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Abstract 

 

Microorganisms often encounter a mixture of different carbon sources and therefore have control 

systems to selectively take up and metabolize those substrates that promise the best success in 

competition with other species through rapid growth. The aim of this thesis is to understand and 

eliminate carbon catabolite repression (CCR) in Escherichia coli for efficient utilization of multiple 

energy and carbon sources simultaneously. We studied a new CCR hierarchy that causes the 

preferential utilization of sugars (arabinose, galactose, glucose, mannose, and xylose) over a short-

chain fatty acid (propionate). Meanwhile, the native promoters of xylose catabolic genes and xylose 

transporter genes were replaced with synthetic constitutive promoters to construct an E. coli strain 

capable of co-metabolizing glucose and xylose by eliminating the CCR of xylose metabolism by 

glucose. We showed that such an approach can provide a potential to eliminate CCR. This knowledge 

will be valuable to help strain improvement strategies for the simultaneous consumption of sugar 

mixtures, leading to shorter fermentation time and higher substrate range and productivity. 
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Chapter 1 

General introduction 

  

 

Global warming and oil crisis cause the changes from existing petrochemical industry to biochemical 

industry. Lignocellulose is suitable raw material to such current of the world. It provides renewable 

sugar sources and is less expensive. Lignocellulosic hydrolysates contain mixtures of glucose, xylose, 

arabinose and small amount of galactose and mannose1,2. However, when they are used as carbon 

sources, Escherichia coli cannot utilize all sugars simultaneously but the strain preferentially uses 

glucose even though E. coli has metabolic pathways corresponding to lignocellulosic sugars. In other 

words, glucose represses the metabolism of other sugars in the cell. Such phenomenon is carbon 

catabolite repression (CCR) 3. It is a main factor causing inefficient production of bio-fuels or bio-

chemicals as it increases the fermentation time and decrease the productivity 4. Therefore, it is one of 

the most important things to develop the strategy to eliminate CCR in E. coli for future industries. 

 

The CCR in E. coli is mediated by a combination of inducer exclusion, global regulatory proteins, and 

cAMP-CRP complex 3. The major sugar transport system for hexose sugars, the phosphotransferase 

system (PTS), is a potential candidate responsible for CCR (Fig. 1). It consists of a series of five 

conserved functional domains, namely, enzyme (E) I, histidine protein (HPr), EIIA, and EIIc, which, 

together, form a cascade of phosphorylated intermediates that transfer phosphate from 

phosphoenolpyruvate (PEP) to the incoming sugar 5. Thus, PTS-mediated CCR mechanism responds 

to the phosphorylation level of a PTS protein which is an indicator of the metabolic state in the cell.  

 

Glucose-specific EIIAGlc is a key component in CCR in E. coli. In the presence of glucose (Fig. 1A), 

dephosphorylated EIIAGlc of the PTS inactivates several non-PTS sugar transport systems such as 

lactose, maltose, and melibiose 6. Such phenomenon is called inducer exclusion because the 

transported non-PTS sugar acts as an inducer of the corresponding catabolic operon. Meanwhile, 

EIIAGlc is phosphorylated in the absence of glucose. Both forms of dephosphorylated and 

phosphorylated EIIAGlc can bind to adenylate cyclase but only phosphorylated form is able to activate 

adenylate cyclase leading to the synthesis of cAMP. Increased concentration of cAMP forms a 

complex with cAMP receptor protein (CRP) and thus this complex activates the promoters of 

catabolic genes. Thus the cAMP-CRP complex is a global regulator of the sugar operons 7. 

 

Consequently, such cAMP-CRP complex mediated regulation of catabolic gene expression causes the 

duration of lag phase during diauxic growth while inducer exclusion is mainly involved in repression 
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of catabolic genes 3. In addition to such global regulatory system mediated CCR, operon specific 

regulatory system also participates in CCR. For instance, in the case of lac operon, the operon is 

expressed constitutively even in the presence of glucose when lac repressor gene (LacI) is inactivated 

by mutation or addition of IPTG and hence diauxic growth was removed 8. Therefore, for lac operon, 

inducer exclusion is a major factor for CCR while cAMP-CRP has an indirect regulatory role 8. Thus, 

relative roles of operon specific regulatory system and cAMP-CRP for CCR are different from operon 

to operon. For that reason, in order to understand CCR, studying each catabolic system is required.  
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Figure 1. Phosphotransferase system (PTS) causing carbon catabolite repression in E. coli. 

PTS consists of five conserved functional domains, Enzyme I (EI), Histidine protein (HPr), Enzyme 

IIA (IIA), Enzyme IIB (IIB) and Enzyme IIC (IIC). These domains transfer the phosphate group from 

phospho-enol-pyruvate (PEP) to the incoming PTS sugars. (A) In the presence of glucose, 

dephosphorylated IIA in the PTS limits the transportation of non PTS substrate and the expression of 

carbon repressed gene. (B) In the absence of glucose, phosphorylated IIA in the PTS induce the 

transportation of non PTS substrates and the expression of the gene involving in catabolite 

metabolism that can utilize non PTS sugars 4.  

cAMP (cyclic adenosine monophosphate), ATP (adenosine triphosphate), CRP (cAMP receptor 

protein), S (non-PTS substrate), A (Enzyme IIA), B(Enzyme IIB), C(Enzyme IIC), P (phosphate 

group).  
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1.1  Propionate catabolism in E. coli  

 

 

Most fatty acids are catabolized to acetyl-coenzyme A (CoA) via β-oxidation. However, propionate, 

which is short fatty acid, is metabolized to pyruvate through another route. 2-Methylcitrate cycle is 

such route for the breakdown of propionate in E. coli 9. The genes required for a 2-methylcitrate 

pathway, constitute a locus composed of two divergently transcribed units. One is the single gene 

prpR, which encodes the activator protein and the other contains the prpBCDE operon encoding the 

enzymes for 2-methylcitrate pathway (Fig. 2). The prpBCDE operon is positively regulated by PrpR 

together with the integration of the host factor (IHF) 10. Both promoters of prpR and prpBCDE are 

activated by the cAMP-CRP complex. Therefore, the prpBCDE operon is directly or indirectly 

regulated by the cAMP-CRP complex through PrpR 11. Thus, the propionate metabolism is subject to 

catabolite repression through CRP, global regulatory protein.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Propionate catabolism via 2-methylcitrate cycle.  

PrpE (propionate-CoA ligase), PrpC (2-methylcitrate synthase), PrpD (2-methylcitrate dehydratase), 

MICDH (2-methylisocitrate dehydratase), PrpB (methylisocitrate lyase) 
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1.2  Xylose catabolism in E. coli 

 

 

In E. coli, D-xylose is dissimilated through the pentose phosphate pathway (PPP) 12. Before entering 

the PPP, xylose is isomerized into xylulose and then phosphorylated into xylulose-5-phosphate 13. An 

operon which is composed of two catabolic genes, xylA (xylose isomerase) and xylB (xylulokinase) is 

involved in such xylose metabolism (Fig. 3). Xylose uptake occurs through two different transporters 

which are a high-affinity ABC transporter (XylFGH) and a low-affinity proton symporter (XylE) 14.  

 

XylFGH is the dominant xylose uptake system while XylE has little activity even under high-xylose 

concentrations (50 mM)14. Therefore, xyl genes are organized into two major transcriptional units, 

xylAB and xylFGH. The xylA and xylF are bidirectionally transcribed by the promoters, PxylA and PxylF, 

respectively. These operons are positively regulated by XylR which exists in the downstream of 

xylFGH 15 . In addition to such operon specific regulation, xyl genes are also up-regulated by the 

cAMP-CRP complex, which is global regulation indicating that the regulation is modulated by 

catabolite repression 16.  

