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  ABSTRACT 

 

Atomistic modelling and experimental observation has been conducted in order to 

investigate the early stage oxidation/corrosion behavior on nickel-base alloy in nuclear power 

plants. In order to fundamental study for the oxidation phenomena on the nickel, high 

resolution X-ray reflectivity is adopted. To examine the atomistic structure at the 

Ni(110)/NiO-liquid interface using X-ray reflectivity, the crystallinity of the Ni(110) surface 

is a very important parameter. To improve the surface crystallinity of Ni(110), the surface 

treatment by electro-polishing and sequential Ar sputtering/annealing in an ultra-high vacuum 

chamber is developed. After the successful surface pre-treatment, X-ray measurement at 

room temperature is conducted using synchrotron X-ray at advanced phonon source in US. 

Firstly, Crystal Truncation Rod(CTR) test for Ni(110)/NiO surface at room temperature 

condition in helium gas environment is conducted to obtain reference condition, and pure 

water is injected into the test cell to measure the water effects on the sample surface. CTR 

data was measurable with low errors even at lower intensity region. This CTR data also 

confirms that the surface pre-treatment procedure developed for Ni(110) is suitable for the 

surface X-ray study. According to results from helium gas environment, there are relaxed Ni 

layers on the Ni(110) surface with 5Å  thickness and then there are stressed Ni + NiO layers 

on the relaxed Ni layers with 5 Å , and13Å  NiO amorphous or polycrystalline layer formed on 

the top layer. While, the peak position and value is changed when the water is applied. In 

other word, the position and electron structure of Ni layer at the middle are changed due to 

the water contact. It can be considered that the water makes change the lattice structure of the 

Ni surface and NiO 

To investigate the chromium effect on the oxidation behavior of Ni, atomistic modelling 

using first principle method is conducted. Using first principles approach, It has been 

simulated that the atomistic diffusion of oxygen in Ni-Cr binary alloy to understand the role 

of chromium during the oxidation of nickel-based alloys which are versatile in a wide range 

of application. The activation energy of oxygen diffusion is calculated by varying the number 

and position of the nearest-neighbor (NN) chromium atoms relative to oxygen along the 

diffusion pathway. The activation energy of oxygen diffusion is found to decrease with the 

increase in the number of NN chromium in front of oxygen, while that increases with 
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increase in the number of NN chromium at the back of oxygen. Therefore, in this study, the 

first principles calculation confirms the role of chromium as a barrier for the atomistic 

diffusion of oxygen in Ni-Cr binary alloy. 

Finally, in-situ Raman spectroscopy has been applied in order to characterize the surface 

oxide film of nickel-base alloy/low alloy steel dissimilar metal weld interface in simulated 

primary water conditions of pressurized water reactors (PWRs). In order to directly examine 

the oxide film in high temperature aqueous conditions, an in-situ Raman spectroscopy system 

has been developed by constructing a hydrothermal optical cell with direct contact immersion 

optics.. For the verification of the constructed Raman system, high purity NiO, NiFe2O4, 

Cr2O3, and NiCr2O4 powders are examined to obtain reference spectra in room temperature 

air environment). The specimens were exposed to typical PWR water with 1,200ppm H3BO4 and 2 

ppm of LiOH at a pressure of 15MPa and 300°C. In-situ Raman spectra were collected for interfaces 

of as-welded/thermally aged DMW in PWR water condition at 300°C during 50hrs. Cr2O3, Fe3O4 and 

FeCr2O3 were measured on as-welded DMW, while FexNi1-xCr2O4 and NiFe2O4 were measured on 

thermally aged DMW. From the ex-situ EDS measurements, the main compositions of the oxide layer 

after oxidation experiment are Ni and Cr on the as-welded Alloy152 and Fe for A533Gr.B, 

respectively, while Ni, Cr and Fe on the both of thermally aged Alloy152 and A533Gr.B. The 

difference of oxidation behavior by thermal aging was found and it was caused by diffusion-

assisted chemistry redistribution by thermal aging. And the thermally aged DMW  

 

Key words: Early stage of oxidation, X-ray reflectivity, First-principles, In-situ Raman 

spectroscopy, Nickel-base alloy, Thermal aging. 
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I. Introduction 

1.1 Background 

Nickel-base alloys has been widely employed as tubing for steam generator and as penetration 

nozzles for reactor pressure vessel and pressurizer in many different types of water-cooled nuclear 

power plants because of its excellent resistance to aqueous corrosion at high temperature. After long-

term use in power plants, environmental degradation problems in nickel-base alloys such as stress 

corrosion cracking, intergranular cracking and pitting corrosion etc. have been observed in reactor 

environment. Primary water stress corrosion cracking (PWSCC) is one of major degradation modes 

that occur in Ni-base structural materials for steam generators (SG’s) or nozzles in the primary circuit 

of nuclear power plants. Figure 1-1 shows an example of PWSCC occurred in J-groove weld joint of 

A182/SS04 [1]. The PWSCC of Ni-base alloy has been observed to occur predominantly along grain 

boundaries and proceed in a direction roughly perpendicular to the tensile stress axis. The PWSCC of 

nickel base alloy and weld is directly related with safety concerns of nuclear power plant from the 

viewpoint that the SG tubing or nozzles may rupture as result of the cracking although alloy 600 

components are protected against rupture by relatively large safety margins.  Also, it has been 

intensified in recent years as Ni-base alloys display the increasing number of IGSCC events in 

components that are critical to the life extension of nuclear power plants. SCC is a complex 

phenomenon which is affected by synergetic interaction of metallurgical, mechanical and 

electrochemical parameters.  

The PWSCC phenomenon of nickel base alloy has been extensively studied and several 

mechanistic models, based on slip dissolution/oxidation [2], internal oxidation[3, 4] and creep[5, 6] 

have been proposed to explain the underlying mechanisms that control IGSCC. Even though there is 

no general agreement on the mechanism of IGSCC, one common postulation from these studies is that 

the damage to the alloy substrate can be related to mass transport characteristics, rupture and/or repair 

properties of overlaying oxide film.  

Possible mechanisms which are described above commonly include the formation and break of 

metal/alloy oxide. One common state in these models is that the damage to the metal/alloy substrate 

can be related to some transport or repair behavior of overlaying oxide film.  

Furthermore, self-protection of metals and alloys to against corrosion in aqueous environments 

is succeeded by the growth of passive films on the surface. This surface property makes it possible 

that the sustainable development in numerous applications and industries where metals and alloys are 

used. Especially, technologically important transition metals including Cr, Fe, and Ni are protected in 

aqueous environments by ultrathin oxide or hydroxide layer. However, breakdown eventually occur 
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when the presence of aggressive species like chlorides or leads and it accelerated dissolution of the 

metals or alloys substrate at localized area. 

 For this reason, understanding the interfacial structure at solid-water interface and early stage 

corrosion and is very important to reveal the corrosion or oxidation behavior on the metal or alloy 

surface. The structural information is crucial to electrical double layer and ion exchange on the metal 

or alloy surface. 

 

1.2 Goal and approach. 

The main goal of this thesis is to understand the early stage oxidation/corrosion behavior on 

nickel-base alloys from atomistic modelling and in-situ experimental observation and to overcome the 

limitation of previous researches. Application of first principles within density functional theory is 

performed to understand the role of chromium on the oxygen diffusion in nickel-chromium binary 

alloy. To investigate the atomistic structure of Ni(110)/NiO-liquid interface, High resolution X-ray 

reflectivity technique using synchrotron X-ray source is adopted. Finally, in-situ Raman spectroscopy 

has been applied in order to characterize the surface oxide film of nickel-base alloy/low alloy steel 

dissimilar metal weld interface in simulated primary water conditions of pressurized water reactors 

(PWRs). Figure 1-2 shows a diagram which explains the goal and approaches to understanding the 

oxidation/corrosion behavior on nickel-base alloys in nuclear power plants 
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Figure 1-1. Micrograph of the interdendritic cracks initiated from the exposed cladding surface and 

extending into the J-groove weld. [1] 
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Figure 1-2. A diagram of goal and approach 
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II. Basic theory and literature study 

2.1. High resolution X-ray reflectivity 

There are many references about the X-ray reflectivity measurements. The basics of the X-

ray reflectivity is summarized base on a user guide made by PA. Fenter [7]. Understanding the 

interference phenomena of waves is very important to understand the X-ray scattering phenomena. 

Interference is waves that are in phase add constructively, and waves that are out of phase 

destructively. Figure 2-1 shows a concept of destructive and constructive interference. The 

interference phenomenon is observed for all waves and even particles and can be demonstrated by the 

interference of waves on the surface and water.  

The condition for constructive interference is obey the Bragg’s law as shown in eq. (2-1) 

 

nλ = 2dsin(θ)                           (2-1) 

 

And the Bragg’s law describes the angles at which Bragg reflections occur for crystals as a function of 

the wave length, λ, the Bragg plane spacing, d, and the diffraction order, n. Figure 2-2 shows the 

geometry of scattering, and it is general for all Bragg diffraction condition.  

 Instead of describing interference condition in terms of angle, it is useful to describe the 

scattering process in “reciprocal space” in terms of momentum transfer, Q, which is a vector consist 

of magnitude and direction. Equation (2-2) describes the Q with unit vector specifying the reflected or 

incident beam direction, uf or uI, having a wave vector K=2π/λ. 

𝐐 = 𝐊𝒇 − 𝐊𝑖 = k(𝐮𝒇 − 𝐮𝑖)                      (2-2) 

Q = |𝐐| =
𝟒𝝅

λ
𝑠𝑖𝑛(2𝜃/2)                       (2-3) 

Figure 2-3 shows the Bragg plane described in terms of Q. It allows for a simple description of single-

crystal diffraction phenomena.  

 The scattered intensity is calculated by summing the scattered amplitudes, for each atoms j, 

in the sample through equation (2-4) 

𝐈 ∝ |∑ 𝜀𝑗|
2
= |𝐹|2                          (2-4) 

where the magnitude of a complex number, ε, is written |𝜀|2=εε*. The sum of all scattering 

amplitudes within the sample is called structure factor, F.  
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The “N-slit” diffraction pattern 

The structure factor for N-slit layer is defined as following equation (2-5). 

𝐅 = 𝑓0
exp(−𝑖𝑁𝑄𝑐)−1

exp(−𝑖𝑄𝑐)−1
= 𝑓0𝑒𝑥𝑝 (

−𝑖(𝑁−1)𝑄𝑐

2
) [

sin⁡(
𝑁𝑄𝑐

2
)

sin⁡(
𝑄𝑐

2
)
]            (2-5) 

where the N layers having a regular separation, c, with each layer having a scattering strength f0. 

Therefore, the scattering intensity is 

𝐈 ∝ |𝐹|2 =  |𝑓0|
2 [

sin⁡(
𝑁𝑄𝑐

2
)

sin⁡(
𝑄𝑐

2
)
]                        (2-6) 

Figure 2-4 shows the calculated scattering intensity as different layer number, N. The Bragg peaks 

appear at regular intervals and the intensity grows rapidly and develops into sharp Bragg peaks with 

increasing N. Because the peak intensity varies as , and the width varies as |𝑓0|
2𝑁2, and the width 

varies as ΔQ⁡~2π/(Nc). Thus, an integrated intensity that varies as ~|𝑓0|
2𝑁. Therefore, as N increase, 

the Bragg peaks become sharper and more intense. 

The crystal truncation rod (CTR) 

Sum of scattering intensity of semi-infinite lattice is nearly identical to that of the N-slit 

diffraction pattern with attenuation factor η.  

 

𝐅 = 𝑓0
η𝑁exp(−𝑖𝑁𝑄𝑐)−1

ηexp(−𝑖𝑄𝑐)−1
                                   (2-7)  

assume that the structure factor is evaluated in the limit where N becomes very large, the η𝑁 = 0, 

since η < 1. Therefore equation (2-7) can rewrite as follow. 

