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Abstract 

 

The use of laser welding has become quite widespread because it can achieve higher productivity than 

spot welding. This is due to its desirable features, which include high power density, faster welding 

speed, highly accurate welding, and excellent repeatability. In addition, laser welding can minimize 

the distortion in heat-affected zones (HAZs), and there is no tooling that wears out or must be changed 

over.   

In spite of these advantages, laser welding still causes many problems when used on 

compositions such as galvanized steel and aluminum alloy. Galvanized steel, for example, is 

composed of a zinc layer whose physical parameters differ from those of steel as a base material. Zinc 

vaporizes at a temperature of 907 K, whereas steel begins to melt at 1510 K. This phenomenon causes 

serious defects in welds because the pressure of zinc is more powerful than that of steel. As a result, a 

certain manipulable control is needed in order for the zinc coating to be able to evaporate. To prevent 

this circumstance, the following solutions have been proposed: (i) a de-gassing method that induces 

the zinc fumes to escape from the part-to-part gap between two materials; (ii) the removal of zinc 

layers that will be joined together; (iii) a pulsed laser method that minimizes zinc vaporization using a 

high energy per pulse and a short pulse duration; (iv) a laser hybrid method; and (v) the addition of 

additional elements to the surface, which form a compound with the vaporizing zinc. Despite these 

suggestions, applications involving zinc-coated steels are rarely used in the automotive industry 

because the shapes of the materials to be welded are not always uniform.   

 In this study, we ascertain the effects of the part-to-part gap and the direction of welding on 

the quality of laser welding. Using a 2 kW fiber laser and galvanized steel sheets (with thicknesses of 

1.4 mm and 1.8 mm), our experiments employed lap welding, which has been applied to side 

members in the automotive industry. The experimental design was used with a 33 factorial design with 

3 replications. The three types of welding direction used are ascendance, descendance, and a uniform 

gap. Based on the experiments, using analysis of variance (ANOVA) it was determined that the 

direction of welding is an important factor that can affect the weld quality. In addition, the differences 

between the shear tensile strengths in the ascendance and descendance directions were determined 

using a t-Test. The maximum shear tensile strength in the ascendance direction was achieved with a 

laser power of 2000 W and a welding speed of 2100 mm/min, followed by a part-to-part gap of 0.32 

mm/min as the steepest ascent method. Moreover, we analyzed cross-sections of sampling specimens, 

varying the gap differences in order to verify the differences in shear tensile strength based on two 

different directions of welding. 
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 Introduction I.

1.1 Background  

Welding is a process that permanently joins metals, utilizing the different levels of interatomic 

penetration of those metals. Welding is carried out via the melting of workpieces by the introduction 

of intense heat, either while applying pressure or without applying pressure. In the act of welding, a 

filler material is also sometimes used.  

On the basis of a survey of the literature and information from the American Welding Society 

(AWS), we can classify the welding process into seven different processes, which are shown in Figure 

1.1.1 In a more general sense, these seven welding processes can be further categorized in three ways, 

as fusion welding, pressure welding, and soldering. Fusion welding, which is represented in the color 

red in Figure 1.1.1, takes place in the presence of a heat source, and makes use of filler material that 

can be in the form of a consumable electrode or a separate wire-feeding arrangement. Pressure 

welding takes place in the presence of mechanical pressure. Percussion welding, resistance welding, 

seam welding, and spot welding fall under the category of pressure welding. Soldering is a process in 

which two or more materials are joined together by melting the flow of a filler metal into the joint  

In the automotive industry, gas metal arc (GMA), GMA brazing, alternating current metal inert 

gas (AC MIG), plasma MIG, and electron beam welding have been used for joining the parts of car 

bodies (Dilthey and Stein 2006; Hongping and Boris 2011). Nowadays, laser beam welding and 

remote laser welding are used in the body-in-white stage of vehicle manufacture.  

According to the AWS, a variety of modern welding methods, such as hybrid laser/plasma arc 

welding, are being applied in industry worldwide. These modern welding processes are a better 

approach to increasing the productivity and quality of the weld, and a great deal of research is being 

conducted in this regard. This research was accelerated when the patent for the friction welding 

process expired in 2010. The efficient use of electricity also opened a broad area of research in the 

field of welding technologies.  

Different energy sources are utilized in the welding process, including a gas flame, an electric arc, 

a laser, an electron beam, friction, and ultrasound. Welding may be performed in many different 

environments, including the open air, under water, and in outer space. Because welding can be 

hazardous, precautions must be taken to avoid burns, electric shock, vision damage, inhalation of 

poisonous gases and fumes, and exposure to intense ultraviolet radiation.  
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Figure 1.1.1 A classification of welding (Adopted from AWS) 

 

Three decades ago, laser welding was an infant welding method that was used only in research 

applications. Recently, laser welding has been applied in the metalworking industry, where it can be 

used in place of other approaches, such as spot welding, submerged arc welding, and electron-beam 

welding. A focused laser beam is one of the highest density power sources available to industry; its 

power density is similar to that of an electron beam. The laser welding process represents a part of the 

new technology of high-energy-density processing (Steen and Mazumder 2010). Laser welding is also 

being applied in the automotive, aerospace, marine, and railway industries. In the automotive industry 

in particular, lasers are being applied in the manufacture of components such as cover bumpers, cross 

members, side members, pillars, etc. Laser welding has been quite widely used in the automotive 

industry because unlike spot welding, it can achieve high accuracy, excellent repeatability, and unit 

cost reduction. In addition, it can minimize the distortion in heat-affected zones (HAZs), has no 

tooling that wears out or must be changed over, and offers versatility in working with different 

materials. The disadvantages are that laser welding plants are expensive, and the filler materials that 

are used are also quite costly. There are also some health concerns involved, since a laser can damage 
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the eyes if one looks directly into it, and can cause serious burns if one’s skin comes in contact with it.   

In terms of the quality of weldment, industries in Korea tend to produce a lower quality than 

those in the United States and United Kingdom. The main reason for this lower quality is that only a 

few small industries have invested in related research and development. However, Korea’s application 

of the technologies of laser welding is outstanding compared to that of other countries (Kim, K.Y. 

2011). The scale of the welding monitoring market and inspection system market was 12.7 trillion 

dollars in 2008, and Korea captured 4% of this. In addition, weld seam tracing and inspection of a 

bead profile using optic sensors and acoustic emission (AE) have been developed.  

 

 

Figure 1.1.2 Laser welding market in Korea(Kim, G.Y. 2011) 

 

In the global market, the trends in laser welding are moving in the direction of high power, high 

efficiency, high beam quality, and a long life span based on green energy concepts. Germany, France, 

and the United Kingdom are the world leaders in the production of laser technologies, and Germany 

has even developed a laser combination-head that can weld and cut at the same time (Kim, K.Y. 2011).   

Remote laser welding is different from conventional laser welding because the beam is 

conducted to the work surface via small lightweight mirrors, instead of a conventional focusing head 

(Klingbeil 2006). This form of welding uses scan mirrors in order to position the beam accurately on 

the target weld location. Nowadays, remote laser welding is provided with 3D scanners that can 

operate on the X, Y, and Z axes automatically. Figure 1.1.3 shows a 3D scanner with 3 axes. With the 

use of this kind of scanner, the positioning speed can be decreased so that the welding speed can be 

increased.  

Unlike the work head used in conventional laser welding, remote laser welding is conducted at a 
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distance from the workpiece, which makes it possible for the working hours to be reduced and high 

efficiency to be achieved. Moreover, the welding head and scanner are adapted for installation on 

welding robots that just move along the detailed weld parts. The focal length of remote laser welding 

is greater than 500 mm, which is a longer distance than can be achieved using the conventional 

method. Currently, the only lasers that satisfy this criterion are fiber lasers, disk lasers, and CO2 lasers 

(Kim et al. 2005).  

 

Figure 1.1.3 Remote laser welding of 3D scanner 

 

1.2 Motivation 

Galvanized steel has very high corrosion resistance. The enormous usage of thin steel sheets in 

automotive applications to reduce the weight of a vehicle makes it essential to improve the material 

strength as well as provide higher corrosion protection. Hot dip galvanizing of steel sheets is known 

as a powerful technique to protect against oxidation, and thus failure due to corrosion (Katundi et al. 

2010). For automotive parts in particular, two main welding methods are used: lap welding and butt 

welding.  

In spite of these advantages, laser welding with compositions such as galvanized steel and 

aluminum alloy still causes many problems. In the case of galvanized steel, it is composed of a zinc 

layer whose physical parameters differ from those of the steel that serves as a base material. Zinc 
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vaporizes at a temperature of 907 K, whereas steel begins to melt at 1510 K. This discrepancy causes 

serious defects in welds because the pressure of zinc is more powerful than that of steel. As a result, a 

certain manipulable control is needed in order for the zinc coating to be able to evaporate. To prevent 

this circumstance, the following solutions have been proposed: (i) a de-gassing method that induces 

the zinc fumes to escape from the part-to-part gap between two materials; (ii) the removal of zinc 

layers that will be joined together; (iii) a pulsed laser method that minimizes the zinc vaporization 

using a high energy per pulse and a short pulse duration; (iv) a laser hybrid method; and (v) the 

addition of additional elements to the surface, which form a compound with the vaporizing zinc. 

Despite these suggestions, applications involving zinc-coated steels are rarely used in the automotive 

industry because the shapes of the materials to be welded are not always uniform.  

In this study, we ascertain the effects of the part-to-part gap and the direction of welding on the 

quality of laser welding. Using a 2 kW fiber laser and galvanized steel sheets (with thicknesses of 1.4 

mm and 1.8 mm), our experiments employed lap welding, which has been applied to side members in 

the automotive industry. The experimental design was used with a 33 factorial design with 3 

replications. The three types of welding direction used are ascending, descending, and a uniform gap. 

Based on the experiments, using analysis of variance (ANOVA) it was determined that the direction of 

welding is an important factor that can affect the weld quality. In addition, the differences between the 

shear tensile strengths in the ascending and direction of descendances were determined using a t-Test. 

Moreover, we analyzed cross-sections of sampling specimens, varying the gap differences in order to 

verify the differences in shear tensile strength based on two different directions of welding. 

 

 

1.3 Outline of the thesis 

This thesis is organized as follows. Chapter 2 provides a review of the literature related to laser 

welding gap control. In Chapter 3, an experimental laser welding system is introduced, and 

experimental materials and an experimental design are suggested. Chapter 4 shows the results of the 

experiments, and determines the optimal region in which maximum strength can be obtained, based 

on the direction of the weld. Chapter 5 presents a discussion in which the results are analyzed in order 

to corroborate our intents. Finally, Chapter 6 presents our conclusions and suggests a course of future 

study.  
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 Literature survey II.

In this chapter, a detailed survey on part-to-part gap control related laser welding. Firstly, general 

principles of laser welding are introduced. Secondly, laser welding parameters are classified according 

to the laser related parameter, process related parameter, and work piece related parameter. Thirdly, 

related researches with part-to-part gap control are described depending on the alternatives of creating 

gap, monitoring, and numerical optimization. 

2.1 Principles of laser welding 

Laser emission at optical wavelengths was first reported in 1960 with the announcement of laser 

oscillation in optically pumped ruby crystals. By 1962, there had been several reports on metallurgical 

applications of lasers including welding. This was followed by a number of fundamental studies of 

laser welding. The advantages of laser welding in comparison to soldering of fine wires and electronic 

components were soon realized.  

Basically, laser has three main components called gain medium, pumping source, and resonator. 

Gain medium contains atom which emit monochromatic light (laser light) when excited by fed-in 

energy. Pumping source is to deliver the required pump energy to excite the atoms of the laser 

medium. Resonator is comprised of a high-reflecting and a partly permeable mirror. So, laser medium 

is between the mirrors. The optical resonator, or optical cavity, in its simplest form is two parallel 

mirrors placed around the gain medium which provide feedback of the light. The mirrors are given 

optical coatings which determine their reflective properties. Typically one will be a high reflector, and 

the other will be a partial reflector. The latter is called the output coupler, because it allows some of 

the light to leave the cavity to produce the laser's output beam.  

