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Abstract 

 

Nanostructured materials have been receiving increasing attention in recent years because of the 

interesting mechanical, optical and electrical properties that such materials offer. In particular, the 

development of nanostructured electrodes for lithium ion batteries has attracted the interest of a 

number of researchers due to the advantages offered in terms of new reaction mechanisms that are not 

possible with bulk materials, better buffering of volume expansion and shorter pathways for Li
+
 ion 

and electron transport. In field of current lithium ion batteries, it is necessary to use new negative 

electrode materials which have high capacity, low cost and environmental benignity. In tandem with 

above phenomenon, development of new nanostructured electrode materials for lithium ion batteries 

also work up the excitement of researchers due to many advantages. Successful strategies were that 

one method is surface coating for increase conductivity or reduce side reaction, aggregation of the 

nanoparticles and another method is controlling of nanoparticle’s morphology for enhance their 

specific surface area so that the kinetics would be improved and serve buffer space of the active 

material volume expansion. Although various methods have been previously developed for fabricating 

a self-assembled structure, these approaches tend to be based on either inert conditions or to rely on 

complex high temperature, high pressure process. And some approach (crystalline conversion reaction 

materials replace to amorphous conversion reaction materials) is not clearly veil the effect. To 

overcome these problems, new facile methods of anode materials have developed and the 

understanding of new anode materials synthesis mechanism and the improvement of lithium ion 

batteries were performed. For example, I introduce a facile method to prepare for the Ni2P 

nanostructures with controlled crystallinity and morphology and unveil a pure difference between 

crystalline and amorphous Ni2P as anode material for rechargeable lithium ion batteries. Furthermore, 

i developed Graphene Oxide Assisted Synthesis of Self-assembled Zinc Oxide for Lithium-Ion-

Battery anode without hash condition. 
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Chapter 1 

Introduction and Motivation 

 

 

 

1.1 Introduction and motivation 

 

Nanostructured materials have been receiving especial attentions since the early 2000s due to their 

interesting magnetic, optical, electronic, chemical, and catalytic properties.
1
 A lot of researchers had 

been trying to unveil origin of their novel properties and looking for their practical applications. Their 

unique properties are contributed to high surface to volume ratio, quantum confinement effect and 

new reaction not possible with bulk materials.
1a

 For example, a dramatic increasing in the ratio of 

surface atoms to interior atoms occurs when the size of bulk is reduced to nanometer scale (figure 1.1). 

It means that the physical and chemical properties are changed. And strong quantum confinement is 

observed for many semiconductor nanocrystals because the size of a semiconductor crystal is reduced 

below the material’s bulk Bohr exciton radius, the electronic structure evolves from a set of bands of 

continuum states to a set of discrete atomic-like states. 

Nowadays, the researches of nanostructured materials revolve around technological applications of 

its by conflation with information technology (IT), energy technology (ET), bio technology (BT) and 

so on for overcome their traditional problems. For example, nanostructured materials (especially 

monodisperse nanocrystals) are crucial for the multi-terabit magnetic storage media
1b

, they are also 

becoming increasingly important for electrochemical energy storage include energy storage system 

(ESS), lithium ion batteries for electrical vehicles (EVs).
1a, 2

 And some metal nanoparticles have been 

extensively researched as catalysts for Suzuki coupling reactions
3
, ORR and OER.

4
 

Specially, research of electrochemical energy storage systems are becoming more important on use 

of new renewable energy generation such as solar, wind and tidal energy due to the growing concern 

over global warming, air pollution and crucial oil price increasing. In tandem with above phenomenon, 

development of nanostructured electrode materials for lithium ion batteries also work up the 

excitement of researchers due to many advantages include new reaction mechanisms not possible with 

bulk materials, short pathways of Li
+
 ion and electronic transport, better buffering of volume 

expansion and etc.
1a, 2b

 Above advantages have been becoming to chance for overcome current lithium 

ion battery’s limitation. This being so, many people are trying to research a nanostructured electrodes. 
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Figure 1.1 Ratio of surface atoms to interior atoms 

 

 

 

 

 
Figure 1.2 Schematic illustration of practical application fields of nanostructured materials 
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Figure 1.3 Schematic illustration of examples of practical application 
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Figure 1.4 Graph of Dubai crude oil price 
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Unfortunately, notwithstanding these major advantages, nanostructured materials have many 

drawbacks to use electrodes of lithium ion batteries. A few critical problems had not being still solved 

include inferior packing of particles leading to lower volumetric energy densities, an increase of side 

reaction in undesirable electrode/electrolyte reactions, self-discharge, poor cycling and calendar life 

(table 1.1).
2b

 

 Therefore, many research approaches of nanostructured materials as electrodes of lithium ion 

batteries are mostly on method to overcome their problems. Successful strategies to triumph over 

these problems were that one method is surface coating for increase conductivity or reduce side 

reaction, aggregation of the nanoparticles.
5
 For example, carbon coating has been a major approach, 

since the carbon moiety may increase conductivity, reduce aggregation of the nanoparticles.
5a

 

Furthermore, a carbon coating on the surface of nanoparticles can decrease the undesirable reactions 

at the interface between active materials and electrolyte. Moreover, carbon coating can improve the 

low conductivity of active materials.
5a, 6

 Second approach is morphology control of nanoparticle for 

maximize nanoparticle’s benefits.
7
 Controlling of nanoparticle’s morphology could enhance the 

kinetics and serve buffer space of the active material volume expansion with the result that specific 

surface area is enhanced.
8
 Therefore, well controlled structure would lead to a better cycle ability. 

Main strategy is that the morphology of active material makes hollow structure or nanowires 

(nanofibers, nanotubes).
8-9

 These approaches lead to the stable cycle performance and higher rate 

capability for active materials than other structures. 

However, these approaches include inert condition or high temperature, high pressure and complex 

process.
10

 Moreover, some convenient methods are also needed additional steps for a surface coating 

after synthesis of active materials.
11

 Therefore, other methods include new synthesis or approaches to 

overcome their problems are needed. 

In this dissertation, new facile methods of new anode materials have developed and the 

understanding of new anode materials synthesis mechanism and the improvement of lithium ion 

batteries were performed.  
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Advantages Disadvantages 

 

1. New reaction mechanisms not possible with bulk 

materials 

2. Short diffusion length for lithium ion transport within 

the particles.  

3. Enhance an electron transport by nanoparticles 

4. A change of electrode potential in case of very small 

particles 

5. The range of composition over which solid solutions 

exist is often more extensive for nanoparticles, and the 

strain associated with intercalation is often better 

accommodated. 

1. Complex synthesis and control of nanoparticles 

 

2. Side reactions on surface between the electrolyte and 

electrodes  

 

3. Low tap-density compared with micrometer-sized 

particles 

Table 1.1 Advantages and disadvantages of nanostructured materials for lithium ion batteries.  

 

 

 

 

 

 
Figure 1.5 Effect of surface coating.

