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ABSTRACT 

 

In recent years, there has been growing concern about the appearance of pharmaceuticals in surface 

water as their uses increase. Even though the toxicological effect of low concentrations of 

pharmaceuticals in drinking water is not yet fully understood, these compounds should be minimized to 

reduce the risk of unpredictable long term effects based on the precautionary principles. Therefore, 

ozonation and copper catalyzed Fenton and photo-Fenton are discussed to be potential methods for 

effective control of pharmaceuticals in this study. In order to establish a practical and mechanistic 

database for pharmaceutical compounds using these methods, the following issues were investigated in 

this study.  

Firstly, the oxidative degradation of pharmaceutical compounds is demonstrated during ozonation of 

different water samples in Ulsan. Diclofenac, carbamazepine, bezafibrate, and ibuprofen were selected as 

surrogate pharmaceutical compounds, and ozonation experiments were performed using four different 

water samples; Surface water samples (Hoeya Dam and Sayeon Dam) are the source of drinking water 

production in Ulsan. In addition, raw water and water after filtration were collected from the treatment 

process of Hoeya drinking water plant. Diclofenac and carbamazepine which have high reactivity with 

molecular ozone showed higher removal efficiencies than bezafibrate and ibuprofen during ozonation. 

The addition of tert-butanol, a hydroxyl radical scavenger, increased the removal efficiencies of 

diclofenac and carbamazepine by increasing the ozone exposure. However, the oxidation of bezafibrate 

and ibuprofen was inhibited by the presence of tert-butanol due to the suppression of the exposure to 

hydroxyl radical. The elimination of the selected pharmaceuticals could be successfully predicted by the 

kinetic model base on the Rct concept. Depending on the experimental condition, Rct values were 

determined to be (1.54~3.32)×10
-7

 and (1.19~3.04)×10
-7

 for the Sayeon Dam and the Hoeya Dam waters, 

respectively. Relatively high Rct values indicate that the conversion of O3 into ˙OH is more pronounced 

for surface waters in Ulsan compared to other water sources. Furthermore, model prediction of 19 

pharmaceutical compounds including diclofenac, carbamazepine, bezafibrate, and ibuprofen was 

conducted in investigated water samples with various concentrations of ozone dose. 

Secondly, the degradation of diclofenac and carbamazepine by the copper-catalyzed Fenton and 

photo-Fenton systems was investigated with respect to several reaction parameters such as pH, scavenger 

and catalyst concentration. The removal rates of targeted pharmaceutical compounds by the Cu(II)/H2O2 

system were found to be gradually increased with rising pH from 3 to 8, but decreased at more alkaline 
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pH. The possible mechanism was discussed based on Fenton chemistry, and two factors are recommended 

to be attributable for. First, the reduction reaction of Cu(II) is accelerated by the H2O2 and Cu(II) 

complexation, which favors the reaction of HO2
-
 with Cu(II). Second, oxidants produced by the 

Cu(II)/H2O2 system are likely shifted from 
·
OH to Cu(III) as pH increases up to the alkaline region, and 

the oxidants responsible for the degradation of diclofenac and carbamazepine was not Cu(III) but 
•
OH. On 

the other hand, the rate of pharmaceutical compounds removal by the Cu(II)/H2O2 system were monitored 

under UV irradiation, and a significant enhancement was observed in the degradation rates at a range of 

pH (3-10). It is believed that the decomposition of pharmaceuticals is leveled up because of the Cu(II) 

reduction by HO2
•
 which is produced from H2O2 photolysis. The evidences was shown in the comparison 

of Cu(II) and H2O2 absorbance at λmax = 365 nm and measurement of Cu(I) conversion rates. 
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Chapter 1. Introduction 

 

I. Research background 

 

Micropollutants, such as endocrine disrupting compounds (or EDCs), pharmaceuticals, and personal 

care products have been a worldwide issue for the past several years because of potential adverse health 

effects via the consumption of drinking water. However, conventional drinking water treatment 

(coagulation/flocculation, filtration, chlorination) shows insufficient removal of emerging contaminants 

due to persistence in the aquatic environment by their chemical structure. Therefore, a number of studies 

for effective control of emerging contaminants including pharmaceuticals compounds have been reported.  

 

 

Figure 1. Origins and Fate of PPCPs in the Environment 

(http://www.epa.gov/ppcp/) 

 

Especially, researches concerning pharmaceutical compounds are newly highlighted since various 

pharmaceuticals are commonly used with development of modern pharmaceutical industry. Several 

studies have reported that pharmaceuticals in the nanogram per liter range are routinely detected in 



 

  
2 

 

  

surface waters (Santos et al., 2010), many of them mainly released from undegradable substance from the 

waste treatment process (Ternes, 1998). Even though the toxicological effect of low concentrations of 

pharmaceuticals in drinking water is not yet fully understood yet, these compounds should be minimized 

to reduce the risk of unpredictable long term effects based on the precautionary principles. It has been 

proven that conventional processes of drinking water treatment are fairly ineffective to completely 

remove several pharmaceuticals (Ternes et al., 2002). In contrast, a large number of studies have 

demonstrated that chemical oxidation using ozone, UV radiation, Fe(II)/H2O2 and other methods is an 

effective treatment process for organic micropollutants including pharmaceuticals (Benitez et al., 2011; 

Lee and von Gunten, 2010).  

 

1.1. Oxidative degradation of pharmaceutical compounds during ozonation  

A large number of studies have demonstrated validation of the ozone process to oxidative 

decomposition of pharmaceutical compounds among the advanced oxidation technologies (Huber et al., 

2003; Deborde et al., 2005; Broseus et al., 2009). Previous studies reported that pharmaceutical 

compounds with high reactivity to ozone, such as carbamazepine, ethinylestradiol, diclofenac, 

sulfamethoxazole, and roxithromycin, were completely removed with more than 1 ppm of ozone injection. 

Cases such as ibuprofen and iopromide, which have less reactivity to ozone, also shows acceptable 

removal efficiency by employing the O3/H2O2 process. Effective decomposition of pharmaceuticals by 

ozonation has been reported in waste water treatment plants as well as drinking water treatment plants 

(Huber et al., 2005; Dodd et al., 2006; Lee and von Gunten, 2010). An extensive database related to the 

decomposition of pharmaceuticals was mainly investigated in developed countries including Switzerland 

and the United States.  

Domestically, a number of studies regarding the ozone process have been reported (Rhim, 2003; Kang 

et al., 2005), and several researches were also conducted to provide removal efficiency of the 

pharmaceuticals during ozonation (Son et al., 2009; Kim, 2010). However, there is insufficient 

information about the characteristic behaviors of ozone decomposition affecting the pharmaceuticals 

removal efficiency. In particular, no study concerning quantitative prediction based on removal kinetics 

of pharmaceutical and oxidants (ozone and hydroxyl radical) utilized in the ozonation process has been 

published. 

Decomposition of organic contaminants during the ozone process occurs by the direct reaction with 

ozone and indirect reaction with hydroxyl radical. Therefore, a prediction for removal efficiency of 
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targeted organic contaminants can be made as far as concentration change and rate constants of ozone 

with organic contaminants and hydroxyl radical are known (Elovitz and von Gunten, 1999). Removal 

efficiency of the ozone process is influenced by several factors such as concentration and characteristics 

of natural organic matter, reactivity of targeted organic contaminants with ozone and so on (Elovitz et al., 

2000; von Gunten, 2003).  

This study investigated the removal efficiency of pharmaceuticals in river waters of Ulsan during the 

ozonation. In addition, the removal efficiency of pharmaceuticals was predicted based on the Rct value 

involving the ratio of the OH radical exposure to the ozone exposure and rate constants. 