Some of the advantages of laser welding are: (Duley 1999; Steen and Mazumder 2010) 

  Deep narrow welds are obtained easily, even eliminating the addition of filler material and 

the need of a V joint preparation. 

  Low heat input and high power density in the work piece, producing very low thermal 

distortion and small heat affected zones (HAZ) avoiding the risk of excessive grain growth. 

  High welding speeds can be used, permitting high production rates. 

  The process flexibility is high, welding can take place in all laser beam positions and laser 

can be easily automated if the beam is delivered by fiber optics (not possible for CO2 lasers).  
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  Laser welding improves component design opportunities, high thickness materials can be 

welded, a wide range of joint configurations can be used and it reduces considerably the post 

weld machining processes.  

 

On the other hand the main disadvantages of this technology are: 

  Small joint gaps and well clamped joints are required. The laser beam focused is really 

narrow and it can pass through small gaps. Also, poorly fitting parts produce undercut welds. 

  An accurate beam and joint alignment is needed.  

  Safety protections are essential, the equipment needs to be maintained on a stable base to 

avoid vibrations and it is not equipment with good portability. 

  Equipment and operation costs are high compared to other conventional welding methods. 

 

2.2 Laser welding parameters 

In general, focus length, focus position, and focus size are playing an important role in a laser welding 

because it is a welding method using a light with high and tiny spot. Laser welding is mainly divided 

from 3 parameters: laser-related parameters, process-related parameters and workpiece-related 

parameters (Table 3.1.1) (Cao et al. 2003). 

 

Table 3.1.1 Laser welding parameters 

Laser-Related  

Parameters 

Process-Related  

Parameters 

Workpiece-Related 

Parameters 

Wavelength 

Laser Power 

Spot Size 

Focal Length 

Depth of Focus 

Focal Plane Position 

Beam Alignment 

Multi-beam Technique 

Beam Spinning and Weaving 

Welding Speed 

Shield Gas 

Filler Metal 

 

Composition 

Thickness 

Surface Condition 

Joint Design and Fit-up 

Fixturing 
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To become narrower for our interest of study, fishbone diagram is necessary. A fishbone diagram is a 

useful way to organize information related to our purposes. In Figure 2.2.1, two main parameters are 

divided. Uncontrollable parameters are shown that environment like humidity or temperature is out of 

our capacity. On the other hand, controllable parameters are that we can control parameters are 

arranged. In addition, laser-related parameters, process-related parameters and workpiece-related 

parameters can belong to the controllable parameters. Bottom section of the fishbone diagram is 

composed of methods and inspections. Optimization methods and design methods are the 

representative ways of the method and there are two main inspections: destructive inspections and 

non-destructive inspections. When parameters and methods are arranged, desirable laser welding 

parameters optimizations will be achieved. 

 

 

Figure 2.2.1 Fishbone diagram for laser welding parameter optimization 
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2.2.1 Laser-Related parameters 

Wave length 

Reflectivity of laser beam is the ratio of reflection on incident surface and the value has ‘0’, ‘1’. From 

this value, the value of input energy can be estimated when processing materials. 

 (1) 

k: a constant related to the material,  λ : wave length of laser beam 

σ : conductivity of materials,  c : the speed of light 

 

From the equation (1), the reflectivity will increase when the wave length is increase. Thus, decision 

of selecting a wavelength of laser beam is important.  

Laser power 

Laser power is a crucial parameter when investing the limits of welding depth. If laser power is too 

low, two materials cannot be jointed due to the low heat input. When laser power is too high, some 

defects are detected such as spatters, under-cut, under-fill, and drop-out. In addition, laser power 

should be set up depends on the different material (Kaplan et al. 2009).  

Spot size 

Spot size is an important parameter related to the laser power. The equation of spot size is following, 

 
(2) 

WL: reflected beam diameter 

From the same laser power, smaller spot size has higher power density so that weld width should 

be narrow and weld penetration should be deeper. However, when spot size is too small, which means 

too high density, under-cut or under-fill can be occurred (Cao,Wallace et al. 2003).  

Focal length 

Focal length is strongly related to the depth of focus which is a tiny point that can be limited 

allowable range (Cao,Wallace et al. 2003). When focal length becomes short, beam waist diameter 

and depth of focus are decreased, whereas the convergence angle is increased. Too short focal length 

can cause some problems to the lens with spatter and vapor damage. Too long distance of focal length 

brings about the oxidation on the root weld from materials (Larsson et al. 2000).  
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Operational mode 

Operational mode can be divided from pulsed wave (PW) and continuous wave (CW). Generally CW 

is used for the high-speed welding and PW is used for the precise welding (IPG Photonics ; Kelkar 

2008). The good beam quality of the fiber lasers coupled with high CW powers offers deep 

penetration. Modulating these CW lasers offer pulsed laser capabilities with high peak and low 

average power for low heat input applications (IPG Photonics). When welding with aluminum alloy, 

pulsed wave is contributed to the better weldability, which results that pulsed wave welding can weld 

deeper penetration than continuous wave welding(Cao,Wallace et al. 2003).  

2.2.2 Process-Related parameters 

Welding speed 

Welding speed is a speed at which the weld is created over the workpiece and it is commonly 

measured in m/min or mm/sec (ANSI/AWS 2001). Welding speed is related to the laser power, 

material, and welding depth. Based on the same laser power, weld depth is decreased when welding 

speed is increased (Kaplan,Norman et al. 2009) as shown in Figure.2.2.2. Also, depends on the types, 

characteristics, and thickness of materials, welding speed should be different.  

 

 

Figure. 2.2.2 Comparison of welding depth d versus welding speed vw with experiments for 4 and 10 kW 

laser power (adopted from Kaplan). 
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Shield gas 

Shield gas protects high molten materials from the oxidation so that it plays a role in preventing from 

nonmetallic inclusions of oxides and formation of porosity (Kim and Kim 2007). Plasma or plume 

formation via the release of vaporized material from the keyhole must also be suppressed, especially 

in CO2 laser welding because it can cause instabilities of the vapor-filled keyhole, reduce weld 

penetration, produce coarse porosity, and reduce life of coverglass slides (Cao,Wallace et al. 2003). 

Also, lack of shield gas can occur porosity, undercut, and bead roughness (Cao,Wallace et al. 2003).  

Filler metal 

Filler metal is a compensation for the top and bottom bead using additional metal. Using filler metal, 

the chances such as porosity and hot cracking can be decreased and make plasma vapor stable states 

(Larsson,Palmquist et al. 2000). In addition, the angle of filler metal which is provided with to the 

beads plays an important role in absorbing the energy. However, too high feed rate can interrupt the 

full penetration on the bottom or top beads (Cao,Wallace et al. 2003).  

2.2.3 Workpiece-Related parameter 

Composition 

Volatile compositions such as magnesium, zinc, lithium, and aluminum tend to melt easily compared 

to the steels. When these materials are welded, because of relatively low melting point and high 

pressure, many welding qualities are discussed and suggested. Also, these compositions can be 

strongly affected by laser density and welding speed.  

Thickness 

Thickness of materials should be set up based on the type of materials. This is because each and every 

material has its own welding depth and this welding depth should be related to the laser density and 

welding speed. In other words, thicker materials should be high power laser density and low welding 

speed(Cao,Wallace et al. 2003). 

Surface condition 

Generally metal has high reflexibility to the light. Especially high electric conductive materials such 

as aluminum and copper have hight reflexibilities so that it makes laser process difficult due to the 

bad heat efficiency. Also, the same materials but different surface condition can affect negative results 

because each material has different reflexibility (Zhao et al. 1999).  
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2.3 Design of experiments and optimization 

The Design of experiments (DOE) is the process of planning the experiment so that the appropriate 

data will be collected and analyzed by a statistical method, resulting in valid and objective 

conclusions (Montgomery 2008). For the laser welding, we need to have design of experiments with 

careful considerations because laser welding system is expensive to use. For this reason, factorial 

design, response surface methodology, and Taguchi method have applied in order to obtain the crucial 

information with minimum number of experiments. 

 

2.3.1  Design of experiments 

Factorial design 

kn factorial design is composed of n factors and k levels. It also has factorial experiment that can 

estimate all kinds of factorial effects. By a factorial design, we mean that in each complete trial or 

replication of the experiment all possible combinations of the levels of the factors are investigated 

(Montgomery 2008).  

From the manufacturing industries, the laser welding process was conducted using resolution IV 

fractional factorial design, with the I=ABCD by Tanco. In this research, the purpose is to improve a 

laser welding process in a one-model car production line. He suggested that the input parameters, such 

as power, current, clearance of side, and clearance of the roof could affect the surface of the side being 

used in the factorial design. From that result, the defects of the side decreased to the 97 percentage, so 

that it achieved cost reduction (Tanco et al. 2008).  

Khan (2011) reported an experimental design approach to process parameter optimization for the 

laser welding of martensitic AISI 416 and AISI 440FSe stainless steel lap welding with 0.55mm 

thickness. His research is to develop mathematical models for all response factors of the weld and 

determine the optimal range of welding parameters that minimize the weld width and maximize the 

weld penetration depth, weld resistance length, and weld shearing force. He described that laser power 

and welding speed was the most important factors to the bead profiles using full factorial design. He 

also concluded that proper laser power and welding speed can decrease a weld width and increase the 

penetration depth so that resistance length and shearing force will be increased (Khan et al. 2011).  

Park (2010) reported that there is some strength degradation when welding with AA5000 series. 

In order to protect from this degradation, filler wire is carried out and weld formability is predicted 

using factorial design and regression model. In this research, 33 factorial design was used, groove ‘I 

type’ butt welding was carried out. The weldability estimation was from the Erichsen test and he 
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developed the predicted model using regression model (Park 2010).  

Gunaraj (1999) used submerged arc welding (SAW) in order to find optimal parameter for the 

bead quality. For the experimental design, 24 factorial design was run with 7 center points and 8 star 

points. From these experiments, he suggested that penetration depth, reinforcements, and weld width 

were decreased when welding speed was increased. However, despite the increase of wire filler rate, 

penetration depth, reinforcement, and the percentage dilution of the weld bead were increase excpect 

weld width (Gunaraj and Murugan 1999).  

 

2.3.2  Optimization 

Response surface methodology 

Response Surface Methodology (RSM) is a collection of statistical and mathematical techniques 

useful for developing, improving, and optimizing process. It also has important applications in the 

design, development, and formulation of new products, as well as in the improvement of existing 

product design (Myers et al. 2009).  

Response surface methodology for the laser welding is mainly divided bead profile, strength, and 

stress analysis. Benyounis (2005) reported the optimization of laser-welded butt joints of medium 

carbon steel sheet using RSM. He used a Box-Behnken design with 3 level and 3 factors and his 

optimization method is consist of numerical optimization and graphical method. Numerical 

optimization has two separate ways which are the goal of half and full penetration. Graphical 

optimization is to show some optimal criteria with certain limits. He suggested that full depth 

penetration strongly affects the other bead parameters. In addition, strong, efficient, and low cost weld 

joints could be achieved using the optimum welding conditions (Benyounis et al. 2005).  

Benyounis also reported a paper about the optimization of medium carbon steel on the bead 

profile which is composed of heat input, penetration depth, weld width, HAZ width. Using RSM, he 

deducted the second order equation and analyzed the relationships between laser parameters and bead 

profile parameters. From this result, laser power has a positive effect, while welding speed has a 

negative effect and heat input plays an important role in the weld-bead parameters dimension 

(Benyounis et al. 2005).  

His different research is to reduce the joint-operating cost with multi-response optimization of 

laser welding process of austenitic stainless steel. From this experiment, welding speed is the most 

important parameter and the optimal input parameter is when laser power is 1.2 ~ 1.23 kW. Moreover, 

from the optimization, it is possible to achieve almost 43 percentage of the cost reduction (Benyounis 
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et al. 2008).  

