles, control,

and DMA overhead, as seen in the graph. Our technique to map entire nested loops can reduce

the overheads significantly, generating about 35% runtime reduction (Case E over Case C), or

about 4X speedup from Case A.

In some applications DMA cycles become quite significant. This is because in Applications

7 and 8, the kernel portion is relatively small, which increases the need to do DMA between

MP and CGRA. Though not shown in the graph, the application-level runtime reduction is

quite high in the other 3 applications as well, generating the average application speedup of

3.6X from Case A to Case E, while the conventional inner-most loop only mapping (Case C)

generates only 2.6X speedup over Case A.
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CHAPTER VII

Conclusion

Stream programs are not only widely used in multimedia and DSP domains, but also have

measurably higher kernel portions, making it an ideal front-end for CGRAs. At the same time,

while the heterogeneous model of computing employed by CGRAs makes objective and realistic

evaluation of application-level performance very difficult, using stream programs, as we have

demonstrated in this paper, seems to somewhat avoid the difficulty. Focusing on the nested

loops appearing very frequently in stream programs, we also propose a low-cost architecture

extension. Our detailed performance evaluation using the full StreamIt benchmark applications

suggests that CGRAs can realistically accelerate stream applications by 3.6∼4.0 times on aver-

age, compared to software-only execution on a typical mobile processor.
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