 

1.2. Oxidaition of pharmaceutical compounds by copper-catalyzed Fenton and photo-

Fenton systems 

The advanced oxidation processes that employ hydrogen peroxide (H2O2) and iron have been widely 

utilized as methods for the oxidation of recalcitrant contaminants in drinking water, industrial wastewater, 

and soils (Pignatello et al., 2006). In spite of the volume of work published on Fenton processes 

(Fe
2+

/H2O2), there appears to be a lack of information concerning the usage of other transition metals with 

hydrogen peroxide to treat organic contaminants. Among the transition metals, copper has been discussed 

as a potentially promising catalyst by demonstrating that copper presumably undergoes a similar reaction 

with H2O2 as iron does.  

It is well known that the typical Fenton reaction occurs only at acidic pH which limits its application 

because of the low solubility of iron as a catalyst. To the contrary, copper as a catalyst enables activity in 

a wider range of pH due to the better solubility of copper ions than iron ions at neutral pH (Masarwa et al., 

1988; Yip et al., 2005). On the other hand, copper has been proved to be an effective catalyst for 

oxidizing a range of organic compounds, for example p-coumaric acid, phenol, benzoic acid, humic acid 

and so on, owing to its relatively high solubility at neutral pH, considerable efficiency at low 

concentration, and little requirement of post processing after treatment (Liao et al., 2001; Mantzavinos et 

al., 1996; Mantzavinos, 2003; Santos et al., 2001).  

However, there are only a few studies related to the usage of copper catalysts to degrade 

pharmaceutical contaminants (Sires et al., 2006; Sun et al., 2011), and the underlying mechanism is also 

little known. Kinetics and the reaction pathway in the decomposition of H2O2 catalyzed by Cu(II) is 

available in previous literature (Moffett and Zika, 1987; Luo et al., 1988), but most of the earlier work has 
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been carried out in a limited pH range or discussed apart from decomposition of organic compounds. This 

research attempts to examine the degradation efficiency of pharmaceuticals by a copper-catalyzed Fenton-

like reaction and photo-Fenton-like reaction under various conditions of copper concentration, solution 

pH, and UV irradiation. A series of experiments performed to elucidate the mechanism through which the 

pharmaceuticals are oxidized in the Fenton-like systems, and the results are also discussed with those of 

the respective Fenton system. 
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II. Objectives of the study 

 

In the study presented here after, two specific objectives were sought: 

 

1. To assess the validity of model prediction for oxidation of pharmaceuticals and to discuss characteristic 

behaviors of ozone decomposition in the river waters of Ulsan: 

For this purpose, the Rct value is determined to predict oxidation kinetics of pharmaceuticals during 

the ozonation of river waters in Ulsan, and the Rct concept was adapted to make a prediction. A 

characteristic behaviors of ozone decomposition is discussed by hiring a radical scavenger and 

comparison with previous studies. 

 

2. To examine the degradation efficiency of pharmaceuticals by copper-catalyzed Fenton-like reaction 

and photo-Fenton-like reaction and to elucidate the mechanism through which the pharmaceuticals are 

oxidized in the Fenton-like systems: 

For this purpose, carbamazepine and diclofenac were selected as surrogate pharmaceutical compounds, 

and the effects of copper dose and pH of the solution were studied in the absence and presence of UV 

irradiation. The mechanism involved in degradation of selected pharmaceuticals is experimentally 

identified. 
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Chapter 2. Materials and Methods 

 

I. Characteristic behaviors of ozone decomposition and oxidation of pharmaceuticals 

during ozonation of water samples in Ulsan 

 

1.1. Reagents 

Carbamazepine, Diclofenac, Mefenamic acid and Lincomycin were obtained from Sigma-Aldrich 

with purity higher than 99%. Stock solutions of these pharmaceuticals were prepared with Milli-Q 

purified water (Millipore). All of the chemicals used for solutions (buffer, eluents, etc.) were reagent 

grade and used without further purification. Ozone stock solutions (~30 ppm) were produced by sparging 

O3-containing oxygen through Milli-Q water that was cooled in an ice bath, and daily prepared. 

 

1.2. Natural water samples 

To simulate real treatment conditions, experiments were performed using natural waters that differed 

in dissolved organic carbon content (DOC) and alkalinity. Surface water samples (Hoeya Dam and 

Sayeon Dam) are the source of drinking water production in Ulsan. In addition, raw water and water after 

filtration was collected from the treatment process of Hoeya drinking water plant (HY WTP). Major water 

quality parameters of the tested water are indicated in Table 1. All waters were filtered (0.45-µm Nylon 

membrane) upon arrival and stored at 4 °C until use.  

 

Table 1. Water quality parameters of the tested water 

Water type pH TOC (mgL
-1

) Alkalinity (mgL
-1

CaCO
3
) 

Hoeya Dam 7.2 2.6 18 

Sayeon Dam 7.4 3.0 31 

Raw water (from HY WTP) 7.6 2.3 40 

Water after filtration (from HY WTP) 7.5 2.1 33 
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1.3. Experimental procedure and analytic methods 

All the experiments were performed in a batch system using a 100 mL Pyrex flask open to the 

atmosphere at room temperature (22 ± 2 ◦C). Desired concentration of pharmaceuticals was intentionally 

injected to the natural water samples for degradation experiments. Concentration of ozone stock solution 

was spectrophotometrically determined by measuring the absorbance at 260 nm (3000 M-1 cm-1) and 

diluted to desired concentration. Experiments were conducted with different concentrations of ozone (0.5, 

1.0, 1.5, 2.0 ppm). Sampling was done at 20, 40, 60, 120, 180, 240, 300, and 600 sec after initiation of 

reaction, and sodium sulfite solution was used to remove ozone in the sampled solution. Variation of pH 

in the reaction solution was minimized by employing 10 mM phosphate buffer. 

All pharmaceuticals were determined by high-performance liquid chromatography (HPLC, Agilent, 

1200 series). Depending on the compounds and experiments, isocratic elutions were used with varying 

eluent ratios, and 100µL of the sample volumes were injected. Detailed information of analysis conditions 

for pharmaceuticals by HPLC is given in Table 2 (column: Inertsil ODS-4, 5-µm C18), and all the 

calibration curves reveal a good correlation coefficient (R
2
 > 0.98) in a range of concentrations (0.05~1 

μM).  

The Rct concept was suggested by Elovitz & von Gunten to describe characteristic behaviors of ozone 

decomposition in investigated water, and it is defined as the ratio of the OH radicals exposure to the 

ozone exposure (Elovitz and von Gunten, 1999). Dissolved ozone was determined with the indigo method 

(Bader and Hoigne, 1982), concentration of hydroxyl radical was calculated from measuring the 

decomposition rate of  p-chlorobenzoicacid (pCBA). Initial concentration of pCBA was 0.5 µM, and 

analyzed by HPLC.  

