

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

RUNTIME AND INSTALL-TIME

BINARY TRANSLATION FOR

RECONFIGURABLE ACCELERATORS

Toan Xuan Mai

Computer Engineering Program

Graduate School of UNIST

Runtime and Install-time Binary

Translation for Reconfigurable Accelerators

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Toan Xuan Mai

01.18.2013

Approved by

Major Advisor

Jongeun Lee

Runtime and Install-time Binary

Translation for Reconfigurable Accelerators

Toan Xuan Mai

This certifies that the thesis of Toan Xuan Mai is approved.

01.18.2013

Thesis Supervisor: Jongeun Lee

Beomseok Nam: Thesis Committee Member #1

Won-ki Jeong: Thesis Committee Member #2

Abstract

Nowadays, softwares are often distributed in form of some machine-independent

intermediate representation (IR), because compared to machine-dependent native

binary, the IR is more portable across a wide range of architectures, has better se-

curity, and contains richer semantic information. However, the problem of making

use of the accelerator in a target machine to speedup the execution of the IR on

top of a just-in-time compiler (JIT) is challenging, mainly because the discovery

of compute-intensive kernels and the partitioning of the application to the kernel

and sequential parts must be done based on the IR alone, without the access to the

program source code as well as the kernel information in the IR.

In this work, we propose a Runtime Binary Translation (RBT) technique that can

dynamically identify and translate kernels IR to Coarse-Grained Reconfigurable Ar-

ray (CGRA) accelerator configuration, and offload the execution of the kernels onto

the accelerator. Also, we simplify the RBT approach to make the Install-time Bi-

nary Translation (IBT) approach, which does the partitioning and the translation

right at the install-time instead of at the runtime. Experimental results show that

our RBT and IBT techniques can improve the runtime of the application IR by 1.44

times and 1.61 times, respectively, compare to the runtime on the JIT that does not

support making use of the accelerator.