5c
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1.2 Lithium ion batteries 

 

Energy storage devices are also gradually to be important with new energy sources which are based 

on eco-friendly and abundant resources like solar radiation, wind and waves due to global warming 

and crucial oil price increasing.
12

 

When brief looking into batteries history, some ancient societies may have first developed chemical 

devices of the kind (Baghdad Battery was developed at probably 200 BC), the batteries in modern 

times is ascribed to Alessandro Volta in the beginning of the 19th century. Since Volta’s works, there 

are two innovative advance of batteries technology. First, secondary batteries had developed over 

primary batteries. Secondary batteries are called rechargeable batteries, while primary batteries are 

non-rechargeable batteries (figure 1.6). Second, operation voltages shoot up to over 3 V (figure 1.7). 

Especially, lithium ion batteries continuously have been developing to improve of annual average 10% 

their energy densities. 

Currently, secondary lithium ion batteries have been the focus of promising power source for not 

only cell phones, laptops but EVs, ESS in comparison with other rechargeable batteries like lead-acid 

battery, Ni-Cd battery and etc. (except for Na/S, ZEBRA batteries, table 1.2).  

Commercial lithium ion batteries utilize layered structure lithium metal oxide or olivine structure 

lithium metal phosphate as a cathode and graphite as an anode where lithium
 
ions intercalate into or 

de-intercalate between two electrodes, which is called “rocking-chair battery” (figure 1.8). Famous 

commercial lithium ion batteries are consisted of LiCoO2 cathode and carbon anode, separator with an 

electrolyte. These commercial lithium ion batteries have been widely applied in current consumer 

electronic devices for not only cell phones but also portable electronic devices. This well-known 

system of reversible chemistry had a concept of “host-guest” chemistry by brilliant scientist 

Whittingham and the significant improvements by Goodenough et al.  

Since the commercialization of LiCoO2/Carbon system, the demands of lithium ion batteries have 

been extending to transportation markets, particularly for full scale electrical vehicles (EV), and 

energy storage system markets. However, current system has limitation of energy below 250Wh kg
-1

 

and 800Wh L
-1

. Therefore, it is necessary to use new positive and negative materials which have high 

capacity, low cost, environmental benignity to improve the current lithium ion batteries performance. 
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Figure 1.6 Schematic illustration of (a) a redox reaction, (b) a primary battery and (c) a secondary 

battery.
12d

 

 

 

 

 

 
Figure 1.7 The operating voltages, redox couples and overall reactions involved in the main 

rechargeable battery chemistries.
12d
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Battery chemistry Type Voltage/V 
Theoretical specific 

energy/W h kg-1 

Practical specific 

energy/W h kg-1 

Practical energy 

density/W h dm-3 

Pb/acid Secondary 2.1 252 35 70 

Ni/Cd Secondary 1.3 244 35 100 

Ni/MH Secondary 1.3 240 75 240 

Na/S Secondary 2.1 792 170 345 

Na/NiCl2 Secondary 2.6 787 115 190 

Lithium ion Secondary 4.1 410 150 400 

Table 1.2 The voltage, theoretical specific energy values (considering only the mass of the active 

materials in the electrodes), values achieved in practice and energy densities for the major battery 

systems (there is a large range of values for lithium–ion batteries owing to the great variety of 

available electrode materials, both for the positive and negative electrodes).
12d

 

 

 

 

 

 

 

Figure 1.8 Schematic illustration of a lithium-ion battery (LiCoO2/graphite).
1a
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1.3 Electrode materials  

 

The kinds of electrode materials can classify three types on the reaction process, insertion (or 

intercalation), alloying and conversion materials (figure 1.9). The current electrode materials in 

commercial batteries are based on topotatic reversible intercalation of lithium ions without major 

structural changes include LiCoO2, graphite. However, the markets of lithium ion batteries are 

growing and the demand of consumers get increasing for EV and ESS. Therefore, people are trying to 

find new electrode materials for not only improve their performance and safety, but reduce a cost. In 

current commercial lithium ion batteries, LiCoO2 is very stable and good electrode materials. 

However, its useful capacity is close to just 150 mAh g
-1

 which is almost half of their theoretical 

capacity. Because LixCoO2 convert original hexagonal phase to monoclinic phase with c-axis 

expansion of up to 2.6% at over x = 0.5 and the structure are collapse (figure 1.10).
13

 And cobalt has 

toxicity and it is expansive. Furthermore, graphite is very good anode electrode materials but it has 

critical limitation of low theoretical capacities ~274 mAh g
-1

. To overcome current limitation and fill 

a market demands, people trying to research three types of electrode materials. 

 

1.3.1 Insertion electrode materials  

Insertion electrode materials are doing reversible intercalation reaction with lithium ions without 

major structural changes. Currently, various insertion electrode materials have developed and 

developing for replace cathode LiCoO2, anode graphite. In particular, the researches of insertion 

materials are mainly cathode materials. For example, LiFePO4 at the positive electrode material have 

intensely researched for replace LiCoO2. The LiFePO4 has an olivine structure.
14

 The reasons of 

replacement LiCoO2 to LiFePO4 are safety and cost. As you already know, the cobalt is very 

expensive and it will become more costly due to rising of demand. However, iron is one of abundant 

metal and it is more chipper than cobalt. And LiCoO2 is one of very dangerous electrodes due to 

triggering mechanism which induces thermal runaway. In safety problems of lithium ion batteries, 

cathode materials (extremely LiCoO2) are at the center of the controversy. The quantity of heat 

generation from electrode materials show that LiFePO4 is very stable and safe compared with other 

cathode electrode materials (figure 1.11).
15

 The other candidate electrodes like layered LiMO2 (M = 

Ni, Mn, Co), spinel LiMnO4, olivine LiMPO4, over lithiated layered oxides (OLO) cathode materials 

are also developed as almost same reason (safety, cost, capacities). 

.  
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Figure 1.9 Schematic illustration of the three types reaction mechanisms; Black circles: voids in the 

crystal structure, blue circles: metal, yellow circles: lithium.
12d
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Figure 1.10 The formation of a monoclinic phase with nonuniform lattice constant expansion (2.6%) 

in bare LiCoO2 during charging (Li deintercalation)
13

 

 

 

 

 

 

Figure 1.11 a) DSC scans of anode graphite and cathode LixCoO2 after 100% charging and b) 

accelerating rate calorimetry of various cathodes after 100% charging.
15
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1.3.2 Alloying electrode materials  

Alloying electrode materials have developed and developing for replace mainly current anode 

graphite which has low theoretical energy density (372 mAh g
-1

) and safety issues. They are known 

for their good safety characteristics and high specific capacities compared with insertion electrode 

materials (table 1.3). Theoretical specific capacity (mAh g
-1

) of alloying electrode materials has 2~20 

times higher than that of Li4Ti5O12 or graphite and the charge densities (mAh cm
-1
) of alloy anodes are 

still 2~5 times higher than that of graphite and Li4Ti5O12.
16

 It is a big merit to improve battery 

performance as anodes of lithium ion batteries. Moreover, operating potentials versus lithium are 

more suitable for apply anodes of lithium ion batteries than insertion materials. For example, silicon 

which is most candidate anode electrode materials has a suitable potential (vs. Li) of 0.4 V compared 

with that of 0.05 V of graphite and that of 1.5 V of Li4Ti5O12. Graphite has too low potential and 

Li4Ti5O12 has too high potential. This suitable potential make reduce the safety issue of lithium 

deposition in graphite anode and avoids the energy penalty by high potential of Li4Ti5O12.
16