 

Table 2. HPLC analytical conditions for pharmaceutical compounds 

 
Carbamazepine  Diclofenac  Bezafibrate  Ibuprofen  

Flow rate 0.8 mL/min 1.0 mL/min 1 mL/min 1 mL/min 

Eluent 
10 mM CH2O2  50%  40% 40% 40% 

Acetonitrile  50% 60% 60% 60% 

Run time  10 min 10 min 10 min 10 min 

Retention Time 4.623 min 5.569 min 3.601 min 6.354 min 

Detection λ 285 nm 277 nm 226 nm 215 nm 
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II. Oxidation of Carbamazepine and Diclofenac by Copper-Catalyzed Fenton and Photo-

Fenton Systems 

 

2.1. Reagents 

All chemicals were of reagent grade and used without further purification. All pharmaceuticals and 

chemicals including carbamazepine (CA), diclofenac (DF), copper sulfate (CuSO4), hydrogen peroxide 

(H2O2), tert-butyl alcohol- (tert-BuOH) and ethylenediaminetetraacetic acid (EDTA) were obtained from 

Sigma–Aldrich except for acetonitrile from J.T. Baker and 2,9-Dimethyl-1,10-phenanthroline (DMP) 

from TCI. All the stock and buffer solutions were prepared in 18 MΩ Milli-Q water from a Millipore 

system. Stock solutions of H2O2 (10.2 M), carbamazepine (0.1 mM), and diclofenac (1 mM) were 

prepared prior to experiments.  

 

2.2. Experimental apparatus and procedure 

All the experiments were performed in a batch system using a 100 mL Pyrex flask open to the 

atmosphere at room temperature (22 ± 2 ◦C). Photochemical experiments were conducted in a dark 

chamber equipped with 4 W Black Light Blue (BLB) lamps (Philips. Co; λmax = 365 nm), a sampling port, 

a stirrer, and a cooling fan. The incident photon flow (light intensity) of the setup for the photochemical 

experiments was measured to be 1.06×10
-6

 (2 Lamp); 3.42×10
-6

 (6 Lamp) Einstein L
−1

 s
−1

 by ferrioxalate 

actinometry (Hatchard and Parker, 1956). No pH buffer was used for reactions at pH 3-5, while 1 mM 

phosphate buffer and 1 mM borate buffer were employed for experiments at the pH range of 6-7 and pH 

8-10 respectively. The initial pH of solutions was correspondingly adjusted with 0.1 N NaOH and 0.1 N 

HCl after adding catalysts and pharmaceuticals, and the pH variation was monitored at the end of the 

reaction. The reaction was initiated by adding H2O2 (simultaneously starting the UV irradiation in the 

case of photochemical experiments); 1 mL samples withdrawn at a predetermined time intervals were 

immediately quenched by 20 µL of 200mM EDTA which was priorly prepared. The samples were then 

analyzed by high performance liquid chromatography (HPLC, Agilent 1200) at 285 and 277 nm to detect 

the level of carbamazepine and diclofenac, respectively. Separation was performed on an Inertsil
®
 ODS-4 

C18 column (150 mm × 4.6 mm, 5 µm), using water with 10 mM formic acid and acetonitrile with 

varying eluent ratios. All the experiments were carried out at least in duplicate and average values and the 

standard deviations are presented. 
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2.3. Analytical methods of Cu(I) and H2O2 

The concentration of Cu(I) was determined by the spectrophotometric method using a S-3100 UV/vis 

spectrophotometer (Scinco Co.) to measure copper complex with neocurpoine as described elsewhere 

(Eaton et al., 2005) with a slight modification. Hydroxylamine-hydrochloride, a substance that reduces 

cupric ions [Cu(II)] into cuprous [Cu(I)] ions, was not applied and excess DMP concentration (0.5 mM) 

was employed to prevent rapid oxidation of Cu(I) to Cu(II) in the presence of oxygen. Meanwhile, the 

titanium sulfate method was applied to measure the level of H2O2 absorbance at 405 nm by UV/vis 

spectrophotometer (Eisenberg, 1943). 
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Chapter 3. Results and Discussion 

 

I. Characteristic behaviors of ozone decomposition and oxidation of pharmaceuticals 

during ozonation of water samples in Ulsan 

 

1.1. Determination of Rct values in water samples of Ulsan  

The Rct value was calculated to verify characteristic behaviors of ozone decomposition under the 

various concentrations of ozone prior to assessment for removal efficiency of selected pharmaceutical 

compounds during the ozonation. The Rct value (Elovitz and von Gunten, 1999) is defined as the ratio of 

the OH radicals exposure to the ozone exposure in Eq. (3.1). 

 

Rct = ∫[˙OH]tdt / ∫[O3]tdt      (3.1) 

 

The ozone exposure (∫[O3]tdt) is calculated by measuring the concentration of dissolved ozone as a 

function of time, and the OH radicals exposure (∫[˙OH]tdt) is calculated from the decomposition results of 

pCBA by employing pCBA as a probe compound (Eq. 3.2, 3.3). k˙OH, pCBA in Eq. (3.2, 3.3) is 510
9
 M

-1
s

-1
 

(Buxton et al., 1988) as a rate constants of pCBA with hydroxyl radical in a second-order reaction.  

 

ln([pCBA]/[pCBA]0) = - k˙OH, pCBA ∫[˙OH]t dt             (3.2) 

∫[˙OH]t dt = -ln([pCBA]/[pCBA]0) / k˙OH, pCBA  (3.3) 

 

The Rct value is described as a (Eq. 3.4) from (Eq. 3.1) and (Eq. 3.3). Finally, the Rct value is 

determined by the linear slope, which is obtained from plotting of ln([pCBA]/[pCBA]0) and ∫[O3]tdt, 

divided by -k˙OH, pCBA. 

 

Rct = -ln([pCBA]/[pCBA]0) / (k˙OH, pCBA ∫[O3]tdt) (3.4) 

 

Plotting of ln([pCBA]/[pCBA]0) and ∫[O3]tdt in various conditions of ozone concentrations is 

illustrated in Figure 3 and Figure 4, using Hoeya Dam and Sayeon Dam waters samples respectively, and 
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also described employing raw water and water after filtration (Figure 5, Figure 6). Decomposition of 

ozone and pCBA can be classified as two steps. In the first step, ozone is rapidly consumed to produce 

hydroxyl radicals by the Instantaneous Ozone Demand (IOD) of natural organic matter in water. 

Therefore, it leads to instantaneous decomposition of ozone and pCBA. Gradual decomposition of ozone 

and pCBA occurs after the first step consuming IOD, thus two different value of Rct can be determined at 

each steps as shown in Figure 3-6. For the case in which the initial concentration of ozone is too low, the 

Rct value in the second step could not be decided since the injected ozone was all consumed by the IOD 

(Figure 2). For instance, complete ozone depletion at the initial step reveals in 0.5 ppm of ozone injection 

for Hoeya Dam (Figure 2, (a)) and 0.5, 1 ppm of ozone injection for Sayeon Dam (Figure 3, (a, b)). 

Prominent ozone depletion was observed in Sayeon Dam according to the relatively higher concentration 

of DOM, because IOD increases as natural organic matters in water increases in general (Cho et al., 2003). 