 

 

 

 

 

 

 

Figure 3. A schematic of xylose uptake and metabolism in E. coli 

xylA (xylose isomerase), xylB (xylulokinase), xylF (xylose-binding protein), xylG (ATP-binding 

protein), xylH (membrane transporter), PPP (pentose phosphate pathway) 
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1.3  CRP (cyclic AMP receptor protein) 

 

 

CRP can function as a transcription factor for a number of sugar catabolic genes and transporter genes 

only when CRP binds to cAMP 17. The binding of cAMP to CRP leads to allosteric transition in CRP, 

causing increased affinity for the CRP recognition sequence located near promoter regions. CRP is 

composed of two subunits, larger amino terminal domain responsible for cAMP binding, and the 

carboxy domain responsible for DNA binding17 (Fig. 4). It has been proposed that bound cAMP 

changes the relative orientation between these two domains, and alters the relative orientation of the 

two subunits within a CRP dimer. Therefore, native CRP absolutely needs cAMP to be its active 

form18. However, several mutations in CRP such as CRP* showed apparent reduced dependence on 

cAMP. Such crp* was assumed to have same conformational change evoked by cAMP. Several types 

of crp* provided information on a class of mutation in crp that allow them to function in the absence 

of cAMP. It has been reported that α D- helix of the DNA’s binding domain is an important 

determinant for the CRP* phenotype19. Even though the region is not located in areas of the protein 

which are directly in contact with DNA or cAMP, the mutation in α D- helix defines conformational 

change presented during the allosteric transition. On the other hand, it has been reported that serine at 

position 83, threonine at position 127 and serine at position 128 which lie in the cyclic nucleotide 

binding pocket, responsible for the contact between cAMP and CRP, are not important determinants 

of cAMP-binding affinity for CRP* phenotype20. 

 

 

 

 

Figure 4. A schematic drawing of a CRP monomer17. 

The regions that are α-helices are represented as 

cylinders lettered A through F. The regions in β-

conformation are represented as arrows 1 through 12. 

The larger amino-terminal domain consists of α helices 

A through C and β-sheets 1 through 8. The smaller 

carboxy-terminal domain consists of the D through F α 

helices and β-sheets 9 though 12. The two domains are 

connected covalently by a tetrapeptide segment between 

the C and D α helices17. 
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Chapter 2 

The mechanism of sugar-mediated catabolite repression of the propionate catabolic 

genes in Escherichia coli 

 

 

2.1  Summary 

 

 

Carbon catabolite repression (CCR) is a well-known phenomenon that involves the preferential 

utilization of glucose as a carbon source. Cyclic adenosine monophosphate (cAMP) and the cAMP 

receptor protein (CRP) mediate CCR. Recently, a second CCR hierarchy that leads to the preferential 

consumption of arabinose over xylose, mediated by arabinose-bound AraC, has been identified. In 

this study, we report yet another CCR hierarchy that causes the preferential utilization of sugars 

(arabinose, galactose, glucose, mannose, and xylose) over a short-chain fatty acid (propionate).  

 

Expression of the propionate catabolic (prpBCDE) genes is down-regulated in the presence of these 

sugars. Sugar-mediated repression of the propionate catabolic genes is independent of sugar-specific 

regulators such as AraC and dependent on global regulators of sugar transport such as the cAMP-CRP 

complex and the Phosphotransferase System (PTS). Inhibition of the prpBCDE promoter is 

encountered during rapid sugar uptake and metabolism. This unique regulatory crosstalk between 

sugar metabolism and fatty acid metabolism may help provide new insights into CRP-dependent 

catabolite repression acting in conjunction with non-carbohydrate metabolism. 

 

 

2.2  Introduction 

 

 

Carbon catabolite repression (CCR) is an important global regulatory system in various bacteria that 

allows them to preferentially utilize the most energy-efficient carbon source in a mixture 21. To date, 

CCR in Escherichia coli is believed to be mediated by a cyclic adenosine mono-phosphate (cAMP)–

cAMP receptor protein (CRP) complex 22. Preferential utilization of glucose over other sugars is a 

central phenomenon of CCR in E. coli. When glucose is the predominant sugar in the medium, cAMP 
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synthesis is inhibited. Because other sugar metabolizing operons are positively regulated by the 

cAMP-CRP complex, their catabolic genes are expressed only after the depletion of glucose 22.  

Although catabolite repression by glucose has been studied extensively, CCR between sugars other 

than glucose is still incompletes. For example, the order of preference among pentose sugars has been 

established: arabinose followed by xylose followed by ribose. Complex transcriptional regulation by 

proteins like AraC and XylR ensure the preferential utilization of arabinose and xylose over ribose 23.  

 

Recently, the regulatory mechanisms leading to the preferential use of arabinose over xylose have 

been identified. Arabinose interacts with AraC and represses the xylose promoter causing cells to 

utilize arabinose first and then xylose. Xylose, in turn, inhibits the expression of genes that regulate 

D-ribose metabolism through the transcriptional repressor, XylR 23. These results demonstrate that the 

expression of genes regulating the metabolism of one carbon source is significantly altered by the 

presence of other carbon sources in the culture medium. Therefore, there exists a hierarchy for carbon 

source utilization that is not only limited to glucose but also exists among other sugar sources. 

 

The preferential utilization of the best available nutrition may be an adaptation that allows bacteria to 

survive a competitive environment. However, the elimination of catabolite repression in industrial 

hosts is a potentially important mechanism to increase yields particularly when lignocellulosic 

biomass is used as a substrate 24. Lignocellulosic biomass is composed of a mixture of sugars 

including arabinose, galactose, glucose, mannose, and xylose 25,26. CCR among these sugar sources 

hampers the efficient production of bio-products. Because catabolite repression might lead to long 

fermentation times and impede downstream processes in industrial settings, substantial efforts have 

been recently devoted to eliminate CCR in engineered E. coli strains. Therefore, a thorough 

understanding of all aspects of CCR is a necessary prerequisite to engineering E. coli that can ferment 

many potential carbon sources. In particular, very little is known about the CCR that occurs between 

carbohydrate and non-carbohydrate substrates. 

 

This study investigated a novel CCR hierarchy that exists between carbohydrate (sugars) and non-

carbohydrate (propionate) based carbon sources. The mechanism of sugar-mediated CCR of fatty acid 

catabolic genes was investigated using arabinose (sugar) and propionate (short chain fatty acid) as a 

proof-of-concept. We propose a possible mechanism of CCR of the propionate catabolic genes 

prpBCDE in the presence of various mono-sugars in E. coli. 
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2.3  Materials and methods 

 

2.3.1 Bacterial strains and media 

 

 

The strains used are listed in Table 1. E. coli MG1655 was used as the parental strain in this study. 

Cells were grown at 37°C in Luria-Bertani broth (LB) supplemented with suitable antibiotics 

(kanamycin at 50 µg/mL or ampicillin at 100 µg/mL). The prpBCDE promoter (PprpB) was induced 

using 20 mM sodium propionate (pH 8.0). For promoter activity assays, the LB medium was 

supplemented with 100 mM sodium phosphate buffer (pH 7.0) to avoid any pH-related changes in 

cellular metabolism. Cell growth was monitored by measuring optical density at 600 nm (OD600) 

using a Biochrom Libra S22 spectrophotometer (Biochrom, Cambridge, England). 