  

Hence, alloying electrode materials is being studied with great interest but the large volume change 

which cause the rapid capacity fading during cycling is still hot issue because it is big obstacle their 

applicability to practical lithium ion batteries.
16

 To overcome their critical problems, various 

approaches are performed include multiphase composites
17

, particle size control
18

, intermetallic, thin 

film and amorphous alloys, operating voltage control.
16

  

 

1.3.3 Conversion electrode materials  

Conversion reaction can be expressed that active electrode is consumed by Li ion and converted to 

embedded nanometer scale metal in lithium-anion matrix. Conversion electrode materials have great 

advantages. For example, it has a high theoretical capacity due to transfer of more than one electron 

per 3D metal on redox cycle. Good electronic conductivity from Li-X matrix (X = O, F, N, S, P) and 

short diffusion distance from metal nanocomposite are also benefit.
19

  

However, conversion electrode materials are still under development due to many problems include 

large volume change, low electrical conductivity, poor kinetics, large voltage hysteresis, low ICE.
19

 

Therefore, the research of kinetic improvements and enhancement of their capacity retention in 

conversion reactions are pretty performed like particle size control, surface coating, thin film and new 

nanostructured design.
19b
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Materials Li C Li4Ti5O12 Si Sn Sb Al Mg Bi 

Lithiated phase Li LiC6 Li7Ti5O12 Li4.4Si Li4.4Sn Li3Sb LiAl Li3Mg Li3Bi 

Theoretical specific capacity (mAh g-1) 3863 372 175 4200 994 660 993 3350 385 

Theoretical charge density (mAh cm-1) 2047 837 613 786 7246 4422 2681 4355 3765 

Volume change (%) 100 12 1 320 260 200 96 100 215 

Potential vs. Li (~V) 0 0.05 1.6 0.4 0.6 0.9 0.3 0.1 0.08 

Table 1.3 The table of the theoretical specific capacity, charge density, volume change and onset 

potential of various anode materials (charge densities were calculated using the density of pristine 

metal).
16

 

 

 

 

 

 
Figure 1.12 Crystal structures and capacities of Group IV elements; C (LiC6), Si (Li4.4Si), Ge 

(Li4.25Ge), Sn (Li4.25Sn), and Pb (Li4.25Pb).
20
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1.3 Thesis Overview 

 

This thesis presents the synthesis and application of several nanostructured materials. Chapter 2 

describes the preparation of 3 types nickel phosphides by using facile hot injection method and 

electrochemical analysis of them as an anode for unveil pure difference on conversion reaction. 

Chapter 3 reveals a facile reduced graphene oxide assisted synthesis of a hierarchical self-assembled 

zinc oxide. And hierarchical self-assembled structure could not only serve short pathways of Li
+
 ion 

and electronic transport by nanoparticles, but also reduce side reactions on the surface between 

electrodes and electrolyte 
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Chapter 2 

A Facile Method to Prepare for the Ni2P Nanostructures with 

Controlled Crystallinity and Morphology as Anode Materials of 

Lithium Ion Batteries 

 

 

2.1 Introduction 

 

A new reactivity concept based on the reversible electrochemical reaction of lithium is attracting 

attention in the field of LIBs due to improve the lithium ion batteries performance
1
. It is called a 

conversion reaction. It can be expressed transition metal-anion complex. Transition metal-anion 

(anion = O, F, N, S, P) complex are consumed by Li ions and converted to an embedded nanometer 

scale metal in a lithium-anion matrix (figure 2.1)
1-2

. Conversion reaction materials have a higher 

theoretical capacity than insertion reaction materials due to transfer of more than one electron per 3D 

metal in a redox cycle (figure 2.2), and good electrical conductivity from the lithium-anion matrix and 

short diffusion distance from the embedded metal nanoparticle are also big advantage
1, 3

. However, 

conversion reaction materials have many drawbacks in terms of their use as negative electrode of 

LIBs. In particular, large polarization, irreversible capacity loss on first cycling, low coulombic 

efficiency, extreme voltage hysteresis, volume expansion during the redox cycle, and poor kinetics 

have not yet been resolved
1-2

.  

There are a few successful strategies to overcome these problems. First of all, new nanostructured 

electrode design can accommodate the large volume change and improve their kinetics. 
2, 4

 Second, 

moving from bulk to thin-film material can also improve their poor kinetics problems. Third, the use 

of conducting coating on the particles surfaces can reduce the undesirable reactions at the interface 

between active materials and electrolyte and volume expansion during redox cycle.
5
 Furthermore, 

some researchers were reported that crystalline electrodes are replaced to amorphous materials to 

achieve faster conversion reaction rates.
6
 Joachim Maier et al. reported enhanced potential of an 

amorphous RuO2 electrode.
6b

 And Keith J. Stevenson et al. reported a method to produce amorphous 

FeP2 in high yield and with remarkable performance.
6c

 Michael R. Zachariah et al. reported that 

interspersed amorphous MnOx-carbon nanocomposite provide superior electrochemical 

performance.
6a
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Figure 2.1 Typical voltage vs. composition profile of the conversion reaction materials.
1b
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Figure 2.2 Theoretical (black bars), first discharge (dark grey), and charge (light grey) specific 

gravimetric capacities of different compounds that react with lithium through a conversion reaction. 

The experimental capacities are taken from a series of reports for each compound. The “error” bars 

are provided as an indication of the dispersion of values observed in the bibliography and, thus, have 

no statistical meaning. Data for compounds with no bar have been taken from a single literature 

source.
1b
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However, there have been no reports on the difference between amorphous and crystalline electrodes 

in exclusion of other factors such as size differential, use of a conducting agent, different morphology, 

and so on. Therefore, I had the big curiosity for the effect of amorphous morphology on the 

conversion reaction system under identical conditions.  

I am trying to introduce a facile method to prepare for the amorphous and crystalline dinickel 

phosphide nanoparticle clusters. Furthermore, electrochemical difference of conversion reaction 

between crystalline and amorphous materials with Li
+ 

by using nickel phosphides was analyzed.  
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2.2 Experimental  

 

2.2.1. Materials 

Nickel(Ⅱ) acetylacetonate anhydrous (Ni(acac)2) 95% was purchased from Strem Chemical INC. 

Trioctylphosphine (TOP), technical grade 90% and Trioctylphosphine oxide (TOPO), technical grade, 

90% were purchased from Sigma Aldrich Co. LLC. Chloroform and ethanol were purchased from SK 

Chemical. All chemicals were used without further purification. 