Olabi suggested that the best combinations of parameters that minimized the stress in the heat affected 

zone using RSM, factorial design, Taguchi method, and numerical algorithm. From the experiment, 

low laser power, high welding speed, and intermediate focus point position were carried out the 

minimizing the residual stress. In addition, stress was rarely affected by the focus position and 

welding speed strongly affected the residual stress (Olabi et al. 2007).  

Acherjee reported a prediction of weld strength and seam width for laser transmission welding of 

thermoplastic using RSM. From RSM, he described the relationships between laser parameters and 

output parameters, so each an equation of lap-shear strength and weld-seam width was carried out 

using regression model and showed the interaction graphs between laser parameters and output 

parameters. For lap-shear strength, when laser power is increased, shear strength and weld width is 

increased. From the Stand-off distance, when stand-off distance is increased, weld width is following 

the stand-off distance. However, clamp has only slight positive effect on the shear strength. Also, 

welding speed strongly affect the shear strength and welding speed and weld width (Acherjee et al. 

2009). 

Zhao reported the optimal parameter of laser welding thin-gage galvanized steel using RSM. In 

this paper, crucial thing is to use 0.4mm thin gage which is less than 0.6mm. Also, his conduction is to 

measure the maximum penetration depth based on the half penetration. He carried out the three levels 

and four factors with a uniform design proposed by Fang and Wang in 1980’s. From the experiment, 

there are severe spatter and porosity in the weld when using 4mm-thick galvanized SAE1004 steel 

sheet without any gap. Also, the optimal parameters is when laser power is 628W, welding speed is 

34.7mm/s, gap is 0.12mm, and defocus amount is -0.23mm (Zhao et al. 2012). 

Gunaraj reported an application of RSM for predicting weld bead quality in submerged arc 

welding of pipes. He used a titanium alloy with 1.7mm thickness and CO2 laser welding system. He 

considered five response parameters (weld width, HAZ, welded zone area, HAZ area, and penetration 

depth) and find out the optimal parameters using regression model. He suggested that 1837.4 of laser 

power, 25.4 mm/s of welding speed, and 0.6941mm of focal position were the optimal parameters for 

obtaining the best bead geometry produced from Titanium alloy. In addition, welding speed has a 

negative effect on all response, whereas laser power has positive effect on response parameters. Lastly, 

focal position has no effect on bead geometry of titanium alloy (Gunaraj and Murugan 1999). 

Taguchi method and Artificial Neural network 

Taguchi method is one of the optimization methods that applied to the laser parameters. One of the 

advantages of Taguchi method is to achieve high quality without increasing the cost (Anawa and 



 

CHAPTER 2 

16 

 

Olabi 2008). The power of the Taguchi method is in its clarifying the dominant factor given the 

complex interaction which occur in laser welding, involving the shielding gas, laser power, welding 

speed, focus position, and pulsed frequency (Pan et al. 2005). 

Artificial Neural Network (ANN) model is developed to select welding parameters such as laser 

power, welding speed, focal position and focal length for required output parameters such as 

penetration depth, weld width, and HAZ width. For optimization method in laser welding field, 

Taguchi method and ANN usually used together.  

For laser welding, Taguchi method has applied in order to control the laser parameters 

appropriately. Olabi suggested an ANN and Taguchi algorithms integrated approach to the 

optimization of CO2 laser welding. For the goal to maximize penetration-to-fuse-width and the 

penetration-to-HAZ-width ratio, Taguchi L9 design was used and ANN was designed in order to 

calculate penetration-to-fuse-width and the penetration-to-HAZ-width for different laser powers, 

welding speeds, and focal positions (Olabi et al. 2006). He also used  

For the optimization fields, Olabi (2006) used a Taguchi method and Artificial neural network to 

find optimal parameters using CO2 laser welding with thickness of 5mm medium carbon steel sheets. 

He suggested that 1.42 of laser power, 50cm/min of welding speed, and 2.5mm of focused position 

are the optimal parameters (Olabi,Casalino et al. 2006). He also suggested optimal parameters in order 

to minimize residual stress using response surface methodology using CO2 laser welding. In this 

research, he used butt welding on stainless steel sheets and optimal parameters are 1.15 to 1.22kW of 

laser power, 55 to 50cm/min and -0.8mm of focal point position (Olabi et al. 2007). Moreover, he 

reported three optimization methods for laser process in order to minimize residual stress in the heat 

affected zone. Using CO2 laser welding with 3mm thickness of stainless steel, he compared three 

kinds of optimization methods, Taguchi method, Response surface methodology, factorial design, and 

numerical algorithm. 1.03kW of laser power, 68.52 cm/min, and -0.5mm of focused position were set 

up comparing with residual stress (Olabi,Casalino et al. 2007).  

Benyounis (2005) suggested the optimal parameters of the heat input and weld-bead profile using 

response surface methodology. He tried to describe some relationship among the input parameters and 

output parameters by using developed models. Desirable parameters are 1.2 to 1.43kW of laser power, 

30 to 70 cm /min and -2.5 to 0 focal point position when welded 5mm thickness of medium carbon 

steel sheets0 (Benyounis,Olabi et al. 2005). He also studied multi-response optimization of austenitic 

stainless steel with CO2 laser welding. He used 3mm thickness of austenitic stainless steel sheet and 

between 1.2 and 1.23kW of laser power and between 35 and 39cm/min of welding speed with -0.2 

mm of focus position(Benyounis,Olabi et al. 2008). Anawa3 (2008) reported optimal parameters using 

Taguchi method. In this study, CO2 laser welding was used and butt welding method of stainless steel 
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and milled carbon steel was carried out. He suggested that welding speed can be the most important 

parameter for strength of welded pool (Anawa and Olabi 2008).   

Pan (2005) used a Taguchi method in order to optimize the laser parameters which affect the 

tension stress when butt welding onto magnesium alloy. Various combinations were considered to 

evaluate the relative importance of welding parameters. From this paper, optimal combination of 

welding parameters is Argon shielding gas, 360W for laser power, 25mm/s for welding speed, 160Hz 

for the pulse frequency. Also, ultimate tension stress was maximum at an overlap of the welding zone 

of approximately 75% (Pan,Wang et al. 2005). 

Table. 2.3.1 Different methods of Design of Experiment and optimization 

Design method 
Control 

parameter 

Quality 

measurement 

Experimental 

design 
Related work 

Screening 

(Factorial 

design) 

- Laser power 

- Welding speed 

- Focused position 

- Focal length 

- Shielding gas 

- Pulse frequency 

- Wire feed rate 

- Nozzle to plate 

distance 

- Clamp pressure 

- Gap 

- Spot size 

 

- Penetration depth 

- Bead width 

- Bead Width area 

- HAZ width 

- HAZ width area 

- Tensile strength 

- Impact strength 

- Lap-shear strength 

- Residual stress 

- Joint cost 

- Erichsen value 

- Reinforcement 

- Dilution 

- Heat input 

- Focused position 

- Weld-seam width 

- Concave 

- 33 full factorial 

design 

- 24 fractional 

factorial 

design 

(Gunaraj and Murugan 

1999; Benyounis,Olabi 

et al. 2005; 

Olabi,Casalino et al. 

2007; Park 2010; 

Khan,Romoli et al. 

2011) 

Response 

surface 

methodology 

(Optimization) 

- Box-Behnken 

design(BBD) 

- Central 

Composition 

Design(CCD) 

- Uniform 

design 

(Gunaraj and Murugan 

1999; Benyounis,Olabi 

et al. 2005; 

Olabi,Benyounis et al. 

2007; Olabi,Casalino et 

al. 2007; 

Benyounis,Olabi et al. 

2008; Acherjee,Misra 

et al. 2009; Khorram et 

al. 2011; Zhao,Zhang et 

al. 2012) 

Taguchi 

(Optimization) 

- Orthogonal 

arrays  

(Pan et al. 2004; Yoo et 

al. 2006; 

Olabi,Casalino et al. 

2007; Anawa and Olabi 

2008) 

ANN 

(Optimization) 

- Orthogonal 

arrays 

(Son et al. 1999; 

Olabi,Casalino et al. 

2006) 
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2.4 Real time monitoring 

Before high power laser was invented, laser-induced plasma has been huge experimental and theorical 

researches (Hafeez et al. 2008). In general, when laser welding is operated, a plume is accompanied 

under the conduction-limited conditions. The plume is the result of the ejection of material from the 

area of the weld because of laser beam (Duley 1999).  

 As plasmas signal vaporization and, specifically, the interaction between vaporized material and 

an incident laser beam, the information obtained through analysis of plasma radiation is only 

indirectly related to the laser material interaction that results in welding. The use of plasma 

diagnostics in monitoring laser welding then relies on the availability of a model that relates the 

observed variable to some aspect of the weld condition. 

Optical and acoustical process signals can be measured from the emissions of the welding using 

suitable sensors. Signals have information on the beam-material interactions so that welding defects 

can be detected on real time monitoring and recording for an each workpiece (Shao and Yan 2005). In 

figure. 2.4 shows a process signals during laser welding. The reflected laser is the amount of the 

radiation of the laser source which is not absorbed by the material. Acoustic emission is divided into 

air-borne and structure-borne emission. There are originated from the stress waves induced by 

changes in the internal structure of a work piece. The metal vapour and the molten pool emit 

continuous radiation which spectrum varies with different laser application. 

 

Figure 2.4 Process signals during laser welding(Duely, 1999) 
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2.4.1 Optical detector 

For the optical detector, ultraviolet (UV) and infrared (IR) have mainly used to converted the flux 

density of the radiation emitted by the welding process into an electrical signal (Shao and Yan 2005). 

Figure. 2.4.1 is the typical setups using co-axial and off-axial arrangements. 

Sibillano reported a real-time laser welding process using spectroscopy which is based on the 

acquisition of the optical spectra emitted from the laser generated plasma plume. He used a 

covariance mapping technique in order to measure the plasma electron temperature. From the plasma 

electron temperature, he added another chemical substance to each of a plasma plume and developed 

an algorithm that can analyze the defects (Sibillano et al. 2009). 

Sergio suggested two kinds of monitoring approaches using spectroscopy. Fist approach is 

Photodiode-generated signal which is gathering radiation emitted by plasma mainly in the visible 

spectrum range. This is transforming into electrical signals and classifying according to their quality. 

Second approach is Electronic temperature-based method. It is the estimation of the electronic 

temperature and how to correlate it with weld quality is explained (Sergio et al. 2010). 

 
 

Figure 2.4.1 Typical setups for optical detectors using co-axial and off-axial arrangements. 

 
Park reported a monitoring technique that can trace weld defects such as spatter and plasma using a 

photodiode sensor. This monitoring can detect the weld defects caused by changes in power and 

misalignment of focus (Park et al. 2001). Kang reported that weld quality can be detected in real time 

by plasma detector using plasma intensity. From the monitoring, they can figure out the correlation 
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between signal and weld quality (Kang et al. 2006). Jung reported that laser quality can be traced by 

chromatic aberration which can measure and analysis the thermal radiation from the molten pool so 

that it can measure the length of laser focus and size of molten pool, suggest an appropriate signal 

value, and control the welding state in real time (Jung et al. 2000).  

2.4.2 Acoustic detector 

One characteristic of laser welding is the acoustic emission which involves a sensor converting 

process sounds into electrical output to a measurable variable (Shao and Yan 2005). For the acoustic 

emission, air-borne emission and structure-borne emission are composed. The range of frequencies of 

air-borne emission is 20Hz to 20 kHz and those of structure-borne emission is 50kHz to 200kHz 

(Duley 1999; Shao and Yan 2005). Figure.2.4.2 describes typical experimental setups for acoustic 

emissions. One of the advantages of acoustic emission is that it can be firstly detected even subtle 

defects when defects are occurred. Kim measured both acoustic emission and plasma light emission in 

order to gather the information and define the correlations based on the different weld conditions 

(Kim 2002). Kim suggested the relationship between emission signals and weld defect for in-

processing monitoring in order to approach the optimal lap welding condition using acoustic emission 

(Kim and Lee 2010).   