  

 

Table 1. E. coli strains and plasmids used in this study  

Strains/plasmids Description/genotype Reference/source 

Strains   

E. coli MG1655  Wild-type 27 

CP12CHB CRP* MG1655 with PCP12-chb, crp::crp* (T127I) This study 

JARA1  MG1655 with PCP25-araB, PCP6-araF, ∆araC::FRT In this study 

JARA2 MG1655 with ∆araA::FRT  In this study 

JARA35 JAR1 adapted for 35 days In this study 

Plasmids   

pSIM5 λ-Red recombinase expression plasmid and temperature 

sensitive replication 

28 

pCP20 
Yeast FLP recombinase gene controlled by cI repressor 

and temperature sensitive replication. 

29 

pKD13 Template plasmid for gene disruption. The resistance gene 

is flanked by FRT sites. oriR6K-gamma origin requiring 

the pir + E. coli. 

28 

 



１０ 

 

2.3.2  Strain construction 

 

 

Promoter replacement, gene knockout, and gene replacement were performed in E. coli MG1655 

using the lambda Red recombination system as described previously 28,30. Two synthetic constitutive 

promoters (CP6 and CP25) with β-galactosidase activities of 280 and 528 Miller units, respectively, in 

E. coli were used for promoter replacement (Table 2) 31. 

 

Strain JARA1 was constructed by replacing the arabinose-inducible promoters of araBAD and araF 

with the synthetic constitutive promoters CP25 and CP6, respectively, and by deleting araC. The 

engineered strain was adapted in arabinose minimal medium for 35 days by sub-culturing cells in 

fresh medium every time the culture reached an OD600 of 1.0. The resulting strain, JARA35, was used 

to analyze the effect of AraC-independent arabinose metabolism on CCR by observing prpBCDE 

expression.  

 

To construct strains carrying a cAMP-insensitive CRP (encoded by crp*), the native crp gene was 

first deleted and was then replaced with the crp* gene (W3110 CRP with T127I) constructed by splice 

overlap extension (SOE)-PCR 30. Strains carrying the mutant crp were easily identified by their faster 

growth rate when compared to the crp-knockout strains. The recombinant mutants were verified by 

PCR-amplification of genomic DNA isolated from the transformants and sequence analysis. The 

primers used for strain construction are listed in Table 2.   
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Table 2. Primers used in the study 

Strain 
construction 

     Primer sequence 

SOEing CP6 promoter to Kanamycin cassette 
 
 5’-CAT AGC TGT TTC CTG TGT GAA CAG TAC TCA GTT ATT ATA TCA TCC GG-3’ 

5’-TCA GTT ATT ATA TCA TCC GGA AAT ATC TGT GTC AAG AAT AAA CTC C-3’ 

5’-CTG TGT CAA GAA TAA ACT CCC ACA TGA TTC CGG GGA TCC GTC GAC C-3’ 

 

SOEing CP25 promoter to Kanamycin cassette 
 
 5’-CAT AGC TGT TTC CTG TGT GAA CAG TAC TAT GTG ATT ATA CCA GCC CCC-3’ 

5’-ATG TGA TTA TAC CAG CCC CCT CAC TAC ATG TCA AGA ATA AAC TGC-3’ 

5’-ACA TGT CAA GAA TAA ACT GCC AAA GAT TCC GGG GAT CCG TCG ACC-3’ 

 

Promoter exchange 
 
PCP6-araF 5’-GGT AAT GCG GCC TAT TGA CTG GTT AAA AAG AAG ACA TCC CGC ATG GGT AGT 

  GTA GGC TGG AGC TGC TTC G-3’ 

5’-GAC ATA ACG GCT GCC AGA CCA ATG GCT GCC AGG GCT TTA GTA AAT TTG TGC  

ATA GCT GTT TCC TGT GTG AAC AGT ACT-3’ 

 

PCP25-araB 5’-CCC TAT GCT ACT CCG TCA AGC CGT CAA TTG TCT GAT TCG TTA CCA AGT GTA GGC  

TGG AGC TGC TTC G-3’ 

5’-TCG CAC AGA ATC ACT GCC AAA ATC GAG GCC AAT TGC AAT CGC CAT AGC TGT TTC  

CTG TGT GAA C-3’ 

Gene deletion/insertion 

crp deletion 5’-CTA CCA GGT AAC GCG CCA CTC CGA CGG GAT TAA CGA GTG CCG TAA ACG ACG TGT  

AGG CTG GAG CTG CTT CG-3’ 

5’-GGC GTT ATC TGG CTC TGG AGA AAG CTT ATA ACA GAG GAT AAC CGC GCA TGA TTC  

CGG GGA TCC GTC GAC C-3’ 

crp* insertion 5’-GGC GTT ATC TGG CTC TGG AGA AAG CTT ATA ACA GAG GAT AAC CGC GCA TGG TGC  

TTG GCA AAC CGC AAA CAG ACC CG-3’ 

5’-ACT TGC AGA CGA CGC GCC ATC TGT GCA GAC-3’ 

5’-CTT CTG ATG CGT TTG TCT GCA CAG ATG GCG CGT CGT CTG CAA GTC ATT TCA GAG AAA  

GTG GGC AAC CTG GCG TTC CTC GAC GTG ACG GGC CGC ATT ACA-3’ 

5’-ATT CCG GGG ATC CGT CGA CCT TAA CGA GTG CCG TAA ACG ACG ATG GTT TTA CCG TGT  

GCG GAG-3’ 

 
araA deletion 5’-GAC TCT ATA AGG ACA CGA TAA TGA CGA TTT TTG ATA ATT ATG AAG TGT GGT TTG TCA  

TTG TGT AGG CTG GAG CTG CTT C-3’ 

5’-TAC ATA CCG GAT GCG GCT ACT TAG CGA CGA AAC CCG TAA TAC ACT TCG TTC CAG CGC  

AGC ATT CCG GGG ATC CGT CGA CC-3’ 

araC deletion 5’-TGG CCC CGG TGC ATT TTT TAA ATA CTC GCG AGA AAT AGA GGT GTA GGC TGG AGC TGC  

TTC G-3’ 

5’-ATA AGC GGG GTT ACC GGT TGG GTT AGC GAG AAG AGC CAG TAT TCC GGG GAT CCG TCG 

  ACC -3’ 
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2.3.3  Assay of in vivo promoter activities 

 

 

The gfpuv gene expressed under the control of the prpBCDE promoter was used as a reporter 

(pPro7(E)-gfp) to assess promoter activity 32. Strains harboring the reporter plasmid, pPro7(E)-gfp, 

were cultured overnight in LB medium supplemented with ampicillin. Cells grown overnight were 

sub-cultured (1:100 dilution) into 5 mL of fresh LB medium supplemented with ampicillin and 

sodium phosphate buffer. When the cell density reached an OD600 of 0.5, 20 mM propionate and 2 g/L 

of sugar were added to induce the culture, which was then transferred to 96-well plates. Cell growth 

and GFP expression were monitored every 10 minutes by measuring OD600 and fluorescence emission 

at 535 nm (excitation at 475 nm), respectively, using the Tecan SpectraFluor Plus plate reader (Tecan-

US, Durham, NC). 

