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Abstract 
 

Due to the resource exhaustion and environmental issues, the increasing energy demands have 

stimulated intense research on alternative energy storage and conversion systems with high efficiency, 

low cost, and environmental benignity. Graphene, two-dimensional sp2-hybridized carbon structure, 

has recently attracted enormous interest for promising electrode materials due to its superior 

properties such as high electrical conductivity, large surface area, and chemical and mechanical 

stability. Chemical exfoliation method has been the most popular protocols to achieving stable 

suspensions in various solvents. This approach is a very efficient and scalable; however, it 

unavoidably introduces the surface defects, which hamper the conductivity of the resulting graphene 

sheets. Nevertheless, chemically exfoliated graphene nanosheet provides an ideal single-atom-thick 

substrate for growth of functional nanomaterials to render them electrochemically active and 

electrically conductive properties due to many oxygen functional groups on the surface of graphene 

nanosheets. In addition, it can readily adding the other groups to graphene oxide nanosheets using 

various chemical reactions that provides for either covalent or non-covalent attachment to the 

resulting chemically modified graphenes. Such approaches, which add functionality to groups that are 

already present on the graphene oxide, render graphene oxide a more versatile precursor for a wide 

range of applications. 

In this study, we synthesized diverse graphene-based nanocomposites by chemical functionalization 

and demonstrated for energy storage and conversion systems with enhanced electrochemical 

performance. 
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PART I. Hybrid Multilayer Thin Film Supercapacitor of Graphene Nanosheets with Polyaniline: 

Importance of Establishing Intimate Electronic Contact through Nanoscale Blending 

 

I. INTRODUCTION 

A global energy issue on the environmental pollution and depletion of fossil fuels is one of the 

major challenges that our society faces in recent days. In addition, the increasing energy demands for 

portable devices and hybrid electric vehicles have stimulated intense research on sustainable and 

renewable energy sources with high efficiency, low cost, and environmental benignity.1-3 To satisfy the 

high requirements for emerging systems, electrochemical energy storage and conversion systems such 

as rechargeable batteries, fuel cells, and supercapacitors, have been widely studied to alternate the 

fossil fuels. Among these electrochemical devices, supercapacitors, also known as ultracapacitors or 

electrochemical capacitors (ECs), have received considerable attention as an attractive power source 

due to their complementary performance with respect to rechargeable batteries and fuel cells.2, 4-9 

Thus, we present the development of hybrid supercapacitors with tailored compositions and 

architectures that combine the concept of an electric double-layer capacitor of graphene materials and 

a pseudocapacitor. More specifically, by taking advantage of LbL assembly, we constructed a hybrid 

supercapacitor consisting of a graphene oxide (GO) nanosheet and a conducting polymer polyaniline 

(PANi) based on electrostatic interactions. Because LbL-assembled PANi with graphene nanosheets 

has not yet been fully explored, here we carefully investigated the dependence of the electrochemical 

performance of hybrid thin films on the various parameters of LbL assembly, such as the number of 

bilayers and the post-thermal and chemical treatments that could affect the degree of reduction in GO 

and PANi. We also demonstrated the redox state of PANi, is closely related to the stability and 

performance of the hybrid electrode. 

 

1.1 Basics of electrochemical energy storage systems 

As illustrated in Figure 1, where energy conversion and storage devices are compared and 

presented in the simplified ‘Ragone plot’.8, 10 The electrochemical performance of an energy storage 

device is determined by two key parameters, one is energy density (E) that means the amount of 

energy stored per unit mass and can be expressed by the equation: 

 

E ൌ
1
2
 ଶܸܥ

 

where C is the specific capacitance, and V is the voltage. The other factor is power density (P) which 

is the amount of energy delivered per unit mass and can be expressed by the equation: 
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where Rs is the equivalent series resistance (ESR) and Vi is the initial voltage. Through the Ragone 

plot, we can note that the conventional rechargeable batteries and fuel cells provide a high energy 

density, but with a low power density. Meanwhile, even though the conventional capacitors possess a 

high power density, they cannot offer a high energy density to meet requirement for long duration 

applications. 

Conventional capacitors, which consisting of two conducting electrodes separated by an insulating 

dielectric material, store the energy by electrostatically positive and negative charges on the surface of 

each electrodes.5 They exhibit a prominent feature of fast charge/discharge rate in a few second; as a 

consequence, a much high power delivery or uptake (10 kW/kg) can be achieved for a short time. 

However, its energy density (about 5 Wh/kg) is relatively low compared with other energy storage 

systems. Rechargeable batteries and fuel cells can store the charges by chemical redox reaction 

between active materials and electrolyte ions, which leads to high energy density.11-13 Despite their 

relatively high specific energies, batteries still suffer from severe drawbacks; low charge-discharge 

rates and a sluggish power delivery or uptake.  

Supercapacitor, which stores the energy by using either ion adsorption or fast surface redox 

reactions, the electrochemical behavior placed somewhere between the conventional capacitors and 

batteries. It can store hundreds or thousands of times more charges than that of conventional capacitor 

due to a large specific surface area (SSA), while it can charge and discharge quickly in few minutes 

like a conventional capacitor. In addition, it delivers high levels of electrical power and offers long 

operating lifetime, which employs an important role for emergency or back-up power supplies to 

protect against power disruption.14 However, a major weakness of supercapacitor is its relatively low 

energy density (typically 5–10 Wh/kg), which is significantly lower than the lead-acid (20–35 Wh/kg), 

Ni metal hydride (40–100 Wh/kg), and lithium-ion batteries (120–170 Wh/kg). Despite their low 

energy density, a number of distinctive features such as high power density, fast charge–discharge 

capability, long cycle life, wide thermal operating range, and low maintenance cost clearly provide 

supercapacitors high potential as energy storage devices.1, 15, 16 Thus, supercapacitor offers promising 

approach to meet the increasing power demands of energy storage devices together with synergistic 

benefits both from the capacitor and battery properties.  

 

1.2 Charge storage mechanisms of supercapacitor 

Supercapacitors can be categorized by electric double-layer capacitors (EDLCs) and 

pseudocapacitors depending on the charge storage mechanisms and the type of active electrode 

materials.5 The most common EDLCs devices, use carbon-based active materials with high surface 
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Figure 1. Specific power against specific energy, also called a Ragone plot, for various electrical 

energy storage devices. If a supercapacitor is used in an electric vehicle, the specific power shows 

how fast one can go, and the specific energy shows how far one can go on a single charge. Times 

shown are the time constants of the devices, obtained by dividing the energy density by the power.8 
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area, and the capacitance comes from the electrostatic charge accumulation on the 

electrode/electrolyte interface. The concept of the EDLCs was first described by Helmholtz in 1853, 

when he investigated the distribution of alternative charges at the interface of colloidal particles.17 The 

Helmholtz double layer model is similar to that of two conducting electrode conventional capacitors. 

This capacitance model was later refined by Gouy and Chapman, and Stern and Geary, who suggested 

the presence of a diffuse layer in the electrolyte due to the accumulation of ions near the surface of 

electrode.18-20 The diffuse layer was formed by a continuous distribution of electrolyte ions (both 

cations and anions) in the electrolyte solution, indicating that the specific capacitance is highly 

dependent on the type of electrolyte ions and chemical affinity between the adsorbed ions and 

electrode surface. For example, specific capacitance of EDLCs achieved with aqueous alkaline or acid 

solutions is generally higher than inorganic electrolytes.21 Moreover, it has no limitation by the 

electrochemical kinetics through a polarization resistance and allows very fast energy delivery and 

uptake, and better power performance. However, as a consequence of the electrostatic surface 

charging mechanism, these devices suffer from a relatively low energy density, which is not enough to 

alternate the secondary batteries. 

In contrast, the pseudo- or redox- capacitors store the charges by the fast-reversible chemical redox 

reactions between electrolyte and electroactive species on the electrode surface, like conventional 

batteries. The metal oxides (e.g. RuO2, Fe3O4, and MnO2)
22-26 as well as electrically conducting 

polymers (e.g. polyaniline and polypyrrole),27, 28 have been extensively studied as electroactive 

materials. The specific capacitance value of pseudocapacitive materials exceeds that of carbon 

materials based EDLCs, but they often suffer from a lack of stability during charge/discharge cycling, 

like batteries, due to the instability of materials during fast redox reactions.  

 

1.3 Graphene as an electroactive material for supercapacitor 

Carbon-based materials ranging from activated carbons to carbon nanotubes (CNTs) are the most 

widely used electrode materials because of their unique and characteristic physical and chemical 

properties. These properties include low cost, variety of form (powders, fibers, aerogels, composites, 

sheets, monoliths, tubes, etc.), ease of processability, relatively inert electrochemistry, controllable 

porosity and electrocatalytic active sites for a variety of redox reactions.21, 29 In the development of 

EDLCs, a proper control over the specific surface area and the pore size adapted to an appropriate 

type of electrolyte solution is crucial to ensure a good performance of the supercapacitor in terms of 

both power delivery rate and energy storage capacity.  