 

 

Figure 2.4.2 Typical setups for acoustic emissions 
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Figure 2.5.1 Three types of de-gassing methods: (a) pre-drilled hole, (b) dimpling, (c) humping effect 

(Chen et al. 2009; Gu 2010; Hongping and Boris 2011) 

2.5 Part-to-part gap control 

Recently, the enormous usage of thin steel sheets for automotive application for reducing car weight 

necessitates improved material strength as well as higher corrosion protection (Katundi,Tosun-

Bayraktar et al. 2010). For these reasons, aluminum, zinc-coated, and magnesium alloys have been 

applied. However, all alloys need to keep a part-to-part gap because of sound weld parts. Not all the 

gaps can be guaranteed because all incoming materials cannot be flat shapes. Moreover, in galvanized 

steel sheets, when using galvanized steels, it is more difficult to keep the distance between gaps 

because of different temperature of melting and vaporizing point.  

Many researches have studied in order to find out the optimal gap tolerance. In the literature 

reviews for gap controlling methods in galvanized steel sheets, there are three main sections: 

alternatives of creating gap, monitoring gap, and numerical optimizations.  

 

2.5.1 Physical gap control method 

Physical gap control method is mainly divided into five methods: De-gassing method, Zinc removal 

method, pulsed laser method, laser-hybrid method, and adding another element method. Table 2.5.1 

shows the alternatives of creating gap including descriptions and authors. 

De-gassing method 

Chen (2009) reported a gap control method using CO2 laser welding with galvanized steel sheets. He 

suggested that galvanized steel sheets with pre-drilled vent hole were carried out. In this concept, on 

the bottom part, pre-drilled holes were exploring and these holes allowed zinc vapor to escape freely  

(Chen et al. 2009). However, this concept cannot be realized because it has much time consuming and 

cost redundant to set up the pre-process.  
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For the dimpling method (Gu 2010), it creates a small dimple (0.1mm to 0.2mm) to keep part-to-part 

gap in order to escape the zinc gases. This method also has some disadvantages: it needs pre-

processing before welding and we cannot guarantee the exact range of dimple depended on varying 

thickness of materials. To minimize additional cost, humping effect was suggested for alternative de-

gassing method (Hongping and Boris 2011). However, humping effect can only applied to the scanner 

welding because humping effect can be generated within faster time. In addition, the humping effect 

needs an angle around 50 degree which means every angle of beam should be changed depending on 

the variations of thickness of materials and material properties.  

Removal of zinc layer 

Another alternative part-to-part gap control is to remove the zinc-coated layer. Pennington (1987) 

suggested that the treated zone was replaced by nickel coating, which does not vaporize appreciably at 

the steel fusion temperature to reduce porosity and provide corrosion protection (Pennington 1987). 

But, disadvantage of this technique is the prohibitive additional processing cost or in other terms 

expensive in production environment.  

Tian (2012) also suggested zinc removal method in order to prevent from the explosion or ejection of 

molten weld metal due to the pressure of zinc vapor (Tian and Zhang 2012). However, this method is 

also limited into the overlap welding and scanner weld-head.  

Pulsed laser 

Pulsed laser is the method for minimizing zinc-vaporization using high energy per pulse and short 

pulse duration. Heyden (1990) suggested that the lap welding without a gap can be possible when 

pulse repetition frequency and pulse energy are optimized (Heyden et al. 1990). Tzeng suggested that 

average peak power density is the most important factor when controlling in pulsed laser welding. In 

addition, by selecting proper parameters such as average peak power density, mean power, and 

welding speed. (Tzeng 1999; Tzeng 2000). However, the problems are that keyhole may not be 

occurred, and only high-power lasers can be achieved. 

Laser hybrid 

Recently, laser welding has become one of the most welding techniques in automotive industries. 

However, there are still problems about controlling gap between two dissimilar materials, especially 

series of zinc-coated steel sheet. For the lap welding, gap has to be extremely controlled between 

materials because of degassing of zinc vapor. For this reason, laser-arc hybrid welding has become 

distinguished. Laser-arc hybrid welding takes advantages of laser welding with arc welding(Defalco 

2007).  
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Kim (2006) developed laser-arc welding method and its equipment for the galvanized steel (Kim 

2006). In this patent, using laser-arc welding, arc discharge makes it vaporizing in order to prevent 

from the weld defects such as porosity, spatter, and blowhole. Ono (2002) also suggested a welding 

method preventing from the blowhole which the zinc tends to blow off the weld metal using laser-arc 

hybrid welding.  

Additional elements 

Mazumder (2002) invented a lap welding with copper sandwiching a foil sheet. The sandwiching 

method is to alloy with zinc to avoid violent evaporation between two materials, and a foil can absorb 

the vaporized zinc to form an alloy disposed between the two galvanized steel sheets. The thickness of 

filler material is between 0.0035 and 0.0045 inches (0.089mm and 0.114mm). Also, gas mixture was 

required which included Helium and Argon (Mazumder et al. 2002; Dasgupta and Mazumder 2006). 

Li suggested a new method in order to overcome the quality problems of gap control between zinc-

coated steels. Diode laser welding and Nd:YAG laser welding were compared with an aluminum foil 

(25μm) between two zinc-coated steel sheets (1mm) (Li et al. 2007).  

Kim suggested a method for a lap welding of magnesium alloy using Nd:YAG laser. Using stainless 

steel sheet (1.25mm), gap varied thickness 0.05to 0.3mm. Optimal laser power is 2.5kW and welding 

speed is 55mm/s in order to reach a full penetration (Kim et al. 2011). Sun suggested the gap tolerance 

requirement by using wire feed welding. He used 2mm thickness of stainless steel with 3kW CO2 

laser welding and C-Mn steel wire. From the experiment, a desirable gap tolerance is about 1mm gap 

for 2mm thick butt welding (Sun and Kuo 1999). 

Yang (2011) reported the weldability of galvanized steel sheets under the different shielding gas 

conditions. He proposed a side shielding gas which can restrain the laser induced plasma and plume. 

In the experiment, there were different conditions of shielding gas used: pure argon, helium, and the 

mixtures of argon and 25% and 10% CO2, and mixture of argon and 2% O2. The results showed that 

CO2 or O2 gas into the shielding gases or helium or the mixture of He and Ar instead of pure argon in 

order to be stable for galvanized steels were recommended. Another experiment with the active gases 

(O2 and CO2) showed that deeper penetration could be achieved when adding the active gas into the 

shielding gas as compared to the case of using pure argon. Moreover, single side shielding gas of pure 

Argon gas has sound lap joints with a gap-free configuration (Yang et al. 2011) 

Wu (2008) investigated the relationship between welding penetration and width varying with 

laser power and welding speed. For preventing from the zinc vapour, Ar and N2 were used as a 

side-blow protective shielding gas. The result showed that there was a little difference in maximal 

penetration, but there was no different in hardness, toughness of joint and Erichsen number of 

welding sample. Therefore, using Ar as protective gas showed better quality of weld of CO2 laser 



 

CHAPTER 2 

24 

 

welding. In addition, the portion of zinc in weld seam can be controlled by applying to the side-

blown protective gas as decreasing the cracks and holes at the HAZ (Wu et al. 2008). 

Graham (1996) described the welding quality based on the different types of materials and 

welding methods. There are three types of materials (galvanized, galvannealed, and electro-galvanized 

steels) and welding methods in order to control the gap (no gap, shim gap, groove-projection 

geometry, and edge welding). He suggested that good quality seam welds was the lap-welding with 

the galvanized steels and the permissible gap range was from 0.1mm to 0.2mm. In addition, in order 

to produce good quality of weld, the coating weight is important parameter at the interface of the lap 

welding (Graham et al. 1996). 

Xie (2002) suggested a dual beam welding method which is one of the gap control welding 

methods. In the experiment, 6kW CO2 laser beam was split into two equal-power beam and weld steel 

and aluminum plates. The results showed that improved weld surface conditions was presented, and 

spatter, weld hardness, and centerline cracking were reduced in steel welds. In addition, porosity, 

irregular beads, and spatter were decreased in aluminum plate. On the other hand, vapour plume 

fluctuation was still found, but the height and volume of the plume varied slightly (Xie 2002). 

Kutsuna et al. 2002 developed Laser Roll Welding techniques which is useful for particularly 

joining of dissimilar materials. Laser roll welding decreases the formation of the brittle intermetallic 

compounds which formed at welding interface during laser welding process (Ozaki et al. 2010). In 

laser rolling welding we intentionally provided roller; roller generate roller pressure. Roller 

pressure facilitate adequate contact of two metal sheets (upper and lower) and also provide 

favorable conditions towards rapid heat transfer from a upper sheet to a lower sheet and these things 

are responsible for preventing the formation of brittle intermetallic compounds and lastly leads 

towards greater tensile strength and ductility. In case of laser welding of zinc coated steel, the roller 

pressure creates favorable conditions for escaping zinc oxide layer (which is also brittle in nature) 

from the welding interface (Katayama 2004). 

There were various kinds of gap controlling methods, and many researches have made efforts to 

figure out how they control the gap of zinc coated materials. However, almost all methods have 

similar problems which make additional efforts or and waste of time or work process in negative 

aspects. In this study, we focus on the different directions of weld. One of the main reasons is that 

almost all incoming material in manufacturing industry are not always flat. This means that the shapes 

of incoming materials are concave or convex. That is why all part-to-part gaps are not stable even 

though gaps are fixed as 0.1mm-0.3mm. Furthermore, it is so hard to be in research field because 

convex or concave shapes of materials are randomly income. 
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In this study, we simplify the complex models of materials into the linear models (Figure 2.5.2). 

Firstly, we assumed that all the incoming materials are flat and stable part-to-part gaps are existed. In 

addition, we deliberately make artificial gap which is from 0.1mm to 0.3mm only for the one side. 

From the experiment, we figure out whether the direction of weld can affect the welding quality such 

as shear strength and discuss the relationship between directions of weld.  

 

Table 2.5.1 The methods of alternatives creating gap 

Methods Description Related work 

De-gassing methods 

- Pre-drilled hole 

- Dimpling 

- Humping effects 

Chen et al. 2009;  

Shulkin 2011; Gu, 

2010;  

Hongping and Boris 

2011; 

Removal of zinc layer 
- Removal of zinc coating and replace it with an 

element with a higher boiling point like nickel 

Pennington 1987; 

Zhang and Tian 2012 

Pulsed laser 
- Pulsed lasers that have high energy per pulse and 

short pulse duration to minimize vaporization 

Tzeng 1999; 

Tzeng 2000 

Hybrid 
- YAG laser-arc hybrid 

- CO2 laser-TIG arc hybrid  

Ono et al. 2002;  

Kim et al. 2006 

Additional elements 

- Using aluminum foil between zinc-coated steel sheets 

- Shielding gas disrupting plasma formation 

- Dual beam welding 

- Laser roll welding 

Pecas et al. 1995;  

Li et al. 2007;  

Lee 2009;  

Mei et al. 2009;  

Chen et al. 2011; 

Yang et al. 2011; 

Mazumder et al. 2002; 

Dasgupta and 

Mazumder 2006; 

Wu et al. 2008; 

Graham et al. 1996; 

Xie 2002; 

Ozaki et al. 2010; 

Katayama 2004 
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Figure 2.5.2 A schematic drawing of simplifying the concave model into the linear model 
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 Experimental design III.

3.1 Laser welding system 

Fiber laser welding 

In order to obtain good beam quality in a high-power laser, cooling of the medium is necessary. For 

this reason, a fiber laser was developed in order to shorten the rod diameter and lengthen the rod size. 