 

 

2.3.4  HPLC analysis 

 

 

The amount of residual arabinose in the medium was measured with a Shimadzu HPLC station 

equipped with a SupelCogel Pb column and a refractive index detector (Shimadzu, Japan). 500 μL of 

overnight culture was used to inoculate 50 mL of fresh LB medium supplemented with 2 g/L 

arabinose in a 250 mL shake flask and grown at 37°C in a shaking incubator. One milliliter of sample 

was collected every 1 hour, centrifuged to remove cells, and then boiled and filtered to remove protein 

precipitates. Twenty microliters of the processed sample was injected into the column maintained at 

80°C. HPLC grade water was used as a mobile phase at a flow rate of 0.5 mL/min. 

 

 

2.4  Results 

 

 

2.4.1 Catabolite repression of propionate catabolic genes in the presence of sugars  

 

 

The change in expression levels of propionate catabolic (prpBCDE) genes of E. coli MG1655 in the 

presence of various sugars (arabinose, galactose, glucose, IPTG, lactose, mannose, and xylose) was 
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analyzed by following GFP expression from the prpBCDE promoter (PprpB). All metabolizable 

sugars at concentrations above 2 g/L downregulated PprpB promoter activity to background levels 

(Fig. 5). By contrast, prpBCDE promoter activity was unaffected by the non-metabolizable lactose 

analogue IPTG (Fig. 5); prpB promoter activity was also not repressed at low concentrations of the 

metabolizable sugars (less than 1 g/L). Hence, we hypothesized that the repression of PprpB promoter 

activity is mediated by a complex interplay of regulatory proteins and intermediate metabolites 

produced during sugar metabolism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Comparison of prpB promoter activity in the absence of sugar (closed squares) or in the 

presence of different sugars such as arabinose (asterisks), galactose (open diamonds), glucose (open 

square), IPTG (closed circles), mannose (closed diamonds), and xylose (open circles) in MG1655. 

 

 

2.4.2  prpBCDE promoter activity in catabolite de-repressed strains of E. coli 

 

 

To determine if transcription from the prpBCDE promoter is subject to catabolite repression in a 

manner similar to that of other sugar operons, we analyzed the effect of sugar on the prpB promoter 

activity in catabolite de-repressed strains such as a strain carrying the crp* (T127I) gene or PTS gene-

knockout strain 33. The native crp gene of E. coli MG1655 was replaced by a mutant (referred to as 

crp*) that can function independent of cAMP. A single amino acid substitution (T127I) in CRP alters 

the cAMP binding domain without disturbing the DNA binding domain and the activation domain. 
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CRP* could not restore prpB promoter activity in the presence of glucose or arabinose. There was no 

significant difference in growth between strains carrying crp and crp* in minimal medium 

supplemented with those two sugars. By contrast, CRP* helped in relief mannose-mediated CCR of 

propionate catabolic genes when induced during the mid log phase (Fig. 6A). CRP* also helped in the 

partial relief galactose- and xylose-mediated CCR of propionate catabolic genes (Fig. 6A). However, 

we observed impaired growth of strains carrying crp* in minimal medium supplemented with 

mannose, galactose, or xylose as the sole carbon source. Mannose, galactose, and xylose also 

repressed prpB promoter activity in crp*-containing strains when sugar and propionate were added to 

the cells in the early log phase. 

 

PprpB promoter activity was analyzed in a PTS-knockout strain. Deletion of the PTS system renders 

cells incapable of growth on mannose minimal medium and causes an impairment of growth in 

glucose minimal medium. As observed in the CRP* strain, ∆PTS strains with impaired growth in 

glucose and mannose showed less catabolite repression of propionate catabolic genes in the presence 

of these sugars than wild-type strains (Fig. 6B). These results indicate that the repression of prpB 

promoter activity is directly correlated with rapid sugar transport and indirectly correlated with cAMP 

levels. 

 

 

 

 

Figure 6. Comparison of prpB promoter activity in the absence of sugar (closed squares) or in the 

presence of different sugars such as arabinose (asterisks), galactose (open diamonds), glucose (open 

square), IPTG (closed circles), mannose (closed diamonds), and xylose (open circles) in the CRP* (A) 

and ∆PTS (B) strains. 
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2.4.3  Effect of the sugar-specific regulator AraC on the expression of propionate 

catabolic genes 

 

 

We next asked whether sugar specific regulators such as AraC, Mlc, XylR, or GalS regulate the prpB 

promoter. Because all sugars tested in this study influenced the prpB promoter in a similar manner, 

we used arabinose as a proof-of-concept to determine the effect of different sugars on the propionate 

catabolic (prp) operon. It has also been reported recently that AraC is a key player involved in the 

repression of xylose metabolism 34. AraC is a positive regulator of all three arabinose operons 

(araBAD, araE, and araFGH) in E. coli. Therefore, deletion of araC hampers their ability to transport 

and metabolize arabinose. 

 

In order to investigate the effect of AraC on the regulation of propionate catabolism without 

disturbing arabinose metabolism, we constructed an araC-knockout mutant capable of metabolizing 

arabinose by deleting the araC gene and replacing the native AraC-regulated promoters of 2 different 

arabinose operons with synthetic constitutive promoters (CP25 for araBAD and CP6 for araFGH). 

The resulting strain, JARA1, was able to utilize arabinose albeit slowly in minimal media containing 

arabinose as a sole carbon source. 

 

The engineered strain showed no repression of prpB promoter activity in the presence of arabinose 

(Fig. 9). Relief of catabolite repression of the propionate catabolic genes in the presence of arabinose 

in the JARA1 strain might be due to slow arabinose uptake, and hence, the JARA1 strain was adapted 

in minimal medium containing arabinose as the sole carbon source. Efficient AraC independent 

arabinose metabolism was achieved after 35 days of adaptation on arabinose as a sole carbon source. 

The adapted strain, was designated JARA35, was used for further study. Efficient utilization of 

arabinose by strain JARA35 was confirmed by measuring residual arabinose concentrations in the 

culture media (data not shown). 

 

We tested the effect of AraC-independent arabinose metabolism on propionate catabolism using 

JARA35. Activity of the prpB promoter was reduced to background levels in the presence of 

arabinose even in strain JARA35 (Fig. 7). This result indicates that AraC may not be directly involved 

in arabinose-mediated catabolite repression of propionate catabolic genes. 
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Figure 7. A comparison of prpB promoter activity in wild-type and JARA35 strains grown in the 

absence or the presence of arabinose (white and black, respectively). When the cell density reached an 

OD600 of 0.5, the culture was induced with 20 mM propionate, and 2 g/L of arabinose was then added. 

Promoter activity was measured after 10 h of growth in 96-well microplates. Error bars indicate the 

standard deviation of experiments performed in triplicate. 
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2.4.4  Effect of sugar metabolites on propionate metabolism 

 

 

The effect of arabinose intermediates on propionate catabolism was tested using an araA null mutant. 

The araA null mutant JARA2 is capable of transporting arabinose but cannot metabolize the 

transported arabinose as it lacks L-arabinose isomerase, an enzyme that catalyzes the first step of 

arabinose metabolism. 

 

Interestingly, prpB promoter activity was partially relieved from arabinose-mediated repression in 

JARA2 (Fig. 8). This result suggests that the arabinose transport process or the transported arabinose 

itself might be partly involved in arabinose-mediated catabolite repression of propionate catabolic 

genes. Rapid arabinose (sugar) metabolism causes a decrease in the phosphoenol pyruvate: pyruvate 

ratio bringing about dephosphorylation of EIIAglu, which represses adenylate cyclase activity leading 

to decreased cAMP synthesis 35. This is consistent with increased cAMP levels in a pyruvate kinase 

(pykF)-knockout mutant 36. Therefore, the partial relief of prp operon repression in the presence of 

arabinose in JARA2 may be a result of limited cAMP availability. The impaired growth shown in 

JARA2 might be caused by transported arabinose that is toxic to the cell.  