Contents

Contents vi

List of Figures viii

I. Introduction 1

1.1 Thesis Statement . 2

1.2 Challenging Issues . 3

1.3 Contributions of this Thesis . 4

1.4 Document Organization . 4

II. Background and Related Work 5

2.1 LLVM JIT Compiler . 5

2.2 Related Work . 7

III. Runtime Binary Translation 8

3.1 High-Level Design of RBTVM . 8

3.1.1 The Design of L1JIT . 9

3.1.2 The Design of Monitor . 10

3.1.3 The Design of L2JIT . 10

3.1.4 How RBTVM Works . 10

3.2 Implementation of the RBTVM . 12

3.3 Optimizations for the RBTVM . 13

3.3.1 Reducing Monitoring Overhead . 13

3.3.2 Avoid Redundant Recompilation of Functions 14

IV. Install-time Binary Translation 16

4.1 High-Level Design of IBT . 16

4.1.1 Install-time Translator . 16

4.1.2 IBTVM . 17

4.2 Implementation of IBT . 18

vi

V. Experiments 21

5.1 Experimental Setup . 21

5.2 Experimental Results . 22

5.2.1 RBT Evaluation . 22

5.2.1.1 Runtime Improvement . 23

5.2.1.2 Effectiveness of the Optimizations for RBTVM 24

5.2.2 IBT Evaluation . 25

5.2.2.1 Runtime Improvement . 26

5.2.2.2 Accelerator Configuration Size and Install-time Increase 27

5.2.3 Comparison between RBT and IBT . 28

VI. Conclusions 31

References 32

vii

List of Figures

2.1 Base Just-In-Time compiler design in the LLVM framework. 6

3.1 Runtime Binary Translation Virtual Machine design. 9

3.2 How Runtime Translation works. 11

3.3 Runtime Translation Virtual Machine optimized design. 14

4.1 Install-time Binary Translation tool flow. 17

4.2 Install-time Binary Translation Virtual Machine design. 18

4.3 Accelerator configuration and IR wrapper format 19

5.1 Runtime improvement of applications on the RBT system. 23

5.2 Relative runtime breakdown of the BaseJIT system and the RBT system 24

5.3 Relative runtime overheads breakdown of the BaseJIT and RBT systems 25

5.4 Runtime improvement of the IBT system . 26

5.5 Relative runtime breakdown of the BaseJIT system and the IBT system. 26

5.6 Install-time on the IBT system. 27

5.7 Accelerator configuration size relative to the whole IR file size. 28

5.8 Runtime improvement on the RBT system and IBT system. 29

5.9 Relative runtime breakdown of the BaseJIT system, the IBT system, and the

RBT system. 29

viii

CHAPTER I

Introduction

Nowadays, software programs can be distributed in from of some machine-independent In-

termediate Representation (IR), such as Java bytecode, Common Intermediate Language (CIL)

or LLVM bitcode, etc., instead of in machine-specific native binary code. Distributing softwares

in the IR format provides several advantages [1]. The softwares are more portable across dif-

ferent hardware architectures because the IR is machine-independent. In addition, the system

running the IR will have better security because it can examine the IR for attempts to bypass

security before executing it. Another advantage is that a program stored in the IR format

generally has smaller size, yet contains richer information (e.g., type information, etc.) than

the same program stored in native binary format does.

On a specific target system, an application IR will be run on top of an execution engine

acting as a software layer between the IR and the operating system. The execution engine can

be a Just-It-Time compiler (JIT), an interpreter, or some hybrid combination of the two. The

JIT compiles the application IR into native binary code right before executing it, while the

interpreter just reads the IR statement by statement and performs a sequence of native instruc-

tions for each IR statement. Therefore, once the JIT finishes compiling the IR, it gives better

execution speed than the interpreter does. Having that said, the execution on the JIT can still

be slow because of some compute-intensive loops, which we call kernels, in the application.

1

To speedup the execution of the kernels in an application, nowadays, people often make use

of some accelerator (e.g., hardware accelerators, reconfigurable array, GPGPU, etc.), if any, in

the target machine. Traditionally, they have the source code of the application, the information

about the kernels in the applications, as well as the knowledge about the accelerator in the tar-

get machine. Then, they have to manually partition and rewrite the source code of the program

into kernel code and sequential code before statically compiling those to the executable binary.

However, when it comes to making use of accelerator to speedup the execution of application

IR, the process is not so straightforward.

1.1 Thesis Statement

When application softwares are distributed in the IR format which is intended to be machine-

independent, making use of the accelerator in the target machine is a challenging problem where

the discovery of kernels and the partitioning of the application to the kernel and sequential parts

must be done based on the IR alone, without the program source code as well as the kernel

information in the applications.

In this thesis, we address this problem particularly for the target machines which are

equipped with Coarse-Grained Reconfigurable Array (CGRA) accelerators (e.g., ADRES [11],

FloRA [10], and SPIRA [9]), by proposing an approach called Runtime Binary Translation

(RBT). In the RBT approach, at the runtime, the RBT Virtual Machine (RBTVM) identifies

kernels that are suitable for running on the accelerator, translates those kernels to the binary

format of the accelerator (i.e., accelerator configuration), and offloads the execution of the ker-

nels onto the accelerator. The RBTVM is basically a JIT compiler, but is different from the

conventional JIT in that it supports more runtime features as described. Beside RBT which

is the primary approach, we also come up with a simpler approach called Install-time Binary

Translation (IBT). In the IBT approach, all the loops that are suitable for being executed on

the accelerator will be translated at the install-time instead of at the runtime. The accelerator

configuration produced at the install-time will be coupled with the original IR, and will be used

at the runtime.

We design and implement the RBT and IBT approaches based on the LLVM compilation

framework [2], targeting the SPIRA architecture [9]. With the main objective of maximizing

the runtime improvement, most of the challenging issues we have encountered so far are from

2

the design and implementation of the RBT approach. The reason is because in this approach,

there are lots of runtime features supported, which add significant overhead to the runtime

performance.