𝐅 = 𝑓0
1

1−exp⁡(−𝑖𝑄𝑐)
                                   (2-8)  

𝐈𝒄𝒕𝒓 ∝ |𝐹|2 =  
|𝑓0|

2

4𝑠𝑖𝑛2(
𝑄𝑐

2
)
                                 (2-9) 

The calculated intensity cab obtained equation (2-9) and figure 2-5 shows the calculated results of 

equation (2-9) as different separation number, c.  
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 X-ray scattering was applied to the solid-liquid interface. The application of X-ray scattering 

to probe the structure of the mineral-water interface was pioneered by Chiarello et al.[8] with 

measurements of small angle X-ray reflectivity at the calcite-water interface, heteroepitaxial film 

growth on calcite, and high-resolution crystal truncation rod measurements [9]. These studies were 

performed for mineral water interface. For the metal-liquid interface, there are some problems 

regarding surface crystallinity. For this reason, high resolution X-ray reflectivity performed only for 

noble metals such as Au [10] or Pt [11]. Still, measurement of high X-ray reflectivity for metal-liquid 

interface is one of biggest challenges facing researchers. Medway et. al.[12] measured Ni(111) –liquid 

interface using Synchrotron X-ray. However, the measured data were not enough to analysis the 

interfacial structure. It is noted that the measured data in this study show enough considerable to 

analyze the atomistic structure of Ni(110)/NiO-water interface. Comparing Medway et. Al. study with 

results in this study, they measured the CTR for Ni(111) in KOH solution with 10
-1

~10
2
 intensity 

range and there are no data point below 10
-1 

intensity. While the intensity range of the CTR data in 

this study is from 10
-4

 to 10
1
, and the several data points in low intensity region (<10

-1
) with low error 

were measured. The data in low intensity region contain key information of interface structure. For 

this reason, the interface structure can be defined not only NiO-liquid also Ni/NiO.In this study, the 

surface treatment were developed to improve the surface crystallinity then successfully measured the 

CTR data in order to clear analysis of Ni(110)/NiO-water interface.  
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2.2. First-principles method (density functional method) 

The fundamental basis of density functional theory (DFT) is that ground state energy of a 

many electron system is a functional of the electron density, n(r). Therefore, the ground state energy 

of a system can be obtained by energy minimization with respect to n(r).  

In 1926, Erwin Schrödinger published wave equation [13]. The Schrödinger equation 

contains all of the information available about a system. Unfortunately, most practical systems of 

interest consist of many interacting electrons, and the time effort to find solutions to Schrödinger's 

equation increases exponentially with the number of electrons.  To solve this limitation, many 

physicists had developed many methods. [14, 15] 

In 1964, Hohenberg and Kohn showed that the ground state total energy of a system of 

interacting electrons is a unique functional of the electron density[14]. By definition, a function 

returns a number when given a number. 

In 1965, Kohn and Sham[15] made a significant breakthrough and simplify as Kohn-Sham 

equations. When they showed that the problem of many interacting electrons can be mapped exactly 

to a set of non-interacting electrons in an effective external potential.  

 

(−
1

2
∇2 + veff(r) − 𝜀𝑗)𝜑𝑗(r) = 0                       (2-10) 

veff(r) = 𝑣(𝑟) + ∫
𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑣𝑥𝑐(𝑟)                    (2-11) 

where v(r) is the external potential and vxc(r) is the exchange-correlation potential, which depends on 

the entire density function. Eq. (2-10) can be solved. 'j(r) corresponds to the jth KS orbital of 

energy 𝜀𝑗. The ground state density is given by  
 

n(r) = ∑ |𝜑𝑗(𝑟)|
2𝑁

𝑗 1                                (2-12) 

 

Equation (2-10), (2-11) and (2-12) shows the results are self-consistent. The final ground state energy 

given by  

E = ∑ 𝜀𝑗𝑗 + 𝐸𝑥𝑐[𝑛(𝑟)] − ∫𝑣𝑥𝑐(𝑟)𝑛𝑑𝑟 −
1

2
∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ 𝑟           (2-13) 

where Exc[n(r)] is the exchange-correlation energy functional. 
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This Kohn-sham equation is solved self-consistently. Because the DFT formalism does not 

use any parameters except the electron density, it is called as first principles method (or ab-initio 

method).  

Megchiche et al. [16] used first principles calculation to study the diffusion of oxygen in 

nickel along different diffusion pathways and focused on the thermal expansion effect on the diffusion. 

They calculated the activation energy of oxygen diffusion in nickel along the octahedral to octahedral 

pathway and octahedral-tetrahedral-octahedral pathway, and considered the thermal expansion effects 

using change in lattice parameter as temperature. Figure 2-6 shows their representative result. 

 Very few studies have been attempted on bimetal alloys such as NiAl [17, 18] . These 

studies focused on the diffusion of nickel atom in NiAl to see the effect of defect complex. Choudhury 

et al.[19] used first principles method to model the diffusion in dilute bcc Fe-Ni and Fe-Cr alloys and 

found a relationship between vacancy/interstitial self-diffusion. Although the chromium contents in 

nickel base alloys take important role of crack resistance, there are no researches focused on the Ni-Cr 

binary alloys. Therefore, this study focused on the investigation of the effect of chromium on the 

diffusion of oxygen in Ni-Cr alloy. The activation energy was calculated by varying the chromium 

position in the supercell, and the effect of the number of nearest-neighbor (NN) chromium atoms with 

respect to oxygen was also considered herein.  
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2.3. Raman spectroscopy 

C.V. Raman discovered another type of light scattering in which the frequency changes when 

the light is scattered. The frequency changes occur when some of energy of the scattered light is taken 

up by molecule, which is excited into vibration motion. It is the frequency changes of the inelastic 

scattered light that contains important information related the chemical and structural states. Raman 

shifted photons can be of either higher or lower energy, depending upon the vibrational state of the 

molecule under study. Figure 2-7 shows an energy diagram that illustrates these concepts. 

The molecule must be symmetric to observe the Raman shift. When the photon is released 

the molecule relaxes back into vibrational energy state. The molecule will typically relax into the first 

vibration energy state, and this generates Stokes Raman scattering. If the molecule was already in an 

elevated vibrational energy state, the Raman scattering is then called Anti-Stokes Raman scattering 

Several researchers performed oxide analysis using Raman spectroscopy in aqueous condition.  

Kumai and Devine [20, 21] conducted the measurements of oxide films by in-situ Raman 

spectroscopy of aqueous corrosion of pure iron and iron base alloy at high temperature waters. 

Stainless Steel 304 and Fe-10Ni-xCr as variation of chromium contents at high temperature water 

were investigated. Also, the effects of several different ranges of dissolved oxygen concentrations 

ranging from 0 to 208 ppb were studied. They performed surface enhanced Raman technique using 

noble metal such as gold or silver. Figure 2-8 and 2-9 show the representative results of their study. 

Maslar et al. [22-25] have made observations of aqueous corrosion of pure metals (Fe, Ni and 

Cr) and stainless steels in air saturated and high temperature water conditions. Figure 2-10, 2-11 show 

their results of in-situ Raman spectroscopic investigation on aqueous corrosion of chromium metal 

and stainless steel. And J.H. Kim and I.S. Hwang [26] developed an in situ Raman spectra system for 

surface oxide films on metals and alloys in high temperature water, and they performed in-situ oxide 

analysis on Alloy600 in PWR primary water conditions with variation of dissolved hydrogen 

concentration and stress level. Figure 2-12 shows the results of in-situ Raman spectra for Alloy600 in 

PWR primary water condition.  

No one measured the Raman spectra for interface region of dissimilar metal weld. In this 

study, the in-situ oxide film analysis was performed for interface region of nickel base alloy /low alloy 

steel dissimilar metal weld in PWR primary water condition. Also, thermal aging effect on the oxide 

films was investigated.  
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Figure 2-1. Destructive and constructive interference 
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Figure 2-2. The Bragg scattering geometry [7] 
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Figure 2-3 The Bragg plane described with momentum transfer, Q [ 7] 
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Figure 2-4 Calculated scattering intensity as different layer number, N. 
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Figure 2-5. Calculated scattering intensity as different separation number, c 
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Figure 2-6 Octahedral and tetrahedral insertion energy variations with the linear thermal expansion. [16]  
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Figure 2-7. Energy diagram of Raman spectroscopy 
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Figure 2-8. Surface enhanced Raman spectra of SS304 during sample preparation and heating to 288℃ in 

deaerated water. [21] 
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Figure 2-9. Surface enhanced Raman spectra of SS304 during oxygen/hydrogen cycling at 288℃. [21] 
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Figure 2-10. In –situ Raman spectra of chromium as it was (a) heated to 505℃ and (b) cooled to 28℃ [22] 
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Figure 2-11. In –situ Raman spectra recorded as the Type304L was (a) heated to 496℃and (b) cooled to 27℃ 

[23] 
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Figure 2-12. In –situ Raman spectra obtained for Alloy600 by holding at 250, 290, 320, and 350℃ in PWR 

water condition with DH2 = 30 cm
3
 (STP)/kg. [26] 
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III. Methods 

3.1. In-situ X-ray reflectivity study of interfacial structure between the pre-

oxidized Ni(110) surface and deionized water 

3.1.1 Introduction 

 

Self-protection of metals and alloys to against corrosion in aqueous environments is succeeded 

by the growth of passive films on the surface. This surface property makes it possible that the 

sustainable development in numerous applications and industries where metals and alloys are used. 

Especially, technologically important transition metals including Cr, Fe, and Ni are protected in 

aqueous environments by ultrathin oxide or hydroxide layer. However, breakdown eventually occur 

when the presence of aggressive species like chlorides or leads and it accelerated dissolution of the 

metals or alloys substrate at localized area. 

For this reason, understanding the interfacial structure at solid-water interface is very important 

to reveal the corrosion or oxidation behavior on the metal or alloy surface. The structural information 

is crucial to electrical double layer and ion exchange on the metal or alloy surface. 

Various studies have been carried out on the surface structures of Ni single crystals in aqueous 

condition by ex-situ [27, 28] and in-situ [29, 30] Scanning Tunneling Microscope(STM), X-ray-

scattering [31], and electrochemical STM study [32]. These test revealed the epitaxial relationship 

between Ni substrate and the oxide layer as well as those structures. 

The passive film structures formed on nickel can be explain by a layer model with inner layer 

consisting of NiO and the outer layer is a hydroxylated NiO surface or a 3D nickel hydroxide 

(Ni(OH)2) layer. [33, 34] 

Recently, it is summarized that the nickel exposure to oxygen at room temperature leads to three 

defined reaction region dependent on the oxygen exposure. The first is the dissociative chemisorption 

of oxygen on Ni at low exposure. And the second reaction region is NiO nucleation and lateral growth. 

And thickening of the oxide with the time is last reaction [34]. However, still the resolution of the 

initial structural data of interface between water and pre oxidized Ni(110) surface is not clear. 

To solve this limitation, powerful analytical methods have been established in the past decade 

based on the high-resolution x-ray reflectivity [35], the resonant anomalous x-ray reflectivity (RAXR) 

[36] and the x-ray standing wave (XSW) [37] for probing the interfacial structure and the ion-specific 

density distribution in molecular scale. Various process studies have been performed based on these 

structure measuring techniques for dissolution kinetics and ion adsorption thermodynamics [38-40]. 
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Furthermore, according to the advancement in computer science technology, many researchers 

have begun focusing on oxidation phenomena. Bouzoubaa et al. [41] investigated the role of surface 

steps on the interaction of chloride ions with hydroxylated NiO surfaces characteristic of the barrier 

oxide layer formed on passivated nickel using periodic density functional theory calculation, and 

Taylor et al [42]. applied the first-principles methods to the determination of water stability over 

various metal surfaces. These studies provide reasonable agreement with experimental study, and 

helped understand scientific fundamental phenomena.  

Therefore, the objective in this study was to obtain detailed structural data between pre-oxidized 

Ni(110) and water interfaces to investigate the mechanism of growth the passive film formed on 

Ni(110) by In-situ high energy X-ray reflectivity study and simulated atomistic model. 