 

We hypothesize that sugar metabolites, as well as sugar transport, responsible for decreasing 

intracellular cAMP level might be key factors in the repression of propionate catabolic genes. To test 

this hypothesis, we followed prpB promoter activity in JARA1 that is capable of either transporting or 

metabolizing arabinose very slowly, JARA2 that is only capable of transporting arabinose, and 

JARA35 that is capable of both transporting and metabolizing arabinose (Fig. 9). The JARA1 strain 

showed no repression, the JARA2 strain exhibited partial repression, and the JARA35 strain showed 

strong repression of prpB promoter activity. Therefore, we conclude that the prp promoter is 

repressed by sugar transport that is indirectly related to intracellular cAMP levels. 
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Figure 8. Comparison of prpB promoter activity in wild-type and JARA2 strains grown in the 

absence or the presence of arabinose (white and black, respectively). This experiment was performed 

using the same culture method as described in Fig. 7. Error bars indicate the standard deviation of 

experiments performed in triplicate. 
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Figure 9. Comparison of the prpB promoter activity in the absence (white) or the presence (black) of 

arabinose in wild-type, JARA1, JARA2, and JARA35 strains. This experiment was performed using 

the same culture method as described in Fig. 7. Promoter activity was measured after 6 h of growth in 

96-well microplates. Error bars indicate the standard deviation of experiments performed in triplicate. 
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2.5  Discussion  

 

 

2.5.1 A third hierarchy of CCR  

 

 

While a model for glucose effects via the cAMP-CRP complex is well established, the glucose 

transporter model provides an alternate explanation for CCR 37. The regulatory mechanisms 

underlying CCR are more complex than previously expected. Repression of the maltose operon by 

glycerol-3-phosphate, an alcohol intermediate, has also been reported 38. Methylglyoxal is believed to 

be a key factor responsible for CCR under high sugar concentrations 39,40,41. More recently, arabinose-

bound AraC has been proposed to regulate xylose metabolism in the presence of arabinose 34. While 

all these models involve the transcriptional regulation of sugar operons, evidence exists for 

antitermination-mediated regulation of CCR as in the bgl operon of E. coli 42.  

 

 

2.5.2 Role of CRP in propionate promoter activity 

 

 

The prpB promoter was predicted to have a consensus CRP binding site 11. A previous report indicates 

that the deletion of crp or cya results in a reduction of prpB promoter activity, implying a direct role 

of CRP in activating the prp operon 11,16. Therefore, we hypothesized that reduced levels of the 

cAMP-CRP complex during sugar uptake may play a key role in the down-regulation of the prpB 

promoter. cAMP levels are reduced during sugar uptake and tend to increase only after sugar 

depletion 43. Higher concentrations of sugar greatly reduce intracellular cAMP levels 44 and, hence, 

might be responsible for the repression of the prp operon. By contrast, when sugar concentrations are 

very low, cAMP levels may not be significantly affected and hence the prp operon is not repressed. 

This finding is consistent with previous results that implicate the cAMP-CRP complex, in addition to 

the prp operon regulatory protein PrpR, as a positive regulator of the prpB promoter 11,16,45,46.  
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2.5.3  Correlation between sugar uptake rate and cAMP concentration 

Impairment of sugar uptake does not affect prp operon activity in the presence of sugar. For example, 

the prp operon is unaffected in the presence of arabinose in ∆araC strain that is incapable of arabinose 

uptake. The prp operon is also not affected in the presence of arabinose in JARA1 and 2 strains that 

exhibit impaired growth in arabinose minimal medium. Further, prpB promoter activity is not reduced 

in the crp* strain in the presence of mannose, galactose, or xylose, because the CRP* strain exhibits 

impaired growth in minimal medium containing these sugars. The prpB promoter activity is not 

affected by mannose in ∆PTS strains that are incapable of growing on mannose minimal medium.  

 

These lines of evidence are consistent with our hypothesis that repression of the prp operon is 

determined by the ability of the cell to uptake and metabolize a particular sugar. It is a well-known 

fact that the level of cAMP is greatly reduced during rapid sugar uptake and metabolism 16. 

Impairment in sugar uptake directly correlates with high levels of cAMP that may be made available 

for the activation of the prpB promoter. Concentration of cAMP does not increase significantly even 

after complete depletion of a particular sugar 37. 

 

However, the inability of CRP* (that is believed to work independent of cAMP) to completely relieve 

sugar-mediated catabolite repression of propionate catabolic genes suggests that a complex interplay 

of regulatory events control propionate catabolism. Consistent with this idea, prpB promoter activity 

is reduced in the crp*-containing strain when compared to its activity in the wild-type strain. A 

CRP* mutant more specifically targeting the propionate promoter might help elucidate the 

direct involvement of cAMP in the repression of the propionate promoter. 

 

 

2.5.4 A need for regulation of propionate catabolism   

 

 

2-Methyl citrate, a breakdown product of propionate, has been previously characterized to be toxic to 

Salmonella typhimurium 47. The toxicity of 2-methyl citrate may necessitate the tight regulation of the 

prp operon. Cells might also tightly regulate the prp operon in order to avoid the production of 

propionic/pyruvic or succinic acid from propionate. As a cell can derive all the basic components for 

growth from sugar, propionate, a secondary carbon source, might be subject to anaplerotic reactions 

leading to acid production that is detrimental to cell growth, providing a compelling reason for E. coli 
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to regulate the prp operon 48. Although the exact molecular mechanisms underlying the inhibitor 

effect of sugars on propionate metabolism could not be established, we postulate that cAMP might be 

a major player in this complex regulation. However, we cannot ignore the fact that cAMP is not the 

sole player in this repression. 

 

In summary, prpB promoter activity is completely downregulated to basal levels in the presence of 

about 2 g/L of different sugars such as arabinose, galactose, glucose, lactose, mannose, and xylose. 

We propose a third hierarchy of CCR in E. coli between sugar and fatty acid metabolism. However, 

the mechanistic underpinnings of CCR appear more complex than expected. Rapid transport and 

metabolism of sugars is necessary for this repression. We assume that a change in cAMP levels during 

the transport and metabolism of sugar might be a major determinant of the repression of the prpB 

operon. 
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Chapter 3 

Engineered Escherichia coli capable of co-utilization of glucose and xylose 

 

 

3.1  Summary 

 

 

The presence of glucose inhibits xylose utilization in E. coli and decreases yield and productivity of 

the major sugar fermentation due to sequential utilization of xylose after glucose. As an approach to 

overcome this drawback, E. coli MG1655 was engineered for co-utilization of glucose and xylose by 

replacing the native promoters of xylose catabolic genes (xylAB) and xylose transporter genes 

(xylFGH) with synthetic constitutive promoters, CP25 and CP6, respectively. The engineered strain 

(XYL) grew very slow in xylose-containing minimal medium. Evolutionary adaptation of the strain 

by repeated subculture in xylose-containing minimal medium led to an increase in the rate of cell 

growth on xylose. The adapted E. coli (XYL1) continuously expressed xylose metabolic genes even 

in the presence of glucose and/or arabinose. However, glucose still inhibited xylose utilization in   

the engineered strain, indicating that the engineered xylose metabolic pathway is subject to CCR by 

the glucose.  