 

2.2.2 Synthetic method 

All of synthesis was performed by hot injection method under argon atmosphere using standard 

Schlenk line techniques. The Ni2P materials were synthesized by a hot injection method in an argon 

atmosphere using standard Schlenk line techniques. The Ni2P nanoparticles were prepared by the 

following procedure. A Ni-TOP solution was prepared by reacting 1 mmol Ni(acac)2 and 10 ml TOP 

at 60 °C until the solution became sky blue. A TOPO solution was also prepared with vigorous stirring 

at 330 °C. The Ni-TOP solution was added to 5 g of TOPO solution at once, and then the complex 

solution was maintained for 30 min. The reaction was stopped by cooling to room temperature. The 

nanoparticles were isolated by the addition of 30 mL of ethanol and 5 mL of chloroform followed by 

centrifugation. Amorphous or self-assembled Ni2P was generated by adjusting the quantity of nickel 

acetylacetonate (3.57 mmol or 7.14 mmol).
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2.3 Result and Discussion  

 

The amorphous and crystalline Ni2P nanoparticle clusters are made by hot injection method. Figure 

2.3 illustrates the synthetic procedure. In the brief procedure, Ni-TOP solution and TOPO solvent 

were separately prepared with separately prepared vigorous stirring in three neck flask. Then, Ni-TOP 

solution was injected into TOPO solution at high temperature. As a result, the amorphous Ni2P 

nanoparticle clusters and crystalline Ni2P nanoparticle clusters that identical morphology and size 

were prepared depending on the quantity of nickel acetylacetonate. The high temperature of the 

bottom solution leads to instantaneous formation of nuclei, followed by slow growth.
7
 As a result, 

Ni2P nanoparticles are formed. The synthetic mechanism of nickel phosphides was very well known.
8
 

Our group previously reported that TOP is a good phosphorus source precursor to synthesize 

transition metal phosphides.
8a, 9

 Because C-P bonds in TOP catalytically are cleaved when combined 

with some metals, P atoms can diffuse into the metal,
10

 thereby generating metal phosphides. 

The amorphous, crystalline and self-assembled Ni2P nanoparticles clusters are generated by 

adjusting the quantity of nickel acetylacetonate which followed to limit aging temperature. All 

synthesis is under TOP rich condition in comparison with other experiments
8c, 11

 because a rich TOP 

act not only P source but also surfactant. 

XRD patterns for the nickel phosphides reveal that dinickel phosphides were well made by hot 

injection method. These data were collected on a D/MAZX 2500V/PC (Rigaku) using Cu-Kα 

radiation (λ = 1.5405 Å) operated for 2θ = 10 - 80˚ and with a scan rate = 2˚/min. Hexagonal nickel 

phosphide (Ni2P) was a perfect match with crystalline and self-assembled Ni2P nanoparticle clusters 

(figure 2.4b, 2.4c). The information of broadening in the peaks of both particles implies the formation 

of nanometer scale particles. Furthermore, the diffraction peak of self-assembled Ni2P nanoparticle 

clusters were stronger and sharper than those of crystalline Ni2P nanoparticle clusters, indication that 

self-assembled Ni2P nanoparticle clusters have higher crystallinity than that of crystalline Ni2P 

nanoparticle clusters. Unlike other samples, figure 2.4a have only broad peak at about 45˚, indicating 

amorphous material. Additional analysis of TEM (JEOL JEM-2100, operated at 200 kV), cold-FE 

SEM (Hitachi s-4800) and EDS were performed to verify that sample (a) is Ni2P. 

Figures 2.5a and 2.5c show TEM images of crystalline and amorphous Ni2P nanoparticle clusters. 

Figures 2.5b and 2.5d clearly demonstrate that two types of nanoparticles have similar spherical 

morphology and size. Each particle is on average 5 nm in diameter, and these small particles join 

together to form clusters. In addition, EDS measurements confirm that amorphous nanoparticle 

clusters are dinickel phosphides (Figure 2.5e). The ratio of components between nickel and 

phosphorus is almost 2:1. Cu and C come from the carbon-coated Cu substrate.



24 

 

 

 

 

 

Figure 2.3 Schematic illustration of the formation of nickel phosphides 
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Figure 2.4 High power-XRD data of (a) amorphous Ni2P nanoparticle clusters (b) crystalline Ni2P 

nanoparticle clusters (c) self-assembled Ni2P nanoparticle clusters.
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Figure 2.5 Normal TEM image of (a), (b) crystalline Ni2P nanoparticle clusters; (c), (d) amorphous 

Ni2P nanoparticle clusters; (f), (g) self-assembled Ni2P nanoparticle clusters; EDS data of (e) 

amorphous Ni2P nanoparticle clusters
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The reason of different crystallinity and morphology between three samples are contributed to 

reaction temperature limitation by nickel precursor concentration. When the volume of injection 

solution (Ni-TOP solution) is based on 10 ml, introduction of 0.357 M Ni-TOP solution into bottom 

solution limits the reaction temperature (~315 °C) by the high quantity of nickel precursor, and 

crystalline Ni2P nanoparticle clusters are then generated. When temperature limitation doesn’t happen, 

crystalline Ni2P nanoparticles converted to self-assembled Ni2P nanoparticles clusters. A lower 

concentration (0.1 M) does not impose a temperature limitation, and hence high reaction temperature 

(330 °C) leads to the formation of s-Ni2P nanoparticle clusters (figure 2.5e). When the concentration 

of Ni-TOP solution is higher than 0.714 M, amorphous Ni2P nanoparticles clusters are formed due to 

the low reaction temperature (~290 °C) by the nickel precursor. Low aging temperature (below 

300 °C) leads to amorphous Ni2P nanoparticles
11b

 and a large amount of undecomposed TOP cause the 

nanoparticles to cluster. 

I also did experiment about low volume/high concentration experiments for unveil reason of self-

assembly of Ni2P nanoparticles. The quantity of nickel precursor fixed at 0.5 mmol by reducing the 

amount of TOP to 5, 2, 1 ml, the overall concentration of injection solution increase to 0.1 M, 0.25 M 

and 0.5 M for maintain the reaction temperature (330 °C). The morphology of all samples show self-

assembled structure regardless of concentration of injection solution (figure 2.6). This means that the 

reaction temperature is predominant on shape controlling of crystalline Ni2P than injection solution 

concentration However, self-assembled spherical morphology is collapsed by decreasing the amount 

of TOP. 

  



27 

 

 

 

 

 

 

Figure 2.6 SEM image of self-assembled Ni2P nanoparticle cluster by concentration of Ni-TOP 

solution; (a) 0.1 M (b) 0.25 M (c) 0.5 M 
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Electrochemical measurements were performed on a 2016 coin-type half-cell, where Li metal foil 

was used as the counter electrode, for unveil electrochemical difference of conversion reaction 

between crystalline and amorphous materials with Li
+ 

by using dinickel phosphides. The working 

electrodes were fabricated using a slurry mixture of active materials (dinickel phosphides, 75 wt. %), 

super P (15 wt. %), and polyvinylidone fluoride (PVDF) binder (LG Chem. 10%) in N-

methylpyrrolidinone (NMP). The electrolyte was 1.3M LiPF6 in a 3:7 volume mixture of ethylene 

carbonate (EC) and diethyl carbonate (DEC), and a separator was used microporous polyethylene film. 

Cells were assembled in an Argon-filled glove box with less than 1 ppm of both oxygen and moisture. 

Galvanostatic charge and discharge cycling was performed in a potential window from 0.02 to 3.0 V 

vs. Li/Li
+

 by using WonATech WBCS 3000 battery measurement system.  