 

3.1.2. Surface treatment 

 

Ni(110) single crystal from a Ni single crystal rod(99.99%, fabricated by Princeton Scientific 

Corp.) was used. The orientation of the specimen was verified within ±0.01° and the diameter and 

thickness is 10.00mm and 1.00mm, respectively. 

The specimen pretreated. Firstly, the Ni(110) was mechanically polished with a final grade 

of 0.25μm alumina powder and then it was electropolished at 2~2.5A and ~50V in mixture solution of 

30% nitric acid and 70% methanol cooled by dry ice up to 50sec. After polishing, To improve the 

surface crystallinity of Ni(110), the specimen inserted into an ultra-high vacuum chamber at 33ID-E 

beamline of Advanced Photon Source(APS) to clean the sample by sputtering with Ar+ and annealing 

in vacuum at 700°C. Ni(110) specimen mounted on a sample holder of the vacuum chamber is shown 

in figure 3-1. The cleaned Ni surface is exposed to high-purity oxygen to grow a coalesced NiO layer 

and the reconstructed surface phase initially characterized using Reflection High-Energy Electron 

Diffraction (RHEED) before and after each sputtering/annealing cycle. . Figure 3-2 (a) shows RHEED 

images after the electropolishing and each cycle. Before the sputtering/annealing, the RHEED image 

shows no crystalline information on the surface. After the 1
st
 cycle, as shown in Figure 3-2 (b), 

RHEED image clearly shows streak, spots, and Kikuchi lines, suggesting the Ni(110) surface 

crystallinity was improved. The subsequent cycle appeared to improve the surface crystallinity further, 

but after the 4
th
 cycle only marginal improvement was observed. Figure 3-2 (f) shows the RHEED 

image after the 4
th
 cycle with a different electron beam angle from others. The RHEED image shows 

multiple parallel streaks, which are typically observed with practically flat metal surface As previous 

data without fine surface pretreatment showed only marginal x-ray reflectivity data quality [12], this 

procedure is expected to enhance the data quality substantially. 
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3.1.3. High resolution X-ray reflectivity measurements 

 

After the successful surface pre-treatment, high-resolution X-ray reflectivity (or Crystal 

Truncation Rod)
 
measurements at room temperature were conducted at 5ID-D beamline of APS to 

determine the interfacial structure between the pre-oxidized Ni surface and deionized water. The Ni 

sample was transported into an aqueous thin-film cell. The measurement of X-ray reflectivity or 

crystal truncation rod is fundamentally limited by the incident photon flux as the reflectivity varies 

several orders of magnitudes as function of reflection angle. Due to the attenuation of water, the X-ray 

energy should be high around 20KeV. The APS synchrotron sources provide high photon flux and 

high quality of beam maintenance for this flux-limited and alignment-sensitive experiment.  

The CTR measurement was performed for Ni(110)/NiO in helium condition, after that, the water 

injected on the surface, then CTR measurement was conducted to the Ni(110)/NiO-water interface 

also. Figure 3-3 shows the CTR measurement of the Ni(110)/NiO-water interface. 
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3.2. Atomistic modelling of oxygen diffusion in Ni-Cr binary alloy using 

first-principles calculation 

3.2.1 Introduction 

Nickel-chromium alloys are widely used in modern industries because of their ability to 

withstand a wide variety of severe operating conditions, including corrosive environment, high 

temperature, high stress, and a combination of these factors [43]. Many experimental studies [44-46] 

have shown that chromium forms a thin but dense protective oxide surface layer, which prevents 

oxygen from diffusing into the underlying material even at high temperatures. Therefore, chromium is 

commonly added to nickel-based alloys and stainless steels to provide excellent high-temperature 

performance. 

However, nickel-based alloys conventionally suffer from stress corrosion cracking (SCC) [47] 

Hence, it is critically important to investigate and understand the mechanisms of SCC in nickel-based 

alloys to find preventive measures. A significant amount of research has been performed to understand 

and unravel the mechanism governing SCC in nickel-based alloys. In result, several different 

hypotheses delineating the process of and ways to prevent SCC have been suggested. However, there 

are some limitations in explaining the mechanisms underlying SCC in nickel-based alloys.  

Recently, thanks to the advancements in computer technology, many researchers have begun 

focusing on atomistic modeling and simulation methods as alternatives for evaluating the mechanical 

and thermodynamic properties of metals and alloys. These techniques use calculation methods such as 

finite element, molecular dynamics [48] and first principles (or ab initio) simulations [49, 50] For 

instance, Young et al.[51] and Garruchet et al. [52] evaluated the activation energy of diffusion and 

diffusivity of oxygen in nickel using first-principles and variable-charge molecular dynamics 

simulations, respectively. Megchiche et al. [16] used first principles calculation to study the diffusion 

of oxygen in nickel along different diffusion pathways and focused on the thermal expansion effect on 

the diffusion. Very few studies have been attempted on bimetal alloys such as NiAl [17, 18] . These 

studies focused on the diffusion of nickel atom in NiAl to see the effect of defect complex. Choudhury 

et al.[19] used first principles method to model the diffusion in dilute bcc Fe-Ni and Fe-Cr alloys and 

found a relationship between vacancy/interstitial self-diffusion. 

However, as can be noted, all these studies have concentrated on either the diffusion of 

oxygen in pure Ni or the self-diffusion of metal elements in bimetal alloys. In order to fully 

understand SCC in Ni-Cr alloys and other nickel-based alloys, we need to extend the focus from pure 

Ni to Ni-Cr binary system or Ni-Cr-Fe ternary system, because according to experimental data 
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reported by Laghoutaris et al. [53], the increase in chromium concentration in nickel-based alloys 

tends to reduce the growth rate of SCC.  

Therefore, this study is aimed at realizing the role of chromium in oxidation/corrosion 

behavior of nickel-based alloys by simulating the diffusion of oxygen in Ni-Cr binary alloy using the 

first principles method. Specifically, this study focused on the investigation of the effect of chromium 

on the diffusion of oxygen in Ni-Cr alloy. The activation energy was calculated by varying the 

chromium position in the supercell, and the effect of the number of nearest-neighbor (NN) chromium 

atoms with respect to oxygen was also considered herein 

 

3.2.2. Computational method 

Atomistic modeling and the calculation were performed by using the Vienna ab initio 

Simulation Package (VASP) [54, 55]. The modeling framework adopted to calculate the activation 

energy of oxygen diffusion in nickel using single NN chromium has been described in detail 

elsewhere [56]. All calculations consider the spin-polarization, and the density functional theory (DFT) 

was used to calculate the total energies, forces, and energy profiles. Kohn and Sham [57] introduced a 

method of expressing density as the sum of squared single particle wave functions, with the single 

particles being fictitiously non-interacting electrons. According to DFT theory, the ground state 

energy of a system can be obtained by minimizing the energy with respect to the electron density. This 

is due to the fact that the ground state energy of a system of electrons could be calculated as a function 

of the electron density.  

The projected-augmented wave (PAW) method [58, 59] and the generalized gradient 

approximation (GGA), which introduces an additional term in the exchange and correlation energy 

depending on the local gradient of the electronic density, were used with the exchange-correlation 

functional of Perdew and Wang (PW91) [60]. The PAW formalism is a complex pseudorization 

scheme close in spirit to the ultrasoft scheme. However, it allows the reconstruction of the real 

electronic density and the real wave functions with all their oscillations. Because of this reason, this 

method is expected to increase the efficiency of computational time. Furthermore, in recent theoretical 

studies such as local density approximation (LDA) to calculate various properties of nickel [61] and 

the formation and migration enthalpies of vacancies in nickel [62]. the GGA method showed higher 

accuracy than did other approximation methods. Monkhost-Pack [63] k-point meshes of 5 × 5 × 5 

were used to test the Brillouin zone in the reciprocal space, and 400 eV was set as plan-wave cut-off 

energy. 

A supercell consisting of 28 nickel atoms and 4 chromium atoms was adopted for the current 
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study of Ni-Cr binary alloy. This supercell represents one of the widely used Ni-based structural 

alloys, namely, alloy 600, which is mainly composed of 72 wt% nickel atoms, 15 wt% chromium 

atoms, and other minor elements. Changing the wt% to at%, the supercell contained 28 nickel atoms 

and 4 chromium atoms for calculation with symmetric lattice. As shown in figure 3-4, oxygen 

diffusion in FCC metals and alloys can take two different pathways. The oxygen atom can pass 

through an adjacent tetrahedral (T) site via a face of the octahedron (O), which is called as O-T-O path, 

as represented by short tilted arrows in figure 3-4. Alternatively, oxygen atom can diffuse from one 

octahedral (O) site to adjacent octahedral (O) site directly which is called as O-O path, as represented 

by long horizontal arrow in figure 3-4 

In order to determine the diffusivity of oxygen in Ni-Cr binary alloy for the possible diffusion 

path, it is required to calculate the activation energy. The nudged elastic band (NEB) method adopted 

by Henkelman et al. [64, 65] was used to determine the minimum energy path for the saddle point, 

corresponding to the movement of the atomic oxygen. For the NEB calculation, seven images per 

each diffusion path were used to calculate the activation energy of oxygen in Ni-Cr binary alloy. The 

force on image i can be written as: 

⁡𝐹𝑖 = −∇E(𝑅𝑖)| ⊥ ⁡+⁡𝐹𝑖
𝑠 ⋅ 𝜏𝑖̂𝜏𝑖̂                           (3-1) 

where -∇E(Ri ) is the gradient of the energy with respect to the atomic coordinates in the 

system at image i, and 𝐹𝑖
𝑠 is the spring force acting on image i.  

The perpendicular component of the gradient could be obtained by subtracting out the parallel 

component 

−∇E(𝑅𝑖)| ⊥= ∇E(𝑅𝑖) − ∇E(𝑅𝑖) ∙ 𝜏∥̂𝜏∥̂                     (3-2) 

Before every test step, lattice relaxation task was performed by using a conjugate-gradient 

(CG) algorithm for insertion energies. In doing so, all ions were allowed to relax, while the supercell 

volume was kept constant, but could change shape. In order to calculate the effect of chromium on the 

oxygen diffusivity in nickel, some of chromium atoms replaced nickel atoms as the nearest-neighbor 

(NN) atoms of oxygen. Subsequently, calculation of the activation energy of oxygen diffusion was 

performed as a function of increase in the number of NN chromium atoms. Furthermore, to analyze 

the effect of chromium position on the oxygen diffusion in nickel with the same number of NN 

chromium atoms, the activation energies of oxygen diffusion were calculated with chromium atoms in 

two different positions, namely, in front and at the back of oxygen. The total number of chromium 

atoms in the supercell was set as 4, for all cases of Ni-Cr binary alloy. Figure 3-5 illustrates the 
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calculation model focusing on the oxygen diffusion as a function of different number of the NN 

chromium atoms, and the different position of the chromium atoms for each supercell. The open 

arrows indicate increase in the number of NN chromium atoms in front of oxygen, while the black 

arrows indicate that increase in the number of NN chromium atoms at the back of oxygen.  
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3.3. In-situ oxide analysis on the Ni-base alloy/low alloy steel interface using 

Raman spectroscopy 

3.3.1 Introduction 

Dissimilar metal welds (DMWs) are commonly used in the structural components of nuclear 

energy system as transition joints between the components of different alloys. In particular, reactor 

pressure vessel nozzles and pressurizer nozzles or cold/hot legs on steam generators in nuclear power 

plants have DMWs, the integrity of which is highly important to make the nuclear reactors safe. 

Recently, stress corrosion cracking (SCC), which is one of the main degradation processes of 

structural materials, was observed in Alloy182 weld metal in high-temperature water. This has 

aroused serious concerns about the SCC behavior in the fusion boundary (FB) region of Alloy182–

low alloy steel (LAS) dissimilar weld joint in light water reactors (LWRs) [66]. In general, Alloy182 

is a nickel-based alloy filler metal, where the crack propagates along the grain boundary. When the 

crack reaches the LAS, it stops propagating. Nevertheless, the cracks start growing inside the grain of 

the LAS. During pitting, the crack is reactivated when the crack growing inside the grain reaches the 

grain boundary. Such initiation and SCC behavior have been reported in the Alloy182/82 weld metal 

of DMWs [67, 68] .  