 

 

3.2  Introduction 

 

 

Even though xylose is the most abundant pentose sugar in lignocellulosic hydrolysates, it cannot be 

used efficiently for the production of value-added building block chemicals or bio-fuels from biomass 

refining because of the carbon catabolite repression (CCR). To avoid this problem, there were many 

studies to co-metabolize glucose and xylose which are main composition of lignocellulose through 

relief of CCR in E. coli. Many researches related with both PTS system and CRP protein which are 

considered as a main factor of CCR have been carried out 26,33,49,50. In relation with the studies about 

the PTS system, it was verified that E. coli IT1168 (W3110, ptsG::Tn5) 26 and FBR14 (W3110, 

ldhA::Kn, Δpfl::Cm, zce726::Tn10 ptsG+21 and pdc+/adhB+[pLOI297]) 26 can partially co-metabolize 

arabinose and xylose with glucose, indicating that inactivation of ptsG helps overcome CCR. 

Meanwhile, E. coli carrying a deletion of ptsH, ptsI and crr genes exhibited a pleoitropic effect due to 

inadequate PTS and could not grow on both PTS and non-PTS sugars 33,49. However, this phenotype 
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(PTS- Glucose-) was restored depending on the activation of GalP, which can transport glucose 

nonspecifically, and the over-expression of glucokinase gene, which can phosphorylate glucose 

transported in the cell 33,49. Such PTS- Glucose+ mutants utilized arabinose and glucose simultaneously 

and showed partial repression of xylose utilization when grown with glucose and xylose 33. Recently, 

the E. coli W3110 PTS- Glucose- strain, VH30 (W3110 ΔptsH, ptsI,crr::kanR, Glucose-), was evolved 

in minimal media with glucose as the sole carbon source under anaerobic conditions to obtain 

glucose+ phenotype 50. The resulting strains, designated as VH30N2 (PTS-Glucose+ derivative of 

VH30 selected by an anaerobic continuous culture method) and VH30N4 (PTS-Glucose+ derivative of 

VH30 selected by an anaerobic continuous culture method) consumed xylose and glucose in a 

simultaneous manner when cultured in glucose and xylose mixture, indicating that catabolite 

repression is relieved in these strains 50. Such results indicate that the inactivation of the PTS system 

helps release CCR.  

 

CRP protein can stimulate transcription of sugar catabolic genes and transporter genes only with 

cAMP. Therefore, a series of CRP mutants (crp*) were isolated from strains lacking adenylate cyclase 

in order to allow E. coli to have an apparent reduced dependence on cAMP for activating catabolic 

genes 37,51,52,53. The crp* mutant strain PC05 (W3110, crp*::Tn10 (TetR) showed increased xylose 

uptake in the presence of glucose 14. Hankal et al. found that in this PC05 strain, the expression of 

genes involved in sugar transport and catabolism was increased 52. However, despite the increase in 

the expression of catabolic genes, they still exhibited glucose effect. The crp* mutant also gives us 

hope that it is potentially possible to release CCR with further metabolic engineering strategies. 

 

Previous studies have focused on the manipulation of these global regulatory systems. However, such 

approaches cause another problem such as inhibition of glucose utilization caused by inactivation of 

ptsG and thus could not allow E. coli to co-utilize xylose and glucose efficiently 54. Further, recently, 

it was verified that arabinose represses xylose metabolism through AraC which is arabinose operon 

specific regulator protein 34. To date, there were a number of strategies to remove the glucose-

mediated repression on xylose metabolism while arabinose-mediated repression of that was ignored. 

In this study, we focused on the continuous gene expression of both xylose catabolic genes and 

transporter genes without any regulatory interference by glucose and arabinose by replacing the native 

promoters of xylose catabolic genes (xylAB) and xylose transporter genes (xylFGH) with synthetic 

constitutive promoters, CP25 and CP6, respectively.  
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3.3  Materials and Methods 

 

 

3.3.1 Bacterial strains and media 

 

 

The strains used are listed in Table 3. E. coli MG1655 was used as a parental strain in this study. 

Strain construction were made using Luria broth containing antibiotics as appropriate (kanamycin at 

50 μg/mL or ampicillin at 100 μg/mL or chloramphenicol at 30 μg/mL). Temperature-conditional 

plasmids were grown at 30°C. All others were grown at 37°C. Except during constructions, 

engineered strains were cultured in minimal medium supplemented with suitable sugars. 

 

 

Table 3. E. coli strains and plasmids used in this work 

 

 

Strains/plasmids Description/genotype Reference/source 

Strains   

E. coli MG1655  Wild-type 27 

XYL  MG1655 with PCP25-xylA, PCP6-xylF This study 

XYL1 XYL adapted for 20 days This study 

XYL2 XYL1 with crp::crp* (I121L,T127L) This study 

Plasmids   

pSIM5 λ-Red recombinase expression plasmid and temperature 

sensitive replication 

28 

pCP20 
Yeast FLP recombinase gene controlled by cI repressor 

and temperature sensitive replication. 

29 

pKD13 Template plasmid for gene disruption. The resistance 

gene is flanked by FRT sites. oriR6K-gamma origin 

requiring the pir + E. coli. 

28 
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3.3.2  Strain construction 

 

 

Promoter replacements and gene deletions were performed using the λ red system [26, 27]. For 

promoter replacement, two synthetic constitutive promoters (CP6 and CP25) with a ß-galactosidase 

activities of 280, and 528 Miller units in E. coli, respectively, were used (Table 4) [28].  

XYL was constructed by replacing the native promoter of xylAB and xylFGH with synthetic 

constitutive promoters, CP25 and CP6, respectively. The engineered strain was adapted in xylose 

minimal media for 20 days by sub-culturing cells to fresh medium every time the culture reached an 

OD600 of 1.0. The resulting strain was designated as XYL1. 

 

To construct XYL2 carrying a cAMP-independent CRP (encoded by crp*), the native crp gene was 

first deleted and was then replaced with the crp* gene (CRP with I112L, T127I) constructed by splice 

overlap extension (SOE)-PCR [29]. Strains carrying the mutant crp were easily screened based on 

their faster growth rate compared with the crp knock-out strains. All engineered strains were verified 

by the phenotype and sequence analysis. The primers used for strain construction are listed in Table 4.  
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Table 4. Primers used in this study 

Strain 
construction 

     Primer sequence 

 
SOEing CP6 promoter to Kanamycin cassette 

 5’-CAT AGC TGT TTC CTG TGT GAA CAG TAC TCA GTT ATT ATA TCA TCC GG-3’ 
5’-TCA GTT ATT ATA TCA TCC GGA AAT ATC TGT GTC AAG AAT AAA CTC C-3’ 
5’-CTG TGT CAA GAA TAA ACT CCC ACA TGA TTC CGG GGA TCC GTC GAC C-3’ 

 
SOEing CP25 promoter to Kanamycin cassette 

 5’-CAT AGC TGT TTC CTG TGT GAA CAG TAC TAT GTG ATT ATA CCA GCC CCC-3’ 
5’-ATG TGA TTA TAC CAG CCC CCT CAC TAC ATG TCA AGA ATA AAC TGC-3’ 
5’-ACA TGT CAA GAA TAA ACT GCC AAA GAT TCC GGG GAT CCG TCG ACC-3’ 
 

Promoter exchange 

PCP25-xylA 5'-TGA GCC TTC ATA ACG AAC GCG ATC GAG CTG GTC AAA ATA GGC TTG CAT AGC  
TGT TTC CTG TGT GAA-3' 
5'-TTG TTG CGC AAT TGT ACT TAT TGC ATT TTT CTC TTC GAG GAA TTA CCC AGT TTC  
ATC AAT TCC GGG GAT CCG TCG ACC-3' 
 