Ni2P is an attractive anode electrode materials of lithium ion batteries due to high energy density 

compared with conventional graphite (~ 372 mA h g
-1

). The theoretical capacity of dinickel phosphide 

is 542 mAh g
-1

. The higher theoretical capacity is contributed to transfer of more than one electron per 

3D metal on redox cycle 

Figure 2.7 shows the cycling performance of the Ni2P electrodes at 0.5 C. The first discharge 

capacities of a-Ni2P and c-Ni2P electrodes were 942.6 mAh g
-1

 and 974.9 mAh g
-1

 and the reversible 

charge capacities were 573.2 mAh∙g
-1

 and 526.8 mAh g
-1

, respectively. The higher capacities over the 

theoretical capacity (542 mAh g
-1

) in the first cycle are related to decomposition of the electrolyte 

upon reduction with the formation of a polymeric film at low potentials and interfacial storage of Li
+
.
1, 

12 
In the subsequent cycles, the a-Ni2P electrode showed better coulombic efficiency (99.1%) and 

capacity retention than the c-Ni2P electrode (96.8%). 

Furthermore, reversible capacities of the two forms of Ni2P after 50 cycles were 351.5 mAh g
-1

 and 

262.9 mAh g
-1

. The gap in the initial reversible capacity was continuously maintained throughout the 

cycling. In other words, the initial coulombic efficiency (ICE) is very important in conversion reaction 

electrodes. The gap in the ICE between the two nickel phosphides electrodes proves that a-Ni2P is 

superior to c-Ni2P at the first cycle. The a-Ni2P nanoparticle cluster electrode has a higher ICE 

(average 63.61%) than the c-Ni2P nanoparticle cluster electrode (average 58.20%) at 0.1 C, and the 

same results were obtained at 0.5 C (Figure 2.8). The irreversible capacity loss upon the first cycle is 

from the formation of a solid electrolyte interphase (SEI) layer, and irreversible conversion reaction.
1
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Figure 2.7 Cyclic performance of Ni2P nanoparticle cluster electrodes at 0.5 C 
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Figure 2.8 Charge and discharge capacities of Ni2P nanoparticle cluster electrodes at 0.5 C 
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To shed light on this irreversible capacity gap of both electrodes upon first cycling, we analyze both 

electrodes by the galvanostatic intermittent titration technique (GITT). Figure 2.9 shows the GITT 

curves of the two electrodes. The relaxation time is 4 hr. It is well known that the upon first cycling 

nickel phosphides convert to Li3P and Ni with an intermediate step of an insertion reaction.
1b, 4b

 In the 

initial normalized capacity region, the plateau indicates that Ni2P forms intermediate Lix-Ni2P by an 

insertion reaction due to the covalence of the nickel phosphides. Another plateau represents the 

conversion process where Lix-Ni2P and lithium convert to a Li3P matrix and nickel metal.
1b

 The 

polarization between CCV and QOCV after 4 hr relaxation at the first cycling is indicated in figure 

2.11. In initial discharge region, polarization of amorphous Ni2P was higher than that of crystalline 

Ni2P. However, the polarization reversed during the discharge process. The polarization can represent 

the resistance by the equation V = IR because the current is constant. Therefore, the results indicate 

that the resistances of both electrodes were reversed in the middle of the reaction. This reversal of 

resistance is due to additional resistance under amorphization of the crystalline Ni2P electrode. 

Amorphous electrodes can react with lithium as solid solution behavior without a phase transition.
13

 

Therefore, the amorphous Ni2P electrode has reduced resistance because the loss of electrical contact 

between particles during the conversion reaction by large volume changes and structural stresses are 

reduced. After the region of insertion process, the polarization of both electrodes sharply decreases in 

the first discharge process because Ni2P converts to a Ni/Li3P complex, which has good electronic 

conductivity by way of the conversion process.
14

   

The large voltage hysteresis is one of the features of the conversion process.
1b

 It is due to increased 

surface area undergone by the active material in the discharge process. Another factor that contributes 

to large voltage hysteresis is the difference in the Gibbs free energy in the equilibrium reaction 

potential.
1
 Comparing the electrodes, the a-Ni2P electrode has lower voltage hysteresis than the c-Ni2P 

electrode for the conversion reaction between the first lithiation and delithiation process (figure 2.12b). 

This is a critical factor to improve the initial coulombic efficiency of the conversion process.
1b

 

Furthermore, the gap of the voltage hysteresis between the two electrodes is continuously maintained 

throughout cycling. The voltage hysteresis curve between the 1
st
 charge and the 2

nd
 discharge profile 

(figure 2.12a) and the gap of QOCV from the GITT curve also indicated that a-Ni2P has lower voltage 

hysteresis than c-Ni2P. This is ascribed, at least in part, to amorphization of crystalline Ni2P, which has 

enhanced Gibbs free energy. The above results suggest that a-Ni2P may achieve a faster conversion 

reaction and lower volume expansion than the c-Ni2P electrode.
6a

 This is a very interesting result 

because large voltage hysteresis between charge and discharge is a major obstacle to commercialize 

conversion materials due to diminished round-trip efficiency of the electrode.
1b
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Figure 2.9 GITT curves of amorphous and crystalline Ni2P electrodes in first cycle.  
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Figure 2.10 GITT curve of (a) amorphouse Ni2P electrode (b) crystalline Ni2P electrode 
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Figure 2.11 Voltage difference from GITT curve between close circuit voltage and open circuit 

voltage on 1
st
 discharge and charge process 
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Figure 2.12 (a) 1
st
 cycle and 2

nd
 discharge curve of nickel phosphide electrodes. (b) Voltage hysteresis 

curve between 1
st
 charge and 2

nd
 discharge profile.  
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The volume expansion of electrodes during lithiation and delithiation was measured through ex situ 

measurement of the electrode thickness (figure 2.13). All cells were cycled for 0.1 C at 30 ℃ in a 

potential range of 0.02 to 3.0 V versus Li/Li
+

.  After full lithiation until the redox potential of the 

working electrode reached 0.02 V vs. Li/Li
+
, the c-Ni2P and a-Ni2P electrodes led to considerably 

smaller volume expansion than the theoretical volume expansion because the nanostructure reduces 

the mechanical strain induced by volume change.
2, 12, 15

 In addition, the amorphous Ni2P electrode 

showed considerable volume expansion of about 120%, whereas the c-Ni2P electrode displayed a 

thickness change of about 164% in the fully lithiated state. 

Figure 2.14 shows the electrochemical behavior of the a-Ni2P and c-Ni2P nanoparticle cluster 

electrodes characterized by cyclic voltammograms (CV) at a scanning rate of 0.2 mV s
-1

 between 0.02 

and 3 V. The small anodic peak of a-Ni2P at 1.80 V implies that Ni2P reacts with Li
+
 by an insertion 

process. The maximum reduction peak of a-Ni2P is located at 0.66 V. The maximum peaks indicate 

that Lix-Ni2P decomposes to not only metallic Ni and a Li3P matrix but also forms SEI.
4b, 16

 For 

crystalline Ni2P, these peaks shift to 1.93 V.0.94 V. Comparing the intensity of the redox peaks of both 

electrodes, the peaks of the amorphous Ni2P electrode are sharper than those of crystalline Ni2P. In 

particular, the second oxidation peak of the amorphous Ni2P electrode, which is evidently higher than 

the others, suggests that the amount of reversible reaction equation 1 is larger than that of the c-Ni2P 

electrode.
4b, 17
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Figure 2.13 (a), (b) images of 2016 coin type half-cell after fully lithiation (c) Voltage profiles (solid 

line) of Ni2P nanoparticles clusters electrodes and the corresponding electrode thickness change (bar) 

during lithiation and delithiation. 
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Figure 2.14 CV curves of amorphous Ni2P and crystalline Ni2P electrodes for (a) the first cycle and (b) 

the second and third cycles at a scan rate of 0.2 mV s
-1

 from 0.02 to 3.0 V.  
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2.4 Conclusions 

Crystalline and amorphous nickel diphosphide nanoparticles clusters that have almost same shape and 

size were synthesized by a simple hot injection method. This was achieved by adjusting the quantity 

of nickel acetylacetonate, which made it possible to limit the aging temperature. Furthermore, its 

electrochemical characteristics were investigated to analyze the effect of amorphous morphology on 

the conversion reaction in a LIB. These materials were characterized by TEM, SEM, XRD, and EDS. 