1.2 Challenging Issues

There are two main issues in the design and implementation of the RBT approach. The

first issue is that system must be able to recognize the suitable kernels that will be run on the

accelerator. This is challenging because not all loops are kernels, so the performance gain of

offloading the execution of those loops onto the accelerator may not be worth the cost of trans-

lation. Moreover, not all kernels are well-suited for running on the accelerator. Particularly,

when the accelerator used is a Coarse-Grained Reconfigurable Array (CGRA), a kernel may

not be well-suited if the number of iterations of it is not loop-invariant, or if the kernel body

contains some function calls. To address the first issue, our RBTVM instruments and monitors

the loops to detect kernels, and then examines the kernels’ bodies to identify the well-suited ones.

The second issue is the high runtime overhead incurred by the RBTVM, due to a lot of run-

time features supported such as loop instrumentation, loop profiling, function recompilation,

etc. We tackle this issue by introducing some optimizations for the RBTVM. One example is the

optimization for reducing the recompilation overhead. In the initial design of the RBTVM that

we come up with, after identifying a kernel, translating it into the accelerator configuration, and

inserting necessary instructions for the accelerator control in the IR of the function containing

the kernel, the system has to recompile that function IR and update the function binary code ad-

dress so that the in the subsequent calls to the function, the kernel will be run on the accelerator.

The problem with this design is that the recompilation for a specific function IR may have

to be done several times if it contains multiple kernels detected within the same invocation of

the function, which may lead to redundant recompilation overhead. We avoid the redundant

recompilations by introducing a technique called Lazy Recompilation. More specifically, the

recompilation is delayed until the end of the function when all the possible kernels within the

invocation has already been detected. Hence, within the same invocation, the recompilation for

a function will happen just once at most.

3

1.3 Contributions of this Thesis

The main contributions of this thesis are three-fold. The first main contribution is that we

propose the design of the RBT approach, which enables making use of the accelerator to speed

up the execution of kernels in applications stored in the IR format, on a machine equipped with

a CGRA accelerator. Also, we simplify the design of RBT to come up with the design for IBT,

which has similar features but incurs less runtime overhead.

The second main contribution of this thesis includes the optimizations for the RBTVM that

help reduce the runtime overhead, and the implementation of both RBT and IBT. The third

main contribution is an in-depth analysis, discussion, and comparison with quantitative exper-

imental results for both approaches.

1.4 Document Organization

The rest of this thesis is organized as follows. We explain some background and related

work in Chapter II. The design, implementation, and optimizations of the RBT approach will

be explained in Chapter III. In Chapter IV, we discuss the design and implementation of the

IBT approach. After that, we discuss about the evaluation of both RBT and IBT approaches

in Chapter V. Finally, we conclude and expose the future work in Chapter VI.

4

CHAPTER II

Background and Related Work

2.1 LLVM JIT Compiler

LLVM compilation framework [2] provides an execution engine that is used to run the LLVM

bitcode, which contains the Intermediate Representation (IR) of an application. The execution

engine can operate in either interpreter mode or Just-In-Time compiler (JIT) mode. We are

particularly interested in the JIT mode. We refer to the original LLVM execution engine run-

ning in the JIT mode as the Base JIT. Fig. 2.1 shows the high-level design of the Base JIT. We

can see that the context can be switched between two contexts when running an IR on top of

the Base JIT: the Base JIT context and the Host Execution context (i.e., the main processor

actually executes the binary of the application). The events where the context switching hap-

pens are denoted (1) and (2) in Fig. 2.1.