PCP6-xylF 5'-TGA TGA AAC TGG GTA ATT CCT CGA AGA GAA AAA TGC AAT AAG TAC AAT TGC GCA  
ACA AGT GTA GGC TGG AGC TGC TTC G-3'                                          
5'-AAG CAG GAG TGA GGT GCA AAG GGT GAG TAG AAT GTT CTT TAT TTT CAT AGC TGT  
TTC CTG TGT GAA C-3' 
 

Gene deletion/insertion 

crp deletion 5’-CTA CCA GGT AAC GCG CCA CTC CGA CGG GAT TAA CGA GTG CCG TAA ACG ACG TGT  
AGG CTG GAG CTG CTT CG-3’ 
5’-GGC GTT ATC TGG CTC TGG AGA AAG CTT ATA ACA GAG GAT AAC CGC GCA TGA TTC  
CGG GGA TCC GTC GAC C-3’ 

crp* insertion 5’-GGC GTT ATC TGG CTC TGG AGA AAG CTT ATA ACA GAG GAT AAC CGC GCA TGG TGC  
TTG GCA AAC CGC AAA CAG ACC CG-3’ 
5’-ACT TGC AGA CGA CGC GCC ATC TGT GCA GAC-3’ 
5’-CTT CTG ATG CGT TTG TCT GCA CAG ATG GCG CGT CGT CTG CAA GTC ATT TCA GAG AAA  
GTG GGC AAC CTG GCG TTC CTC GAC GTG ACG GGC CGC ATT ACA-3’ 
5’-ATT CCG GGG ATC CGT CGA CCT TAA CGA GTG CCG TAA ACG ACG ATG GTT TTA CCG TGT  
GCG GAG-3’ 

 
RT-PCR   

xylA-FP 
 
xylA-RP 

5’- ATG GCG GTG GCT ATT TCA TG -3’ 

 

5’-TTA TTT GTC GAA CAG ATA ATG G-3’ 

 
xylF-FP 

 

5’- GCT TAC GAC CGT ATG ATT AAC G-3’ 

 
xylF-RP 

 
5’- ATT TCT GCG GCA GTA TTT GC-3’ 
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3.3.3  Batch culture 

 

 

500 μL overnight grown cells in LB were inoculated (1:100) into 50 mL of M9 media supplemented 

with 2 mM MgSO4, 0.1 mM CaCl2 and suitable concentration of test sugars (xylose, glucose, 

arabinose) in 250-mL flask and grown at 37°C in a shaking incubator. Cell density was obtained by 

measuring the OD600 using a Biochrom Libra S22 spectrophotometer. Residual sugar was analyzed 

using high-pressure liquid chromatography (HPLC). 

 

 

3.3.4  HPLC analysis 

 

 

The amount of residual sugars in the medium was measured with a Shimadzu HPLC station equipped 

with a refractive index detector (Shimadzu) and a SIL-20A autosampler (Shimadzu). A Bio-Rad 

Anemix 300 mm x 7.8 mm HPX-87P column was used to separate the sugars, as per manufacturer’s 

recommendations. The column was run at 0.6 mL/min at 80°C with water as the mobile phase. For 

sampling, 500 μL of overnight grown cells was inoculated into 50 mL of fresh LB medium 

supplemented with appropriate concentrations of test sugars in 250-mL flask and grown at 37°C in a 

shaking incubator. 1 ml of grown cultures was collected every 2 hours, centrifuged to remove cells 

and then boiled and filtered to remove protein precipitate particles. The samples were transferred in 

auto-injector vials and were loaded in to auto sampler. Samples were injected in a volume of 50 μL 

using a SIL-20A autosampler (Shimadzu). 

 

 

3.3.5  RNA isolation 

 

 

Wild type E. coli MG1655 and XYL1 overnight grown in LB were inoculated into 5 mL of M9 media 

with a ratio of 1:100. All media were supplemented with 2 g/L glucose and 2 g/L D-xylose. 500 μL 

cells were harvested from the cultures reaching mid-logarithmic growth after 5 hours and the total 

RNA was extracted by using a commercial Qiagene RNeasy minikit according to the manufacturer’s 

protocol.   
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3.3.6  Reverse transcription polymerase chain reaction (RT-PCR) 

 

 

Before performing RT-PCR assay, precipitated RNA was treated with DNase I at 37°C for 1hour, in 

order to remove DNA contamination. The DNase I was inactivated by adding EDTA (final 5 mM) 

and incubation at 65°C for 10min. This RNA preparation was used as a template for RT-PCR. cDNA 

synthesis and amplification was performed at once by using Bioneer AccuPower RT/PCR Premix kit. 

Primers were designed to give 500bp PCR products from xylA or/and xylF genes, respectively, as 

listed in Table4. 

 

 

3.4  Results 

 

 

3.4.1  Strain construction and characterization 

  

 

Glucose inhibits xylose metabolism by reducing intracellular cAMP-CRP complex availability 

required for the transcription of xylose catabolic operon (xylAB) and transporter (xylFGH)15,55 , while 

arabinose represses the transcription of xylose catabolic operon (xylAB) through AraC, which is an  

arabinose operon specific regulatory protein 56. 

 

Therefore, for continuous xylose metabolism, which is repressed by AraC and cAMP-CRP at the 

transcriptional level in E. coli, we replaced the native promoters of two different xylose operons, 

which are xylAB for xylose metabolism and xylFGH for xylose transport, with synthetic constitutive 

promoters, CP25 and CP6, respectively. 

 

However, the resulting strain, XYL showed severely slow growth rate in minimal media containing 

xylose as a sole carbon (Fig. 10). Therefore, in order to restore the growth on xylose media, the 

engineered strain was evolved in minimal media containing 2g/L D-xylose as the sole carbon source. 

After 20 days of adaptation the adapted strain, designated as XYL1, showed efficient xylose 

metabolism much similar to that of the wild type (Fig. 10).  
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Figure 10. Comparative growth of wild type, XYL and XYL1 in xylose (2g/L) containing minimal 

media at 37°C. XYL showed much lower growth rate than wild type. After adaptation in minimal 

media supplemented with 2g/L D-xylose as a carbon source for 20 days, the resulting strain, XYL1 

restored its growth rate in minimal media with 2g/L D-xylose as much as wild type. Blue line (wild 

type), Red line (XYL), Green line (XYL1) 
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3.4.2  The effect of xylA and xylF promoter replacement with the synthetic constitutive 

promoters on the expression of the xylose metabolic genes in the presence of glucose 

 

 

Using RT-PCR, we tested whether xylose operons in XYL1 are expressed constitutively even in the 

presence of glucose. As a result, XYL1 exhibited continuous transcription of both genes of xylA and 

xylF even in the presence of glucose whereas wild type didn’t transcribe xylA and xylF at all in the 

same culture condition (Fig. 11). Therefore, XYL1 was used for further study. 

 

 

 

Figure 11. Comparative mRNA expression of both xylA and xylF in respective wild type and XYL1 

grown in minimal media supplemented with glucose and D-xylose. Both xylA and xylF genes were 

continuously transcribed in XYL1 regardless of the presence of glucose, whereas wild type didn’t 

express them at all in the presence of glucose.  
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3.4.3  Xylose utilization in the presence of glucose in XYL1 

 

 

Next we tested whether the strain XYL1 obtain the capacity to co-metabolize glucose and xylose 

using HPLC. XYL1 and the wild type strain MG1655, were grown in minimal medium supplemented 

with 2g/L each of glucose and D-xylose. Supernatants were analyzed at various time points to 

ascertain their sugar utilization. From this experiment, we found that XYL1 still showed the 

repression of xylose metabolism in the presence of glucose even though two different xylose operons, 

xylAB and xylFGH, in the XYL1 are under the control of constitutive promoters, respectively (Fig. 