A fiber laser consists of pump diode laser, a ytterbium active fiber, and fiber Bragg grating, as shown 

in Figure. 3.2.1(Han 2010). Two important characteristics of a fiber laser are its strength against 

external shock and the fact that it is not necessary to arrange the optical system. A fiber laser whose 

wavelength is 1.03 µm offers the preferred wavelength range for metal processing owing to the high 

material absorption it facilitates (IPG Photonics 2010).One characteristic of fiber laser is to be strong 

against external shock and no necessary to arrange the optical system. A fiber laser whose wavelength 

is 1.03 µm offers the preferred wavelength range for metal processing due to high material 

absorption(IPG Photonics 2010). In addition, the single emitter diode of a fiber laser is not affected by 

heat effects, and provides stable energy consumption. Moreover, because of its active cooling water 

system, there is no need to use deionized water, so a uniform temperature can be maintained. Lastly, it 

provides fast on/off operation, so there is no waiting time. 

In this study, an IPG YLR-2000-AC ytterbium-doped fiber laser source was used. The maximum 

laser power is 2 kW, and two channels (200 µm and 600 µm fiber cables) are available. Table 3.1.1 

lists the specifications of the fiber laser source, and Table 3.1.2 lists, the specifications of the laser 

welding system at UNIST. The laser welding system, which was adapted by SIS Corporation, is 

composed of a CNC machine that has X, Y, and Z axes. In addition, it has three kinds of focus lenses 

(160 mm, 300 mm, and 500 mm), each of which has focal lengths of 139 mm, 273 mm, and 465 mm, 

respectively. Figure 3.1.3 shows the laser welding system at UNIST. For this experiment, a 200 µm 

fiber cable and a 160 mm focus lens were utilized. The spot size at UNIST is 200 µm, and the 

equation is as shown below Figure 3.1.2. 
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Figure 3.1.1 Principle of a laser (Sungwoo Hightech., Ltd) 

 

 

Figure 3.1.2 Optical dimensions of core diameter (adopted from Mazumder, 2010) 

 

An IPG fiber lens has a collimator lens that adjusts the laser power to a suitable degree. An optical 

dimension for the fiber diameter has a fiber core and a collimator. In order to determine the spot size 

of a fiber laser, the following equation is used: 

 

 

If we apply this equation to the example of a focal length of 160 mm, a collimating length of 160 mm, 

and a core size of the fiber of 200 µm, we obtain a spot size of 200 µm. 

Spot size (diameter) = 
  
  

     
 
[µm] 
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Figure 3.1.3 Fiber laser welding system (left) and welding with clamping (right) 

 

Table 3.1.1 A specification of fiber laser welding 

Product IPG YLR-2000-AC 

Maximum Laser power 2 kW 

Laser mode TEM01 

Focus length 168 mm 

Operation mode CW 

Switching ON/OFF time 80 micro-sec 

Emission wavelength 1070 nm 

Output power Instability 2.0% 

BPP*(1/e2) at the output of Fiber 2.0mm*mrad 

Maximum Laser power 2 kW 

Laser mode TEM01 

 

 

Table 3.1.2 A specification of laser welding system at UNIST 

Fiber diameter 200µm, 600µm 

Focus lens 160mm, 300mm, 500mm 

Focal length 139mm, 273mm, 465mm 

Stroke of X, Y, and Z axis 600mm, 800mm, 400mm 

Maximum speed of X, Y, Z axis 30000mm/min, 30000mm/min, 12000mm/min 

 

 

 



 

CHAPTER 3 

30 

 

3.2 Experimental material 

The experimental materials consisted of 1.8-mm-thick (SGARC440) and 1.4-mm-thick 

(SGAFC590DP) galvanized steel sheets. Each material had a different coating weight. The 1.8-mm-

thick hot-dipped galvanized steel sheet had 43.5 g/m2 of top plate and 45.5 g/m2 of bottom plate, 

whereas the 1.4-mm-thick dual-phase steel sheet had 41.3 g/m2 of top plate and 45.4 g/m2 of bottom 

plate. Table 3.2.1 lists the chemical compositions of SGARC440 and SGAFC590DP. Both materials 

have been applied to Hyundai Motor Company’s Verna automobile (Figure 3.2.1). In addition, the two 

materials were lap-welded, based on a thickness of 1.4 mm for the upper part of the material and 1.8 

mm for the lower part. The width of each specimen was set at 30 mm, and the length of each 

specimen at 100 mm. The material used is the same as that used in a side member having an inner part 

(1.8 mm) and an outer part (1.4 mm).  

 

 

Figure 3.2.1 Side member of a vehicle (SungWoo Hi-tech) 

 

Table 3.2.1 Chemical composition of galvanized steel sheets 

Material C (%) Si (%) Mn (%) P (%) S (%) 

SGARC440 

(1.8 mm thickness) 
0.12 0.5 1.01 0.021 0.004 

SGAFC590DP 

(1.4 mm thickness) 
0.09 0.26 1.79 0.03 0.003 
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3.3 Part-to-part gap 

An artificial gap needed to be created in order to degas the zinc vapor. In the experiment, a shim 

gauge was used, in varying thicknesses ranging from 0.01 mm to 1 mm (Figure 3.2.2). The shim 

gauge was set up for 2 modes of usage, parallel and one-sided. Figure 3.2.3 shows a 3D model of the 

lap welding schematic of fiber laser welding. 

Before doing experiments, a variety of ranges for part-to-part gap was considered. Pilot test for 

ranges of par-to-part gap, the range of 0.0 mm to 0.5 mm gap was carried out. When a permissible 

range of gap was more than 0.3 mm, two sheets were not jointed because the gap was so large that 

melted pool could not move to the lower part of sheet. Even if the two specimens were jointed, the 

only starting point was jointed because of high input energy of that point.  

In addition, as mentioned that the thickness of galvanized steel sheets are 1.4 mm of thick and 

1.8 mm of thick, setting the welding speed parameter is important. In the experiment, 2100 mm/min 

of welding seed was set as a fixed parameter. During the pilot test, we changed the welding speed 

1200 mm/min to 3600 mm/min. Within the capability of our machine, 2100 mm/min of welding speed 

was proper. In the section of 1200 mm/min to 1500 mm/min, which is the interval of low speed, there 

are many spatter, porosity, and blow holes. In other word, from the 2700 mm/min to 3600 mm/min, 

which the welding speed is too high, full penetration was not achieved from the welding speed of 

0.2mm/min. Therefore, we decided that the optimal welding speed parameter was set as 2100 mm/min 

in order to joint two steel sheets. 

 

 

Figure 3.2.2 Shim gauge 
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Figure 3.2.3 A schematic drawing of lap welding of fiber laser welding 

 

3.4 Direction of welding 

As we mentioned earlier, the purpose of this research is to ascertain the effects of a part-to-part gap 

and the direction of welding. This is why three types of welding are of interest. The first type is lap 

welding in a direction of ascendance. The second type involves a uniform gap. The third type is also 

lap welding, but in a direction of descendance (Figure 3.3.1). In the experiment, we assumed that all 

specimens are flat so that the results of tensile test have a normal distribution, which means there is no 

noise in the experiment.  

When welding of side member, stitch, ‘c’ type, ‘s’ type, and continuous welding have been tested. But, 

in the research field, only short ranges of welding were examined, which range were around 15 mm to 

30 mm. This range cannot confirm the quality of welding in reality. In addition, the length of stitch 

welding for side member was applied as 40 mm in the automotive industry. Therefore 40 mm of 

welding length was set as length of weld bead. In the experiment, 40 mm length of weld bead was 

considered as the limits of specimen. Total width of specimen is 130 mm. Except for lap parts which 

is 30 mm x 30 mm of square for the tensile strength test, the maximum length of weld bead was 40 

mm. For the future research, the variation of weld bead related to the weld quality will be progressed.  
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Figure 3.3.1 Schematic drawings of three types of laser methods 

 

3.5 Laser welding parameters  

The welding speed was fixed at 2100 mm/min, using laser powers of 1400 W, 1700 W, and 2000 W. 

Moreover, a 33 factorial design with 3 replications was carried out randomly in order to determine a 

reasonable p-value, using an ANOVA table.  

In Table 3.5.1, which shows the experimental design of the laser welding, “LP” denotes laser 

power, “G” denotes the part-to-part gap, and “D” denotes the direction of weld. All experiments were 

carried out randomly. Each individual process parameter was selected based upon a number of 

experiments, and each parameter had its own coded value. 

Table 3.5.1 Experimental design of laser welding 

Level 
Laser power (LP) 

(kW) 

Part-to-part gap (G) 

(mm) 
Weld of direction (D) Coded value 

1 1400 0.1 Ascendance -1 

2 1700 0.2 Uniform gap 0 

3 2000 0.3 Descendance 1 
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In addition, shear tensile strength was applied in our measurement of weld quality, because it is a very 

important factor in recognizing the relationship between a laser’s input parameters and output 

parameters. The experiment was carried out in a total of 27 trials with three replications which were 

81 experiments in total, and the steepest ascent method was performed in additional experiments in 

order to measure the maximum shear tensile strength. 

In this study, we assumed that the shear tensile strength for the direction of ascendance would be 

higher than it would be for the direction of descendance, because the heat input into the material 

would play a role in pressing upon materials when the laser performs welding with no part-to-part gap. 

On the other hand, descending welding would produce weak shear tensile strength because the gap 

would be too wide to weld if the laser is welded from the gap. Moreover, a keyhole would not be 

generated and full penetration would not be achieved. Figure 3.3.2 shows the hypothetical design of 

welded parts based on the different welding directions. In the hypothesis, the width of the gap would 

reduce when welding in a direction of ascendance, as shown in Type (a) of Figure 3.3.2, and full 

penetration would be achieved. In the direction of descendance, however, full penetration of the gap 

would be difficult in a 0.2-mm gap and 0.3-mm gap because the width of the gap would be so great 

that laser welding would not be able to penetrate the entire material. 

 

 

.  

Figure 3.5.2 Hypothetical design of welded part based on the different types of welding
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 Analysis of experiment IV.

In this research, we sought to ascertain which factors can produce significant effects on the quality of 

laser welds. Therefore, we carried out an analysis of variance (ANOVA) in order to verify whether or 

not the experiments indicated important factors. In addition, for each direction of welding, such as 

ascendance gap and descendance gap, we determined the maximum tensile shear value using the 

steepest ascent method, so that we approached the new area to reach the maximum strength.  

4.1 Analysis of Variance 

ANOVA is used to test the equality of several means in order to verify whether or not an experiment 

has produced significant results (Montgomery 2008). As mentioned in Chapter 3, 3 factors and 3 

levels of factorial design were conducted with three replications. Table 4.1.1 shows the design matrix 

with the three replications used in the experiment. Further, Table 4.1.2 shows the results of the 

ANOVA table for the 3 replications. 