 

Figure 2. Depletion of ozone and pCBA as a function of reaction time 

([O3]0  = 0.5 ppm(a), 2 ppm(b); pCBA = 0.5 μM) 
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Figure 3. Plots of ln([pCBA]/[pCBA]0) versus the ∫[O3]tdt for calculating Rct values in the Hoeya 

Dam water  

([O3]0 = 0.5 ppm(a), 1 ppm(b), 1.5 ppm(c), 2 ppm(d); pCBA = 0.5 µM)  

ozone = 0.5 ppm

ozone = 1.5 ppm

ozone = 1 ppm

ozone = 2 ppm

Initial phase Rct

Secondary 
phase Rct

(a) (b)

(c) (d)
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Figure 4. Plots of ln([pCBA]/[pCBA]0) versus the ∫[O3]tdt for calculating Rct values in the Sayeon 

Dam water  

([O3]0 = 0.5 ppm(a), 1 ppm(b), 1.5 ppm(c), 2 ppm(d); pCBA = 0.5 µM) 

ozone = 0.5 ppm

ozone = 1.5 ppm

ozone = 1 ppm

ozone = 2 ppm

(a) (b)

(c) (d)
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Figure 5. Plots of ln([pCBA]/[pCBA]0) versus the ∫[O3]tdt for calculating Rct values in Raw water 

([O3]0 = 0.5 ppm(a), 1 ppm(b), 1.5 ppm(c), 2 ppm(d); pCBA = 0.5 µM)  
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Figure 6. Plots of ln([pCBA]/[pCBA]0) versus the ∫[O3]tdt for calculating Rct values in  Water 

after filtration 

([O3]0 = 0.5 ppm(a), 1 ppm(b), 1.5 ppm(c), 2 ppm(d); pCBA = 0.5 µM)  

 

Determined Rct values at the second step show a similar figure; (1.54~3.32)×10
-7 

for Hoeya Dam and 

(1.19~3.04)×10
-7

 for Sayeon Dam. Comparison was made between the second step Rct values obtained 

from surface waters of Ulsan in the present study and reported values from different water samples (Table 

3). Rct values in surface waters of Ulsan were calculated as ((1.2~1.5)×10
-7

) at 2 ppm of injected ozone; it 

is approximately two times higher than (4.6×10
-8

) in Han river of Seoul under the given conditions. 

Furthermore, the Rct values in this study are about 10 times higher than the determined Rct values 

((1.8~1.9)×10
-8

) in the other water samples. A high Rct value indicates that the generation reaction of 

hydroxyl radical reaction is favored by deposition of ozone. Conventionally, addition of H2O2 (O3/H2O2) 

is applied to achieve an increase of hydroxyl radical production, but determined Rct values in the surface 
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waters of Ulsan shows significantly high values without the addition of H2O2 (O3/H2O2) which was 

comparable to the value in the O3/H2O2 obtained from Lake Zurich water, Switzerland (Table 3). 

 

Table 3. Comparison of Rct values determined during ozonation of natural waters  

No. Conditions Rct Reference 

1 Surface waters of Ulsan, Korea ozone, [O3]0 = 2 ppm (1.2~1.5)×10
-7

 This study 

2 Han River of Seoul, Korea ozone, [O3]0 = 1.56 ppm 4.6×10
-8

 Cho et al., 2003 

3 
North Saskatchewan River water, 

 Canada 
ozone, [O3]0 = 5 ppm 1.8×10

-8
 

Chelme-Ayala et al., 

2011 

4 Lake Zurich water, Switzerland ozone, [O3]0 = 2 ppm 1.9×10-
8
 Lee et al., 2007 

5 Lake Zurich water, Switzerland O3/H2O2, [O3]0 = 2 ppm 7.8×10
-7

 Lee et al., 2007 

 

 

1.2. Degradation of pharmaceutical compounds during ozonation of water samples in 

Ulsan 

Elovitz and von Gunten (Elovitz and von Gunten, 1999) developed the Rct concept to predict the 

oxidation of a micropollutant. The Rct concept is an experimental approach to calibrate ozonation 

processes and ozone-based AOPs with respect to ozone and OH radical exposure, because the oxidation 

of a micropollutant can occur due to either ozone or OH radicals. This calibration is done by determining 

the ratio of the OH radicals exposure to the ozone exposure in investigated water. After an initial phase, 

the Rct value remains constant for the rest of the ozonation process and therefore, also represents the ratio 

of OH radicals concentration to ozone concentration. Consequentially the Rct concept allows the 

prediction of the time-dependent transformation of a compound based on rate constants and oxidant 

behavior. As shown in (Eq. 3.5-3.7), decomposition of particular pharmaceuticals (P) during the 

ozonation can be predicted by utilizing determined Rct values in each water samples under the different 

concentrations of ozone. 

Selected pharmaceuticals (P) decomposed by reaction with ozone and hydroxyl radical, thus 

concentration change can described as (Eq. 3.5). Eq 3.6 is obtained by the integration of (Eq. 3.5), and 

here we apply the Rct concept to get (Eq. 3.7) that decomposition of P is defined as ozone exposure. 

Eventually, decomposition of P can be predicted by measuring the concentration change of ozone as a 
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function of time. kO3 and k˙OH are rate constants of P with ozone and hydroxyl radical in a second-order 

reaction respectively, and literature values of selected pharmaceuticals in this study are listed in Table 4.  

 

-d[P]/dt = kO3[P][O3] + k˙OH [P][˙OH]                    (3.5) 

ln([P]/[P]0) = - (kO3 ∫[O3]dt + k˙OH ∫[˙OH]dt)          (3.6) 

ln([P]/[P]0) = - (kO3 + Rct k˙OH) ∫[O3]dt                   (3.7) 

 

Table 4. Second-order rate constants for the reactions of selected pharmaceuticals with molecular 

ozone and hydroxyl radical (Huber et al., 2003) 

Compound kO3  (M
-1

 s
-1

) k˙OH  (M
-1

 s
-1

) 

Ibuprofen 9.6 7.4×10
9
 

Bezafibrate 5.9×10
2
 7.4×10

9
 

Carbamazepine 3×10
5
 8.8×10

9
 

Diclofenac 10
6
 7.5×10

9
 

 

Decomposition experiment of pharmaceuticals (Diclofenac, Carbamazepine, Bezafibrate, Ibuprofen) 

was performed under the conditions of 0.5 ppm, initial injected ozone concentration (Figure 7 and Figure 

8). Removal predictions of selected pharmaceuticals are illustrated in solid lines, and measured values are 

represented as symbols. Comparison between prediction and measured data was made to assess the 

validity of the prediction model based on the Rct concept. Diclofenac and carbamazepine, which have 

relatively higher rate constants with ozone, mainly oxidize through direct reaction with the ozone, 

whereas removal of bezafibrate and ibuprofen due to the relatively slower rate constants with ozone 

largely depends on reaction with OH radicals. Therefore, diclofenac and carbamazepine show higher 

removal efficiency than ibuprofen and benzafibrate in all the investigated water samples (Figure 7 and 

Figure 8). This tendency is fairly consistent with modeling results using Eq. 3.7. Particularly modeling 

results for Hoeya Dam (Figure 7, (a)) shows well matching with measured results, whereas modeling 

results for Sayeon Dam (Figure 7, (b)) reveal differences from measured results in some parts. We 

suppose that this deviation came from low concentration of residential ozone due to the rapid ozone 

depletion in Sayeon Dam. When it is considered along with the detection limit (0.01 ppm) of the indigo 

method which is used for measuring the concentration of residential ozone, a low concentration of 
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residential ozone generates deviation in measurement of the ozone exposure (∫[O3]dt) to apply (Eq. 3.7). 

On the other hand, the Rct concept was successfully applied to the prediction of the oxidation of 

pharmaceuticals for the cases of raw water and water after filtration, exhibiting only a little difference 

between measured data and the predictions of the model. Higher removal efficiency of pharmaceutical 

degradation regarding water after filtration was observed in comparison between raw water and water 

after filtration (Figure 8), and this result indicates that putting the ozone process after the filtration is 

preferred for the better removal efficiency of pharmaceutical compounds. 