In general, because of the welding process, the transition zone has a more complex 

microstructure and chemical composition compared to those in the base material between the bulk 

LAS and filler metal. According to several studies related to the DMW characterization [69-72], this 

transition is found to cause changes in the mechanical property and corrosion resistance. Thus far, 

several studies have been performed to unravel the mechanism underlying the cracking phenomena in 

a DMW. Nevertheless, there is a lack of fundamental understanding of the cracking process in DMWs. 

At present, the importance of analyzing oxidation behavior or oxidation process is in the recognition 

stage [73, 74]. 

It believes that limiting analysis to ex situ observation is the main cause of the current 

inadequate understanding. Because of the experimental constraints in conducting measurements at 

elevated temperatures and high pressure, most of the techniques used for analyzing the oxidation 

behavior or corrosion are not suitable for in situ investigation. However, this may not be true in the 

case of Raman spectroscopy, which can identify corrosion products and oxide films on a metal surface 

by in situ investigation. Such an in situ analysis is expected to provide a comprehensive understanding 

of the corrosion mechanism, because the removal of the material from the corrosion environment can 

modify the oxide film structure and chemistry. So far, several studies have reported the in situ 

investigation of aqueous corrosion in pure metals or alloys at elevated temperatures in the boiling-
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water environment, air-saturated water, and pressurized water environments [22-26] 

Recently, A152 has been extensively used as a filler metal in manufacturing DMWs in LWRs 

because of the fact that A152 has more chromium and higher crack resistance than Alloy182 in the 

LWR conditions. In addition, there are no reports or experience of SCC in DMWs when A152 is used 

as the filler metal in the weld between A690 and LAS. However, the operating time is not sufficiently 

long to ensure that the high Cr alloys are perfectly immune to PWSCC. Moreover, as-welded 

conditions at the FB may not cause serious cracking issues, while thermal aging may change the 

formation of local microstructure oxide and decrease the cracking resistance or mechanical properties.  

In this study, the oxide behavior of the as-welded/thermally aged nickel-based alloy/LAS 

dissimilar metal welding has been investigated by an in situ characterization of the oxide film using 

Raman spectroscopy. The current study focuses on the characterization of the interface region 

between A152 and A533Gr.B in a proactive approach rather than a reactive one. The in situ surface 

oxide film analysis using Raman spectroscopy was conducted on the interface region of an as-

welded/thermally aged Ni-based alloy/low alloy steel dissimilar metal weld at 300 °C 

 

3.3.2 Materials 

As-welded and thermally aged dissimilar metal weld samples composed of Alloy 690/Alloy 

152/A544 Gr.B were analyzed using the in situ Raman spectroscopy. The samples were fabricated at 

Argonne National Laboratory (ANL), USA; the chemical composition of the samples is summarized 

in Table 3-1. The welding procedures comply with the recommendations of ASME Section IX [75]. 

A533Gr.B was buttered with Alloy 152 by shielded metal arc welding, followed by a post welding 

heat treatment at 607–635 °C for 3 hr. After this process, the weld joint of Alloy 690 and A533Gr.B 

was prepared by the shielded metal arc welding method with Alloy 152 fillers. Thermal aging was 

conducted to simulate the typical 30-years lifespan in the energy system operating at 320 °C. The 

thermal aging heat treatment, which was calculated by chromium activation energy which is 125 kJ 

/mol for diffusion in SS304, was performed at 450 °C for 2750 h [76].  

 

3.3.3 Hydrothermal optical cell and test loop 

The cell for the in situ observation at high temperature and pressure condition was developed 

for this study. The 3/4 inch union cross of compression fitting made of alloy 600 is used as a main 

optical cell, which is connected to a 3/4 inch union tee for simulated PWR primary water circulation. 

The 3/4 inch union tee plays a role of water inlet and outlet with coaxial configuration with 1/4 inch 
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inner tubing. Through the left arm of union cross, the sample holder will be inserted, and the 

immersion optics will be inserted through the right arm of the union cross, as shown in figure 3-6. The 

union cross is fully covered by a main heater and thermal insulation as described in the previous 

section, thus its temperature should be maintained around 350℃. As shown in figure 3-7, sample 

holder is made of Zr-rod with surface oxidation and the cap is made of Alloy 718 because the sample 

should be inserted in the 3/4 inch union cross and electrical insulation around the sample is very 

important. 

To achieve the temperature condition of the maximum 400℃, the flowing-in water is 

designed to get heating power through the coaxial heat exchanger, and then be heated up primarily 

using the pre-heater made of a cable-type, and finally by the main heater covering the union cross 

which is a main hydro thermal optical cell for the experiment.  

The test loop, as shown in figure 3-8, has been designed and assembled in order to simulate 

the PWR primary water conditions for the oxidation of weld samples and the analysis of oxide film 

grown in this facility. The test loop is cable of heating up to a temperature of 400℃ by the preheater 

and main heater and will be normally operated in the same environment as a PWR primary water 

conditions including 350 ℃ and 15 MPa. Also, the water chemistry condition will be maintained in 

such that the dissolved hydrogen (DH) content is ~ 30 ppm, the dissolved oxygen (DO) content is less 

than 10ppb and pH is between 6.9 and 7.4 using 1,000 ppm of H3BO4 and 2 ppm of LiOH. 

 

3.3.4 Raman spectroscopy system 

The Raman spectroscopy system (manufactured by Kaiser Optical Systems, INC) adopted in 

this work consisted of an excitation laser source, a spectrometer, and optical components, including 

mirrors and filters. A krypton ion laser with 532 nm wavelength was used for excitation of the in situ 

spectra. The power density at the specimen was less than 10 mW/cm
2
 and the beam size of the laser 

was 100 μm. The Raman system was equipped with holographic laser band pass-filter, which 

consisted of volume transmission grating to remove the unwanted signal. The volume transmission 

grating had dispersions at 5000 grooves/mm with a spectral resolution of 5 cm
-1

. The charge-coupled 

device (CCD) detector had an analog-to-digital converter providing 16 bits of precision yielding a 

maximum of 65545 counts; the aspect ratio was 2/3 (height/width). The immersion collection fiber 

optics with a sapphire window at the tip was adopted to collect the Raman signal from the samples. 

The fiber optic system provided the images of the laser excitation light from a 62.5-μm optical fiber 



33 

 

onto the sample and incorporated the images of the sample emission onto a 100-μm optical fiber. 

Figure 3-9 shows the schematic diagram of the Raman system used in this study.  

 

3.3.5 Experimental procedure 

For the confidence of the Raman spectroscopic system, measurements were conducted to 

obtain reference Raman spectra on oxides using powder samples such as nickel and chromium oxides 

and spinels. Then an in situ Raman spectroscopy was performed on as-welded/thermally aged 

dissimilar metal weld interfaces in a primary water environment that includes dissolved hydrogen 

(DH) of ~30 ppm, dissolved oxygen (DO) of less than 10 ppb, and pH between 6.9 and 7.4, using 

1,200 ppm of H3BO4 and 2 ppm of LiOH. The test was performed at 300 °C for 50 h. 

After the in situ Raman analysis, the specimens were characterized ex situ using scanning 

electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray 

spectrometry (EDS), and Raman spectroscopy. The in situ and ex situ results were compared to 

provide a comprehensive understanding of the observed results. 
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TABLE 3-1. Chemical composition of dissimilar metal weld used in this study 

Element Composition (wt%) 

 A690 A152 LAS(A533Gr.B) 

C 0.03 0.04 0.22 

Al  0.24  

Si 0.07 0.46 0.19 

P  <0.003 0.01 

S <0.001 <0.001 0.012 

Cr 29.5 29.04 0.18 

Mn 0.2 3.56 1.28 

Fe 9.9 9.36 Bal. 

Co  <0.01  

Ni 59.5 55.25 0.51 

Cu 0.01 <0.01  

Nb+Ta  1.84  

Mo  0.01 0.48 

Ti  0.15  
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(a)                                        (b) 

Figure 3-1. (a) Overall view of the ultra high vacuum chamber at 33ID-E beamline of APS and (b) Ni(110) 

sample mounted on a sample holder. 
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(a)                                         (b) 

 

 

 

 

 

 

                        (c)                                         (d) 

 

 

 

 

 

 

                        (e)                                         (f) 

 

Figure 3-2. RHEED images (a) after electropolishing, after (b) 1
st
, (c) 2

nd
, (d) 3

rd
, and (e) 4

th
 sputtering/annealing 

cycles; (f) image after 4
th

 cycle with a different angle from (e).  
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Figure 3-3. The CTR measurement of the Ni(110)/NiO-water interface 
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Figure 3-4. Atomic configurations of diffusion pathway of oxygen atom in metal matrices. O 

atoms are coloured red, Ni atoms are coloured blue, and Cr atoms are coloured 

violet. Oxygen is assumed to move along either O-T-O represented as red-

coloured arrows or O-O path represented as blue-coloured arrows in pure (a) Ni 

and (b) Ni-Cr binary alloy. 
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Figure 3-5. Variable models used in the calculation of Ni-Cr binary alloy system which are 

focused on oxygen diffusion pathways. (a) pure nickel model for reference, for 

one nearest-neighbor(NN) Cr atom, (b) the Cr atom exist in front of oxygen (1NN 

Cr (A)) and (c) at the back of oxygen (1NN Cr (B)), for two NN Cr atoms, (d) the 

Cr atoms exist in front of oxygen (2NN Cr(A)) and (e) at the back of oxygen 

(2NN Cr (B)), for three NN Cr atoms,(f) two Cr atoms exist in front of oxygen 

and the other exist at the back of oxygen (3NN Cr_1) and two Cr atoms (g) exist 

at the back of oxygen and the other exist in front of oxygen (3NN Cr_2) , and (h) 

four NN Cr atoms. 
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Figure 3-6. The design of hydrothermal optical cell 
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Figure 3-7. Sample holder 
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Figure 3-8. Schematic diagram of test loop 
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Figure 3-9. Schematic diagram of Raman system used for in situ analysis in this study 

 

 

 

 

 

 

 

IV. Results 
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4.1. High resolution X-ray reflectivity 

4.1.1 Ni(110)/NiO-helium 

 The X-ray peaks were detected by 2D Pilatus detector and the results of the peak represented 

by image files as the Q value. In order to get the CTR peaks the peaks at the image files should be 

integrated. The integration of the peaks was performed using IGOR6.3.4 software which were 

developed by WaveMetrix.Inc. Figure 4-1 shows the peak integration using the IGOR. The images 

from detector were selected automatically by IGOR and the regions for back ground and peak were 

decided manually.  Figure 4-2 shows the integrated CTR data of Ni(110)/NiO-helium structure. CTR 

data is measurable with low errors even at lower intensity region. This CTR data also confirms that 

the surface pre-treatment procedure developed for Ni(110) was suitable for the surface X-ray study.  

4.1.2. Ni(110)/NiO-water 

 After Ni(110)/NiO-helium measurement, The pure water was injected on the surface. Figure 

4-3 shows the (a) schematics of thin film cell and (b) shows the picture of thin film cell used in this 

study. Figure 4-4 shows the CTR data of Ni(110)/NiO-water interface. There are changes in curvature 

features in middle range of Q and several data were disappeared. It can be considered that there is 

miss-cut issue or the sample is slightly moved when the water was injected.  

  

 

 

 

 

 

 

4.2. Activation energy of oxygen diffusion in Ni-Cr alloy 
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 Figure 4-5 shows the energy required for oxygen transport, as calculated by NEB method, 

based on the different number of NN chromium atoms and their relative positions in Ni-Cr binary 

alloy along the two diffusion paths. The highest energy barrier indicates the activation energy of 

oxygen diffusion in each path. 