  

Table 4.1.1 Design matrix with code process parameter and response parameter 

No. LP G D 
Laser Power 

(W) 

Gap 

(mm) 

Direction of 

weld 
Replica 1 Replica 2 Replica 3 

1 0 -1 -1 1700 0.1 Ascendance 228.1240 196.8951 177.5496 

2 0 -1 1 1700 0.1 Descendance 92.8845 116.9284 101.5592 

3 -1 -1 -1 1400 0.1 Ascendance 102.6944 100.2627 119.5499 

4 0 1 1 1700 0.3 Descendance 229.9772 229.9772 222.4619 

5 0 -1 0 1700 0.1 Uniform 102.5016 212.8497 76.8476 

6 0 1 0 1700 0.3 Uniform 219.8497 244.9348 227.7001 

7 1 1 0 2000 0.3 Uniform 269.0149 263.1319 232.9825 

8 1 1 1 2000 0.3 Descendance 230.4439 228.8583 238.2257 

9 -1 1 0 1400 0.3 Uniform 163.6654 225.6113 204.599 

10 1 0 -1 2000 0.2 Ascendance 240.7452 228.8207 237.2453 

11 -1 0 -1 1400 0.2 Ascendance 215.9365 122.1903 202.7458 

12 0 1 -1 1700 0.3 Ascendance 163.5098 226.8219 240.0204 

13 -1 -1 0 1400 0.1 Uniform 58.7752 159.9925 65.7663 

14 0 0 -1 1700 0.2 Ascendance 159.9925 226.0880 227.0853 

15 -1 1 1 1400 0.3 Descendance 158.4136 95.3283 96.5552 

16 0 0 1 1700 0.2 Descendance 229.0039 120.9113 188.1045 

17 -1 0 0 1400 0.2 Uniform 199.9851 165.9782 166.0172 

18 -1 1 -1 1400 0.3 Ascendance 168.9943 219.7883 176.3852 
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Table 4.1.2 ANOVA table for 3 replication 

 
SS DOF MS F0 P-value 

LP 97881.1 2 40940.5 43.81 0.00001 

G 42060.5 2 21030.2 18.4 0.00001 

D 30642.9 2 15321.5 13.4 0.00001 

LP*G 9450.4 4 2362.6 2.07 0.096 

LP*D 3275.3 4 818.8 0.72 0.584 

G*D 4667.5 4 1166.9 1.02 0.4037 

Error 70881.4 62 1143.2   

Total 258859 80    

 

Block effect 

Before the analysis of results, we need to check whether the noises or errors disrupting could cause 

the results or not. Therefore, the experimental conditions should be ensured that the treatments are 

equally effective using blocking design. In this result, three blocks can be separated. Table 4.1.3 

shows the experiment in three blocks. 

 

 

 

 

 

19 1 0 1 2000 0.2 Descendance 229.0039 170.7031 172.0524 

20 0 0 0 1700 0.2 Uniform 224.1691 224.3528 228.2054 

21 -1 -1 1 1400 0.1 Descendance 104.1158 112.1213 98.396 

22 1 -1 0 2000 0.1 Uniform 250.4549 238.1551 230.7759 

23 1 1 -1 2000 0.3 Ascendance 246.0974 237.1049 237.0161 

24 1 -1 -1 2000 0.1 Ascendance 204.4080 184.6933 243.7357 

25 1 0 0 2000 0.2 Uniform 240.7462 227.3549 226.8726 

26 -1 0 1 1400 0.2 Descendance 116.2084 87.72321 90.2105 

27 1 -1 1 2000 0.1 Descendance 251.8514 179.2699 148.8539 
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Table 4.1.3 Experiment in Three Blocks 

 Block 1 Block 2 Block 3 

 228.1240 196.8951 177.5496 

 92.8845 116.9284 101.5592 

 102.6944 100.2627 119.5499 

 229.9772 229.9772 222.4619 

 102.5016 212.8497 76.8476 

 219.8497 244.9348 227.7001 

 269.0149 263.1319 232.9825 

 230.4439 228.8583 238.2257 

 163.6654 225.6113 204.599 

 240.7452 228.8207 237.2453 

 215.9365 122.1903 202.7458 

 163.5098 226.8219 240.0204 

 58.7752 159.9925 65.7663 

 159.9925 226.0880 227.0853 

 158.4136 95.3283 96.5552 

 229.0039 120.9113 188.1045 

 199.9851 165.9782 166.0172 

 168.9943 219.7883 176.3852 

 229.0039 170.7031 172.0524 

 224.1691 224.3528 228.2054 

 104.1158 112.1213 98.396 

 250.4549 238.1551 230.7759 

 246.0974 237.1049 237.0161 

 204.4080 184.6933 243.7357 

 240.7462 227.3549 226.8726 

 116.2084 87.72321 90.2105 

 251.8514 179.2699 148.8539 

Block total 5101.5668 5046.84741 4877.5192 

 

 

SSBlock  

= ∑
𝐵𝑖
2

27

3
𝑖=1 − 

𝑦2…

27
  

= 
(5101.57)2+(5046.85)2+(4877.52.57)2

27
− 

(15026)2

81
 

= 1010.66 
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Table 4.1.4 ANOVA table for 3 replication in three blocks 

 
SS DOF MS F0 P-value 

Block 1016.7 2 505.3   

LP 97881.1 2 40940.5 36.33 0.00001 

G 42060.5 2 21030.2 18.7 0.00001 

D 30642.9 2 15321.5 13.6 0.00001 

LP*G 9450.4 4 2362.6 2.1 0.096 

LP*D 3275.3 4 818.8 0.72 0.58 

G*D 4667.5 4 1166.9 1.03 0.403 

Error 69864.7 62 1126.9   

Total 258859 80    

 

When applying block effect from the Table 4.1.2, there are two degrees of freedom among the three 

blocks. Table 4.1.4 indicates that the conclusions from this analysis, had the design been run in blocks, 

are identical to those in Table 4.1.2 and that the block effect is relatively small. That is, there are only 

few noises and errors remained. 

4.2 Comparison between two different types of directions 

When we found that direction of weld is an important factor as a quality of weld, we also have to 

figure out how the direction of weld can affect the maximum shear strength. To compare two different 

value of strength, t-Test was carried out, and approached to the maximum shear strength in advanced 

area using steepest ascent method. 

4.2.1 t-Test 

t-Test is to verify whether the means of two groups are statistically different from each other. In this 

research, mean values were compared with α = 0.05, based on the direction of Ascendance and 

direction of Descendance. The statistical hyphothesis was stated formally as  

µ1: Direction of ascendance, 

µ2: Direction of descendance  

H0: µ1 = µ2 

H1: µ1 < µ2 

Within α = 0.05, the p-value is 0.024, which means that this result is significant and we can accept 

the H0 Therefore, we concluded that the average of the direction of ascendance is higher than those of 

descendance. Table 4.2.1 shows the result of t-Test for two different directions of welding. 
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Figure 4.2.1 A schematic of First-order response surface and path of 

steepest ascent (Montgomery 2008) 

Table 4.2.1 The results of t-Test from the two different directions of welding  

 Direction of ascendance  Direction of descendance  

Sample size 9 9 

Mean 213.35 162.96 

90% confidence interval (187.8, 238.9) (128.13, 197.79) 

Standard deviation 41.219 56.196 

Difference between two means 50.392 

90% confidence interval (9.4758, 91.308) 

 

4.2.2 Steepest ascent method 

As mentioned before, we need to find the maximum shear strength based on each an different 

direction of welding. The steepest ascent method is a procedure moving to the maximum point while 

input parameters are varying. Figure 4.2.1 is the schematic of steepest ascent method. 

 

 

 

 

From the experimental design, laser power, part-to-part gap, and direction of weld were the factors. 

However, when it comes to the maximum shear strength based on the direction, another fixed factor is 

considered as a direction. In addition, collected data is a 22 factorial augmented by five center points 

because replicates at the center points are used to estimate the experimental error and to allow for 

checking the adequacy of the first-order model (Montgomery 2008).  
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Table 4.2.2 shows the process data for fitting the first-order model of direction of ascendance. In this 

case, we concluded that the average shear tensile strength of Ascendance is higher than those of 

Descendance. So, we considered only ascendance factor because our goal is to find out the maximum 

shear tensile strength. A first-order model is fit to the data by least squares and the equation of the 

first-order model is shown below: 

ŷ (Ascendance) = 213.352852 + 46.204158 x1 + 12.528933 x2 

Table 4.2.2 Process data for fitting the first-order model 

Coded variables Natural variables Responses 

x1 x2 LP Gap Shear tensile strength (y) 

  Ascendance  

-1 -1 1400 0.1 119.5499 

-1 1 1400 0.3 176.3852 

1 -1 2000 0.1 243.7357 

1 1 2000 0.3 237.0161 

0 0 1700 0.2 227.0853 

0 0 1700 0.2 215.9365 

0 0 1700 0.2 218.3661 

0 0 1700 0.2 250.7567 

0 0 1700 0.2 231.3442 

 

Before approaching the path of steepest ascent, we should investigate the adequacy of the first-order 

model. (Montgomery 2008) suggests the 3 steps before exploring the path of steepest ascent shown 

below: 

1. To obtain an estimate of error. 

2. To check for interactions in the model. 

3. To check for quadratic effect (curvature). 

 

Table 4.2.3 shows the analysis of variance for the first-order model based on the directions of both 

Ascendance and Descendance. From those tables, interaction and pure quadratic (curvature) are 

negligible. Therefore, there is no indication of the interaction and pure quadratic effect. 
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Table 4.2.3 Analysis of variance for the first-order model (Ascendance) 

Source SS DOF MS F0 P-value 

Model (β1, β2) 10193 2 5096.4 6.9111 0.0277 

Residual 4424.6 6    

(Interaction) 1009.8 1 1009.8 5.2745 0.0832 

(Pure quadratic) 2649 1 2649 13.8365 0.0205 

(Pure error) 765.7955 4 191.4489   

Total 14617 8    

 

To move away from the center point (x1 = 0, x2 = 0) along the path of steepest ascent, we would 

choose a step size in one of the process (input) parameters, Δx1. We can select the parameter that we 

have known. The equation for Δxi is followed by, 

Δxi = 
 𝑖̂

 𝑗̂/△𝑥𝑗
 

From the equation, we can find Δx1 of depending on the two directions of the Ascendance and 

Descendance. Table 4.2.4 is the steepest ascent experiment for the direction of ascendance. 

Table 4.2.4 Steepest ascent experiment for the direction of Ascendance 

Steps x1 x2 LP(W) Gap(mm) Shear strength (MPa) 

Origin 0 0 1700 0.2   

Δ 1 0.271 50 0.02   

Origin + Δ 1 0.271 1750 0.22 224.4709 

Origin + 2Δ 2 0.542 1800 0.24 234.26556 

Origin + 3Δ 3 0.813 1850 0.26 233.63689 

Origin + 4Δ 4 1.084 1900 0.28 235.66922 

Origin + 5Δ 5 1.355 1950 0.3 242.66525 

Origin + 6Δ 6 1.626 2000 0.32 247.58665 

Origin + 7Δ 7 1.897 2050 0.34 243.83757 

 

When it comes to the plot, Figure 4.2.2 shows each step along the path of steepest ascent. The 

direction of welding performed the maximum shear strength. For the direction of Ascendance, 

increases in response are observed through the 6 step. However, after 6 step, response is decreased. In 

this situation, further experiments could not be proceeded because a capacity of laser power in UNIST 

is up to 2kW. For the direction of descendance, increases in response are observed through the 4 step. 

After then, all the responses tend to be decreased. Therefore, the maximum shear strength of 

Ascendance is 247.59 MPa when laser power is 2000W, Welding speed is 2100mm/min, and part-to-

part gap is 0.32mm.  
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Figure 4.2.2 Shear strength versus steps along the path of steepest ascent for 

direction of Ascendance (Welding speed: 2100 mm/min) 

 

 

 

 

Table 4.2.5 Process data for second first-order model 

Coded variables Natural variables Responses 

x1 x2 LP Gap 
Shear tensile strength 

(y) 

  Ascendance  

-1 -1 1950 0.3 242.6653 

-1 1 1950 0.34 252.2187 

1 -1 2050 0.3 244.771 

1 1 2050 0.34 243.8376 

0 0 2000 0.32 255.5581 

0 0 2000 0.32 256.117 

0 0 2000 0.32 253.2866 

0 0 2000 0.32 252.8504 

0 0 2000 0.32 253.1996 
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A new first-order model is fit around the point (LP = 2000, Gap = 0.32). The region of exploration for 

LP is [1950, 2050], and it is [0.3, 0.34] for Gap. Thus, the coded variables are, 

 

x1 = 
𝐿𝑃−2000

5
 and  x2 = 

𝐺𝑎𝑝−0.32

5
 

Once again, a 22 design with five center point is used. The experimental design is shown in Table 

4.2.5. And the new first-order model fit to the coded variables in Table 4.2.5 is, 

 

ŷ (ascendance) = 250.500461- 1.568857 x1 + 2.155018 x2 

 

The analysis of variance for this model is shown in Table 4.2.6. The interaction and pure quadratic 

checks imply that the first-order model is not an adequate approximation. This curvature in the true 

surface may indicate that we are near the optimum. At this point, additional analysis must be done to 

locate the optimum more precisely. 