 

 

Figure 7. Oxidation of pharmaceutical compounds in the Hoeya Dam water (a) and the Sayeon 

Dam water (b) 

(Symbols and solid lines indicate measured data and model predictions, respectively; [O3]0 = 0.5 ppm; 

[Carbamazepine, Bezafibrate, Ibuprofen]0 = 1 μM; [Diclofenac]0 = 0.5 μM) 
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Figure 8. Oxidation of pharmaceutical compounds in the raw water (a) and the water after 

filtration (b)  

(Symbols and solid lines indicate measured data and model predictions, respectively; [O3]0 = 0.5 ppm; 

[Carbamazepine, Bezafibrate, Ibuprofen]0 = 1 μM; [Diclofenac]0 = 0.5 μM) 
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1.3. Effect of hydroxy radical scavengers 

The effect of hydroxyl radicals on the decomposition of ozone and selected pharmaceuticals was 

investigated by hiring excess amounts of tert-butanol (20 mM), well known as a scavenger of hydroxyl 

radicals. It is found that some portion of IOD was reduced in the reaction with tert-butanol (20 mM) as 

shown in Figure 9, and this result is contrasted to the previous study using Han river water (Cho et al., 

2003). No change of IOD was observed in the Cho et al. (2003) results regardless of the existence of tert-

butanol. Consequently, this observation regarding a decrease of IOD in the presence of tert-butanol could 

be evidence for the contribution of hydroxyl radical, which is generated during the rapid decomposition of 

ozone at the initial step, to the acceleration of ozone depletion.  

 

Figure 9. Effect of tert-butanol on decomposition of ozone in the Hoeya Dam water  

([O3]0 = 1 ppm; pCBA = 0.5 μM; tert-BuOH = 20 mM) 

 

On the other hand, Figure 10 shows the effect of tert-butanol on the decomposition of pharmaceutical 

compounds. Removal efficiency of diclofenac and carbamazepine is increased in the presence of tert-

butanol (Figure 10, (a)), whereas the case of bezafibrate and ibuprofen reveals a decrease of removal 

efficiency (Figure 10, (b)). For diclofenac and carbamazepine, a rapid direct reaction occurs with ozone in 

the presence of tert-butanol, and removal reaction is accelerated by the increase of ozone exposure as 

shown in Figure 4. However, the decomposition rate of bezafibrate and ibuprofen, which have less 

reactivity to ozone, is inhibited by the existence of tert-butanol. These results explain that decomposition 
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of compounds with high reactivity to ozone can be favored when numerous substances that work as a 

scavenger of hydroxyl radical appear in natural water samples, though it can be a disadvantage for 

decomposition of the compounds that have less reactivity to ozone. 

 

 

Figure 10. Effect of tert-butanol on oxidation of pharmaceutical compounds in the Hoeya Dam 

water  

([O3]0 = 0.5 ppm; [Carbamazepine, Diclofenac]0 = 1 μM(a); [Bezafibrate, Ibuprofen]0 = 1 μM(b) ) 
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1.4. Modeling for parmaceuticals degradation 

Modeling was conducted for 19 listed pharmaceuticals, whose constants are already known (Table 5), 

including carbamazepine, diclofenac, bezafibrate and ibuprofen (Table 4), and we classify the 

pharmaceuticals into 7 groups based on differences of rate constants to compare the importance of 

reaction with the ozone and OH radicals as shown in Figure 11. Since kO3, k˙OH is a constant, the 

prediction for a micropollutant depends on the ozone and OH radicals exposure based on Eq. 3.5.  

 

 

Figure 11. Grouped pharmaceuticals according to rate constant with O3 and OH radicals 

 

The prediction model of grouped pharmaceuticals removal efficiency was made in 0.5 ppm of ozone 

dose (Figure 12). Group II appears higher elimination efficiency than group I due to the faster rate 

constant with hydroxyl radical, when group I and group II are considered. The same results are also 

revealed in group III and group IV. It is meaningful that surface waters (Hoeya Dam and Cheonsang Dam) 

show superior removal efficiency compare to the others (raw water and water after filtration) according to 
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the significantly high Rct values in surface waters from group I to group VI. For group VII, 100 % 

removal efficiency is achieved in raw water and water after filtration, whereas some pharmaceutical 

compounds were not degraded completely by the low residential ozone concentration. Elimination of 

pharmaceutical compounds is enhanced as injection of ozone dose increases (Figure 13). Specifically, 5-

15% and 15-20% of improvement was observed in groups I and III, and groups II and IV respectively. On 

the other hand, efficiency enhancements are got clearer in groups V and VI by rising injected ozone 

concentration. Prediction modeling was conducted as a function of ozone dose (0.5 ppm – 2ppm), it is 

then possible to evaluate the effect of ozone dose on decomposition of each compounds (Figure 14). The 

modeling result clearly shows that eliminations of group I – VI constantly increases as the ozone dose 

increases until 1.5 ppm, whereas there are no remarkable differences when the 1.5 ppm of ozone dose 

changes to 2 ppm. Compounds that have a high rate constant (5×10
9
 < kOH) for groups II, IV, and VI show 

more or less similar results meaning their removal efficiency mostly depends on OH radicals. However, 

an ozone dose of 0.5 ppm was sufficient to achieve elimination of >99% for group VII. 
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Table 5. Second-order rate constants for the reaction of ozone with the investigated 

pharmaceuticals 

Compound pKa kO3 (M
-1

s
-1

) k˙OH (M
-1

s
-1

) 

Deethylatrazine (DEA) 1.4 
0.2 

(R.Broseus et al., 2009) 

2×10⁹ 

(R.Broseus et al., 2009) 

Diazepam  - 
0.75 

(Hubber et al., 2003) 

7.2×10⁹ 
(Hubber et al., 2003) 

Iopromide - 
< 0.8 

(Hubber et al., 2003) 

3.3×10⁹ 
(Hubber et al., 2003) 

Atrazine - 
6-7.9 

(R.Broseus et al., 2009) 

2.4-3.0×10⁹ 

(R.Broseus et al., 2009) 

Deisopropylatrazine (DIA) 1.5 
7.5 

(R.Broseus et al., 2009) 
2.1×10⁹ 
(R.Broseus et al., 2009) 

Clofibric acid  - 
<20  

( Huber et al.,2005) 
4.7×10⁹ 
( Huber et al.,2005) 

Cyanazine 1.1 
7.34-61.8 

(R.Broseus et al., 2009) 
1.9×10⁹ 
(R.Broseus et al., 2009) 

Atenolol - 
110 

( Benner et al., 2008) 

7.05×10⁹ 
(Song et al., 2008) 

Caffeine 10.4 
650 

(R.Broseus et al., 2009) 

5.9-6.9×10⁹ 

(R.Broseus et al., 2009) 

Propanolol - 
1×10⁵ 

(Benner et al., 2008) 

1×1010 

(Benner etal., 2008) 

Naproxen 4.15 
~2×10⁵ 
( Huber et al.,2005) 

9.6×10⁹ 
( Huber et al.,2005) 

Trimethoprim 7.12 
2.7×10⁵ 
(R.Broseus et al., 2009) 

6.9×10⁹ 
(R.Broseus et al., 2009) 

17β-Estradiol - 
10⁶ 

(R.Broseus et al., 2009) 

1.41×1010 

(R.Broseus et al., 2009) 

Sulfamethoxazole 5.7 
~2.5×10⁶ 
(Hubber et al., 2003) 

5.5×10⁹ 
(Hubber et al., 2003) 

17α-ethinylestradiol 10.4 
~7×10⁹ 
(Hubber et al., 2003) 

9.8×10⁹ 
(Hubber et al., 2003) 
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Figure 12. Predicted oxidation of grouped pharmaceuticals in 0.5 ppm of ozone dose  
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Figure 13. Predicted oxidation of grouped pharmaceuticals in 1 ppm of ozone dose  
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Figure 14. Predicted oxidation of grouped pharmaceuticals as a fuction of ozone dose 
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II. Oxidation of carbamazepine and diclofenac by copper-catalyzed Fenton and photo-

Fenton systems 

 

2.1. Effect of Cu(II) concentration and the solution pH on oxidation of pharmaceuticals 

The effect of Cu(II) concentration was investigated on pharmaceutical degradation at pH 3 and pH 7. 