Initially, after loading the LLVM bitcode into the memory, the Base JIT starts in the JIT

context. The JIT compiles only the IR of the main function to native binary code. Since the

main function IR body may contain the function calls to other functions, and these functions

have not yet been compiled, in the native code of the main function, the function calls to these

functions will be replaced by stubs. The stubs are sort of the place-holders for the actual func-

tion calls to the not-yet-compiled functions. It is important to note that the Base JIT that we

are talking about here works in a lazy fashion. That means, the JIT will delay the compilation

5

jump back

to execute

native F

call JIT to

compile

function F

Base JIT

Host Execution

A. Compile Function IR

B. Replace Stub with

Native Call

(1) (2)

Figure 2.1: Base Just-In-Time compiler design in the LLVM framework.

of a function as late as possible until right before the first execution of the function. It also

means that the functions that are not executed are never compiled. After the compilation of

the main function is done, the context is switched to the Host Execution context to execute the

main function.

During the host execution of the main function, if a stub of a function F is reached, that

means the function F definitely needs to be executed. The stub calls the JIT to compile the

function F (i.e., event (1)). The context is switched from Host Execution to Base JIT, and the

subcomponent BaseJIT.A compiles the function F. Again, because the body of the function F

may contain function calls to the other functions F1, F2, etc., during the compilation of the

function F, those function calls will be replaced by the corresponding stubs.

After the compilation of the function F, the subcomponent BaseJIT.B replaces the stub

of F in the main function’s binary with the call to the native function F which has just been

produced. Then, the system will switch back to the Host Execution context (event (2) in the

figure) and jump to re-execute the call to the native function F. The execution engine continues

the execution that way until it finishes executing the application. Gradually, more and more

functions will be compiled to the native binary and the context switching will occur less often.

6

2.2 Related Work

There have been works addressing the problems related to making use of accelerator to

speedup the execution of application IR, such as [6], [7], and [8]. In [6], the IR used is Java

bytecode and the target accelerator is an FPGA. At the runtime, the JVM employs a merit-

based reconfiguration policy to decide which FPGA reconfigurations are most profitable at

any given time. The translation from Java class to the FPGA configuration is actually done

statically before JVM startup. On the other hand, the authors of [7] present a dynamic binary

translation technique that also starts from Java bytecode, but targets a CGRA accelerator for

fast reconfiguration and less control overhead. However, an additional hardware unit is required

for detecting if a block of instructions is worth to be executed on the accelerator.

The authors of [8] propose a technique that can offload the execution of both dataflow and

control-flow oriented code on to a CGRA accelerator. However, similar to [7], this technique

requires an additional hardware that implements the binary translation algorithm and works

in parallel to a MIPS processor. Our work is different from these previous work in that we

provide a pure software solution, and we target the systems equipped with CGRA accelerators

only. That means, our solution requires no additional hardware for the analysis and translation

of the kernels to the CGRA accelerator configuration. Moreover, we propose two approaches

for different time of the binary translation. The RBT does the binary translation dynamically,

while IBT, which is a simpler version of RBT, does the binary translation statically at the

install-time.

Coarse-Grained Reconfigurable Arrays (CGRAs) has been an active research area, and

there have been lots of CGRA architectures proposed, such as ADRES [11], FloRA [10], and

SPIRA [9]. For our work, we choose SPIRA as the target hardware. In the SPIRA architec-

ture, a dedicated Sequential Processor (SP) is integrated with the Reconfigurable Array (RA)

accelerator. Also, the SP and the RA share a common scratchpad data memory. These design

features allow a close collaboration between the SP and the RA without excessive RA control

overhead or data transfer overhead, thus expanding the range of loops that can be run on the

RA.

In this work, in order to translate the IR of compute-intensive kernels to the CGRA accelera-

tor configuration, we need to use a mapping algorithm. There have been studies on the mapping

of software kernels to CGRA accelerator configuration such as [3] and [4]. These approaches

are basically based on the iterative modulo scheduling algorithm [5] used for VLIW. We choose

to use the Edge-centric Modulo Scheduling algorithm proposed in [4], because it seems to have

the best mapping quality for our target RA accelerator in SPIRA at the moment.