 

Table 4.2.6 Analysis of variance for the first-order model (Ascendance) 

Source SS DOF MS F0 P-value 

Model (β1, β2) 58.537 2 29.268 0.9202 0.4482 

Residual 190.837 6    

(Interaction) 27.4936 1 27.4936 11.9856 0.0258 

(Pure quadratic) 154.168 1 154.168 67.2082 0.0012 

(Pure error) 9.175 4 2.2939   

Total 249.3741 8    
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4.3 Comparison of the shear tensile strength with directions of Ascendance 

and Descendance 

As noted in the previous sub-chapter, we learned from the ANOVA results that the direction of the 

weld can have a considerable effect upon its quality (shear tensile strength), and that by applying a t-

Test, a difference was found between the ascending and direction of descendances. We also 

determined the maximum shear tensile strength of the direction of ascendance using the steepest 

ascent method. In this chapter, a comparison between the shear tensile strength achieved by two 

different welding directions and weld microstructures will be described, as corroboration of the main 

intent of this thesis. 

Before making a comparison between the two different welding directions, we created a number 

of graphs related to the maximum shear tensile strength. The results were obtained from the average 

maximum shear tensile strength with 3 replications. Figure 4.3.1 shows the different patterns 

produced by the different types of welding direction. These graphs were created for the cases of a 

uniform gap, and ascending and direction of descendances. As shown in Figure 4.3.1, the shear tensile 

strength is strongly related to the laser power and the gap. With 1400 W of laser power, (a) and (b) 

display the same patterns on the graph, while the strength of (c) expresses a low value. With 1700 W 

of laser power, (b) shows an increase along the increasing gap, while (a) and (c) show a rapid graph 

based on the increase in the gap.  These results show that the direction of ascendance produces a 

linearly stable weld bead as well as a weld quality that is superior to that in the other two directions. 

We then concluded that the shear tensile strength is greater for the direction of ascendance than 

for the direction of descendance. In order to verify that conclusion, a t-Test was carried out, because 

there were some variations between these two directions. 

Before performing the t-Test, the maximum parameters (LP: 2000 W, WS: 2100 mm/min, and G: 

0.32 mm) were applied based on the two different weld directions. Table 5.1.1 and Table 5.1.2 present 

the results for the respective shear tensile strengths. The maximum shear tensile strength for the 

direction of ascendance was 260.4549 MPa, whereas that for the direction of descendance was 

254.9782 MPa. 

At the same time, the average shear tensile strength for the direction of ascendance was 

255.8704MPa, and that for the direction of descendance was 245.5632 MPa. To verify that there was a 

difference between the two different weld directions, a t-Test was carried out. 
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Figure 4.3.1 Different patterns of graphs for different types of weld direction 

 

Table 4.3.1 Maximum shear tensile strength with 9 replications (Ascendance) 

Run LP WS G D 
Shear tensile 

strength 

1 2000 2100 0.32 Ascendance 255.5581 

2 2000 2100 0.32 Ascendance 256.117 

3 2000 2100 0.32 Ascendance 253.2866 

4 2000 2100 0.32 Ascendance 267.8478 

5 2000 2100 0.32 Ascendance 269.4549 

6 2000 2100 0.32 Ascendance 246.3622 

7 2000 2100 0.32 Ascendance 252.8504 

8 2000 2100 0.32 Ascendance 253.1996 

9 2000 2100 0.32 Ascendance 248.1572 
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Table 4.3.2 Maximum shear tensile strength with 9 replications (Descendance) 

Run LP WS G D Shear tensile strength 

1 2000 2100 0.32 Descendance 233.3469 

2 2000 2100 0.32 Descendance 243.963 

3 2000 2100 0.32 Descendance 240.3396 

4 2000 2100 0.32 Descendance 252.022 

5 2000 2100 0.32 Descendance 240.9531 

6 2000 2100 0.32 Descendance 249.9995 

7 2000 2100 0.32 Descendance 252.1905 

8 2000 2100 0.32 Descendance 242.2763 

9 2000 2100 0.32 Descendance 254.9782 

 

As regards a comparison between the two different types of direction, we verified whether the average 

maximum shear tensile strength of the direction of ascendance was higher than that of the direction of 

descendance at a significant level of α = 0.05. 

 

 

 

 

When α = 0.05, the p-value is 0.11. This result was significant and we accepted H1. Therefore, we 

concluded that the average for the direction of ascendance was higher than it was for the direction of 

descendance. Table 4.3.3 shows the results of t-Test from the two different directions of welding. 

 

Table 4.3.3 The results of t-Test from the two different directions of welding 

 Direction of ascendance Direction of descendance 

Sample size 9 9 

Mean 213.35 162.96 

90% confidence interval (187.8, 238.9) (128.13, 197.79) 

Standard deviation 41.219 56.196 

Difference between two means 50.392 

90% confidence interval (9.4758, 91.308) 

 

µ
1
: Direction of Ascendance, 

µ
2
: Direction of Descendance from the gap 

H
0
: µ

1 
- µ

2 
= 0 

H
1
: µ

1 
- µ

2  
> 0 
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Figure 4.3.2 Specimens breaks at base metals 

 

In addition, when 18 welding runs were performed with both the ascending and the direction of 

descendances, there were several break areas at the weld bead. Three specimens produced in the 

direction of ascendance displayed breaks at the base metal, which means that the strength of the weld 

pool was greater than that of the base metal. Figure 4.3.2 shows the specimens that broke at the base 

metals. 

 

4.4 Weld microstructure 

During the metallographic tests, the test specimens were sampled, mounted, polished, and then etched. 

In total, 16 samples were tested on the basis of the variations in their gaps. First, each specimen was 

welded under conditions similar to those used in the previous experiments. Next, the samples were 

mounted using a hot-mounting press, with each mounted specimen having the weld bead sectioned 

into five parts, depending on the direction of welding. The specimens were polished in the following 

three steps: 

1) Sanding with 180, 320, 600, 800, and 1200 grit papers using a load of 8 N  

2) Polishing using a 6 µm diamond suspension to remove scratches 

3) Further polishing using a 1 µm diamond suspension to remove any remaining scratches 
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Then, the specimens were etched for 2–3 seconds using a Nital solution, which was composed of 

nitric acid (90%) and ethyl alcohol (10%). After that, the microstructures of the specimens were 

analyzed using a metallurgical microscope. As mentioned in Chapter 3, two main types of materials 

were used: 1.4-mm-thick dual-phased galvanized steel sheets and 1.8-mm-thick galvanized steel 

sheets. Figure 4.4.1 and Figure 4.4.2 show the microstructures of the DP steel and the galvanized steel, 

respectively. Each figure shows the microstructures of the base metal, the HAZ, and of the weld pool. 

SGAFC590DP is a low-carbon steel that is composed of ferrite and martensite. This steel exhibits 

better formality and elongation than do other similar carbon steels (Kim 2007).  

 

 

Figure 4.4.1 Microstructures of SGARC440 

 

Figure 4.4.2 Microstructures of SGAFC590DP 

According to Kim and coworkers (2010), when the base material is heated with a laser, the ferrite 

matrix phase is transformed into austenite, leading to the formation of a final structure that consists of 

martensite or bainite after cooling. The HAZ, which experiences heating to a greater degree, is heated 

to temperatures greater than the austenite transformation temperature and is then allowed to cool 

rapidly. This results in the formation of a structure that is mostly martensite. The weld pool has a fine 

microstructure and its maximum temperature ranges from 900° to 1100°. As for the weld metal, only a 

martensite-like structure is observed in it, with the metal not exhibiting properties similar to those of 

DP steel (Kim et al. 2010).  
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14 microstructures are showed based on varying gap from 0.1 mm to 0.3 mm. Figure 4.4.3 shows the 

welded sections based on the direction of weld. On the left side of picture is the direction of 

Ascendance, and right side of picture is the direction of Descendance. 

 

 

Figure 4.4.3 A schematic drawing of cross-sections arranged on the basis of their directions of welding 

 

As can be seen in Figures 4.4.4–4.4.11, the starting points for laser welding showed full penetration 

and underfilling. This phenomenon was owing to the fact that the welding speed at the starting 

positions was lower than the selected constant speed. Therefore, at the starting position, the weld 

absorbed far more of the input heat energy that it would have at the selected weld speed.   

The results of the experiment suggested that the specimens exhibited the highest shear tensile 

strength when LP was 2000 W and the gaps were 0.3 mm, with the gaps being uniform. On the other 

hand, the lowest shear tensile strength was noticed when LP was 1400 W and the gaps were 0.1 mm, 

with the gaps again being uniform. The cross-section exhibiting the lowest shear tensile strength 

(58.7752 MPa) is shown in Figure 4.4.4 (1). Only a few keyholes were formed in the corresponding 

specimen, and as can be seen from image (b), a large pore was formed as a result of the evaporation of 

zinc. This was because the gap was too small to allow the zinc vapors to escape. In addition, the top 

bead in the case of the specimen with the lowest shear tensile strength was also not stable. Figure 

4.4.4 (2) shows the cross-section that exhibited the highest shear tensile strength (269.0149 MPa). It 

can be seen that all the keyholes were well formed and full penetration took place. In addition, the 

welded parts between the two materials were also well formed, as can be seen from image (d). 

Figure 4.4.5 and Figure 4.4.6 show cross-sections with different welding directions. Images (a) 
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and (b) in Figure 4.4.5 (3) show weld defects such as pores and cracks because the direction of 

welding in the case of (3) was from a gap to no gap. This meant that the cross-sections shown in (b) 

and (a) had limited gap tolerances. In addition, the cross-section in (a) was almost cracked, indicating 

that the hardness of the welded part was less than that of the base metal and the HAZ. On the other 

hand, the specimens welded in the direction of ascendance exhibited better weldability than those 

welded in the direction of descendance. In the case of the specimens welded in the direction of 

descendance, the shear tensile strength of the cross-sections with a gap was higher (177.5496 MPa) 

than that of the cross-sections without a gap (90.2105 MPa). 

However, for the specimen that had a 0.1 mm gap and exhibited the highest strength, all the 

cross-sections (those welded in the direction of ascendance as well as those welded in the direction of 

descendance) contained numerous defects (Figure 4.4.6). Those welded in the direction of 

descendance (5) (148.8539 MPa) contained a number of large pores, which might have reduced the 

strength of the cross-sections. In addition, in these cases, the produced zinc vapors could not escape 

because of the narrow gap. On the other hand, the patterns of those welded in the direction of 

ascendance (6) were the opposite of those in image (5). This was because the angle of the gaps 

allowed the zinc vapors to escape along the welding direction. However, the specimens corresponding 

to either direction did not exhibit high shear tensile strength, because a gap of 0.1 mm did not allow 

for well-formed weld beads.  

Figure 4.4.7 shows cross-sections of the specimen that had a 0.2 mm gap and exhibited the lowest 

shear tensile strength. The strength of the cross-section in image (7) was 90.2105 MPa. In addition, 

there were cracks, resulting in the two welded materials not being joined and the cross-section shown 

in image (a) being broken. However, in comparison, the cross-section in image (8) had no broken 

parts. This result indicated that the specimens welded in the direction of ascendance exhibited better 

weld quality. In addition, it was found that a laser with a power of 1400 W was not sufficient to join 

two sheets of galvanized steel together by welding.  