Activated carbons are often considered as EDLC electrode materials because of their high surface 

area and controllable pore size, depending on the method of activation (chemical or physical 

activation). Templated porous carbons of microporous, mesoporous and macroporous sizes with a 

tailorable hierarchical structure hold a great promise as supercapacitor electrode materials.30 In 
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addition, CNTs are of particular interest for the development of supercapacitor electrodes because of 

their unique tubular porous structures and superior electrical properties, which favor fast ion and 

electron transportation. More recently, the rise of graphene, which is a new class of two-dimensional 

carbon nanostructure, having large specific surface area and exceptionally high electronic properties, 

is forecasted to have a high potential in supercapacitor applications. 

 

1.3.1 Graphene as a promising material for energy storage devices 

Among many promising materials used for supercapacitors, carbon-based materials have been 

widely employed as electrode materials due to their excellent electrical conductivity and high surface 

area (Figure 2). In particular, graphene, a two-dimensional monolayer of an sp2-carbon network, has 

recently emerged as a novel nanomaterial that has stimulated intense research in the energy field of 

material science and technology due to its remarkable physicochemical properties.31-36 It has a large 

theoretical specific surface area (2630 m2/g),37 high intrinsic mobility of charge carriers (200 000 

cm2/V·s),38 high Young’s modulus (~1.0 TPa),35 fracture strength (125 GPa),35 and thermal 

conductivity (~5000 W/K·m),39 and its optical transmittance (~97.7% in visible region) and high 

electrical conductivity38 merit attention for promising candidates as components in applications such 

as transparent conductive electrode,40, 41 ‘paper-like’ materials,42, 43 polymer composites,32, 44 and 

mechanical resonators.45 Especially, its unique physicochemical properties suggest it has great 

potential for providing new approaches and critical improvements in the electrochemistry field of 

energy storage and conversion devices.37 

 

1.3.2 Various approaches for production of graphene nanosheets 

Graphene has been prepared by following diverse methods (Figure 3). First, the micromechanical 

exfoliation, which is also known as the scotch tape or peel-off method, was first developed by Geim 

and Novoselov in 2004.31, 46 It is a very simple and facile method for producing the isolated graphene 

nanosheets from natural graphite without any degradation of their unique physical and chemical 

properties. Second is epitaxial growth on electrically insulating surfaces such as SiC.47 Epitaxial 

growth of graphene nanosheets offers the advantage of structural coherence over large areas, because 

the azimuthal orientation of graphene is governed, to a large degree, by the crystal structure of the 

substrate surface. Third is chemical vapor deposition (CVD) such as the decomposition of gaseous 

ethylene or methane on metal substrates.36, 48 CVD method provides a production of highly qualified 

and electronic conductive graphene nanosheets with large lateral size. Finally, the chemical 

exfoliation method was widely studied to make homogeneous colloidal graphene oxide suspensions in 

aqueous or various organic solvents. Chemical exfoliations have been widely studied by the Brodie, 

Satudenmaier, and Hummers in the nineteenth century.49-51 As recently demonstrated by Ruoff and co-

workers,52 the solution-based route involves chemical oxidation of graphite to hydrophilic graphite 



- 12 - 
 

 

 

 

 

 

 

 

 

 

  

 

Figure 2. Mother of all graphitic forms. Graphene is a 2D building material for carbon materials of all 

other dimensions. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or stacked into 

3D graphite.33 
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Figure 3. Various approaches for synthesis of graphene (a) Chemical vapor deposition (CVD), 

epitaxial growth, and micromechanical exfoliation. (b) Chemical route to the synthesis of aqueous 

graphene dispersions. (1) Oxidation of graphite to graphite oxide with greater interlayer distance. (2) 

Exfoliation of graphite oxide in water by sonication to obtain GO colloids that are stabilized by 

electrostatic repulsion. (3) Controlled conversion of GO colloids to conducting graphene colloids 

through deoxygenation by hydrazine reduction 
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oxide, which can be readily exfoliated as individual graphene oxide (GO) nanosheets by 

ultrasonication in water. Graphene oxide, which is electrically insulating, can be converted back to 

conducting graphene by chemical reduction. This approach involves chemical oxidation of graphite in 

the presence of strong acids and oxidants which not only readily change the degree of the oxidation on 

the basis of the method protocol, but also provides a promising route to achieve mass production. 

Moreover, the many oxygen functional groups on the surface of graphene nanosheets render them a 

good candidate for use in the various electrochemical energy storage fields through chemical 

functionalization. 

 

1.4 Hybrid nanomaterials for supercapacitor 

Despite these favorable features, the use of graphene and related carbon materials in 

supercapacitors is still limited due to their low capacitance (typically in the range of 10–102 F/g) and 

unsatisfactory performance to meet the high-power performance requirements. In order to overcome 

these limitations, there have been reports of preparing hybrid electrodes by combining graphene with 

other nanomaterials such as metal oxides and conducting polymers, thus providing the advantages of 

each component.53-58 

Polyaniline (PANi), which is a conducting polymer, has been considered a promising material for 

energy storage and conversion with its excellent pseudocapacitive behavior, exhibiting a fast, 

reversible faradic reaction on the electrode surface, together with its high conductivity and ease of 

synthesis.59 With these potential benefits, much promising research has been reported to date on 

combining graphene nanosheets with electrochemically active PANi, including simple solution 

mixing,60, 61 in situ polymerization,57, 62 and electropolymerization.63, 64  

Although these recent progresses present facile routes for the fabrication of hybrid electrode films 

of graphene, many of the resulting hybrid films suffer from a lack of precise control over the film 

architecture and properties, leading to a loss of the active surface area of the graphene sheets and 

intimate electrochemical interfaces necessary for maximum energy storage. Therefore, it continues to 

be a challenging endeavor to realize the nanoscale uniform blend of the hybrid structure of graphene 

nanosheets with other nanomaterials in a well-defined composition and structure. 

 

1.5 Fabrication of hybrid electrodes by Layer-by-Layer (LbL) Assembly 

The layer-by-layer (LbL) assembly, first introduced by Iler65 and later by Decher,66 is very simple 

and effective methods to make multifunctional hybrid architectures with nanometer-scale control 

(Figure 4). The LbL technique is not only applicable to polyelectrolyte-based systems, but also to 

almost any type of charged species, including inorganic molecular clusters, nanoparticles, nanotubes, 

nanoplates, micelles, block copolymers, polypeptides, DNA, and viruses. These materials can be 

successfully incorporated as components to create diverse functions with unique physical and 
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chemical properties by controlling structural differences. This approach generally occurred on the 

basis of the intermolecular electrostatic interactions, hydrogen bonding, covalent bonding, charge 

transfer interactions, host-guest interactions, and even biological recognition motifs. As a result, LbL 

assembly can be highly adaptable to assemble the nanoscale uniform blend of the hybrid structure of 

graphene nanosheets with other nanomaterials in a well-defined composition and structure.66-71 
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Figure 4 (a) Schematic illustration of the layer-by-layer (LbL) assembled multilayer film deposition 

process based on electrostatic interaction and a simplified multilayer film built up from a negatively 

charged substrate. (b) A schematic illustration of the multilayer film deposition process based on the 

dipping, spraying, and consecutive spinning process of anionic and cationic polyelectrolytes.71 
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II. EXPERIMENT 

2.1 Preparation of polyaniline (PANi) suspension 

The polyaniline suspension was prepared by the method reported previously.72 The emeraldine base 

form of polyaniline (Mw 20000, Aldrich) was dissolved in dimethylacetamide (DMAc) at a 

concentration of 20 mg/mL by stirring the solution overnight and then bath sonicating for 10 h. The 

fine particulates were removed by filtering the solution through plain filter paper. The polyaniline 

dipping solution was prepared by slowly adding one part (by volume) of the filtered polyaniline 

solution to nine parts of pH-adjusted water (pH 3.0). The pH was then quickly lowered to 2.5 by 

adding a few drops of 1.0 M HCl solution. The solution was filtered through a 0.45 mm filter again 

prior to use. The polyaniline dipping solutions were typically used within 2 days of preparation, as 

they otherwise form irreversible aggregates.  

 

2.2 Preparation of graphene oxide (GO) suspension 

Graphite oxide was synthesized from graphite powder (Aldrich, <20 mm) by the modified 

Hummers method and exfoliated to give a brown dispersion of graphene oxide (GO) under 

ultrasonication. The GO powder dissolved in a known volume of water is subjected to ultrasonication 

for 40 min to give a stable suspension of GO (typically conc. 0.50 mg/mL) and then centrifuged at 

4000 rpm for 10 min to remove any aggregates remaining in the suspension. 

 

2.3 Fabrication of layer-by-layer assembled (PANi/GO)n multilayer films 

We prepared the two solutions of opposite charges of PANi and GO with pH 2.5 and 3.5 adjusted 

by 0.1 M HCl, respectively. The as-cleaned substrates were first dipped into a PANi solution for 15 

min and then washed in three baths of deionized water (pH 2.5) for 1 min each, to remove residuals 

and weakly adsorbed PANi. Then, the substrates were dipped into a GO solution for 15 min and 

washed in the same way with deionized water adjusted to pH 3.5. This cycle makes one bilayer of 

PANi/GO film, and controls the thickness and formation by repeating the cycles from nanometer to 

micrometer scale. To enhance the mechanical stability and electrical conductivity of the assembled 

PANi/GO films, we annealed the as-prepared samples at 150 oC for 12 h in a vacuum oven. To further 

improve the graphene properties, we conducted a vapor chemical reduction by using hydrazine 

monohydrate (N2H4·H2O) at 70 oC for 24 h with N2 flow. 