As shown in Figure 15, (a), the concentration of carbamazepine was gradually decreased by the 

Cu(II)/H2O2 system over 240 min at both pH 3 and pH 7. Removal of carbamazepine at pH 7 was slightly 

faster than at pH 3. The carbamazepine decomposition rate obeyed pseudo-first-order kinetics and the 

observed rate constant of carbamazepine, kobs, Carbamazepine (s
-1

), can be readily determined by Eq. (3.8). As 

was the case with carbamazepine, the oxidation of diclofenac was also successfully expressed as pseudo-

first-order kinetics. 
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Figure 15. Removal of carbamazepine by Cu(II)/H2O2 system as a function of Cu(II) 

concentration at acidic pH and neutral pH 

([Cu(II)]0 = 1 μM for (a); [Cu(II)]0 = 1, 10, 100 μM for (b); [CA(carbamazepine)] 0 = 1 μM; [H2O2]0 = 

10 mM; [phosphate buffer] = 1 mM at pH 7; reaction time = 4 hr) 

 

Figure 15, (b) describes the effect of initial Cu(II) concentration on the carbamazepine decomposition 

rate over the range of Cu(II) concentration of 1-100 µM. The linear increase of kobs, Carbamazepine is observed 
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with respect to the increase of Cu(II) concentration at pH 7, whereas kobs, Carbamazepine at pH 3 remains fairly 

constant regardless of Cu(II) concentration. Likewise, the oxidation of diclofenac shows similar trends of 

concentration-dependency with carbamazepine (Figure 16). The enhancement of removal rate by the 

increase of copper concentration is more rapid from 1 µM to 10 µM than from 10 µM to 100 µM. 
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Figure 16. Removal of diclofecnac by Cu(II)/H2O2 system as a function of Cu(II) concentration 

at acidic pH and neutral pH 

([Cu(II)]0 = 1 μM for (a); [Cu(II)]0 = 1, 10, 100 μM for (b); [DF(diclofenac)] 0 = 1 μM; [H2O2]0 = 10 

mM; [phosphate buffer] = 1 mM at pH 7; reaction time = 4 hr) 

 

In the Cu(II)/H2O2 system, effects of the solution pH on oxidation of carbamazepine and diclofenac 

were monitored from pH 3 to 10 (Figure 17). The removal rate was optimized at around pH 8 for both 

carbamazepine and diclofenac, exhibiting substantial decrease in acidic and alkaline conditions except at 

pH 3 where somewhat affect enhancement. In the whole range of pH, the rate constant of carbamazepine 

keeps a higher position than diclofenac; in addition, it even reaches a rate approximately double that of 

diclofenac at the points where the maximum kobs show. It has been shown that the maximum 

decomposition rate of both target compounds occurs around pH 8 in the Cu(II)/ H2O2 system due to 

increasing reduction rates of Cu(II) by H2O2 as pH increases from 3 to 8. However, the decrease of the 

removal rate above pH 8 suggests that less 
•
OH is produced. Here we propose the mechanism change to 

be the formation of an alternate oxidant at elevated pH values, such as Cupryl [Cu(III)] ion. Further 

experiments have provided to gather evidence about the increasing and deceasing decomposition rates as 

a function of pH except pH 3.  
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Figure 17. Removal of diclofenac and carbamazepine by Cu(II)/H2O2 system as a function of pH 

([carbamazepine]0 = [diclofenac]0 = 1 μM; [Cu(II)]0 = 1 μM; [H2O2]0 = 10 mM; [phosphate buffer] = 1 

mM at pH 6-7; [borate buffer]0 = 1 mM at pH 8-10; reaction time = 4 hr) 
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2.2. Cu(I) production by reactions at Cu(II)/H2O2 

The pH dependency of Cu(I) production by the Cu(II)/ H2O2 system can be explained by comparison 

with the Fe(III)/ H2O2 system based on the similarity of iron and copper ions. As described in the scheme 

1 and 2, Cu(I) and Fe(II) oxidize to Cu(II) and Fe(III) to produce the most powerful oxidant 
•
OH by 

reaction with H2O2. Conversely, reduction of Cu(II) and Fe(III) occurs by reaction with H2O2 and follows 

the formation of HO2
•
. It is noteworthy that the former oxidation reaction is significantly faster than the 

latter reduction reaction, thus the latter reaction becomes the rate determination step for both iron and 

copper (Table 6). 

 

Scheme 1. Haber-Weiss Mechanism Scheme 2. Mechanism of copper/H2O2 

  

 

Table 6. Mechanism of H2O2 decomposition with iron and copper catalyst 

Haber-Weiss mechanism k (M
-1

s
-1

) reference 

Fe(II) + H2O2 → Fe(III) + 
•
OH +OH

-
 6.3  10 De Laat and Gallard, 1999 

Fe(III) + H2O2 → Fe(II) + HO2
•
 + H

+
 1.0  10

-2
 Walling and Goosen, 1973 

Mechanism of copper/H2O2 k (M
-1

s
-1

) reference 

Cu(I) + H2O2 → Cu(II) + 
•
OH +OH

-
 1.0  10

4
 Sharma and Millero, 1988 

Cu(II) + H2O2 → Cu(I) + HO2
•
 + H

+
 2.2-2.8  10

-5
 Perez-Benito, 2004 

 

The work of Gallard et al.(1999) has demonstrated that the reduction reaction of Fe(III) by H2O2 is 

enhanced with pH increase in the pH range 1-3 by the formation of a Fe-(III)-hydroperoxy complex 

formulated as Fe
III

(HO2)
2+

. In the presence of an excess amount of H2O2, complexation in which the 

reaction of H2O2 with Fe
3+

 leads to the formation of a Fe-(III)-hydroperoxy complex formulated as 

Fe
III

(HO2)
2+

 occurs, and Fe
III

(HO2)
2+

 is produced more as pH increases according to the equilibrium 

constant with protonated and deprotonated H2O2 in a range of pH < 3 (ferric ion in homogeneous aqueous 

solution) (Table 7). No previous studies provide evidence for a copper complexation reaction in the 

presence of an excess amount of H2O2. However, this mechanism is more likely plausible relying on the 
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fact that it will go through a similar reaction as iron, although clear experiment data has not yet been 

provided for supporting such complex mechanisms. The decomposition rate of H2O2 and the production 

rate of Cu(I) measured in this study provide evidence of the complexiation reaction of Cu(II) by H2O2. 