 

4.2.1. Increase of NN chromium in front of oxygen 

In case of increment of NN chromium atoms in front of oxygen, chromium atoms replaced 

the NN nickel atoms existing in front of the oxygen atoms, with the increase in the number of NN 

chromium atoms. On comparing the diffusion in pure nickel with those of 1NN chromium (A) and 

2NN chromium (A), the activation energies were found to decrease from 1.44 eV to 0.76 eV along the 

O-O path and from 1.12 eV to 0.49 eV along the O-T-O path. Furthermore, with the 2NN chromium 

atoms existing at the back of the oxygen, the activation energies were found to decrease. When the 

NN nickel existed in front of oxygen were replaced by chromium (Table 4-1), the activation energies 

along the O-O and O-T-O path were calculated to be 1.89 eV and 1.45 eV, respectively, in case of 

3NN Cr_2 and 1.83 eV and 1.34 eV, respectively, in case of 4NN Cr. On analyzing the results from 

2NN Cr (B), 3NN Cr_2, and 4NN Cr cases it could be observed that, as the NN nickel atoms existed 

in front of oxygen atoms, the activation energies decreased from 1.98 eV to 1.83 eV along the O-O 

diffusion path and from 1.57 eV to 1.34 eV along the O-T-O diffusion 

 

4.2.2. Increase of NN chromium at the back of oxygen 

In case of increment of NN chromium atoms at the back of oxygen, the chromium atoms 

replaced the NN nickel atoms existing at the back of the oxygen, with the increase in the number of 

NN chromium atoms (Table 4-2). On comparing with pure nickel, 1 NN Cr (B) and 2 NN Cr (B), it 

could be observed that the activation energies increased from 1.44 eV to 1.98 eV along the O-O 

diffusion path and from 1.12 eV to 1.57 eV along the O-T-O diffusion pathway. Moreover, in case of 2 
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NN chromium atoms already existing in front of oxygen, the activation energies were found to 

increase. As the chromium atoms replaced the NN nickel atoms existing at the back of the oxygen, the 

calculated activation energies increased from 0.76 eV to 1.83 eV along the O-O diffusion path and 

from 0.49 eV to 1.34 eV along the O-T-O diffusion path. Since the replaced 3rd and 4th NN 

chromium atoms exist in the direction opposite to that of the oxygen diffusion, the diffusing oxygen 

atoms would be far from 3rd and 4th chromium atoms. However, the chromium has very strong 

oxygen affinity, thereby requiring higher energy for the oxygen to diffuse along the pathways. Finally, 

the activation energy for oxygen diffusion with 4NN chromium atoms is found to be higher than that 

of pure nickel.  
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4.3. Oxide analysis using in-situ Raman spectroscopy 

4.3.1. Reference Raman spectra for oxide powders 

 Figure 4-6 shows the measured Raman spectra obtained a black-colored NiO powder sample 

in comparison with Maslar et al.’s [25], Kim and Hwang’s work [26]. The reference Raman spectrum 

for NiO powder in this study measured at ca. 490 cm
-1

. This result is well matched with most intense 

green NiO spectrum of previous references. Figure 4-7 shows the measured Raman spectrum for 

Cr2O3 powder with 532nm radiation in comparison with Maslar et al.’s [22], Kim and Hwang’s work 

[26]. The spectrum of Cr2O3 power in this study exhibits the peaks at 608, 550, 340 and 300cm
-1

. The 

most intense peak obtained at 550 cm
-1

, and these results are well matched with these of reference 

literatures. Figure 4-8 shows the measured Raman spectra for the NiFe2O4 powder in comparison with 

the reference spectra reported in literature [23]. The most intense peaks were observed at ca. 704cm
-1

 

in this experiment. The measured Raman spectrum for NiFe2O4 powder agrees well with reference 

spectra reported in literature.  Finally, Figure 4-9 shows the measured Raman spectra for the NiCr2O4 

powder.  The Raman peak wavenumbers of the reference powder spectra care compared with those 

reported for NiCr2O4 powder. The reference spectrum measured in this study exhibited significant 

features at ca. 429, 509, 551, and 680 cm
-1

. Raman features of the reference powder spectra for these 

oxides show good agreements between the measurement in this study and literature data. 

 

4.3.2. In-situ Raman spectroscopy for as-welded dissimilar metal weld 

 

Figure 4-10 shows the in situ Raman spectra of the as-welded dissimilar metal weld interface 

in the simulated primary water environment at 300 °C for 50 h. The baseline correction of the Raman 

spectra was performed without any smoothing process. The Raman peaks at ca. 417 cm
-1

 observed in 

all the samples and a broad peak with low intensity observed at around 735–747 cm
-1

 could be 

attributed to the sapphire window of the immersion optics [26]. The high intense Raman peak for 
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boric acid was observed at 868 cm
-1

. Additionally, the peak at 550 cm-1 could be attributed to Cr2O3 

and that at 665 cm
-1

 represents Fe3O4. These peaks were continuously observed until 50 h, exhibiting 

high intensity. The peak of the iron-chromium spinel was observed as a low intensity peak at 684 cm-

1. After the completion of 15 h from the beginning of measurement, the peak intensity of the iron-

chromium spinel increases and continues to increase with measurement time. Several peaks can be 

considered to have originated from spinels such as nickel-chromium or nickel-ferrite. However, the 

signals of these peaks are weak and observed in the background of noise. Even the most intense peaks 

of nickel-chromium or nickel-ferrite spinel could not be observed at 512 cm
-1

 and 700 cm
-1

, 

respectively. 

 

4.3.3. In-situ Raman spectroscopy for thermally aged dissimilar metal weld 

 

Figure 4-11 shows the in situ Raman spectra of the thermally aged dissimilar metal weld 

interface in the simulated primary water environment at 300 °C for 50 h. Similar to the as-welded 

DMW, the Raman peaks corresponding to the sapphire window could be observed at 417 and 735–

737 cm
-1

, and the peak at 868 cm
-1

 could be attributed to boric acid in the water. The peaks attributed 

to iron-chromium spinel were observed at 548, 636, and 684cm
-1

 with very low intensity close to 

noise. The peaks were continuously observed even increase the exposure time at same positions. 

Therefore, it can be consider as peaks of iron chromium spinel not noise. The peaks corresponding to 

the nickel-iron spinel was observed at 485 cm
-1

 (strong peak) and 700 cm
-1

. In addition, the Raman 

peak at 512 cm
-1

 was attributed to the nickel-chromium spinel. As the time was increased from 1 to 50 

h, the peak intensity of nickel-chromium observed at 512 cm
-1

 tended to decrease, while the peak 

intensity of the nickel-iron spinel at 700 cm
-1

 was increased.  
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4.3.4. Ex-situ characteristic 

To compare the in situ measured results, an ex situ observation was conducted using SEM, 

TEM, EDS for as-welded and thermally aged DMW. 

Figure 4-12 shows the SEM images and EDS profile results for the cross-section of the oxides 

on the as-welded DMW interface. The SEM analysis indicates that the thickness of the oxide layer on 

the A152 surface is approximately 0.6 μm or less. However, an approximately 1-μm-thick oxide layer 

was observed on the low alloy steel surface. The elemental analysis of the oxide on the A152 surface, 

as determined from the EDS profile, indicates that the alloy mainly composed of Ni and Cr, while the 

LAS mainly composed of Fe. In the case of thermally aged DMW, the thickness of the oxide layer on 

the A152 surface is found to be approximately 0.6 μm and that of low alloy steel is approximately 

1.5–1.8 μm. The oxide layers of the thermally aged DMW are thicker than those of the as-welded 

DMW. The oxide mainly composed of Ni, Cr, and Fe on the surfaces of A152 and A533Gr.B (Figure 

4-13).  

Figure 4-14 shows the TEM images and EDS mapping results for the oxides on the as-wleded 

DMW interfaces. A very thin oxide layer was observed on the A152 surface, while particle type 

oxides observed on the A533Gr.B. The EDS results show that the components for those oxide layers 

are Ni and Cr for A152 and Fe for A533Gr.B, In the case of thermally aged DMW, particle type oxide 

layer observed not only A533Gr.B but A152 surfaces. Furthermore, the EDS results show that the 

oxides were composed of Ni and Fe as shown in figure 4-15. 

Based on these results, it can be considered that Ni and Cr in A152 diffuse to A533Gr.B, 

while Fe in A533Gr.B diffuses to A152. The measured region for the EDS is only 20–30 μm away 

from the interface line. Therefore, the in situ measured regions include the regions where ex situ EDS 

measurements were conducted. 
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TABLE 4-1. Summary of the calculated results as increasing of NN Cr atoms in front 

of oxygen. 

  

 

 

 

 n NN Cr: The number of nearest-neighbor (NN) chromium atoms for oxygen 

 A, B : the NN chromium atoms existing in front of oxygen and at the back of oxygen, respectively. 

  3NN Cr_2: Two NN chromium atoms existing at the back of oxygen and the one exiting in front of 

oxygen 

 

TABLE 4-2. Summary of the calculated results as increasing of NN Cr atoms at the back 

of oxygen. 

 

 

 

 

 n NN Cr: The number of nearest-neighbor (NN) chromium atoms for oxygen 

 A, B : the NN chromium atoms existing in front of oxygen and at the back of oxygen, respectively. 

  3NN Cr_1: Two NN chromium atoms, one existing in front of oxygen and the other exiting at the 

back of oxygen 

 

 

 

Pure Ni 

[56] 

 

1NN Cr 

(A)[56] 

2NN Cr 

(A) 

2NN Cr 

(B) 
3NN Cr_2 4NN Cr 

O O OTO O O OTO O O OTO O O OTO O O OTO O O OTO 

1.44 1.12 0.93 0.71 0.76 0.49 1.98 1.57 1.89 1.45 1.83 1.34 

 

Pure Ni 

[56] 

 

1NN Cr  

(B) 

2NN Cr 

(B) 

2NN Cr 

(A) 
3NN Cr_1 4NN Cr 

O O OTO O O OTO O O OTO O O OTO O O OTO O O OTO 

1.44 1.12 1.61 1.23 1.98 1.57 0.76 0.49 1.25 0.80 1.83 1.34 
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Figure 4-1 Peak integration using IGOR 
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Figure 4-2 Integrated CTR data for Ni(110)/NiO-helium structure 
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(a) 

 

 

 

 

(b) 

Figure 4-3. The schematic diagram of (a)thin film cell and (b) real picture of thin film cell on 

the APS facility used in this study. 
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Figure 4-4 Integrated CTR data for Ni(110)/NiO-water structure  
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Figure 4-5. Energy of oxygen transport calculated by NEB method for the Ni-Cr binary alloy 

system, for one nearest-neighbor(NN) Cr atom, (a) the Cr atom exist in front of 

oxygen (1NN Cr (A)) [56] and (b) at the back of oxygen (1NN Cr (B)), for two 

NN Cr atoms, (c) the Cr atoms exist in front of oxygen (2NN Cr(A)) and (d) at the 

back of oxygen (2NN Cr (B)), for three NN Cr atoms, (e) two Cr atoms exist in 

front of oxygen and the other exist at the back of oxygen (3NN Cr_1) and (f) two 

Cr atoms exist at the back of oxygen and the other exist in front of oxygen (3NN 

Cr_2) and (g) four NN Cr atoms. 
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Figure 4-6. Measured Raman spectra for the NiO powder exited with 532nm laser 
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Figure 4-7. Measured Raman spectra for the Cr2O3 powder exited with 532nm laser 
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Figure 4-8. Measured Raman spectra for the NiFe2O4 powder exited with 532nm laser 
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Figure 4-9. Measured Raman spectra for the NiCr2O4 powder exited with 532nm laser 
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Figure 4-10. In situ Raman spectra of as-welded DMW interface at 300 °C for 50 h in simulated primary water 

condition 
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Figure 4-11. In situ Raman spectra of thermally aged DMW interface at 300 °C for 50 h in simulated primary 

water condition 
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(a) SEM image of oxide film of DMW interface on A152 region 

 

 

(b) SEM image of oxide film of DMW interface on A533Gr.B region 

A152 

A533Gr.B 



66 

 

 

(c) EDS profiles of oxide film of DMW interface on A533Gr.B region 

 