From the characterization, amorphous and crystalline spherical ~5 nm clusters have almost the same 

size and structure. In addition, self-assembled Ni2P nanoparticle clusters could be generated at 330 °C 

without oleylamine. The electrochemical results showed that amorphous materials in isolation from 

other factors can be used to overcome the problems impeding conversion reaction materials, such as 

low initial coulombic efficiency, large voltage hysteresis, capacity retention, and serious volume 

expansion. Amorphous Ni2P provides superior initial coulombic efficiency over the crystalline 

materials in the conversion reaction with Li
+
 because there is no amorphization process. In addition, 

amorphous nickel phosphide can reduce voltage hysteresis and volume expansion during cycling, 

which are very serious obstacles to the commercialization of conversion materials. In the future, it 

will be of significant interest to synthesize amorphous nanometer scale conversion materials such as 

iron oxides, and manganese oxides.  
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Chapter 3 

Graphene Oxide-Assisted Synthesis of Self-Assembled Zinc Oxide 

for Lithium-Ion-Battery Anode 

 

 

3.1 Introduction 

 

Nanostructured electrodes for lithium ion batteries have benefits such as new reaction mechanisms 

that are not possible with bulk materials, short pathways of Li
+
 ion and electron transport, better 

buffering of volume expansion. However, the commercial application of such materials requires 

overcoming the challenges such as poor cycle retention due to an increase in undesirable 

electrode/electrolyte reactions caused by the greater surface area, low volumetric energy densities due 

to the inferior packing of nanoparticles, and the high cost of complicated synthesis processes.
1
 There 

has already been a variety of approaches made to overcome some of these issues, such as forming 

composites with carbon or a conductive agent, or using assembled, hollow, or core–shell structures
2
 

More recently, self-assembled structures with a carbon coating have emerged as a promising 

candidate for the cathode and anode material of lithium-ion batteries (LIBs). Such self-assembled 

structures have the potential to not only reduce the transport pathways of Li
+
 ions and electrons but 

also reduce the unwanted side reactions between the electrodes and the electrolyte.
3
 Moreover, their 

porous nature provides a volume of free space that help can accommodate the intense volume 

expansion of electrodes during cycling.
3b-d

 The carbon coating acts to improve the overall electrical 

conductivity and mechanical strength, ensures the formation of a stable solid electrolyte interface 

(SEI), and helps prevent self-aggregation of the nanoparticles.
2a, 4

 Although various methods have 

been previously developed for fabricating a self-assembled structure, these approaches tend to be 

based on either inert conditions or to rely on complex high-temperature and high-pressure process.
3d, 5

 

Moreover, such methods often lack a convenient means of carbon coating after synthesis of the active 

material.
3c

 Above hash conditions or complex process results in a high cost or difficulty of 

commercialization. 

To overcome these problems, a simple one-step method for the reduced graphene oxide-assisted 

synthesis of a hierarchical self-assembled zinc oxide (SAZO) is described, and the suitability of the 

resulting material as LIB anode is evaluated.  

http://endic.naver.com/search.nhn?query=commercialization
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3.2 Experimental  

 

3.2.1. Materials 

Zinc acetate, 99.99% trace metals basis, was purchased from Sigma Aldrich Co. LLC. Graphene Oxide 

(GO) was prepared from graphite powder (Bay carbon Inc.) by a modified Hummers method.6 N,N-

dimethylformamide, HPLC grade, was purchased from Samchum Pure Chemicals. Ethanol was 

purchased from SK Chemical. All chemicals were used without further purification. 

 

3.2.2 Synthetic method 

In a typical synthesis of self-assembled zinc oxide (SAZO)@rGO, Zinc acetate ((CH3CO2)2Zn, 0.92 

g) was added to N,N-dimethylformamide (DMF, 200 mL). The mixture was stirred for 20 min at the 

room temperature. Graphene oxide (GO, 40 mg) was also dissolved in 50 mL DMF and sonicated for 

30 min. Then, graphene oxide solution was added to zinc acetate solution under vigorous stirring. The 

colorless solution change dark blue color. The mixture was heated to 95~125 °C under continuous 

stirring. After keeping 5 h at 70~125 °C, the result products were isolated by the addition of ethanol 

and DI water followed by centrifugation. The result power was transferred to a quartz tube furnace 

and annealed at 500 °C with Argon gas for 3 hr. 

In case of synthesis of doughnut-like zinc oxide (DLZO)@rGO is almost same with that of 

SAZO@rGO. Reactions were also carried out in which the solution ratio of GO solution was 

systematically varied in the range 0.25~4 of DMF : DI water ratio. Entire process was carried out as 

described for the SAZO@rGO. 
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3.3 Result and Discussion  

 

3.3.1 The synthetic mechanism of SAZO@GO & Temperature tendency  

The method used to synthesize the self-assembled zinc oxide (SAZO)@GO nanocomposite is 

illustrated in figure 3.1. The SAZO@GO composite is obtained by simply heating a mixture of zinc 

acetate and graphene oxide in DMF above 95 °C under atmospheric pressure, the GO having been 

prepared from natural graphite powder by a modified Hummers method.
6
 The results of TEM and 

SEM shown in Figure 1A, 1B and S2 confirm that the ZnO particles on the surface of GO are exhibit 

a hierarchical morphology with diameters ranging from 240 to 280 nm depending on the temperature 

of synthesis (figure 3.2a, 2b and 3.3a, 3b). Controllable synthesis of the self-assembled 

nanocomposite is accomplished with the assistance of GO. Spontaneous hydrolysis and condensation 

of the zinc acetate occurs due to the moisture in the air and DMF, resulting in the formation of ZnO 

nanoparticles.
7
 Consequently, Zn

2+
 ions chemisorbed on the surface of ZnO react with functional 

groups (COOH, OH) of the GO.
8
 Then, colloidal ZnO nanoparticles in DMF were going to assembly 

chemically linked ZnO with the GO which in turn act to stabilize the remaining ZnO.
7
 In the absence 

of GO, the ZnO does not form a self-assembled hierarchical morphology, but rather agglomerates of 

nanoparticles (figure 3.5). Therefore, controllable synthesis of a self-assembled nanocomposite is 

possible through assistance of GO. 