 

Table 7. Equilibrium constants of Fe
III

-hydroxy complexes (Gallard et al., 1999) 

Complexation reactions of Fe
III

 by H2O2 

(FeⅢ)
3+

+ H2O2  

(FeⅢ)
3+

+ HO2
- 
 

↔ [Fe
III

(HO2)]
2+

 ↔ Fe
2+

+ HO2˙ 

Equilibrium constant of reaction   * H2O2  (pKa = 11.75) 
K 

(FeⅢ)
3+

+ H2O2  ↔  [Fe
III

(HO2)]
2+

 3.1(±0.4)×10
-3

 

(FeⅢ)
3+

+ HO2
-
   ↔  [Fe

III
(HO2)]

2+
 1.74×10

9 
 

 

Several important remarks on the Cu(II) reduction by pH dependence can be made on the basis of the 

results in Figure 18 and Figure 19. As motioned above, it is apparent that pH increase has affected the 

reaction of Cu(II)/ H2O2. Therefore, the experiment was conducted to measure the decomposition rate 

constant of H2O2 by Cu(II) from pH 3 to 10. The range of pH from 3 to 7 was found to approximately 

double the rate constant despite the fact that it shows only observable enhancement compared to the 

increase at pH 8-10. On the other hand, the H2O2 decomposition rate is noticeably increased from pH 8 to 

10, and particularly the rate constant at pH 10 was observed to be 2-fold higher than the one at pH 3. This 

pH effect results on the Cu(II) catalyzed decomposition of hydrogen peroxide shows agreement with the 

work of Perez-Benito (2001), showing that a pH increase from 6.2 to 7.1 resulted in a 7 times increase of 

the hydrogen peroxide initial decomposition rate under the given experimental condition. H2O2 

decomposition by copper gets clearer from pH 7 because the reaction is going to be faster with the 

increase of deprotonated H2O2 until pKa of H2O2 which is 11.75 (Table 7) like the complexation reaction 

with iron. 
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Figure 18. Decomposition rate of H2O2 by Cu(II)/H2O2 system as a function of pH 

([Cu(II)]0 = 10 µM; [H2O2]0 = 1 mM; [phosphate buffer] =  1 mM at pH 6-7; [borate buffer]0 = 1 mM 

at pH 8-10; reaction time = 2hr) 

 

The Cu(I) conversion rate (Figure 19) reveals a good consistency with the result of the decomposition 

rate of H2O2 in improvement of reaction rate over the pH range; the Cu(I) production rate, which is the 

determination step in a cycle of the Fenton-like reaction by the Cu(II)/H2O2 system is continuously 

increased when the pH increases as shown in Figure 17. The production rate of Cu(I) by the reduction of 

Cu(II) with H2O2 gradually increased over the whole pH 5-11 range, although the reaction was too slow to 

measure at low pH (3-4). The kinetic data of the Cu(I) production rate along with catalytic decomposition 

of H2O2 by Cu(II) as a function of pH indicate that this reaction follows a rather complex mechanism. It 

appears that the nonprotonated form of H2O2, which is the predominant species present over the range of 

pH of 2-11 in aqueous solution, is responsible for the reduction of Cu(II). Perez-Benito (2004) and 

Berdnikov (1973) also suggested the possibility of a complex mechanism for copper ions with H2O2. 
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Controversy, the other literature reported that Cu(OH)2 is the reactive species to reduction (Millero et al., 

1992). 
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Figure 19. Cu(I) conversion rate by Cu(II)/H2O2 as a function of pH 

(-ln(1-[Cu(I)]/[Cu(II)]0) = kt; [Cu(II)]0 = 10 µM; [H2O2]0 = 1 mM; [phosphate buffer] =  1 mM at pH 

6-7; [borate buffer]0 = 1 mM at pH 8-10; [DMP]0 =  0.5 mM) 
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2.3. Identity of oxidants by the Cu(II)/H2O2 system as a function of pH 

The study conducted to elucidate oxidants that are produced by the Cu(II)/H2O2 system as a function 

of pH by employing the well known OH radical scavenger tert-BuOH. As shown in Figure 20, the 

pharmaceutical removal reaction totally stops in the presence of tert-BuOH throughout all the pH range. 

This result indicates that the OH radical is the only oxidant responsible for degradation of selected 

pharmaceuticals and suggests the formation of a different oxidant, most likely the cupryl ion (Cu[III]) as 

pH increases. We supposed that the mixture of OH radical and Cu(III) is produced by the Cu(II)/H2O2 

system, and a larger amount of Cu(III) is produced rather than OH radical with increase of pH. This 

assumption is supported by demonstrating the formation of Cu(III) for a decrease of removal rate in 

pharmaceuticals at alkaline pH. The formation of alternative oxidants, such as Cu(III) appears in 

comparison of experimental results between selected pharmaceuticals and RB5 (Figure 20). In addition to 

tert-BuOH, the oxidation reaction of RB5 is maintained though it exhibits a minor inhibition over the pH 

range as shown in Figure 20. RB5 can decompose easily by relatively weak oxidants contrary to selected 

pharmaceuticals in which are only oxidized by OH radical. Decolorization of RB5 in the presence of an 

•
OH scavenger is constantly achieved, including alkaline pH in where pharmaceuticals removal starts to 

decrease, and it would be expected by the generation of Cu(III) which is a weak oxidant. Similarly, the 

Fenton reaction (i.e., Fe(II)/ H2O2) rapidly converts H2O2 into a stoichiometric amount of hydroxyl radical 

(
•
OH) under acidic conditions (Table 1). However, at circumneutral pH there are several reports that 

demonstrate evidence of Fe(IV) generation, which is a weaker oxidant than 
•
OH. Fe(IV) is able to 

decompose a selection of compounds, bulky things such as RB5. Likewise, at acidic pH the Cu(II)/ H2O2 

system produces strong oxidant hydroxyl radical (
•
OH). However, as pH increases up to the alkaline 

region, the major oxidants produced by the Cu(II)/ H2O2 system is likely shifted from hydroxyl radical 

(
•
OH) to Cu(III). By the means of generation of different oxidants in alkaline pH, it also reveals a possible 

usage of selectivity for a target compound. The possible mechanisms of Cu(III) formation have been 

reported in previous studies (Johnson et al., 1988; Meyerstein, 1971) similar to the appearance of Fe(IV) 

by the Fe(III)/ H2O2 system at neutral pH. Compared to the active researches about Fe(IV) (Lee et al. 

2008a, b; Pang et al., 2011; Remucal et al., 2011), Cu(III) needs more research to assess the origin of 

oxidants in the Cu(II)/ H2O2 systems. 
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Figure 20. Removal of (a) RB 5 and (b) pharmaceuticals by Cu(II)/H2O2 in the presence and 

absence of t-BuOH  

((a): [RB 5]0 = 0.01 mM; [Cu(II)]0 = 0.1 mM; [tert-BuOH] = 100 mM; [H2O2]0 = 10 mM; reaction= 1 

hr; (b): [CA(carbamazepine)]0 = [DF(diclofenac)]0 = 1 μM; [Cu(II)]0 = 1 μM; [tert-Butanol] = 10 mM; 

reaction= 1 hr; [H2O2]0 = 10 mM; [phosphate buffer] = 1 mM; [borate buffer] = 1 mM) 
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2.4. Enhanced degradation of pharmaceuticals in the presence of UV 

The effect of ultraviolet (UVA) irradiation in the Cu(II)/H2O2 system was investigated in the 

degradation of diclofenac and carbamazepine during a period of 60 min. Several combination of the 

experiment with UV were conducted to assess enhancement of the Cu(II)/H2O2 system in the presence of 

UV (Figure 21). Only UV and UV/Cu(II) show a negligibly slower removal rate than the Cu(II)/H2O2 

system, whereas UV/H2O2 reveals a considerably high rate constant. However, the greatest removal rate is 

shown under the coexistence of Cu(II) and H2O2 with UV for both diclofenac and carbamazepine. In 

addition, the degradation rate reveals a constant increase as Cu(II) concentration increases, and it drops 

with lower concentrations of H2O2 (Figure 22).  
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Figure 21. Removal of declofenac and carbamazepine by various combinations of Cu(II) ion, 

H2O2 and UV at acidic pH and neutral pH 

([carbamazepine]0 = [diclofenac]0 = 1μM; [Cu(II)]0 = 1μM; [H2O2]0 = 10 mM; [phosphate buffer]0 =  