(d) EDS profiles of oxide film of DMW interface on A152 region 

Figure 4-12 SEM images and EDS profiles of the oxide films on as-welded DMW interface region between         

   A533Gr.B and A152  
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(a) SEM image of oxide film on thermally aged DMW interface of A152 region 

 

     

 

(b) SEM image of oxide film on thermally aged DMW interface of A533Gr.B region 

 

10μm 
A533Gr.B 

10μm 

A152 
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(c) EDS profiles of oxide film on thermally aged DMW interface of A152region 

 

(d) EDS profiles of oxide film on thermally aged DMW interface of A533Gr.B region 

 

Figure 4-13. SEM images and EDS profiles of the oxide films on thermally aged DMW interface region  

    between A533Gr.B and A152 
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(a) 
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(b) 

 

Figure 4-14. TEM images and EDS profiles of the oxide films on as welded DMW interface region between (a) 

    A152 and (b) A533Gr.B 

1μm A533Gr.B 
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(a) 
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(b) 

 

Figure 4-15. TEM images and EDS profiles of the oxide films on thermally aged DMW interface region     

    between (a) A152 and (b) A533Gr.B 
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V. Discussion 

5.1. Analysis of measured X-ray reflectivity data  

Before analysis of measured X-ray reflectivity data, the data quality can be evaluated. The 

acquired data shows the very high quality even in low intensity reason. Refer to literatures [12, 77], 

CTR measurements were performed only for NiO(111) single crystal or Ni(111) and the measured 

data were available to estimate the atomistic structure of NiO(111) only. Comparing the Medway et al. 

work [12] with results in this study as shown in figure 5-1, they measured the CTR for Ni(111) in 

KOH solution with 10
-1

~10
2
 intensity range and there are no data point below 10

-1 
intensity. While the 

intensity range of the CTR data in this study is from 10
-4

 to 10
1
, and the several data points in low 

intensity region(<10
-1

)with low error were measured. The data in low intensity region contain key 

information of interface structure. For this reason, the interface structure can be defined not only NiO-

liquid also Ni/NiO. 

For the data analysis, set up the structure factors and fitting procedure were conducted. Firstly, 

setting the structural model for the test specimen was performed. Figure 5-2 shows the Specular X-ray 

reflection from a stack of unit cells. The X-rays are reflected from a stack of unitcells consisting of Ni 

layers and NiO layers on the Ni substrate. The total intensity is proportional to the square of the sum 

of structure factors for each layer. The structure factor is defined as  

 

      =        +  in e f  e +      p   𝑠                  (5-1) 

 

Where the FucFctr is structure factor for substrate and Finterface is structure factor of nickel layer and 

layered nickel oxide layer. The Famorphous layer is structure factor for amorphous nickel oxide layer. 

The unit cell structure factor for specular X-ray reflectivity is known and given by  

 

   = ∑   𝑐[ ] ∙ 𝑓 𝑐[ ] ∙ 𝑒
(−1/2∙  𝑐[ ]∙ 2) ∙ 𝑒(𝑖∙ 𝑁 ∙𝑟 𝑐[ ]∙ )𝑁 𝑐

  0        (5-2) 

 

where the   𝑐[ ] is electron occupancy of Kth atom, 𝑓 𝑐[ ] is scattering factor for kth atom and 

thermal displacement of kth atom is   𝑐[ ]. The position of kth atom is also contained as 𝑟 𝑐[ ] and 

dNi is atomic separation distance of nickel.  

 The structure factor of Fctr is defined as follow 

 

    =  /( − 𝑒𝑖∙ ∙ 𝑁 )                          (5-3) 
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Therefore, the structure factor of substrate is multiply the structure factor of unit cell with structure 

factor of CTR 

 The structure factor of interface is sum of surface and oxide layer. That is,  

 in e f  e =  s  f +   x                          (5-4) 

The structure factor of surface and oxide can calculate using follow equations 

 

 s  f = ∑  𝑠 𝑟𝑓[ ] ∙ 𝑓𝑠 𝑟𝑓[ ] ∙ 𝑒
(−1/2∙     [ ]∙ 2) ∙ 𝑒(𝑖∙ 𝑁 ∙𝑟    [ ]∙ )𝑁    

         (5-5) 

 

  x = [∑   𝑥[ ] ∙ 𝑓 𝑥[ ] ∙ 𝑒
(−1/2∙   [ ]∙ 2) ∙ 𝑒(𝑖∙ 𝑁  ∙𝑟  [ ]∙ )𝑁  

   ] ∙ 𝑒(𝑖∙ ∙    )    (5-6) 

 

Where, the Nsurf = 3 and Osurf and Oox are electron occupancy of kth atom of surface and oxide, 

respectively. The dnio is distance between Ni and oxygen and fsurf and fox is scattering factor for surface 

and oxide layer.  

 The structure factor for amorphous layer is defined as follows 

 

  1 = 𝑁 1𝑓 1 ∙ 𝑒 −
 

2
∙( ∙ 0 )

2 ∙ 𝑒 𝑖∙ ∙  𝑠1                   (5-7) 

  2 = 𝑁 2𝑓 2 ∙ 𝑒 −
 

2
∙( ∙ 02)

2 ∙ 𝑒 𝑖∙ ∙  𝑠2                   (5-8) 

 

Where Nm1 and Nm2 are number of molecule of layer 1 and 2, and  01 and  02 are width of layer 1 

and 2, respectively. The positions of the layer are defined as pos1 and pos2. Therefore, the structure 

factor for amorphous layer can defined as summation of F1l and Fl2 

 

    𝑟    𝑠 =   1 +   2                         (5-9) 

 

 After setting up the all structure factors the least square fitting were performed to find best 

value for all parameters. The initial values for all parameters were summarized in Table 5-1. The 

fitting were performed by IGOR software. The fitting results are shown in Figure 5-3 and the 

parameters after fit summarized in table 5-2.   
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5.2. Atomistic structure of Ni(110)/NiO and water effect  

The relationship between △Q and distance is shown in eq. (5-10). 

△Q = n2π/d                             (5-10) 

Using eq. 5-10 and fitted parameters, the changes in the position of atoms and thickness of 

layers can be analyzed. According to the fitted results, slightly stressed Ni and NiO layer about 5Å  

thick were formed on the relaxed Ni layer, and the top layer would be amorphous NiO layer with 13Å  

thick. Figure 5-4 shows the illustration of the atom position and thickness of each layer.  

In order to analysis the water effect, structure factor of water layer added in to the total 

structure factor Ftotal. The structure factor of water can be written as eq. (5-11) 

 𝑤𝑎𝑡𝑒𝑟 = 𝑓𝑤𝑎𝑡𝑒𝑟 ∙ 𝑒
{−

 

2
∙( ∙ 0)

2}
/ [ − 𝑒

{−
 

2
∙( ∙ 𝑏𝑎 )

2}
∙ 𝑒𝑖∙ ∙𝑐𝑤]            (5-11) 

where  0 is interpreted as the vibration amplitude of the water layer, and  𝑏𝑎𝑟⁡is a parameter that 

specifies how quickly the vibration amplitude increases for successive layer into the fluid. cw is 

separation distance of Gaussian peaks. This expression shows that the  0 acts as an overall Debye-

Waller factor, as it would for any atom in the structure factor calculation.  

 Figure 5-5 shows the fitted result for CTR data from water injection and all fitted parameters 

summarized in Table 5-3. As shown in figure 5-5, the curvature features within middle Q range which 

showed inNi(110)/NiO-helium results, were disappeared. There are many possibilities to fit the data 

due to the absence of data in middle Q range. The curvature features related the atomic structure of 

middle layer of the structure or interface. The disappearance of the curvature in the middle range only 

can explained through changes in atomic position at middle layers or interface. It can be consider that 

the water affects the atomic structure of middle layers or interface. Generally, the water affects only 

few top layers not middle layer but in this study, the water affects the middle layers. In order to figure 

out the reason, characterization of top oxide layer is very important. Unfortunately, the 

characterization had not been performed before and after X-ray reflectivity measurements. According 

to the Mitchell and M.J. Graham work [78], the condition of the oxide can be estimated whether 

single crystal or polycrystalline. They found that single crystal oxide converts to polycrystalline oxide 

as decreasing oxygen pressure at a particular temperature as shown in figure 5-6. The sample 

temperature at the oxide were formed on the surface is would be 200~250°C and the oxygen gas 

injected at 10
-7

torr pressure. Therefore, the oxide on the top surface of the sample would be 

polycrystalline NiO at that temperature and pressure conditions. 
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5.3. Role of chromium for the oxygen diffusion in Ni and Ni-Cr binary alloy 

The results showed different tendency depending on the position of the NN chromium atoms. 

In case of 1NN chromium atom existing in front of oxygen (figure 4-5 (a)), the calculated activation 

energies for diffusion of oxygen were 0.93 eV and 0.71 eV along the O-O and O-T-O diffusion 

pathways, respectively22. In case of 1NN chromium atom existing at the back of oxygen (figure 4-5 

(b)), the calculated activation energies were 1.61 eV and 1.23 eV along the O-O and O-T-O pathways, 

respectively. In case of 2NN chromium atoms existing in the front of oxygen, the activation energies 

were calculated to be 0.76 eV and 0.49 eV along the O-O path and O-T-O diffusion paths, respectively. 

Likewise, with 2NN chromium atoms existing at the back of the oxygen, the calculated energies were 

1.98 eV and 1.57 eV as shown in figure 4-5 (d). This shows that, despite the same number of NN 

chromium atoms, the activation energies varied with variations in the relative position of chromium 

atoms. 

According to the framework, the activation energies of oxygen diffusion in pure Ni were 

found to be 1.44 eV for O-O path and 1.12 eV for O-T-O path [56].Comparing the calculated 

activation energies for pure nickel with that of the 1NN chromium cases, the observed variation trend 

can be summarized as follows. In case of 1NN chromium atom existing in front of the oxygen, the 

activation energies decreased from 1.44 eV to 0.76 eV along the O-O path, and from 1.12 eV to 0.49 

eV along the O-T-O path. On contrary, when the 1NN chromium atom existed at the back of the 

oxygen, the activation energies increased from 1.44 eV to 1.61 eV along the O-O path, and from 1.12 

eV to 1.23 eV along the O-T-O path. This could be attributed to factors such as higher oxygen affinity 

of chromium, smaller van der Waals radius and fewer numbers of electrons in chromium (128 pm 

radius and 24 electrons) compared to nickel (165 pm radius and 28 electrons).  

In particular, the oxygen affinity could be explained based on Gibbs free energy for the 

formation of oxides. The standard Gibbs free energy for the formation of Cr2O3 at 773K is -927.7 

KJ/mol, while that of NiO is reported to be -168.9 KJ/mol [79]. This clearly indicates that chromium 

could easily form an oxide layer than nickel. When these chromium atoms exist in front of the oxygen, 

the chromium atoms tend to pull the oxygen atom because of their higher oxygen affinity. 

Additionally, the diffusion space along the path of oxygen diffusion between nickel and chromium or 

chromium and chromium is larger than that between nickel and nickel. Furthermore, when the oxygen 

atoms come closer, the smaller number of electrons in chromium causes a lower repulsive force than 

nickel. This accounts for the lower activation energy in chromium than that of pure nickel.  

On analogy, when oxygen is diffused with the NN chromium atoms at the back, the activation 

energies are higher than that of pure nickel. This is because, the high oxygen affinity of chromium 
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atoms tend to pull the oxygen atoms, requiring higher energy for the diffusion of oxygen along 

chromium than in nickel. In other words, the chromium atoms increase the activation energy for the 

diffusion of oxygen. Table 4-1 and 4-2 show the summary of the calculated activation energies as 

increasing of NN chromium atoms in front of oxygen or at the back of oxygen, respectively. 