 

2.4 Fabrication of electropolymerized PANi electrode 

Aniline monomer was in situ electropolymerized on an ITO-coated glass substrate in aqueous 1.0 

M H2SO4 electrolyte containing 0.5 M aniline by a cyclic potential sweep between -0.6 and 1.4 V 

versus a saturated calomel electrode (SCE) at a scan rate of 100 mV/s.73 After electropolymerization, 

the PANi electrode was extensively washed with deionized water and dried. The degree of 
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polymerization of PANi could be controlled by the number of potential sweep cycles. After 20 cycles, 

the electropolymerized PANi film has 69.23 mg/cm2 active mass, which was calculated with a quartz 

crystal microbalance. The galvanostatic charge–discharge curves were conducted in 1.0 M H2SO4 

aqueous electrolyte in the range from -0.2 to 0.8 V vs an Ag/AgCl reference electrode with 3 A/g of 

constant discharge current density for 500 cycles. 

 

2.5 Preparation of electrodes and electrochemical measurements 

(PANi/GO)n films were assembled on an ITO-coated glass substrate and were directly used as a 

working electrode in a three electrode test cell. Platinum wire and Ag/AgCl were used as a counter 

and reference electrode, respectively. The characterization of the electrochemical performance for the 

as-prepared PGn electrode was conducted using a VMP3 electrochemical potentiostat (BioLogic Inc.). 

Cyclic voltammograms (CVs) and the galvanostatic charge–discharge process were measured with a 

potential window from -0.2 to 0.8 V versus Ag/AgCl in 1.0 M H2SO4 aqueous electrolyte with wide 

scan rates from 10 to 200 mV/s and a discharge current density from 0.5 to 3 A/g. We also conducted 

quartz crystal microbalance (QCM) measurements to acquire the active mass on the electrode, 

depending on the number of bilayers and post-treatments. The active mass can be calculated using the 

following Sauerbrey equation: 

 

ᇞmass ൌ
‐ ᇞ 	ݍ݁ݎ݂ ൈ 	ܣ ൈ	ඥߤ௤	ൈ	ߩ௤

2	 ൈ	ܨ௤ ൈ	ܨ௤
 

ᇞmass ൌ ‐ ᇞ 	ݍ݁ݎ݂ ൈ 5.453	 ൈ  ܣ

 

where Δmass is the mass change (g), Δfreq is the resonant frequency change (Hz), μq is AT-cut quartz 

crystal constant (2.947 X 1011 g/cm·s2), ρq is the quartz crystal density (2.648 g·cm3), Fq is the 

reference frequency (9.00 MHz), and A is the surface area of the electrode (cm2). The active mass of 

the electrodes of annealed (GO/GO)10, as-prepared (PANi/GO)10, and heat-treated (PANi/GO)10 are 

1.35, 43.63, and 38.81 mg within a specific area (1.4 cm2), respectively. Consequently, the specific 

capacitance can be calculated by dividing the gravimetric capacitance by a specific surface area. 

 

2.6 Other characterization methods 

The growth and structure of the (PANi/GO)n films were analyzed using UV/vis absorption spectra 

(Varian, Cary 5000) and X-ray photoelectron spectroscopy (XPS, Thermo Fisher, K-alpha). The 

thickness of the as-prepared samples on the silicon substrates was measured by ellipsometry (J. A. 

Woollam Co. Inc., EC-400 and M-2000V). The surface morphology of the prepared electrodes was 

examined using an atomic force microscope (AFM, Dimension D3100, Veeco) via tapping mode and 

the surface morphology and interior structure of the hybrid films of (PANi/GO)n were investigated 
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using a field emission scanning electron microscope (FESEM, FEI, Nanonova 230) and a 

transmission electron microscope (TEM, JEOL JEM-2100, accelerating voltage of 200 kV, Gatan 

CCD camera). 
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III. RESULTS AND DISCUSSION 

A supercapacitor can be classified according to the charge storage mechanism as well as the active 

materials. The first is electric double-layer capacitors (EDLCs) use carbon-based active materials with 

high surface area, which can store the charge by electrostatically reversible adsorption of electrolyte 

ions onto active materials. It exhibits an electrochemically stable and high accessible surface area; 

however, its relatively low capacity is not enough to alternating the secondary batteries. The second is 

pseudo- or redox capacitors by using the transition metal oxide and electrically conducting polymer as 

active materials, which exhibit a much high specific capacitance by fast and reversible redox reactions 

at the surface of active materials. However, it often suffers from a lack of stability during 

charge/discharge process. The hybrid supercapacitor, which combined each system of electric-double 

layer capacitor and pseudocapacitor, is a promising approach through the synergistic effects to 

enhancing their electrochemical performance. We prepared the hybrid electrode, consisting of 

pseudocapacitive conducting polymer, PANi, and electric-double layer capacitor of graphene 

nanosheets by Layer-by-Layer (LbL) assembly (Scheme 1). 

 

3.1 Layer-by-Layer assembly for hybrid PANi/GO electrodes 

To introduce the graphene nanosheet into an LbL system based on intermolecular electrostatic 

interactions, a graphene oxide (GO) suspension was prepared from a commercial graphite powder 

followed by the modified Hummer’s method.51, 74 Following physical exfoliation of the graphite oxide 

to making a homogeneous dispersion in aqueous solution, the chemical functional groups introduced 

on the surface of the graphene sheet, such as carboxylic acids, hydroxyl, and epoxide groups, render 

the prepared GO suspension negatively charged over a wide range of pH conditions. Separately, a 

positively charged stable polyaniline (PANi) suspension was prepared by dissolving an emeraldine 

base form of PANi (Mw 20000) in dimethylacetamide (DMAC) with subsequent dilution with pH 2.5 

adjusted water (DMAC : H2O = 1 : 9 v/v) based on the literature protocol.72 It should be noted that the 

pH window for the PANi is limited to 2.5–3.0, whereas that of GO is wide in the range of 1–12 in 

order for each suspension to remain stable during the assembly. With these two stable suspensions, we 

fabricated the hybrid thin films by alternately dip-coating on ITO-coated glass substrates or silicon 

wafers to afford the multilayered architecture of (PANi/GO)n (n = number of bilayers, typically 2–10, 

hereafter PGn) (Figure 5).  

The successful growth of PGn multilayers was monitored from a gradual increase of the UV/vis 

absorbance spectra with the characteristic absorbance of each component (Figure 5a). In addition to 

the absorption at 220 nm due to the presence of GO, there are two absorption bands at 319 and 458 

nm corresponding to PANi. The peak at 319 nm can be attributed to the π–π* transition of benzenoid 

rings and the broad band at 458 nm is due to the polaron transition, which is a typical characteristic of 

the conducting emeraldine state of PANi.75, 76 Consistent with the UV/vis absorption spectra, the 
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ellipsometry thickness measurements show that the thickness of the PGn multilayers is linearly 

proportional to the number of bilayers, demonstrating the uniform and well-controlled assembly of the 

PGn thin films with nanoscale precision (Figure 5b). From the linear fitting of the curves, an average 

bilayer thickness of ca. 19 nm was calculated, which is far beyond the thickness of a single layer GO 

nanosheet (ca. 0.7 nm), suggesting a non-typical superlinear growth of the multilayer films due to the 

interdiffusion of partially charged PANi within the multilayer films.77-80 We have further observed the 

tunable growth of PGn multilayers with respect to the changes in the pH of the GO suspension at a 

fixed pH of PANi (pH 2.5). For instance, upon increasing the pH of the GO suspensions from 3.5 to 

6.5, we found that the growth of the PGn multilayer film decreased, as monitored by the UV/vis 

spectra (Figure 5c). This is due to the surface charge increase of carboxylic acid groups in the GO 

suspension, leading to less adsorption on the pre-adsorbed positively charged PANi layer to balance 

the surface charges. This type of pH tailorable behavior of LbL thin films was similarly observed with 

weak polyelectrolytes, as well as with other nanomaterials, where pH can alter the degree of 

ionization and eventually lead to differences in the film thickness and morphology of the resulting 

LbL films.81, 82  

 

3.2 Post-reduction treatments on hybrid PANi/GO electrodes 

In order to enhance the mechanical integrity of the multilayer films to the substrate and to improve 

the electrical properties of the graphene nanosheets, the as-assembled hybrid multilayers of PGn were 

subjected to thermal reduction at 150 oC for 12 h under vacuum to yield heat-treated PGn samples 

(hereafter PGn-H). Additional chemical reduction of the PGn-H films via gaseous hydrazine 

monohydrate at 70 oC for 24 h afforded samples of both heat- and chemical-treated PGn (hereafter 

PGn-HC) with considerably enhanced electrical conductivity of the graphene nanosheets. After 

thermal reduction, the PGn-H films appeared dark blue, resulting from partial restoration of the 

conjugated aromatic structure within the graphitic structure, whereas the color of the PGn-HC films 

changed to dark green, reflecting the changes in the electronic state of PANi that may occur during the 

chemical reduction process (Figure 5d). The UV/vis spectra of GO in the as-assembled PGn film was 

also red-shifted to 275 and 268 nm after thermal and chemical reduction, respectively, which 

demonstrates the successful restoration of electronic conjugation within the graphene sheets.74 