Figure 3.4 depicts the X-ray diffraction (XRD) patterns of ZnO@GO composites with varying 

synthesis temperatures. This demonstrates that a hexagonal phase pure ZnO is formed when the 

synthesis temperature is above 95 °C, however, impurities are detected with synthesis temperatures 

below 85 °C. The TEM images suggest that impurities may still be present SAZO@GO composites 

generated at more than 85 °C, however, there is a notable change in particle size between the 130 to 

190 nm of 85 °C sample and the 240 to 280 nm of those samples produced at 95 °C or above. In order 

to further understand the mechanism of ZnO formation, an aliquot of the reaction solution was taken 

at different stages of the process (Figure 3.6). TEM images of those aliquots removed while the 

temperature was still below 70 °C indicate that zinc oxide clusters are generated on the GO, but some 

impurities still exist. Pure self-assembled materials are identified, ranging in size from 110 nm to 150 

nm, once the temperature reaches 95 °C. These particles go on to form the larger SAZO particles, 

reaching their maximum size of 280 nm after aging for an hour. 
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Figure 3.1. Illustration depicting the preparation of self-assembled ZnO 

 

 

 

 

 

 

 

Figure 3.2 TEM images of ZnO/GO synthesized at temperatures of (A) 125 °C (B) 95 °C (C) 85 °C 

(D) 45 °C   
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Figure 3.3 SEM images of ZnO/GO with varying temperature (A) 125 °C (B) 95 °C (C) 85 °C (D) 

45 °C   
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Figure 3.4 XRD patterns of ZnO/rGO with various temperatures of synthesis A) 125 °C (B) 95 °C (C) 

85 °C (D) 45 °C * = Zincite 

   

 

 

Figure 3.5 TEM images of (a) ZnO nanoparticle clusters (b) doughnut-like ZnO  
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Figure 3.6 Time series of TEM image of ZnO/rGO 
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3.3.2 Moisture effect 

Moisture is also a very significant factor deciding the final morphology of the ZnO, as it influences 

both hydrolysis and condensation. Synthesis was therefore conducted under inert conditions without 

moisture. This synthesis is performed under argon atmosphere using standard Schlenk line techniques. 

I also use refined DMF as a solvent after moisture was elimination by using molecular sieve. 

There is no any change in the mixture of three neck flask during a reaction when the reaction is 

carried out without moisture (figure 3.7). This implies that zinc oxide was not generated in non-

moisture condition because hydrolysis and condensation reaction doesn’t happen. After termination of 

reaction, the result solution was isolated by the addition of ethanol and DI water followed by 

centrifugation but precipitants are not generated. TEM images show that there is no zinc oxide in the 

solution.  

In contrast, the introduction of additional DI water caused a more intense and exothermic 

hydrolysis and condensation reaction. If the moisture in the air and DMF at room temperature is 

assumed to be a negligible quantity, then 10 mL of DI water is sufficient to form a self-assembled 

hierarchical zinc oxide. However, a quantity of DI water greater than 25 ml results in an irregular ZnO 

morphology with diameters from 100 to 300 nm. Furthermore, increasing the DI water to 50 ml 

resulted in a doughnut-like morphology as the zinc oxide was increasingly etched from the inside with 

reaction time. XRD analysis of all samples, however, indicated that only a hexagonal phase ZnO was 

present (figure 3.10). 
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Figure 3.7 TEM images and picture of result product after ZnO synthesis at the inert condition 

 

 

 

 

 

 

 

Figure 3.8 TEM images of ZnO/GO at 85 °C with various cosolvent ratios of DMF/DI water = (A) 

250 : 0, (B) 240 : 10, (C) 225 : 25, and (D) 200:50.  
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Figure 3.9 SEM images of ZnO/rGO with varying cosolvent ratios DMF : DI water = (A) 250 : 0 (B) 

240: 10 (C) 225:25 (D) 200 : 50 
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Figure 3.10 XRD patterns of ZnO/rGO with varying cosolvent ratios DMF : DI water = (A) 250 : 0 

(B) 240: 10 (C) 225:25 (D) 200 : 50 

  



52 

 

3.3.3 Controlling of SAZO@rGO ratio 

TGA of SAZO@GO (Figure 3.11a) conducted at temperatures up to 700 °C in Air reveals that the 

weight fraction of ZnO in the composite is dependent on the synthesis temperature. The small mass 

loss below 130 °C can be explained by the thermal removal of absorbed water, while the large mass 

loss of GO above 200 °C  is the result of thermal decomposition. The TGA analysis confirms that 

the GO is entirely eliminated below 500 °C (figure 3.12). Furthermore, SEM imaging confirmed that 

the GO is eliminated without damage to the hierarchical morphology (figure 3.13), while XRD 

analysis of SAZO after calcination in air revealed that the zinc oxide is unaltered. Consequently, a 

high reaction temperature of 125 °C results in a ZnO weight fraction of 80.2 % in the composite, 

which is higher than was obtained using a lower temperature (95 °C).  
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3.3.4 Improving of conductivity 

Though the graphene oxide is primarily considered as a host for self-assembly, when reduced it also 

proves to be an effective additive for increasing electrical conductivity. Hybrid nanostructures 

incorporating rGO sheets have been previously reported to hamper the agglomeration of nanoparticles 

on during cycling and improve the overall electrical conductivity.
2b, 9

 As a result, such hybrid 

nanostructures typically exhibit a high specific capacity and long cycle stability.
9-10

 The reduction of 

GO was achieved by transferring the samples to a quartz tube furnace and annealing them for 3 hours 

at 500 °C under Argon atmosphere. The XRD patterns of the resulting SAZO@rGO shown Figure 

3.11b demonstrate that a hexagonal ZnO structure was retained after calcination. 

To prove the reduction of GO, Raman spectra of GO and SAZO@GO before and after calcination 

were obtained, as shown in Figure 3C. In all samples, the two major peaks of the D and G band can 

observed. The D and G bands of GO are located at around 1588 and 1355 cm
-1

, however, the G band 

is red shifted to 1585 cm
-1

 in SAZO@GO and to 1583 cm
-1

 in SAZO@rGO.  This suggests that the 

synthesis process itself contributes to a shift in the G band and that additional heat treatment merely 

creates a further shift in the G band. The gradual increase in the ID/IG band intensity ratio from GO to 

SAZO@rGO suggests a high degree of GO reduction by heat treatment. 

We also tried to measure the electronic conductivities to convince reduction of GO. Analysis of 

electrical conductivity using the van der Pauw method was also used to confirm the reduction of GO, 

the resulting data shown in Figure 3.11d.
11

 The SAZO@GO powders have an electrical conductivity 

of 1.15 × 10
-2

 S cm
-1

, which is dramatically increased to 1.32 × 10
-1

 S cm
-1

 after heat treatment. This 

provides fairly conclusive evidence that GO is reduced to rGO and means that rGO can be used to 

improve the poor electrical conductivity of ZnO. 