In case of increment of NN chromium atoms in front of oxygen, chromium atoms replaced the 

NN nickel atoms existing in front of the oxygen atoms, with the increase in the number of NN 

chromium atoms. On comparing the diffusion in pure nickel with those of 1NN chromium (A) and 

2NN chromium (A), the activation energies were found to decrease from 1.44 eV to 0.76 eV along the 

O-O path and from 1.12 eV to 0.49 eV along the O-T-O path. Furthermore, with the 2NN chromium 

atoms existing at the back of the oxygen, the activation energies were found to decrease. When the 

NN nickel existed in front of oxygen were replaced by chromium (Table 4-1), the activation energies 

along the O-O and O-T-O path were calculated to be 1.89 eV and 1.45 eV, respectively, in case of 

3NN Cr_2 and 1.83 eV and 1.34 eV, respectively, in case of 4NN Cr. On analyzing the results from 

2NN Cr (B), 3NN Cr_2, and 4NN Cr cases it could be observed that, as the NN nickel atoms existed 

in front of oxygen atoms, the activation energies decreased from 1.98 eV to 1.83 eV along the O-O 

diffusion path and from 1.57 eV to 1.34 eV along the O-T-O diffusion path.  

In case of increment of NN chromium atoms at the back of oxygen, the chromium atoms 

replaced the NN nickel atoms existing at the back of the oxygen, with the increase in the number of 

NN chromium atoms (Table 4-2). On comparing with pure nickel, 1 NN Cr (B) and 2 NN Cr (B), it 

could be observed that the activation energies increased from 1.44 eV to 1.98 eV along the O-O 

diffusion path and from 1.12 eV to 1.57 eV along the O-T-O diffusion pathway. Moreover, in case of 2 

NN chromium atoms already existing in front of oxygen, the activation energies were found to 

increase. As the chromium atoms replaced the NN nickel atoms existing at the back of the oxygen, the 

calculated activation energies increased from 0.76 eV to 1.83 eV along the O-O diffusion path and 

from 0.49 eV to 1.34 eV along the O-T-O diffusion path. Since the replaced 3rd and 4th NN 

chromium atoms exist in the direction opposite to that of the oxygen diffusion, the diffusing oxygen 

atoms would be far from 3rd and 4th chromium atoms. However, the chromium has very strong 

oxygen affinity, thereby requiring higher energy for the oxygen to diffuse along the pathways. Finally, 

the activation energy for oxygen diffusion with 4NN chromium atoms is found to be higher than that 

of pure nickel. 

The highest activation energy for each diffusion path is seen in the case of 2NN Cr (B). The 

calculated activation energy was found to be 1.91 eV along the O-O path and 1.57 eV along the O-T-

O path as shown in Figure 4-5(d). They were obtained by the presence of two nickel atoms in the 

middle of diffusion path, with the chromium atoms existing at the back position to the direction of 
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oxygen diffusion. Such a configuration means that the space for oxygen diffusion is similar to that of 

pure nickel. This implies that the oxygen needs higher energy to diffuse. These 2NN Cr (B) results 

provide detailed explanation on the effects of oxygen affinity and diffusion space on oxygen diffusion, 

in Ni-Cr binary alloy. 

The diffusion coefficient can be classically expressed in terms of Arrhenius law, as shown in 

the following equation: 

D = ⁡𝐷0𝑒
−𝑄

 𝑇⁄
                             (2-3) 

,where D0 is the temperature-independent pre-exponential factor, Q is the activation energy, 

and k is the Boltzmann constant. According to this equation, higher activation energy implies lower 

diffusion coefficient. Referring to the work of Chattopadhyay and Wood [80], the oxygen diffusion 

coefficient at 1000 °C was calculated to be 2.4 × 10
-9

 cm
2
/s and 1.74 × 10

-11
 cm

2
/s in nickel and Ni-Cr 

(12 wt%) binary alloy, respectively. On comparing these diffusion coefficients, it could be confirmed 

that Ni-Cr binary alloy has higher activation energy than that of pure nickel.  

The experimental activation energy of oxygen in Ni-Cr binary alloy was found to be 1.69 

eV35. It has been reported that, the Ni-Cr binary alloy forms FCC structure when chromium is less 

than 20 wt% [81]. The chromium atoms gather and distribute in the nickel matrix. Consequently, the 

oxygen diffusion in Ni-Cr binary alloy is expected to be very similar to the case of 4NN Cr analyzed 

in this study, in which case, the activation energies were calculated to be 1.81 eV and 1.34 eV along 

the O-O and O-T-O diffusion path, respectively. The activation energy obtained from experimental 

data was found to be located in the middle range of results from 4NN Cr case. Hence, the results 

obtained from this theoretical study were found to be in good agreement with the experimental values. 

It seems evident that the activation energy increases with the inclusion of chromium atoms. Hence, it 

is obvious that the chromium atoms act as a barrier for the diffusion of oxygen.  

However, in Ni-Cr binary alloy, most of the oxidation problems occur along the grain 

boundary. Consequently, first principles studies on the calculation of grain boundary structure have 

been reported recently [82]. These studies primarily calculated the structure and bulk energy at grain 

boundaries. However, understanding the oxidation problems along the grain boundary requires study 

on atomic position with time, in addition to the calculated energy. Furthermore, grain boundaries can 

be of several types depending on the formation angle. This demands consideration of more number of 

atoms that could simulate the oxidation phenomenon at the grain boundaries. Therefore, this model 

needs to be scaled up using molecular dynamics in order to model the diffusion at the grain 

boundaries. The parameters obtained from the first principles studies will form the basis for the 
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molecular dynamics studies in the near future. Hence we believe that, the outcome of this study is 

expected to act as a cornerstone to link first principles and molecular dynamics study of SCC. 

Accordingly, our future research will focus on calculating the grain boundary diffusion in metal and 

alloy by linking the first principles and molecular dynamics methods. 
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5.4. Aging effect on the oxide formation at the nickel base alloy/low alloy 

steel dissimilar metal weld interface 

The results obtained by in situ Raman spectroscopic measurements match well with the data 

reported in the literature. The minor variations observed between the data obtained in this study and 

the reported data could be attributed to the difference in the incident laser wavelength, test 

temperature, and pressure on the Raman signal of the two data [83, 84]. In general, temperature and 

pressure cause isotropic and anisotropic deformations in molecules and crystals, respectively. 

Variations of wave number as the temperature or pressure strongly depend on the structural phase 

transitions.  

Based on the extensive analysis, the possible chemical reactions involved in the phase 

formation of oxide and spinel from the Ni-Cr-Fe ternary system in water are described as follows. 

 

Ni
2+

 +H2O → NiO + 2H
+
                            (1) 

Fe 
3+

+ H2O → 3FeO
+
 2H

+                                             
(2) 

2Cr𝐎𝟒
𝟐− + 5H2O + 6e → Cr2O3 + 10OH

-                               
(3) 

 Fe+2H2O→Fe
2+

+2OH
-
+H2                            (4) 

     Fe
2+

+2OH
-
→Fe(OH)2  (Soluble)                      (5) 

Fe(OH)2→Fe3O4 (Magnetite)+H2+H2O                  (6) 

3Fe
2+

 + 4H2O → Fe3O4(s) + 6H
+
 +H2(g)                    (7) 

2Fe
2+

+ 3H2O → Fe2O3(s) +4H
+
 + H2(g)                    (8) 

NiO + Fe2O3 → NiFe2O4                             (9) 

NiO + Cr2O3 → NiCr2O4                                            (10) 

FeO + Cr2O3 → FeCr2O4                                            (11) 

 

Figure 5-7 illustrates the potential-pH diagram for Ni, Cr, and Fe species for the Ni-Cr-Fe 

ternary system in water at 300 °C. The red circle in the figure represents the test condition in this 
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study. Calculations of the electro-chemical potential-pH diagrams for Ni, Cr, and Fe species in the Ni-

Fe-Cr ternary system were performed using the commercial computer program HSC 5.0 [24]. The 

calculation allows the formation of various stoichiometric spinels. According to the potential-pH 

diagram, NiCr2O4 and FeCr2O4 can be formed in this condition.  

In the case of the as-welded DMW, Cr2O3 and Fe3O4 peaks were continuously observed in the 

in situ Raman spectra measurement. Although, the peak intensity of the iron-chromium spinel is very 

low after 1 h of exposure to temperature, the peak intensity increases with increase in the test time. In 

general, peak intensity is related to the amount of the material. Therefore, the observed increase in the 

peak intensity with test time could be related to the continuous formation of iron-chromium spinel. 

The ex situ Raman spectra also show peaks corresponding to the magnetite and iron-chromium spinel. 

According to the ex situ EDS results, the oxide components after the in situ Raman spectra 

measurement of the as-welded A152 include Ni and Cr, while that of A533Gr.B include Fe. According 

to the previously reported studies [23, 26], either Cr2O3 or Fe3O4 was first observed during the in situ 

Raman spectroscopic analysis of stainless steel or nickel-based alloy under heating. This could be 

attributed to the fact that these oxides have low Gibbs free energy to form an oxide. Furthermore, as 

Cr2O3 or Fe3O4 meet Cr or Fe ions, new oxide scale grows up on a previous oxide scale. During the 

welding process, a dilution region, where Ni and Cr diffused from A152 to LAS and Fe diffused from 

LAS to A152, was formed at the interface of DMW [69]. Therefore, it is possible that the formation of 

the iron-chromium spinel and nickel-iron spinel on the LAS or A152 surface could occur.  

In the case of the thermally aged DMW, various spinel peaks, namely iron-chromium spinel, 

nickel-chromium and nickel-iron spinel were observed through in situ Raman measurements. In case 

of as-welded specimen, the peaks of Cr2O3 and Fe3O4 were detected at 300°C and the peaks for Ni-Cr 

or Fe-Cr spinels were detected after 15h or longer. For thermally aged specimen, however, the peaks 

of NiCr2O4 and NiFe2O4 were detected first in an hour and 15 hours, respectively. The change in the 

intensity of these peaks was observed. It is considered that the oxide layers of Cr2O3 or Fe3O4 were 

formed before the temperature reaching 300℃. And, spinel oxides seemed to be formed on them 
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when the measurement was performed at 300℃. As the time increases, the peak intensity of the 

nickel-chromium spinel decreases, while that of the nickel-iron spinel increases. Consequently, the 

nickel-chromium spinel formed on the surface of metal oxides, which subsequently meet the 

dissolved nickel ion from the base metal to form the nickel-iron spinel. The EDS results show that 

oxide films on the thermally aged DMW were composed of Ni, Fe, and Cr. Also, the ex situ Raman 

observation of the oxide films at the interface indicates the formation of nickel-iron oxide and iron-

chromium spinel.  

These differences can be caused by the diffusion-assisted chemical redistribution during 

thermal aging. The dilution region is originally created near the interface of the as-welded DMW 

because of the heat generated during the welding process. At the dilution region, Ni and Cr diffuse 

from A152 to A533Gr.B, while Fe diffuses from A533Gr.B to A152. The thermal aging assists these 

diffusion phenomena, which is confirmed by comparing the interface EDS profiles of the as-welded 

DMW and thermally aged DMW (Figure 5-8) [76]. The region of composition change is observed at 

the as-welded DMW interface, whereas it disappears for the thermally aged specimen, as shown in 

Figure 5-8 (a) and (b), respectively. Figure 5-8 (c) and (d) show the enlarged view of the interface, 

shown with a red box in Figure 5-8 (a) and (b). As evidenced from the Figure 5-8 (c) and (d), the 

composition gradient slopes for all elements of the as-welded DMW are steeper than those of the 

thermally aged DMW. It can be considered that the diffusion of Ni and Cr from A152 to LAS and that 

of Fe from LAS to A152 occur to a greater degree during thermal aging, compared to those in the as-

welded DMW. Therefore, it is reasonable to believe that the diffusion-assisted chemical redistribution 

around the DMW interfaces induces changes in the oxidation behavior. These results are illustrated in 

Figure 5-9, which signifies the difference between the oxides formed at the as-welded DMW and 

thermally aged DMW interfaces. In the as-welded DMW interface, spinel of Fe-Cr or chromium oxide 

mixture is formed on Cr2O3 and Fe3O4, at the surface of A152 and A533Gr.B, respectively. On the 

other hand, at the thermally aged DMW interface, the Fe3-xCrxO4 layer, where the Ni-Cr spinel grew, 
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is formed either on the metal oxide or base metal. This is because of the chemical redistribution 

facilitated by thermal aging, which finally led to the continuous growth of crystalline NiFe2O4. 