The cross-sections in Figure 4.4.8 exhibited fully penetrative welding. The cross-sections welded 

in the direction of descendance (9) contained large pores and exhibited a high degree of porosity at the 

weld pool (a) because of the lack of fusion. In addition, it was evident from the top-view images of 

the cross-sections of the specimens welded using two different directions that those welded in the 

direction of descendance (9) contained more spatters and blowholes than did those welded in the 

direction of ascendance (10). The strength of the cross-section in (9) was 172.0524 MPa and the 

strength of that in (10) was 237.2453 MPa. 

From the specimens that exhibited the lowest shear tensile strength and had a gap of 0.3 mm, a 

specimen welded in the direction of descendance using a laser with a power of 1400 W was selected 
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on the basis of the results (Figure 4.4.9). The shear tensile strength of this specimen was 96.5522 MPa, 

and all its cross-sections exhibited partial penetration. In addition, pores and cracks were noticed 

throughout the specimen. The cross-section in image (10) had a strength of 176.3852 MPa, whereas 

that in the reverse direction (9 in Figure 4.4.9) had a strength of 176.3852 MPa of (9). In addition, its 

gaps were stable from part to part. Finally, the area of the weld pool formed was wider than that in (9). 

The cross-sections shown in Figure 4.4.10 exhibited two different maximum shear tensile 

strengths: the ones shown in (11) had a maximum shear tensile strength of 238.2257 MPa and those in 

(12) had a maximum shear tensile strength of 237.0161 MPa. The cross-sections shown in images (d) 

and (e) of (11) were differently shaped from the other cross-sections. This might have been owing to 

the defocusing of the material, such that the melting started in the center and not from the top bead to 

the bottom bead.   

Figure 4.4.11 shows the optimal regions of the cross-sections that exhibited the highest strength, 

formed using the steepest ascent method. The images in (1) and (2) both show only sound welded 

parts. Cracks and pores were not noticed in the parts, and keyholes were formed in all of them. 

However, the strength of the cross-sections welded in the direction of ascendance was higher than that 

of those welded in the direction of descendance. This was because welding in the direction of 

ascendance allowed the part-to-part gap to be reduced when the laser started to melt the upper 

material. 
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Figure 4.4.4 Cross-sections that had uniform gaps and exhibited the lowest strength (1) and the highest strength (2) in 

the entire experiment. 

 

 

Figure 4.4.5 Cross-sections that had a gap of 0.1 mm and exhibited the lowest strength: (1) Welded in the 

descendance and (2) ascendance 
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Figure 4.4.6 Cross-sections that had a gap of 0.1 mm and exhibited the highest strength: (1) Welded in the 

descendance and (2) ascendance 

 

 

Figure 4.4.7 Cross-sections that had a gap of 0.2 mm and exhibited the lowest strength: (1) Welded in the 

descendance and (2) ascendance  
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Figure 4.4.8 Figure 4.4.8 Cross-sections that had a gap of 0.2 mm and exhibited the highest strength: (1) Welded in 

the descendance and (2) ascendance 

 

 

Figure 4.4.9 Cross-sections that had a gap of 0.3 mm and exhibited the lowest strength: (1) Welded in the 

descendance and (2) ascendance 

 



 

Analysis of experiment 

55 

 

 

Figure 4.4.10 Cross-sections that had a gap of 0.3 mm and exhibited the highest strength: (1) Welded in the 

descendance and (2) ascendance 

 

 

Figure 4.4.11 Cross-sections that had a gap of 0.32 mm and exhibited the highest strength: (1) Welded in 

the descendance and (2) ascendance 
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As mentioned in the underlying hypothesis of the study in Chapter 3, it was assumed that the shear 

tensile strength when the welding was performed in the direction of ascendance was greater than that 

when it was performed in the direction of descendance. The results of the study also showed that the 

average shear tensile strength in the case of the direction of ascendance was greater than that in the 

case of the direction of descendance. However, unlike our hypothesis in the case of cross-sections of 

the weld beads, the cross-section of the materials welded in the direction of ascendance showed 

uniform gaps. This indicated that the use of a high-powered laser resulted in the formed weld beads 

being stable such that the upper part of the weld was pressed against the lower part. On the other hand, 

the cross-sections of the specimens welded in the direction of descendance exhibited characteristics 

that were in keeping with our expectations. Figure 4.4.12 shows a comparison of the hypothesized and 

experimentally determined results. 

 

(1) Cross-sections welded in the Ascendance direction 

 

(2) Cross-sections welded in the Descendance direction 

Figure 4.4.12 A comparison of the hypothesized (1) and experimentally determined results (2). 
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 Conclusion and future work V.

In this paper, we have discussed the effect of the part-to-part gap and the direction of welding on the 

quality of laser welding. In order to simplify the concave or convex model of materials into a linear 

model, we deliberately used an artificial gap ranging from 0.1 mm to 0.3 mm on one side only. From 

the results of the experiment, we examined if the direction of a weld is important to ensure the quality 

of laser lap welding of galvanized steel sheets (1.8 mm thick and 1.4 mm thick). In addition, 33 

factorial designs with 3 replications were tested, and the steepest ascent method was adopted in order 

to find region where the optimal strength was achieved. The details of results are summarized as 

follows: 

1. An analysis of variance (ANOVA) with 3 replications, which considered the block effect, 

showed that all three factors (laser power, part-to-part gap, and direction of weld) have 

considerable significance, which means that the quality of a weld differs depending on the 

direction of the weld. 

2. When comparing the differences between the two types of directions (ascendance and 

descendance), the results of a t-Test showed that the average for the direction of ascendance 

is higher than it is for the direction of descendance.  

3. When the steepest ascent method was applied for the direction of ascendance, the maximum 

parameters are 2000 W of laser power, a welding speed of 2100 mm/min, and a 0.32 mm 

part-to-part gap. 

4. To corroborate the intent of this research, we performed 9 experiments for each welding 

direction (ascendance and descendance). We also analyzed whether there is difference 

between the two groups, using a t-Test. The results showed that the average for the direction 

of ascendance was higher than it was for the direction of descendance. 

5. Based on (5), each specimen for maximum strength was in the direction of ascendance, 

because the angle of the gap allows zinc vapor to escape along the welding direction when 

the weld pool was welded. 

 

6. When the gap was 0.1 mm and the laser power was 2000 W, there were a number of 

blowholes, spatters, and pores because the gap was too small to create a channel through 

which the zinc gas could escape. 
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7. If the gap is more than 0.32 mm, the welded part of the two materials is weakened, so we 

need to either increase the laser power or decrease the welding speed. 

 

To summarize the study, we determined that the direction of a weld has a great impact upon the weld 

quality, unlike the findings of other related studies of controlling the gap between two dissimilar 

materials. In addition, the shape of the cross-sections obtained also showed that a gap with a constant 

width can be achieved in the direction of ascendance. The main reason for this result is that a high-

power laser plays a role in pressing the gap when the laser source is started from the zero-gap. 

Moreover, the shear tensile strength produced in the direction of ascendance is greater than it is in the 

direction of descendance. The reason for this is that the melting pool at the point where the beam is 

focused cannot be conveyed to the lower part of the materials, owing to the faster cooling of the heat 

and too great a distance between the two materials. 

We have thus determined that there are important relationships between the direction of a weld 

and the weld quality. A future area that remains to be clarified is if there is also a relationship between 

different lengths of weld bead and weld quality. The decision regarding the length of the weld bead is 

also a very important factor that can impact the weld quality. In addition, most materials in industrial 

manufacturing have randomly different shapes. As a step toward determining the optimal parameters 

for welding, we need to analyze the process with regard to the randomly varied shapes of materials 

that are also composed of different raw materials.  
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Appendix 

In order to find out the optimal laser welding parameters, a new extra work has been carried out 

and the detailed steps are categorized as follows: 

1. Welding speed was re-set up in order to satisfy the full penetration of 3.2 mm of 

thickness. 

2. The range of welding speed was from 1400 mm/min to 2100 mm/min. However, 1400 

to 1500 mm/min for welding speed showed a lot of spatters and through and through 

holes. In addition, 1700 to 2100 mm/min for welding speed could not make the full 

penetrations. 

3. Part-to-part gap was designated to0 0.25mm and compared to the 0.32mm gap. 

4. Each group (0.25 mm of gap and 0.32mm of gap) has 20 specimen and 5 representative 

conditions of specimen were selected for the tensile test. Table 1 shows the maximum 

tensile strength as compared to the direction of welding and welding speed. 

5. Cross-sections were observed for mainly three parts. 

 

No LP WS G D Tensile Strength 
 

1 2000 1600 0.25 Ascendance 260.1166 
 

2 2000 1600 0.25 Ascendance 259.7256 
 

3 2000 1600 0.25 Ascendance 266.793 
 

4 2000 1600 0.25 Ascendance 268.957 
 

5 2000 1600 0.25 Ascendance 260.9692 263.3123 

6 2000 1600 0.32 Ascendance 267.4579 
 

7 2000 1600 0.32 Ascendance 266.0994 
 

8 2000 1600 0.32 Ascendance 268.1326 
 

9 2000 1600 0.32 Ascendance 263.0384 
 

10 2000 1600 0.32 Ascendance 254.8438 263.9144 

11 2000 1600 0.25 Descendance 251.5395 
 

12 2000 1600 0.25 Descendance 254.0729 
 

13 2000 1600 0.25 Descendance 244.0806 
 

14 2000 1600 0.25 Descendance 233.0495 
 

15 2000 1600 0.25 Descendance 246.7269 245.8939 

16 2000 1600 0.32 Descendance 256.3905 
 

17 2000 1600 0.32 Descendance 251.1241 
 

18 2000 1600 0.32 Descendance 246.8589 
 

19 2000 1600 0.32 Descendance 233.1691 
 

20 2000 1600 0.32 Descendance 249.9437 247.4972 
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Results 

1. Based on the same directions (ascendance and descendance), the tensile strength of 0.25 mm 

gap and 0.32mm gap has almost same values (Table 1). 

2. Under the same directions, tensile strength of ascendance welding direction has higher than 

the descendance welding direction. 

3. From the cross sections of specimen (Figure 1), 2000W of laser power, 1600 mm/min of 

welding speed,0.32 mm of gap, and ascendance of welding direction as a new experiment 

showed a better quality of weld because width of weld bead become wider due to the slower 

welding speed as compared to the previous experiment (Figure 2). 

4. From the cross sections of specimen (Figure 3), 2000W of laser power, 1600 mm/min of 

welding speed,0.32 mm of gap, and descendance of welding direction as a new experiment 

showed an underfill because of wider gap between two sheets. However, when following to 

the descendance welding direction, keyhole of the cross section became stable as compared 

to the previous experiment (Figure 4). 

5. When welding with 0.25 mm gap, the conditions of cross sections in Figure 5 were better 

than the Figure 1. In addition, in terms of tensile strength, ascendance welding direction has 

stronger value than the descendance welding directions. 

Conclusion 

When changing the welding speed as 1600 mm/min, wider bead width was formed as the spot size 

become wider, and the tensile strength of ascendance welding direction showed higher than the 

descendance welding direction. In addition, 0.25mm of gap has better conditions of cross sections as 

compared to the 0.32mm of gap. 
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Figure 2: Laser Power: 2000W, Welding Speed: 1600mm/min, Gap: 0.32mm, Direction: Ascendance 

 

Figure 3: Laser Power: 2000W, Welding Speed: 2100mm/min, Gap: 0.32mm, Direction: Ascendance 

 

 

 



 

 

66 

 

 

Figure 4: Laser Power: 2000W, Welding Speed: 1600mm/min, Gap: 0.32mm, Direction: Descendance 

 

Figure 5: Laser Power: 2000W, Welding Speed: 2100mm/min, Gap: 0.32mm, Direction: Descendance 
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Figure 6: Laser Power: 2000W, Welding Speed: 1600mm/min, Gap: 0.25mm, Direction: Ascendance 

 

Figure 7: Laser Power: 2000W, Welding Speed: 1600mm/min, Gap: 0.25mm, Direction: Descendance 
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