 

3.3 Characterization of the structural and chemical properties of hybrid PANi/GO electrodes 

The side-on scanning electron microscopy (SEM) image shows the surface is covered with a 

uniform film of PGn multilayers (Figure 6a). The surface morphology of the as-assembled film 

exhibits stacked multilayered structure of the graphene nanosheets (Figure 6b). The elemental 

mapping image further supported the uniform distribution of carbon, oxygen, and nitrogen over the 

entire multilayer characteristic wrinkled graphene sheets that are distributed over the entire film 
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Scheme 1. Schematic representation of layer-by-layer (LbL) assembled multilayer thin film of PANi 

with graphene oxide nanosheets with a photograph of the film assembled on a flexible PET substrate. 
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Figure 5. (a) UV/vis spectra and (b) ellipsometry thickness of as-assembled (PANi/GO)n multilayer 

films as a function of the number of bilayers. The number on each graph represents the number of 

bilayer (n). Inset in Fig 5a is the image of corresponding samples from 2- to 10-bilayer. Thickness is 

the average values of five independent measurements. (c) Plot of the UV/vis absorption peak at 319 

nm of PGn multilayer film as a function of the number of bilayers constructed with varying pH of GO 

suspension at a fixed pH of PANi (pH 2.5). (d) Representative photograph image of LbL-assembled 

hybrid electrodes of (left) PG10 (middle) PG10-H, and (right) PG10-HC. 
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surface. The internal microstructure was investigated with transmission electron microscopy (TEM), 

which revealed the films, confirming the presence of both PANi (a source of carbon and nitrogen) and 

GO (a source of carbon and oxygen) within the multilayer films (Figure 6c). The atomic force 

microscopy (AFM) image of the as-assembled PGn film displays a similar microstructure of the 

graphene sheets covered with a polymeric PANi structure without significant phase separation. 

Moreover, the surface morphology of the as-assembled PG10 film was further compared with those of 

PG10-H and PG10-HC (Figure 6d-f). Although we could not determine distinctive differences in the 

surface morphology relating to the post-treatments, we found that the film thickness diminished 

significantly from 192 ± 3.2 nm (PG10) to 135 ± 0.82 (PG10-H) and 132 ± 0.65 nm (PG10-HC) from 

ellipsometry. Similarly, the root-mean-squared surface roughness (Rrms) decreased slightly from 16.7 

nm (PG10) to 15.6 (PG10-H) and 15.7 nm (PG10-HC) after respective post-treatment processes. Taken 

together, the post-thermal and chemical treatments induced close packing between the PANi and GO 

layers via evaporation of intercalated water and removal of the oxygen containing functional groups 

in the as-assembled PG10 film.  

X-ray photoelectron spectroscopy (XPS) studies were employed to monitor the progress of the 

characteristic binding energy of the C1s and N1s peaks corresponding to each functional group 

present on the graphene nanosheets and PANi (Figure 7 and Table 1). On the basis of the XPS data, 

the atomic composition of the surface of the films was determined to be 72.93% carbon, 21.18% 

oxygen, and 5.89% nitrogen in the as assembled PG10 film. This survey scan allows the calculation of 

the relative fraction of PANi which is approximately 41.2% within the multilayer PG10 film. 

Deconvolution of the high-resolution spectra of C1s further affords six distinct components 

corresponding to the graphitic carbon framework for sp2 (C=C) (284.4 eV) and sp3 (C–C) (285.1 eV), 

C–N in the backbone of PANi (285.8 eV), C–O in epoxy and hydroxyl (286.6 eV), carbonyls (288.0 

eV), and carboxylic acids (289.9 eV), which can be attributed to GO, as reported previously (Figure 

7a).64, 83 After thermal and chemical reduction treatments, the fraction of sp2-carbon increased from 

48.3 to 57.4 and 59.8%, respectively, supporting the effective recovery of the graphitic structures, as 

observed also in the UV/vis spectra. Moreover, it is interesting to note that the composition of the C–

N peak increased sharply upon chemical reduction, which is partly due to the substitution of nitrogen 

from the hydrazine monohydrate on the edge plane of the graphene sheets.84 In agreement with the 

above results, high-resolution N1s spectra further yielded detailed structural information of PANi 

within the multilayer. For example, Figure 7b shows that most of the nitrogen atoms in PANi are in 

the form of benzenoid amine (–NH–) centered at 399.37 eV with additional small peaks, including 

those of quinoid imine (=N–) (398.21 eV), and positively charged nitrogen atoms (N+) (401.09 eV).85-

87 Although we could not observe new peaks arising after the thermal and chemical treatments, the 

fraction of the quinoid imine to the benzenoid amine peak (=N–/–NH–) increased modestly from 0.22 

(PG10) to 0.25 (PG10-H) upon thermal treatment. On the contrary, this ratio drops drastically to 0.08 
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Figure 6. Representative images of as-assembled PG20 multilayer films: (a) SEM and (b,c) TEM with 

a corresponding elemental mapping. Inset in (a) shows the surface morphology. (d-f) Height-mode 

AFM images of (d) as-assembled PG10, (e) heat treated PG10-H, and (f) both heat- and chemical-

treated PG10-HC. 
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Figure 7. High-resolution (a) C1s and (b) N1s XPS spectra of all (PANi/GO)10 multilayer films with 

and without post-treatments. The percentage under the sp2 label in Fig 7a represents the fraction of 

sp2-carbon. 
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Table 1. XPS peak assignments of deconvoluted C 1s and N 1s composition with relative percentage 

of each peak. 

 Binding Energy (eV) / relative percentage (%) 

 C 1s N 1s 

C=C C-C C-N C-O C=O O-C=O =N- -NH- N+ 

PG10 
284.37 285.1 285.8 286.63 287.95 289.89 398.21 399.37 401.09 

(48.32) (14.96) (4.37) (19.71) (10.43) (2.21) (10.53) (48.85) (40.62)

PG10-H 
284.38 285.08 285.84 286.67 287.87 289.23 398.22 399.5 401.09 

(57.37) (12.89) (10.7) (7.1) (7.31) (4.63) (9.68) (58.2) (27.11) 

PG10-HC 
284.45 285.16 285.83 286.63 287.87 289.36 398.21 399.57 401.07 

(59.79) (8.27) (12.76) (7.05) (7.64) (4.48) (4.81) (61.26) (33.93)
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after further chemical reduction in PG10-HC, suggesting a lower overall doping level of the PANi 

chain in the PG10-HC film compared to that in the PG10 and PG10-H films, albeit the GO is reduced 

accordingly. In conjunction with this observation, Maser et al. recently reported that the simultaneous 

reduction of a GO and PANi composite by hydrazine produced a solid-state charge-transfer complex 

possessing a lower number of quinoid groups compared to benzenoid groups. Additionally, the 

relative fraction of radical cationic nitrogen at 401.09 eV decreased from 40.62 (PG10) to 27.11 (PG10-

H) and 33.93% (PG10-HC), reflecting the influence of the post-thermal and chemical treatment on the 

doping level of the PANi structure.  

 

3.4 Electrochemical performance of hybrid PANi/GO electrodes for supercapacitor 

To evaluate the electrochemical properties and quantify the specific capacitance of the various 

samples prepared in this study, we performed cyclic voltammetry (CV) measurements in 1.0 M H2SO4 

electrolyte using a three-electrode configuration with platinum wire and Ag/AgCl as a counter and a 

reference electrode, respectively.  

In order to exclude the contribution of pseudocapacitive PANi within the hybrid electrode, we also 

assembled a (GO/GO)10 multilayer electrode as a control which was composed exclusively of 

graphene nanosheets according to the method described in our previous reports.88-91 This all graphene 

multilayer of the (GO/GO)10 sample was heat-treated at 150 oC for 12 h to enhance adhesion of the 

film to the substrate during the electrochemical cycles and to increase the conductivity of the 

multilayer films.  

As shown in Figure 8, all samples of the (PANi/GO)10 hybrid films assembled on ITO-coated glass 

substrates exhibited broad redox peaks in the potential range of -0.2 to 0.8 V investigated. In 

particular, all hybrid electrodes displayed the typical pseudocapacitive behavior of PANi incorporated 

within the hybrid electrodes. Peaks for C1/A1 are attributed to the redox transition of PANi between a 

semiconductive state (leucoemeraldine) and a conducting state (polaronic emeraldine), and the 

additional redox peaks for C2/A2 are associated with the faradaic transformation of emeraldine to 

pernigraniline.57, 63, 92 It is also observed that there is a positive shift of the cathodic peaks (C1/C2) and 

a negative shift of the anodic peaks (A1/A2) with increasing potential scan rate (Figure 8). The 

specific capacitance (Csp) of the electrode can be calculated according to the following equation:  
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where I is the response current (A), Vf and Vi are the integration potential limits (V) of the 

voltammetric curve, ν is the potential scan rate (V/s), and m is the mass of the active electrode 

material measured by a quartz crystal microbalance (QCM) (g). Based on the above equation, we 
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found a Csp of 402.5–219.4 F/g (PG10), 489.0–304.8 F/g (PG10-H), 240.1–103.5 F/g (PG10-HC), and 

24.6–10.9 F/g (GG10-H), respectively, at scan rates in the range of 10 to 200 mV/s (Table 2).  