.  
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Figure 3.11 (a) TGA curves showing the temperature dependence of SAZO@GO synthesis; red line 

125 °C, black line 95 °C. (b) XRD patterns of self-assembled ZnO and doughnut-like ZnO samples. (c) 

Raman spectra of GO and self-assembled ZnO with GO. (d) Electrical conductivity of SAZO@GO 

and SAZO@rGO.  
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Figure 3.12 TGA curve of GO and SAZO@GO 

 

 

 

 

Figure 3.13 SEM images of SAZO@rGO before and after calcination under air atmosphere at 500 ℃ 
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3.3.5 Electrochemical measurement 

Electrochemical measurements were performed using a 2032 coin-type half-cell, in which Li metal 

foil was used as the counter electrode. Figure 3.14a shows that the electrochemical behavior of the 

SAZO@rGO electrodes is characterized by CV at the scanning rate of 0.2 mV s
-1

. The lithiation 

process of zinc oxide involves two separate reactions, conversion reaction and an alloying reaction. In 

the conversion reaction, zinc oxide is converted to zinc metal and amorphous Li2O is generated. In the 

subsequent alloying reaction, the generated zinc metal can become Li2Zn5,
 
LiZn2,

 
Li2Zn3

 
and

 
LiZn

 
by 

reacting with lithium
 
ions.

12
 In the first cathodic process, only a singular strong peak can be identified 

in the range of 0.5 - 0.1 V; this range is related to the reduction of ZnO to Zn at > 0.3 V, the lithium-

zinc alloy reaction at < 0.3 V, and the formation of a gel-like SEI layer.
12a

 Although the potentials of 

these reactions are strictly speaking quite different, they are nonetheless very close and therefore 

present as just one strong peak. In the first anodic process, a number of peaks are observed at various 

voltages. Those peaks located at 0.35 V, 0.55 V, 0.68 V and 1.36 V are likely related to the de-

alloying reactions of Li-Zn alloys
12a, b

, while the weak peak at 2.35 V is indicative of the conversion 

reaction of Zn to ZnO. In subsequent cycles, the conversion reaction peak varies due to activation 

processes. 

Figures 3.14b and 14c showed the cycling performance of the zinc oxides with rGO in range of 

0.02-3.00 V (vs. Li
+
/Li) at a current density of 100 mA g

-1
. For comparison, galvanostatic 

discharge/charge experimental data for zinc oxide nanoparticle cluster (ZONC) and doughnut-like 

zinc oxide (DLZO) electrode without rGO under similar conditions are also presented. The first 

discharge capacity of all samples exceeds the theoretical value of 988 mAh g
-1

, which is believed to 

be due to decomposition of the electrolyte upon reduction at low potential in the conversion 

reaction.
13

 The specific capacity of all electrodes, with rGO or without rGO, rapidly decreases during 

the initial cycling but rapidly rebounds after a certain number of cycles due to an as yet unidentified 

activation process.
3b

 After 65 cycles, the reversible discharge capacities of the SAZO@rGO and 

DLZO@rGO electrodes were 752.8 and 517.7
 
mAh g

-1
, respectively, whereas the ZONC and DLZO 

electrodes without rGO showed disastrous performance. In the case of SAZO@rGO and DLZO@rGO 

electrodes, the rGO served to improve the electrical conductivity and leads to better retention; 

however, the insulating nature of ZONC and DLZO inhibits cycling retention and causes the capacity 

to fade after the initial 10 cycles. The initial coulombic efficiencies (CEs) of both SAZO@rGO and 

DLZO@rGO electrodes were very poor (51.0 and 65.7 %) due to decomposition of the electrolyte in 

the first cycle, the formation of a SEI layer, and an undetermined irreversible reaction; however, the 

CEs of both electrodes rapidly increased during the initial 10 cycles and eventually reached up to 

99.1 %. The more rapid increase in CEs seen with the SAZO@rGO electrode means that it achieved 

faster stabilization and electrode activation than DLZO@rGO electrode. More importantly, the 
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cycling performance of zinc oxides with rGO in the 0.02-3.00 V range (vs. Li
+
/Li) at a current density 

of 500 mA g
-1

 show a direct difference in the cyclic stability of both electrodes (Figure S11). In the 

case of the SAZO@rGO electrode for example, the discharge capacity is stabilized over a long 

number of cycles despite an initial decrease in capacity. Conversely, the cyclic capacity of the 

DLZO@rGO electrode decreased rapidly after 30 cycles and exhibited a particularly poor cyclic 

stability at a high current density (500 mA g
-1

).  

This phenomenon was also observed in the cycling performance of SAZO@rGO and DLZO@rGO 

electrodes at various current densities. After a rapid fading of capacity during the initial cycle at low 

current (100 mA g
-1

) due to activation of the electrodes, the capacity remained stable during cycling at 

various current densities with all samples, though the SAZO@rGO electrode exhibited better 

reversible performance under all the conditions. The discharge capacities of the SAZO@rGO 

electrode were 631.2, 515.9, 404.4, and 259.7 mAh g
-1

 at current densities of 250, 500, 1000 and 2000 

mA g
-1

, respectively, while for the DLZO@rGO electrode, these values were 449.8, 360.4, 267.8 and 

190.0 mAh g
-1

. When the current density reverted to 100 mA g
-1

 during cycling, the reversible 

capacities of the SAZO@rGO and DLZO@rGO electrode were > 700 mAh g
-1

 and, 400 mAh g
-1

, 

respectively.  

The reason for the higher and more stable performance of the SAZO@rGO electrode is attributable 

to benefits of a hierarchical self-assembled structure. Specifically, such as structure incorporates a 

void space that can act as a buffer to the intense volume expansion that occurs during cycling.
3b

 

Furthermore, the SAZO@rGO electrode can form a stable SEI layer on its outer surface.
3b

 Figure 3.16 

shows SEM images of SAZO@rGO and DLZO@rGO electrodes before and after cycling, in which 

the SAZO@rGO electrode clearly maintains its morphology after 100 cycles, whereas the 

DLZO@rGO electrode cannot maintain its doughnut-like structure. 

. 
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Figure 3.14 (a) Cyclic voltammograms of a SAZO@rGO electrode at a scanning rate of 0.2 mV s
-1

. 

(b) Discharge-charge curves for SAZO@rGO. (c) Cycling performance of ZnO electrodes at a current 

density of 100 mA g
-1

. (d) Rate performance of ZnO electrodes. 
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Figure 3.15 Cycling performance of ZnO electrodes at a current density of 500 mA g
-1
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Figure 3.16 SEM images of SAZO@rGO and DLZO@rGO electrodes before and after cycling; SEM 

images of (a, b) bare SAZO@rGO electrode and (e, f) bare DLZO@rGO electrode. SEM images of (c, 

d) SAZO@rGO electrode and (g, h) bare DLZO@rGO electrode after 100cycles in condition of 

current density 500 mA g
-1

. 
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3.4 Conclusions  

 

A simple method for the hierarchical self-assembly of ZnO was successfully developed by using 

GO. Though the GO plays a leading role in creating the self-assembled structure, it also serves to 

overcome to electrically insulating nature of zinc oxide. As an anodes in a lithium ion battery, the 

hierarchical structure exhibits excellent cycle stability, higher cycling performance and better rate 

capabilities than a doughnut-like ZnO structure. Furthermore, self-assembled ZnO with rGO offers 

advantages in terms of high electrical conductivity, short diffusion length, a stable SEI layer, and 

sufficient buffer space to accumulate the intense volume expansion during cycling. 
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