1 mM at pH 7; reaction time = 1 hr; 6 Lamp) 
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Figure 22. Removal of pharmaceuticals as Cu(II)
 
doses in the Cu(II)/H2O2/UV system at acidic 

pH and neutral pH 

([diclofenac] 0 = [carbamazepine] 0 = 1μM; [Cu(II)]0 = 1, 10, 100 μM; [H2O2]0 = 1,10 mM; [phosphate 

buffer]0 =  1 mM at pH 7; Reaction time = 1 hr; 6 Lamp) 

 

It was found that degradation of pharmaceuticals by the Cu(II)/H2O2 system was enhanced throughout 

the pH range in the presence of UV compared to the one in the absence of UV (Figure 23). The highest 

apparent rate constant of diclofenac and carbamazepine in the UV/Cu(II)/ H2O2 system was observed near 

neutral pH with approximately 310
-4

 (s
-1

) at pH 7 and 610
-4

 (s
-1

) at pH 6 (Figure 23), and it decreased in 

acidic and alkaline pH. Notably, an extreme decrease of the degradation rate under alkaline conditions is 

consistent with previous experiments with Cu(II)/H2O2 due to the formation of alternative oxidants. This 

similar trends in pH dependence regardless of UV suggests that the Cu(II)/H2O2 reaction predominantly 

produces different oxidants, likely Cu(III), in the alkaline pH range, although the removal rates were 

significantly higher relative to the one in the absence of UV. 
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Figure 23. Removal of declofenac and carbamazepine by the Cu(II)/H2O2 system and 

UV/Cu(II)/H2O2 system as a function of pH 

([carbamazepine]0 = [diclofenac]0 = 1 μM; [Cu(II)]0 = 1 μM; [H2O2]0 = 10 mM; [phosphate buffer] =  

1 mM at pH 6-7; [borate buffer]0 = 1 mM at pH 8-10; reaction time = 4 hr for The Cu(II)/H2O2 system; 

reaction time = 1 hr (2 Lamp) for The Cu(II)/H2O2/UV system) 
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2.5. Mechanism of oxidant production from the UV/Cu(II)/H2O2 system 

Absorbance of Cu(II) and H2O2 was monitored to clarify the main product that absorbs the UV light 

(Figure 24). 10 mM H2O2 shows relatively higher absorbance than 1 µM Cu(II) at 365 nm where λmax 

appears from the lamp, thus H2O2 absorbed UV light accounts for the enhancement of the removal rate. 

We suppose H2O2 absorbs UV light to produce OH radicals, which can involve the cycle reaction by 

reduction of Cu(II) to Cu(I) with HO2
•
 as shown in reaction (3.11), and the rate constant of the reduction 

reaction by HO2
•
 is 12 orders of magnitude higher than the reaction by H2O2 (Table 6). This presumable 

assumption has also been supported in a previous study (Kozlov and Berdnikov, 1973), but no clear data 

was provided. 

 

H2O2 + hν → 2
•
OH                                                     (3.9) 

H2O2 + 
•
OH → HO2

•
 + H2O                                        (3.10) 

k = 3.3ⅹ10
7
 M

−1
 s

−1
 (Christensen et al., 1982)  

 

Cu(II) + HO2
•
 → Cu(I) + O2 + H

+
                                (3.11) 

k = 5ⅹ10
7
 M

−1
 s

−1
 (Bielski et al., 1985)  
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Figure 24. UV/vis absorption spectra of 1 µM Cu(II) at pH 3-11 and 10 mM H2O2  

([Cu(II)]0 = 1 µM; [H2O2]0 = 10 mM; [phosphate buffer] 0 =  1 mM at pH 6-7; [borate buffer]0 = 1 mM 

at pH 8-10) 

 

The Cu(I) conversion kinetics of different combinations of Cu(II), H2O2, and UV were investigated at 

pH 3 and 5 (Figure 25). The kinetic data shows a big difference of Cu(I) conversion rate between the 

UV/Cu(II) system and the UV/Cu(II)/H2O2 system. In other words, H2O2 is involved in the reaction for 

generating Cu(I). This result verifies the reduction mechanism that we suggested above: the enhanced 

reduction of Cu(II) by HO2˙ produced from the H2O2 photolysis. As with the monitoring results of 

absorbance, mediator from H2O2 is likely involved in the reduction; the reduction reactions of Cu(II) by 

UV irradiation were much slower than UV/Cu(II)/H2O2 at pH 3 and pH 5, 15 times and 21 times 

respectively. This results are very different from the photo-Fenton reaction related to the irradiation of 

solutions with UV light to favor the regeneration of Fe
2+

 from additional photoreduction of Fe(OH)
2+ 

(Reaction 3.12) (Lee and Yoon, 2004). 

Fe(OH)
2+

 + hν → Fe
2+

 + 
•
OH   (3.12) 



 

  
42 

 

  

Reduction reactions in each system accelerated with pH increase, from 3 to 5, despite the fact that the 

gap between pH 3 and pH 5 in the UV/Cu(II) system is smaller than the one in the UV/Cu(II)/H2O2. 
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Figure 25. Cu(I) conversion rate from the Cu(II)/H2O2 and Cu(II)/H2O2/UV systems  

([Cu(II)]0 = 10 μM; [H2O2]0 = 10 mM; [DMP] 0 = 0.5 mM ; 6 Lamp) 
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Chapter 4. Conclusions 

 

The first part of this study was concerning to a quantitative prediction base on the removal kinetics of 

pharmaceuticals and oxidants (ozone and hydroxyl radical) utilized in ozonation to discuss the 

characteristic behaviors of ozone decomposition and the oxidation of pharmaceuticals during ozonation of 

water samples in Ulsan. The conversion of O3 into ˙OH was more pronounced in the surface waters of 

Ulsan than other natural waters. That appears to be caused by as a relatively high Rct value which is in the 

range 0.78 ~ 1.5×10
-7

 and a relatively high inhibitor effect of ˙OH scavengers. It is expected that 

decomposition of organic contaminants which have less reactivity with molecular ozone is favored over 

the contaminants which rapidly react with ozone, owing to the fast conversion from ozone to hydroxyl 

radical. The efficacy of the ozonation process for the removal of pharmaceuticals was investigated in 

different water samples in Ulsan, and experiments demonstrated that the model calculation by the Rct 

concept was feasible to predict the oxidation of pharmaceuticals. Modeling of the pharmaceuticals 

removal was evaluated in terms of rate constant with O3 and OH radicals by grouping each compound. It 

is possible to predict removal efficiency of any pharmaceuticals as long as its rate constants is known 

since the results show that overall removal efficiency of the pharmaceuticals was fairly consistent in each 

group. 

Secondly, the reactive oxidant produced by the Cu(II)/H2O2 system and the UV/Cu(II)/H2O2 system 

effectively oxidized pharmaceuticals. The observed rate constants for each system were monitored at 

various pH in given experimental conditions, and an additional experiment was conducted to demonstrate 

the working mechanisms we suggest. The pH dependence of the reactive oxidant in the Cu(II)/H2O2 

system can be explain by two factors: production of reactive oxidants grows as pH increases due to 

raising of the Cu(II) reduction rate. In addition, formation of a weaker oxidant, likely Cu(III), at alkaline 

pH causes a decline of the removal rate for declofenac and carbamazepine. The UV/Cu(II)/H2O2 system 

shows much higher efficiency than the Cu(II)/H2O2 system, which is attributable to the enhanced 

reduction of Cu(II) by HO2˙ produced from the H2O2 photolysis. The principal results obtained in this 

study are illustrated in Scheme 3. 
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Scheme 3 Reaction pathways of oxidation of organic compounds in the Cu(II)/H2O2 system and 

UV/Cu(II)/H2O2 system 
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