We also observed that the intermediate capacitive behavior of PG10 increased upon thermal of PANi 

with two characteristic sets of redox peaks (C1/A1 and C2/A2) related to the redox transition treatments 

to PG10-H owing to the recovery of the electrical conductivity of the graphene nanosheets, which 

affected the electrochemical properties of the supercapacitors. On the other hand, further chemical 

treatment did not improve its electrochemical performance, although the chemical reduction can 

effectively recover the electrical properties of the graphene nanosheets. We postulate that the chemical 

treatment with hydrazine can also influence the conducting level of PANi, as monitored from the 

relatively low ratio of quinoid imine to benzenoid amine from the XPS spectra in Figure 7, which 

diminishes the electrochemical performance of the hybrid electrode. In addition, it is hard to exclude 

the possibility of structural degradation of PANi during the chemical reduction process.  

In clear contrast to the hybrid electrode, the assembled all-GO electrode without PANi exhibited a 

nearly ideal rectangular shape without any obvious redox peaks, which corresponds to a characteristic 

electric double-layer capacitive (EDLC) behavior with a specific capacitance of 10.9 F/g at a scan rate 

of 200 mV/s. According to the report of Hammond and Shao-Horn, multilayer thin films of all 

multiwalled carbon nanotubes (MWNTs) exhibit a similar rectangular capacitive behavior with a 

small portion of pseudocapacitive redox peaks associated with the surface functional groups attached 

to the surface of MWNTs such as carboxylic acid groups.93 Taken together, our hybrid system of PANi 

with grapheme nanosheets contributed to the significant enhancement of the electrochemical 

performance through a synergistic effect, in which the high specific surface area and electrical 

conductivity of the graphene nanosheets that are coupled with the redox transition from PANi for 

decreased diffusion length and fast electron transfer at the interface between the electrodes and the 

electrolyte ions.  

As shown in Figure 9, the galvanostatic charge–discharge curves and specific capacitance with 

cyclic stability of the PG10 and PG10-H hybrid electrodes conducted as a function of discharge current 

density from 0.5 to 3.0 A/g. The specific capacitance based on the galvanostat is calculated by the 

following equation:  

 

Cୱ୮ሺF/gሻ ൌ 	 ሺ݅ ൈᇞ ሻ/ሺᇞݐ ܧ ൈ ݉ሻ 

 

where i is the discharge current (A), Δt is discharge time (s), ΔE is the voltage difference (V), and m is 

the active mass of electrode. According to equation, we found that the thermally annealed PG10-H 

electrode has a much higher capacity of 116.5–375.2 F/g than does the as-assembled PG10 electrode of 

94.2–162.9 F/g over the entire range of discharge current density (0.5–3.0 A/g) in accord with the Csp 

measured from the CV (Table 2). Moreover, based on the above values, we calculated that the energy 
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Figure 8. (Top) Cyclic voltammogram (CV) curves of all (PANi/GO)n hybrid electrode films with 

various scan rates from 10 to 200 mV/s. (a) As-prepared PG10, (b) heat-treated PG10-H, (c) heat- and 

chemically-treated PG10-HC, and (d) heat-treated (GO/GO)10. All electrochemical properties were 

collected in a three-electrode system with a Ag/AgCl reference in 1.0 M H2SO4 electrolyte at identical 

scan rates presented in (d). Note that the y-scale in (d) is significantly smaller than the others. (Bottom) 

Plot of the peak current density (mA/cm2) vs potential scan rate (mV/s) of PG10-H in an equi-span log-

log scale. The slopes were estimated to be around 1.0 for both cases. 

 

 



- 31 - 
 

 

 

 

 

 

 

 

 

Table 2 Specific capacitance values of hybrid PG10, PG10-H, PG10-HC, and GG10-H electrodes 

obtained from cyclic voltammograms and galvanostat charge/discharge experiments. 

 

Specific capacitance (F/g) (from cyclic voltammograms) 

 
10 mV/s 20 mV/s 50 mV/s 100 mV/s 200 mV/s 

PG10 402.48 326.17 269.18 241.54 219.35 

PG10-H 489.04 400.13 349.92 323.76 304.76 

PG10-HC 240.13 180.53 135.01 116.85 103.54 

GG10-H 24.62 19.08 15.3 12.84 10.94 

 
 
 
 

 Specific capacitance (F/g) (from charge/discharge curves) 

 
0.5 A/g 1 A/g 1.5 A/g 2.0 A/g 2.5 A/g 3.0 A/g 

PG10 162.89 136.24 121.04 103.64 101.15 94.23 

PG10-H 375.15 218.43 163.92 129.92 124.65 116.46 
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density of each PG10 and PG10-H electrodes reach 18.92 and 30.34 Wh/kg, respectively, at a power 

density of 1.0 kW/kg (see Ragone plot in Figure 10). It is of note that the thermally annealed PG10-H 

electrode showed a lower IR drop during the discharge compared to that of the PG10 electrode, clearly 

indicating the close packed structure and improved electrical conductivity of the active materials via 

thermal reduction effectively decreased the internal resistance in the assembled hybrid electrode. It 

has also been suggested that a well-ordered nanostructure can reduce the ionic diffusion path, 

facilitate ionic motion to the inside of the film, and improve the utilization of the electrode materials.94, 

95 Due to the instability and lack of adhesion to the substrate of PG10-HC during repeated charge–

discharge cycles, we could not obtain reproducible data for PG10-HC, unfortunately. Furthermore, we 

examined the cycling stability of the prepared hybrid electrodes using a galvanostatic charge–

discharge test. Interestingly, the PG10-H electrode demonstrates a considerably better cycling stability 

up to 500 cycles with 90.7% retention of the initial capacitance compared to that of the as-assembled 

PG10 electrode (78.4% retention) at a discharge current density of 3 A/g. It should be noted that 

although the capacitance retention of the pure GO multilayer film is still better after 500 cycles 

(99.8%), the preservation of the capacitive behavior of the hybrid electrode is radically improved 

when compared with that of pure electropolymerized PANi (only 28.3% after mere 10 cycles) (Figure 

9d). These results suggest that the presence of a partially reduced graphene nanosheet within the 

hybrid electrode not only improved the electrical conductivity, but also served as a functional dopant 

to PANi with an enhanced chemical stability during the charge–discharge process, thereby 

contributing to the excellent electrochemical performance for supercapacitors. 
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Figure 9. Galvanostat charge/discharge curves of the assembled hybrid (PANi/GO)10 electrodes. (a) 

PG10, (b) PG10-H, and (c) specific capacitance values as a function of discharge current density from 

0.5 to 3 A/g. (d) Comparison of cycling stability of all samples at a high discharge current density of 3 

A/g. Electropolymerized pure PANi film was used for comparison. 
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Figure 10. Ragone plot of the LbL-assembled hybrid PG10 (black-line) and PG10-H (red-line) 

supercapacitor electrodes measured at different discharge current density from 0.5 to 3 A/g. 
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IV. CONCLUSION 

In conclusion, we have developed a simple method of fabricating hybrid thin film supercapacitors 

of polyaniline (PANi) and graphene oxide (GO) nanosheets by nanoscale blending layer-by-layer 

(LbL) assembly based on electrostatic interactions. The hybrid electrode prepared by the LbL method 

not only offers precise control over the thickness, internal structure and flexibility, but also enhanced 

chemical stability and electronic conductivity during the charge–discharge process, benefiting from 

each component synergistically. We found that the LbL assembled PANi with GO nanosheets thin film 

after thermal treatment could exhibit an excellent gravimetric capacitance of 375.2 F/g at a 0.5 A/g 

discharge current density that outperformed many other hybrid supercapacitors reported to date and 

maintained its capacity up to 90.7% over 500 cycles at a high current density of 3.0 A/g. The current 

work highlights how LbL assembly can be applied to produce nanoscale intimate interfaces at the 

electroactive blends of graphene nanosheets with polymeric materials. We anticipate that this platform 

technique will offer the potential to address critical questions on the fundamental relationship between 

structure and energy storage properties, as well as bridging the performance gap that currently exists 

between batteries and capacitors for the future. 
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PART II. Ionic Liquid Modified Graphene Nanosheets Anchoring Manganese Oxide 

Nanoparticles as Efficient Electrocatalysts for Zn-air Batteries 

 

I. INTRODUCTION 

The limited availability of fossil fuel and environmental impacts has stimulated intense research on 

alternative energy storage and conversion systems. Electrochemical energy storage and conversion 

technologies are of vital importance to enable effective utilization of renewable energy sources and 

the creation of sustainable electric transportation. Recently, rechargeable lithium–ion (Li–ion) 

batteries have been significantly considered and developed to accommodate increasing energy 

demands for emerging applications in energy storage in smart grids and electrified transportations.1 

However, conventional Li–ion batteries cannot sufficiently satisfy the long-term energy storage 

requirements, because of their inherent gravimetric energy limitation associated with Li 

intercalation.2-4 Thus, current Li–ion batteries have limited for the practical application of emerging 

applications.  