12A, 12B). XYL1 presented faster xylose consumption rate after deletion of glucose as compared 

with wild type, indicating that glucose effect was slightly released. 

 

In order to increase the xylose uptake rate through non-specific xylose transporters, we replaced the 

crp gene with crp* gene (I121L, T127L) encoding cAMP independent CRP* protein in XYL1. It has 

been reported that crp* increase the xylose uptake rate by activating an unknown non-specific xylose 

transporter in addition to the xylose specific transporters which are xylE, and xylFGH 57. Since xylose 

uptake through the non-specific xylose transporter is considerable (up to 40%) when xylose 

concentration is high 57, we supposed that the expression CRP* protein in XYL1 might help relief of 

CCR on xylose metabolism by glucose. 

 

Against our expectations, however, the CPR* phenotype didn’t have any effect on relief of CCR on 

xylose metabolism by glucose (Fig. 12C). Based on this result, we found that the constitutive 

transcription of xylose catabolic genes and transporter genes helps release glucose effect slightly by 

increasing the rate of xylose consumption after deletion of glucose, but still exhibits strong catabolite 

repression. Therefore, we concluded that there is another factor causing the repression of xylose 

metabolism by glucose beyond transcriptional level in addition to the transcriptional level as assumed 

previously58.  
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Figure 12. Comparison of glucose and xylose utilization in (A) Wild type, (B) XYL1 and (C) XYL2.  

Blue line represents the concentration of glucose while red line represents the concentration of xylose.  
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3.4.4  Xylose utilization in the presence of both glucose and arabinose in XYL1 

 

 

We measured the xylose utilization pattern in XYL1 in the presence of both arabinose and glucose 

since lignocellulose contains both sugars. In the same manner with previous method, sugar utilization 

was analyzed in minimal media supplemented with 2 g/L each of D-xylose, L-arabinose and glucose 

in wild type and XYL1. Wild type was shown to utilize glucose, arabinose and xylose sequentially as 

already known (Fig. 13A). Interestingly, XYL1consumed the sugars inside the media in order of 

glucose, xylose and arabinose (Fig. 13B). 

 

Taken together, we found that the glucose effect on xylose metabolism in XYL1was slightly released 

and the inhibition of xylose metabolism by arabinose was also reduced in the presence of both 

arabinose and glucose. This result also supported that catabolite repression might be controlled at the 

post-transcriptional level as shown in Figure 12. Therefore, to eliminate catabolite repression, further 

studies on post-transcriptional regulation on xylose metabolism by glucose should be needed. 
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Figure 13. Sugar utilization pattern in wild type (A), XYL1 (B) in minimal media supplemented with 

2g/L L-arabinose, 2g/L D-xylose and glucose. Blue line (glucose concentration), Red line (xylose 

concentration), Green line (arabinose concentration)  
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3.5  Discussion 

 

 

The aim of the current work was to construct a CCR de-repressed strain capable of co-metabolizing 

glucose and xylose through continuous expression of the genes for xylose catabolism regardless of the 

presence of both glucose and arabinose in order to increase the yield of the bio-fuels or bio-chemicals. 

Previous studies have focused on the elimination of factors causing CCR such as crp, mlc, ptsG, pgi, 

and mgsA gene which are involved in the transcriptional catabolite regulation mechanism 54. However, 

even though these corresponding gene knockout mutants showed release of CCR, the glucose uptake 

rate became much lower as compared to the uptake rate of the wild type due to the inactivation of 

ptsG in all the mutants considered54. Further, previous studies ignored arabinose mediated CCR on 

xylose metabolism. Therefore, continuous gene expression involved in xylose catabolism might be 

useful for efficient co-metabolism of xylose and glucose without any inhibition of glucose metabolism 

and arabinose mediated regulatory interference.  

 

To do this, we replaced the native promoter of two different xylose operons, which are xylAB for 

xylose catabolism and xylFGH for xylose transporter. However, the resulting strain XYL showed 

impaired growth on xylose media. For efficient xylose utilization, XYL was adapted for 20days in 

xylose containing minimal media using the sub-culturing method. As a result the adapted strain, 

XYL1, obtained the efficient xylose utilization similar to the wild type. Such long-term evolution 

experiments change their gene expression to allow E. coli to adjust the new conditions 59. In other 

words, it makes rigorous connections between genetic changes and phenotypic outcomes in bacterial 

cells 60. Therefore, it is a most useful tool for gene engineering due to short time to experiment as well 

as simple experimental procedures. However, the evolutionary dynamics of regulatory systems are 

largely unexplored.  

 

Meanwhile, XYL1 obtained from such evolution experiment still showed strong glucose effect even 

though XYL1 showed continuous expression of xylose operons. In addition, XYL2(CRP with 

I121Land T127I) didn’t show the relief of CCR even though a previous study showed the CRP* 

(I121L, T127I and A144T) increase the xylose uptake rate through xylose non-specific transporters 57. 

It indicates that genetically different crp* exhibited different relieving catabolic repression of select 

genes examined to different extent 18,52. Therefore, the construction of crp* sensitive to xylose 

metabolism will be the subject of a future study. Strong glucose effect investigated in XYL1 

demonstrated that the xylose metabolic gene expressions are repressed beyond transcription level in 

the presence of glucose. Our results clearly demonstrate that CCR is not just at the transcriptional 
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level as previously assumed, but that different sugar transport and catabolism genes show complex 

transcriptional responses to glucose and their respective carbon sources 58.  

 

It has been already known that the expression of ptsG enconding EIIBCGlc, the membrane-specific 

component of the glucose Phosphotransferase system (PTS), is also controlled post-transcriptionally 

in response to phosphor-sugar stress61. More recently, it has been reported that base-pairing RNA 

Spot42 plays a broad role in catabolite repression in E. coli 62. Spot42 sRNA is abundant in the 

presence of glucose and hence it represses numerous transport and catabolism genes at the post-

transcriptional level in the presence of glucose. 

 

Further, CRP represses Spot42 and thus these regulators accelerate gene repression when the 

preferred carbon source appears, and delay gene activation when the preferred carbon source 

disappears 62. It was also identified that one of the genes regulated by Spot42 is xylF. This might be 

one of the reasons why XYL1 still showed the strong glucose effect even continuous transcription of 

xylose operons. Therefore, manipulation of the spf gene encoding Spot42 might help continuous gene 

expression for xylose metabolism. Thus, study at the diverse expression level is required for the 

continuous xylose metabolism.  

 

In summary, we proposed a new approach to release CCR which focused on the continuous gene 

expression of xylose specific operons without any other regulatory interference in lignocellulose sugar 

mixtures whereas previous study focused on the manipulation of the regulatory proteins causing CCR. 

We allowed E. coli to express the genes involved in xylose metabolism continuously by replacing the 

native promoters of xylAB and xylFGH with synthetic constitutive promoters. The XYL1 strain 

slightly released glucose effect and was free of the repression by arabinose in the mixture of arabinose, 

xylose and glucose. This engineered strain is still far away from industrial biofuel production. 

However, to do this, xylose consumption rate in XYL1should be increased accompanied by the 

diverse studies about the regulation of gene expression. 
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