According to M. Sennour et. al. studied the oxide films at the surface of A690 in PWR 

primary water environments by TEM [85]. The oxide layer was divided in two layers. The internal 

layer was composed of continuous spinel layer such as Ni(1-x)FexCrO4. Nodules of Cr2O3 were present 

at the interface between this spinel oxide and the alloy. The external layer is composed of large 

crystallites as spinel structure rich in iron(Ni(1-z)Fe(2+z)O4). And F. Wang [86]. conducted in situ Raman 

spectroscopy for films formed on A600 and A690 as a function of electro-chemical potential(ECP) at 

320°C. A600 shows that the oxide films formed on the surface changed with ECP. A film of Cr2O3 

forms at potential which A600 is susceptible to SCC. At potentials below the SCC maximum, the 

spinel oxide is most likely FeCr2O4. The films that form on A690, which is resistant to SCC in 

primary water, composed of mixture of Cr2O3 and spinel M3O4 at all potential ranges. According to 

these results, the oxide films on the as-welded DMW surface which were composed of Cr2O3 and 

M3O4 spinel mixture, can be considered that have resistance to SCC. While, oxide films on aged 

DMW surface were not. . According to the first-principles calculation results, the chromium or 

chromium oxide can take a role of diffusion barrier, and the chromium atoms in nickel layer 

make good condition for internal oxidation, and from the in-situ Raman results, the oxide films 

on the thermally aged DMW are manly Ni-rich spinels without chromium oxide. That is, the 

oxide films on the DMW easily occurs the internal oxidation phenomena and it can result in the 

decrease the SCC resistance. 
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TABLE 5-1. Initial values for all parameters 

 Variable sin Program Symbol Best value 

 d_spacing dNi 1.247 

 d_spacing_NiO dNiO 1.27 

for i Nuc 1 

unit cell allatom_occupancy[i] Ouc[k] 1 

and CTR scatFact_all[i] fuc[k] 28.3567 

 allatom_u[i] uuc[k] 0.01 

 atom_frac_pos[i] ruc[k] 0 

 sumi Nsurf 3 

 ManualAdd_occupancy[sumi] Osurf[k] 1 

for ManualAdd_scaFact[sumi] fsuf[k] 28.3567 

surface ManaualAdd_u[sumi] usurf[k] 0.01 

 ManualAdd_pos[sumi] rsurf[k]  

 ManualAdd_pos[0] rsurf[0] 0 

 ManualAdd_pos[1] rsurf[1] 1 

  ManualAdd_pos[2]  rsurf[2] 2 

 TManualAdd_occupancy[sumi2] Oox[k]  

 TManualAdd_occupancy[0] Oox[0] 0.9 

 TManualAdd_occupancy[1] Oox[1] 0.7 

 TManualAdd_occupancy[2] Oox[2] 0.35 

 TManualAdd_occupancy[3] Oox[3] 0.5 

 TManualAdd_occupancy[4] Oox[4] 0.15 

 TManualAdd_occupancy[5] Oox[5] 0.5 

 TManualAdd_occupancy[6] Oox[6] -0.05 
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TABLE 5-1. Initial values for all parameters (con’t) 

 Variable sin Program Symbol Best value 

 
Sumi2 Nox 7 

 TManualAdd_scaFact[sumi2] fox[k]  

 TManualAdd_scaFact[0] fox[0] 8.00115 

 TManualAdd_scaFact[1] fox[1] 28.3567 

 TManualAdd_scaFact[2] fox[2] 8.00115 

for TManualAdd_scaFact[3] fox[3] 28.3567 

Oxide TManualAdd_scaFact[4] fox[4] 8.00115 

 TManualAdd_scaFact[5] fox[5] 28.3567 

 TManualAdd_scaFact[6] fox[6] 8.00115 

 TManaualAdd_u[sumi2] uox[k]  

 TManaualAdd_u[0] uox[0] 0.01 

 TManaualAdd_u[1] uox[1] 0.01 

 TManaualAdd_u[2] uox[2] -0.09 

 TManaualAdd_u[3] uox[3] 0.01 

 TManaualAdd_u[4] uox[4] -0.09 

 TManaualAdd_u[5] uox[5] 0.01 

 TManaualAdd_u[6] uox[6] -0.09 
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TABLE 5-2. Parameters after fitting 

 value stand. 

Dev.(±) 

frac 

#mole_1 6.59986 1.59 24.09142012 

#mole_2 24.294 2.92 12.01942867 

offset_1 7.94323 0.0942 1.185915553 

sig_0_2 2.4867 0.0749 3.012023968 

offset_2 1.5034 0.0355 2.361314354 

sigma_1 2.6195 0.107 4.084748998 

position0 0.73418 0.0144 1.961371871 

position1 1.199 0.00633 0.52793995 

position2 2.0545 0.00607 0.295449014 

position3 2.6751 0.0145 0.542035812 

position4 3.2916 0.00857 0.260359703 

position5 4.0604 0.00588 0.144813319 

occupancy0 0.57478 0.00894 1.55537771 

occupancy1 0.79654 0.0283 3.552866146 

occuancy2 0.74931 0.0154 2.05522414 

occupancy3 0.3787 0.0163 4.304198574 

occupnacy4 0.25987 0.0121 4.656174241 

occupnacy5 0.21249 0.00639 3.007200339 
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TABLE 5-3. Parameters after fitting for CTR data for Ni(110)/NiO-water 

 value stand. 

Dev.(±) 

frac 

sigma_zero_la 3.3206 0.917 27.61549 

sigma_zero_la_2 2.3112 0.757 32.75355 

offset_water1_2 1.5754 0.23 14.59947 

num_water_molec_2 23.571 2.68 11.3699 

offset_water2 11.952 0.794 6.64324 

offset_water1 7.5611 0.697 9.218235 

sigma_zero_ar 1.2347 0.469 37.98494 

num_water_molec 12.561 9.21 73.32219 

Pos[0] 0.73935 0.0573 7.750051 

Pos[1] 1.496 0.0476 3.181818 

Pos[2] 2.4866 0.0403 1.620687 

Pos[3] 3.4182 0.0605 1.769937 

Pos[4] 4.3568 0.0696 1.597503 

occupancy[0] 0.82726 0.13 15.71453 

occupancy[1] 0.97749 0.18 18.41451 

occupancy[2] 0.88047 0.171 19.42145 

occupancy[3] 0.53325 0.28 52.5082 

occupancy[4] 0.47629 0.139 29.1839 
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Figure 5-1. The specular (0,0,L) CTR data for the Ni(111) crystal in 1M KOH [12] 
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Figure 5-2. The specular X-ray reflection from a stack of unit cells 
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Figure 5-3. The fitting result for Ni(110)/NiO-helium structure 

 

  

O : Measured data 

O : Fitting line 



91 

 

 

 

 

 

 

Figure 5-4. Illustration of atom position and thickness of the each layer after fitting  
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Figure 5-5. The fitting result for Ni(110)/NiO-water structure 

  

O : Measured data 

O : Fitting line 
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Figure 5-6. Stability regions of single crystal and polycrystalline NiO for oxidation stages 2 and 3 as observed 

by RHEED. S. single crystal only; s. mostly single crystal, p, mostly polycrystalline; P, polycrystalline only [78] 
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(b) 

 

 

 

 

 

 

(c) 

 

 

Figure 5-7. Potential-pH diagram for Ni-Cr-Fe ternary system in water at 300 °C for (a) Nickel, (b) Chromium 

and (c) Iron, the red circles on the diagrams represent the test condition in this study 
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(a)                                         (b) 

 

 

(c)                                            (d) 

 

Figure 5-8. EDS profiles across the interface region of A533Gr.B and Alloy 152 of (a) as-welded and (b) 

thermally aged DMW interfaces [76] 
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(a) As-welded DMW                  (b) Thermally aged DMW 

 

 

Figure 5-9. Schematic illustration of the oxide layer formed at the interface of DMWs, as suggested by the in 

situ and ex situ analysis performed in this study 
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VI. Summary and conclusion 

The Synchrotron X-ray reflectivity performed on the Ni(110)/NiO-helium and Ni(110)/NiO-

water in order to investigate the atomistic structure change at the interface. To success the X-ray 

reflectivity measurement at low intensity region, surface treatment method was developed by 

mechanical-electrochemical polishing and sequence Ar sputtering/annealing. The surface treatment 

methods to the CTR measurements were confirmed to suitable for the CTR experiments. The CTR 

measurements were conducted for Ni(110)/NiO structure and for interface of Ni(110)/NiO-water. It 

was founded that the water can be change the lattice structure of Ni(110)/NiO-water interface.  

The atomistic diffusion of oxygen in Ni-Cr binary alloy were modeled and simulated that 

provides the fundamental insight into the role of chromium atom during the oxidation of nickel-based 

alloys which are extremely versatile in a wide range of application. In result, it has found that the high 

oxygen affinity of chromium tends to pulls the oxygen atoms, making it difficult for oxygen diffusion 

from chromium to nickel in nickel-based alloys and in turn leading to the high corrosion resistance of 

the alloys. However, the chromium atoms in nickel layer make good condition for internal oxidation 

phenomena. It is good evidence for the internal oxidation mechanisms in nickel base alloys. 

It is investigated that the oxidation behavior of the as-welded/thermally aged Ni-based 

alloy/low alloy steel DMW by analyzing the oxide film using in situ Raman spectroscopy. The in situ 

Raman analysis of the surface oxide was conducted at the interface region of the as-welded/thermally 

aged Ni-based alloy/low alloy steel DME heated to 300 °C. Furthermore, the ex situ EDS analysis 

was performed to gain further insight on the results obtained from the Raman spectroscopy. The 

combined understanding of the in situ and ex situ analyses revealed difference in the oxidation 

behavior between the as-welded and thermally aged DMW interfaces. The observed difference could 

be attributed to the diffusion-assisted chemical redistribution at the DMW interface facilitated by 

thermal aging.  

Referring to previous result of films formed on A600 and A690, the oxide films formed in 

thermally aged DMW showed the similarity to that of A600, and it can be considered that thermally 

aged DMW is relatively more susceptible to SCC occurrence than as-welded one. It can be consider 

that the internal oxidation phenomena occur easier on thermally aged DMW than on as-welded DMW. 

According to the first-principles calculation results, the chromium or chromium oxide can take a role 

of diffusion barrier, and the chromium atoms in nickel layer make good condition for internal 

oxidation, and from the in-situ Raman results, the oxide films on the thermally aged DMW are manly 

Ni-rich spinels without chromium oxide. That is, the oxide films on the DMW easily occurs the 

internal oxidation phenomena and it causes decrease the SCC resistance. 
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현, 도환, 우열, 대경, 준영, 장희, 웅빈아 힘들 때 마다 너희들과 기울이는 술 한잔이 무

엇보다 큰 힘이 되었어. 정말 고맙다.  

아버지 어머니, 두분 덕분에 잘 크고 바르게 성장했으며 행복을 느낍니다. 항상 사위 

걱정해주시는 장인어른, 묵묵히 사위 믿어주시는 장모님께도 감사 드립니다. 못난 오빠를 

항상 믿어주는 동생 진희, 친형처럼 대해주는 우리 처남. 항상 고마워. 항상 챙겨주셨던 

작은 아버지, 어머니, 큰고모, 작은고모. 공부하고 있으면 잘 하고 있는지 아버지처럼 와

서 봐주셨던 큰외삼촌, 작은외삼촌 내외분, 항상 맛난 것 사주셨던 우리 이모들 정말 감

사합니다. 마지막으로 함께 박사과정 공부중인 나의 사랑하는 아내. 시선. 자기 덕분에 

잘 마칠 수 있었어요. 앞으로도 같이 연구하는 학자로, 사랑하는 연인으로, 다정다감한 

친구로 늘 함께 합시다. 고맙고 사랑합니다. 

2014년 2월 
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