To overcome these limitations, one promising approach is to employ four-electron redox reaction of 

oxygen, where metal–air batteries have recently shown the potential to provide much higher 

gravimetric energy density, that of conventional Li–ion batteries (150~200 Wh/kg), as shown in 

Figure 11.5-10 Metal–air batteries generate electricity through an electrochemical redox reaction 

between metal and oxygen in air. The most prominent feature of a metal-air battery is the combination 

of a metal anode with high energy density and an air electrode with open cell structure to readily 

access the oxygen as cathode active materials continuously and almost infinitely from air. In addition, 

they exhibit notable advantages such as low cost, relatively high capacity, facile nature of handling 

and processing, and environmental benignity.11-15 Therefore, metal–air batteries have received much 

attention as a possible alternative and promising power sources for applications in next-generation 

electronics, electrified transportations and energy storage of smart grids. 

Herein, we present a simple approach of integrating manganese oxide nanoparticles into electrically 

conductive graphene sheets via a solution-based growth mechanism to afford hybrid graphene/Mn3O4 

nanoparticles. Furthermore, we investigated their potential as an efficient electrocatalyst for the ORR 

in a Zn–air battery. In this study, we introduced the ionic liquid moiety onto the surface of graphene 

oxide with the aim of introducing the manganese oxide precursor on the surface of graphene as well 

as benefiting from the many features of the ionic liquid moiety (i.e. high ion conductivity, wide 

electrochemical windows, and the low interfacial energy between the graphene and the nanoparticles) 

that play a key role in enhancing the electrochemical activity of the resulting hybrid nanostructure. 

 

1.1 Introduction of Zn–air batteries 

Because of the remarkably high theoretical energy density compared with other conventional  
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Figure 11. Comparison of the gravimetric energy density of some representative types of 

primary/rechargeable batteries, metal–air batteries, H2–air fuel cell and gasoline. The theoretical 

values are calculated on the basis of thermodynamics of active materials.16 
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batteries such as the primary Zn–MnO2 (Zn–Mn) and the rechargeable lead–acid, nickel–metal 

hydride (Ni–MH) and lithium–ion batteries,17 metal–air batteries represent one class of promising 

electrochemical systems for applications in next-generation electronics, hybrid electric transportations, 

and energy storage of smart grids.  

Metal–air batteries are composed of three parts; pure metal such as magnesium (Mg), aluminum 

(Al), iron (Fe), lithium (Li) and zinc (Zn) as an anode material, an air–electrode with high porosity as 

the cathode, and a separator soaked in electrolyte (Figure 12). Among the diverse metal–air batteries, 

Zn–air batteries in particular have much attention for aqueous system due to their unique advantages 

such as low cost, abundance, low equilibrium potential, environmental benignity, and good safety.11, 12, 

18 The Al– and Fe–metal can be more easily corroded than Zn in alkaline solution, although they have 

a much higher energy density than Zn–air batteries (1084 Wh/kg).19 Li–metal is explosively reactive 

with water, thus it is not suitable for aqueous system, despite their extremely high theoretical specific 

energy density (11,700 Wh/kg). 

In Zn–air batteries, the zinc metal anode is oxidized and releases electrons to the external circuit 

when the cell is discharged (Figure 13). Simultaneously, oxygen diffused into the air-cathode, accepts 

the electrons from the anode and is reduced to oxygen-containing species (oxygen reduction reaction, 

ORR). The dissociated metal ions and oxygen-reduced species transferred across the electrolyte and 

combine to form a by-product of metal oxides; this overall procedure during discharge can be 

described as the following electrochemical reactions of anode and cathode in alkaline solution, 

respectively. 

 

Anode:          Zn → Zn2+ + 2e− 

Zn2+ + 4OH− → Zn(OH)4
2−   (Eo = −1.25 V vs. NHE) 

Zn(OH)4
2− → ZnO + H2O + 2OH− 

Zn + 2H2O → Zn(OH)2 + H2 ↑  (also possible) 

Cathode:        O2 + 2H2O + 4e−→ 4OH−  (Εo = 0.4 V vs. NHE) 

Overall reaction:  2Zn + O2 → 2ZnO   (Eo = + 1.65 V) 

 

When the cell is charged, the process is reversed, with metal plating at the anode and oxygen 

evolving at the cathode (oxygen evolution reaction, OER). Because the solubility of oxygen is 

generally low in aqueous electrolyte and an electrocatalyst is required to facilitate its redox reactions, 

the cathode electrochemical reactions mainly take place at the liquid-gas-solid interface, also called 

three phase reaction, in the air electrode. Hence, oxygen transportation properties of the electrolyte 

play important roles in determining the battery performance.20, 21  
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Figure 12. Schematic representation of the structure and operation principle of a metal-air battery. 
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Figure 13. Working principle and each electrode reaction of zinc-air battery. Note the red circle where 

three phase reaction (oxygen (gas), catalysts (solid) and electrolyte (liquid)) occur in air cathode.22 
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1.2 Catalytic materials for air electrode 

Despite their superior features, the metal-air batteries have limited the practical applications in 

various electric fields, because of the sluggish kinetics and irreversible electrochemical redox reaction 

in the air-electrode.23 Typically, the rate of cathodic oxygen reduction reaction (ORR) is slower than 

that of metal oxidation in the anode that phenomenon conversely decreases power density and energy 

conversion efficiency. Thus, the activity of electrocatalysts for the cathodic oxygen reduction reaction 

(ORR) plays a vital role in determining the electrochemical performance of fuel-cells and metal-air 

batteries.    

In general, the ORR can proceed in two different pathways: (1) a two-electron reduction with the 

formation of H2O2 as the intermediate; (2) a more efficient four-electron reduction to directly produce 

H2O as the final product. Noble metals such as the platinum (Pt) and palladium (Pd) nanoparticles 

have been intensively studied as ORR catalysts, because of their superior catalytic activity, relatively 

low overpotential and high stability.24-28 As shown in Figure 14, the plot of volcano relationship for a 

series of diverse electrocatalyst based on the computational and experimental results have further 

indicated that noble metal catalysts display high catalytic activity and oxygen binding affinity.29-31 

However, the high price and scarcity of platinum necessitates either an increase in the efficiency of 

noble metal use or the exploitation of non-precious electrocatalysts. In addition, they induced some 

side effects such as intermediate tolerance, anode crossover, and sluggish kinetics hindered for 

practical applications. 

Among noble-metal-free alternatives, manganese oxides have received intensive attention because 

of their high element abundance, low cost, lower environmental impact, and moderate activity. 

Besides, it can come in a variety of MnOx forms such as γ-MnOOH, α-Mn2O3, α-MnO2, birnessite-

MnO2, and β-MnO2, which have all been identified as high performing catalysts.32-37 Because of high 

activity of MnOx for peroxide disproportionation reaction, it is possible for MnOx to catalyze 4-

electron reduction of oxygen in combination with another material active for 2-electron reduction of 

oxygen to peroxide. The most prominent feature of a MnOx catalyst is that it can serve in catalytic 

oxygen evolution reactions (OER), thus making them attractive as bifunctional catalysts for oxygen 

electrochemistry. 

Carbon electrodes, the most common supports for the ORR catalysts in cathodes of metal-air 

batteries, have long been recognized as materials with high intrinsic activity for the electrochemical 

oxygen reduction process. Among carbon materials, graphene, a monolayer of aromatic carbon lattice, 

has recently drawn a tremendous amount of interest for ORR catalysis because of its extraordinary 

electrical, optical, thermal, and mechanical properties, which are greatly favorable for the harsh ORR 

process. Taking full advantage of its chemical stability and high conductivity along with its high 

specific surface area, the graphene nanosheet is an excellent substrate for hosting and growing 

functional nanomaterials for high-performance electrochemical and electrocatalytic devices.38-40 
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1.3 Exploration the ORR kinetics of catalysts based on the Koutecky-Levich equation 

To explore the ORR and the related kinetics, we used the Koutecky–Levich (K-L) equation 

transformed the obtained rotating-disk electrode (RDE) experiments. The linearity of the Koutecky-

Levich plots and near parallelism of the fitting lines suggests first-order reaction kinetics toward the 

concentration of dissolved oxygen and similar electron transfer numbers for ORR at different 

potentials.41 
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where ik represents the kinetic current; idl is the diffusion limiting current; n is the number of electrons  

transferred per O2 molecule; F is the Faraday constant (96485 C/mol); A is the geometric area of the 

disk electrode (7.06 X 10-6 m2); k (m/s) is the rate constant for the ORR; CO2 is the saturated 

concentration of O2 in solution (1.21 mol/m3 in 0.10 M KOH); ν is the kinematic viscosity (1 X 10-6 

m2/s in 0.10 M KOH); DO2 is the diffusion coefficient of O2 in solution (1.87 X 10-9 m2/s in 0.10 M 

KOH); and ω is the angular frequency of the rotation (rad/s). From the linear relationship between i-1 

vs. ω-0.5 based on the Koutecky–Levich equation, we can obtain the number of electrons transferred (n) 

from the slope and compare the kinetic current (ik) from the intercept.  
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Figure 14. Trends in oxygen reduction activity (defined in the text) plotted as a function of the 

oxygen binding energy.30  
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II. EXPERIMENT 

2.1 Procedures of graphene oxide (GO) nanosheets  

Graphite oxide was synthesized from graphite (Aldrich, <20 μm) by modified Hummers method 

and exfoliated to give a stable, brown dispersion of graphene oxide (GO, typically conc. of 0.50 

mg/mL) under ultrasonication for 40 min and then centrifuged at 4000 rpm for 10 min to remove any 

aggregates remained in the suspension. 

 

2.2 Preparation of ionic liquid moiety (IL-NH2)  

In the typical procedure according to the literature,42 3-bromo-propylamine hydrobromide (1.1 g, 

5.0 mmol) and 1-methyl-imidazole (0.395 mL, 5.0 mmol) were added to 15 mL ethanol, forming a 

colorless solution which was refluxed under nitrogen for 24 h. The resulting turbid mixture was 

purified by re-crystallization from ethanol, with ethyl acetate as an anti-solvent. Finally, the resulting 

white powder was dried under vacuum at 60 °C overnight and then purified. 

 

2.3 Preparation of ionic liquid modified graphene oxide nanosheet (GO–IL) and reduced 

graphene oxide nanosheet (rGO–IL) 

Ionic liquid modified GO nanosheets (GO–IL) were prepared by reacting GO with excess IL-NH2 

(conc. 0.50 mg/mL) under stirring for 5 h in the presence of N-ethyl-N'-(3-dimethyl aminopropyl) 

carbodiimide methiodide (EDC, 98%, Alfa Aesar). The resulting suspension was dialyzed (MWCO 

12000–14000, SpectraPore) for a few days to remove any by product and residuals during 

functionalization. The prepared GO–IL suspensions exhibited a fairly good colloidal stability over a 

wide span of pH conditions. Chemical reduction of the GO–IL to rGO–IL was carried out by adding 

hydrazine as reported previously.  

 

2.4 Preparation of catalyst ink for rotating disk electrode 

Catalyst ink was prepared by ultrasonically mixing 2.0 mg of as-prepared sample with 1.0 mL of 

pure deionized water for 1 h in order to make homogeneous suspension. Then, 3 μL of the prepared 

catalytic ink was transferred to the surface of 3 mm diameter glassy carbon electrode using a 

micropipette. Finally, the ink was dried for 10 min under vacuum conditions at room temperature to 

form a thin catalyst film on the glassy carbon electrode as a working electrode. 

 

2.5 Rotating disk electrode (RDE) experiments 

All half–cell experiments for the ORR using rotating disk electrode (RDE) (ALS Co., Ltd) were 

carried out under same conditions where Pt wire and Hg/HgO were used as a counter and a reference 

electrode, respectively; 0.10 M KOH is used as an electrolyte; pure oxygen gas (99.9%) was purged 

for 30 min before each RDE experiment to make an electrolyte oxygen saturated condition. Rotation 
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speeds were changed in this RDE measurement to deduce kinetic parameters related to ORR to 

construct the Koutecky–Levich plot. Electrochemical characterization of as-prepared catalysts were 

conducted using a single potentiostat (Ivium) with a scan rate is 10 mV/s and potential range from 

0.15 V to -0.7 V. 

 

2.6 Preparation of air electrode 

All air electrodes used in this Zn–air full cell test are prepared with fixed weight composition; 

activated carbon (Darco G-60A, Sigma-Aldrich) is 62 wt% + poly-tetrafluoroethylene (PTFE) binder 

30 wt% (60 wt% PTFE emulsion in water, Sigma-Aldrich) + as-prepared catalysts is 8 wt%. After 

sonicating each material in DI-water for 1 h, each suspension was then mixed ultrasonically for 1 h to 

form a homogeneous suspension. The excess water is removed by filtering the homogeneous 

suspension and then the slurry is dried at 60 oC. By adding isopropyl alcohol to dried black powder, 

air electrodes were manufactured via a kneading and rolling process to make the desired thickness of 

air cathode. Finally, Ni-form as a current collector was attached to the back side of the air electrode. 

The thickness of all air cathodes was set to 600 μm to minimize the thickness factor of electrode to 

overall cell performance. 

 

2.7 Zinc air full cell assembly 

For the Zinc-air full cell test, homemade Zn-air single cell were used in this experiments. 1 g of 

zinc powder (Umicore) was used as anode electrode. Nylon net filter (Millipore) was used as a 

separator. A 16–pi air electrode is used as cathode electrode. The galvanodynamic experiment is 

carried out with a multichannel potentiostat (WBCS 3000, WonA Tech, Korea) with various current 

densities from 0 to 200 mA/cm2 to characterize the Zn-air single cell performance. 
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III. RESULTS AND DISCUSSION 

3.1 Ionic liquid (IL) modified graphene nanosheets 

Highly stable and homogeneous GO suspension was prepared by following the modified Hummers 

method.43-45 To afford the ionic liquid (IL) moiety functionalized GO (GO–IL), 1-(3-aminopropyl)-3-

methylimidazolium bromide was reacted with the carboxylic acid groups on surface of graphene 

nanosheets through the N-ethyl-N’-(3-dimethyl aminopropyl)carbodiimide methiodide (EDC) 

mediated reaction (Scheme 2). The successful functionalization of GO with the IL moiety was 

confirmed by zeta-potential measurements, which indicates a surface charge conversion from –52.0 

mV to +45.2 mV upon functionalization. In addition, high-resolution X-ray photoelectron 

spectroscopy (XPS) further supported the presence of an IL moiety on the graphene nanosheets with 

two characteristic peaks at 399.3 and 401.9 eV, corresponding to the imidazolium ring of ionic liquid 

(Figure 15). As noted in other literature, the presence of the IL moiety would enhance the solubility of 

graphene in a wide range of solvents, facilitate its electrocatalytic activity and enhance its 

conductivity, hence improving overall the performance of the electrocatalyst. 

 

3.2 rGO-IL/Mn3O4 nanocomposites for electrocatalysts 

We carried out a chemical reduction by reducing agent, hydrazine, to render the restoration for 

electrical and structural properties of GO–IL. Then, manganese oxide nanoparticles were grown onto 

the as-prepared reduced GO–IL (rGO–IL) nanosheets by a simple hydrolysis reaction with the 

manganese precursor, NaMnO4, in aqueous solution (Scheme 2). Specifically, the manganese 

precursor was mixed through the electrostatic interactions in various feeding ratios (the ratio of rGO–

IL to Mn precursor ranges from 1 to 20), followed by heating at 85 oC for 1 h. The resulting rGO–

IL/Mn3O4 composite was filtered and washed thoroughly with deionized water and dried in the oven 

at 50 oC.  

 

3.3 Characterizations of rGO-IL/Mn3O4 nanocomposites electrocatalysts 

The crystalline structure of the rGO–IL/Mn3O4 nanocomposites was examined by X-ray diffraction 

(XRD) patterns as shown in Figure 16, which results indicate a good agreement with hausmannite-

Mn3O4 diffraction pattern (JCPDS #80-0382). The morphological structures of the rGO–IL/Mn3O4 

nanocomposites were characterized by scanning electron microscopy (SEM) and high-resolution 

transmission electron microscopy (HR-TEM). Based on the SEM and TEM images in Figure 17, we 

confirmed the partially poor-distribution of Mn3O4 nanoparticles on the surface of graphene sheets 

possessing relatively spherical morphology with an average diameter of 9.45 ± 1.72 nm. HRTEM 

images further reveal that crystal lattice fringes throughout the entire nanoparticles formed on the 

graphene sheet that matched with the major peaks of crystalline Mn3O4 nanoparticles, which is well- 

consistent with XRD results. Further the energy dispersive spectroscopy (EDS) elemental mapping 
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analysis of hybrid rGO–IL/Mn3O4, we observed the presence of the rGO–IL nanosheets by distinctive 

elements such as C, O and N as well as the presence of Mn3O4 nanoparticles by Mn and O elements 

(Figure 17f). Given the rather non-uniformly distributed Mn3O4 nanoparticles on the surface of rGO–

IL, we postulate that the ionic linkage between the surface of rGO–IL and the manganese precursor 

are possibly not uniformly distributed on the surface of graphene nanosheets. The graphene–

nanoparticle interaction, however, allows good dispersion of Mn3O4 nanoparticles grown on the rGO 

nanosheets thus avoiding the potential aggregation of nanoparticles during the electrocatalytic cycles. 

 

3.4 Electrocatalytic activities of hybrid catalysts 

To assess the electrocatalystic activities of hybrid electrocatalysts, the rotating-disk electrode (RDE) 

experiments were conducted in O2 saturated 0.1 M KOH aqueous solution with wide span of rotating 

rates from 900 to 3200 rpm. Since the electrons resulting from the oxidation of zinc metal should flow 

efficiently to the nanoparticle-supporting carbon substrate to reduce the oxygen during the actual 

operation of a Zn–air battery, the electrical conductivity together with the catalytic activity of the 

nanoparticles are critical factors in designing and developing the efficient catalyst. Therefore, we 

employed two independent strategies to gain the insight on the catalytic activity: 1) chemical 

attachment of the ionic liquid moiety as well as chemical reduction of the graphene sheet to increase 

the conductivity of the system and electrocatalytic activity and 2) tuning the ratio of the Mn precursor 

with respect to the rGO-IL to determine the optimum ratio of our hybrid rGO–IL/Mn3O4 catalyst for 

enhanced ORR activity while preserving necessary electrical conductivity.  

As shown in the Figure 18, covalent attachment of the ionic liquid moiety onto the graphene 

nanosheet results in a higher limiting current and more positive onset potential than that of a plain, 

unmodified GO. This is consistent with the previous reports that the presence of the ionic liquid 

moiety would facilitate the electrocatalytic activity between the metal and oxygen,46 as well as 

increase the solubility of the oxygen which can affect the enhanced reduction rate of oxygen to 

perhydroxyl or hydroxyl ions.47, 48 Moreover, the chemically reduced graphene oxide (rGO-IL) has 

both a higher limiting current and more positive onset potential than GO–IL. Taken together, these 

data clearly support the critical role of the ionic liquid moiety as well as the enhanced conductivity 

gained upon the chemical reduction process of the GO nanosheet. Although electrical conductivity is 

another factor in determining ORR activity, the actual ORR activity of carbon materials is not 

sufficient to reduce oxygen effectively. When comparing the rGO–IL with rGO–IL/Mn3O4 composites, 

the latter has a higher ORR activity as expected, among which rGO–IL/Mn3O4 (10 : 1) has the highest 

catalytic activity. These results clearly show that Mn3O4 nanoparticles facilitate the reaction 

effectively; however, higher Mn3O4 contents (rGO–IL/Mn3O4 (2 : 1), 52.5% Mn content as 

determined from TGA) can reduce ORR activity compared with a lower content of Mn3O4 (rGO–

IL/Mn3O4 (10 : 1), 19.2% Mn content) (Figure 19). We postulate that the relatively larger content of  



- 54 - 
 

 

 

 

 

 

 

 

 

 

Scheme 2. (a) Schematic representation of the functionalization of the surface of graphene oxide and 

subsequent formation of nanoparticles. (b) Cartoon of Zn-air battery cell with a photograph of the 

actual cell tested. 
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Figure 15. Deconvoluted high-resolution N1s XPS spectra of samples in this study. (a) GO, (b) rGO-

IL, and (c) rGO-IL/Mn3O4 (10:1). 
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Figure 16. X-ray diffraction pattern of prepared hybrid rGO-IL/Mn3O4 (2:1) with the reference Mn3O4 

diffraction pattern. 
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Figure 17. (a) SEM and (b) TEM images of rGO-IL/Mn3O4 composites with size-distribution of 

Mn3O4 nanoparticles. (c) HR-TEM image of Mn3O4 nanoparticles with the inset of the corresponding 

SAED pattern and (d, e, f) STEM and the EDX elemental mapping image of hybrid rGO-IL/Mn3O4 

(10:1) composites. 

 

 

 

 

 

 

 



- 58 - 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Rotating disk electrode (RDE) experiments of various samples prepared in this study. (a) 

half-cell data and (b) comparison of onset potential and limiting current of each sample of GO, GO-IL, 

rGO-IL, rGO-IL/Mn3O4 (2:1), and rGO-IL/Mn3O4 (10:1). The rotation rate is 3200 rpm and the scan 

rate is 10 mV/s; 0.10 M KOH is used as an electrolyte. Pt wire and Hg/HgO is used as a counter and 

reference electrode with a 3-mm2 diameter working electrode, respectively. Onset potential was 

measured at -0.002 mA/cm2 and limiting current was measured at -0.45 V.  
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Figure 19. TGA thermograms of all samples used in this study. rGO-IL/Mn3O4 (2:1) and rGO-

IL/Mn3O4 (10:1) show the relative percentage of Mn3O4 within the composite is 52.5% and 19.2%, 

respectively. The thermograms were obtained at a scan rate of 10 oC/min under air. 
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Mn3O4 with respect to the graphene sheet results in a lower electrical conductivity, which in turn, has 

an adverse effect on the ORR activity. It is also of note that the absolute amount of Mn3O4 in the 

hybrid is not the major factor in governing the ORR activity, since the limiting current normalized to 

the effective mass of active Mn3O4 within the hybrid rGO–IL/Mn3O4 yields approximately 4 times 

higher mass activity for the rGO–IL/Mn3O4 (10 : 1) sample (–233.9 mA/mg,Mn at –0.45 V) than that 

of rGO–IL/Mn3O4 (2 : 1) (–55.2 mA/mg,Mn at –0.45 V). 

Given the RDE data, we calculated the average number of electrons transferred from the samples of 

two different Mn3O4 contents based on the K-L plots (Figure 20), particularly rGO–IL/Mn3O4 (2 : 1) 

and (10 : 1). To our surprise, we found that the average number of transferred electrons (n) of rGO–

IL/Mn3O4 (2 : 1) is 2.75 while it increased to 3.50 in the case of rGO–IL/Mn3O4 (10 : 1). With these 

results, it is reasonable to estimate that there exist two independent mechanisms depending on the 

contents of Mn3O4 in the hybrid rGO–IL/Mn3O4 catalyst. Specifically, the corresponding number of 

electrons (3.50) for rGO–IL/Mn3O4 (10 : 1) indicates an efficient one-step, quasi-4-electron transfer 

similar to the commercial Pt/C catalyst. On the other hand, the electron transfer number (2.75) of 

rGO–IL/Mn3O4 (2 : 1) is close to the dominant two-step, 2-electron pathway, as is the case for many 

other carbon-based electrode materials (Figure 21). It is interesting to note that the reaction 

mechanism is tunable simply with the relative amount of nanoparticles supported onto the graphene 

sheets. 

 

3.5 Zinc–air cell performance 

Because the study on half-cell experiments such as RDE presents only the performance as a catalyst, 

we have to evaluate the actual ORR performance of catalysts in a Zn–air full cell. For that purpose, 

we have evaluated the electrochemical performance of a single Zn–air cell composed of an anode of 

zinc powder together with a hybrid rGO–IL/Mn3O4 electrocatalyst in the cathode electrode. Via a 

galvanodynamic method, the current density versus potential (reference to a Zn electrode) profile can 

be obtained under varying current density from 0 to 200 mA/cm2 and one can calculate the maximum 

peak power density from a polarization curve for the Zn–air cell (Figure 22). As shown in the 

discharge profile of Zn–air full cell, the voltage difference in two cells of different Mn contents rises 

significantly with the increase of current density. This result indicates that a resistance effect on a Zn–

air cell is more dominant when high current density is applied to the cell and also coincides with the 

fact that the oxygen reduction reaction becomes very sluggish due to a high overpotential. When the 

power density plot is constructed, similar trends between RDE and actual cell performance are 

observed and maximum peak power density of 120 mW/cm2 can be obtained from the hybrid rGO–

IL/Mn3O4 (10 : 1) sample. For comparison, identical procedures were applied to compare the effici-

ency of the air cathode with the commercial gas diffusion electrode (GDE) including MnOx (Meet 

Inc., Korea) and 20% Pt on Vulcan XC-72 (E-TEK). Although the 20% Pt/C exhibits the best 
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electrochemical performance among various samples, our hybrid rGO–IL/Mn3O4 (10 : 1) still 

illustrates better efficiency in the overall Zn–air fuel cell performance than the commercial air cathode 

under the current density from 0 to 200 mA/cm2. With further improvements, we believe this hybrid 

catalyst could be used as a potential candidate in low-cost electrocatalysts for metal-air batteries and 

alkaline fuel cells. For more practical application of our hybrid catalyst in various electrocatalytic 

reactions, our next endeavor should be focused more on addressing the stability and durability, as well 

as the product cost of the modified graphene nanosheet and hybrid catalyst. 
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Figure 20. RDE experiments and the corresponding Koutecky-Levich plots of (a, b) rGO-IL/ Mn3O4 

(2:1) and (c, d) rGO-IL/Mn3O4 (10:1). The experiments were conducted at a scan rate of 10 mV/s in 

an O2-saturated 0.10 M KOH solution. Theoretical slopes for n = 2 and 4 are also constructed for 

comparion. 
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Figure 21. Schematic representation of the potential pathway of electrons during oxygen reduction 

reaction on the surface of rGO-IL/Mn3O4 electrocatalysts. 
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Figure 22. Single cell performance of zinc air battery assembled with hybrid rGO-IL/Mn3O4 

electrocatalysts. (a) Polarization curve of zinc-air cell and (b) corresponding power density plot of 

(black) rGO-IL/Mn3O4 (2:1) and (red) rGO-IL/Mn3O4 (10:1) under the current density from 0 to 200 

mA/cm2. 
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IV. CONCLUSION 

In summary, we present a simple and facile approach of integrating manganese oxide nanoparticles 

into the electrically conductive graphene sheets via a solution-based growth mechanism to afford 

hybrid graphene/Mn3O4 nanoparticles. The ionic liquid moiety on the graphene nanosheet was proven 

to be important in enhancing the electrocatalytic activity of the hybrid nanoparticles in oxygen 

reduction reaction with a one-step, quasi-4-electron transfer pathway. By utilizing the high activity of 

the graphene/Mn3O4 nanoparticles, we demonstrated their potential in the Zn–air battery, as they 

exhibit considerably high catalytic activity. By taking advantage of the facile synthetic nature of this 

hybrid nanoparticle with graphene nanosheet, we anticipate that the hybrid graphene/Mn3O4 

nanoparticles will open new possibilities in applications as alternative low-cost catalysts for metal-air 

batteries and alkaline fuel cells. 
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