7

CHAPTER III

Runtime Binary Translation

In the Runtime Binary Translation (RBT) approach, at the runtime, the RBT Virtual Ma-

chine (RBTVM) identifies kernels that are suitable for running on the accelerator, translates

those kernels to accelerator configuration, and recompiles and updates the binary code of the

function containing those kernels. In this chapter, we describe the design and implementation

of the RBTVM, which is essentially a JIT, but with some major modifications to enable the

runtime features mentioned above.

3.1 High-Level Design of RBTVM

We extend the base JIT (see Section 2.1) to make the RBTVM, which now comes with three

main components: two levels of JIT and one Monitor. Fig. 3.1 shows the high-level design of

the RBTVM where the new subcomponents that we added are in gray boxes. We can also see

that there are three contexts when running the RBTVM: the RBTVM context, the Host Execu-

tion context (the execution on the SP), and the Accelerator Execution context. The switching

between these contexts depends on the events represented by the arrows crossing the contexts

in Fig. 3.1.

8

Runtime Binary Translation Virtual Machine For RBT – Immediate Recompilation

no

yes

back to host

execution

switch to kernel

execution on RA

Accelerator Execution

back to host

execution of the

function

containing L

back to host

execution of the

old function native

binary

L2-JIT

yes

call

Monitor for

a suitable

loop L

no

jump back

to execute

native F

call L1-JIT

to compile

function F

L1-JIT

Host Execution

A. Identify Loops in

possible callees of F

C. Compile Function IR

D. Replace Stub with

Native Call

Monitor

A. Increase Loop Counter

= Kernel

Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to Accelerator

C. Insert Accelerator Control Callback

D. Remove Monitor Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3) (4) (5)

(6) (7)

B. Insert Per-Loop

Monitor Call

Suitable?
RBTVM

Figure 3.1: Runtime Binary Translation Virtual Machine design.

3.1.1 The Design of L1JIT

The main responsibility of L1JIT is to instrument loops in the application IR with monitor

callbacks, that will be used to profile the loops to detect kernels. The L1JIT is actually the

extension of the base JIT (see Section 2.1). The first new subcomponent in L1JIT compared to

the base JIT is L1JIT.A which is used for getting all the loops’ IR in the possible callees of a

function F. The second new subcomponent L1JIT.B will then insert a monitor callback right

before the IR of each of these loops.

The remaining two subcomponents of L1JIT are what the L1JIT inherits from the base

JIT. They are used for compiling the IR of the function F to the main processor (i.e., the SP

of SPIRA) native binary code, and replacing the stub call at the call site in the native binary

code of the caller of F, with the address of the actual native binary code of the function F.

9

3.1.2 The Design of Monitor

The Monitor, as shown in Fig. 3.1, is designed to be a light-weight profiler of loops and

a trigger of the L2JIT. Everytime before a loop is run, the Monitor is called by the monitor

callback (inserted by the L1JIT) to increase a counter associated with that loop. If the counter

reaches a certain Kernel Threshold value, the loop is detected as a kernel. The Monitor then

passes the corresponding kernel information to L2JIT, and invokes it.

3.1.3 The Design of L2JIT

The L2JIT is where the most compilcated jobs of the RBTVM are done. Whenever invoked

by the Monitor, the L2JIT first checks if the given kernel is suitable for running on the accelera-

tor. Since we target the SPIRA architecture [9] which contains a CGRA accelerator, the criteria

for determining well-suited kernels that we are using include: i) the number of iterations of the

kernel must be loop-invariant, and ii) there must be no function call in the kernel body. When

the kernel is suitable, the subcomponent L2JIT.A proceeds to extract the DFG from the kernel

body and feed that to L2JIT.B. L2JIT.B does the actual mapping from the DFG to accelerator

configuration.

After the translation, L2JIT.C inserts the accelerator control callback for the kernel in the

IR. By this time, the corresponding monitor call of the kernel is no longer necessary. It is

removed from the IR by L2JIT.D before L2JIT.E recompiles the IR of the function containing

the kernel, and L2JIT.F updates the memory address of the native binary code of that function,

so that in the subsequent invocations of the function, the new function binary code is used and

the execution of the kernel will be offloaded onto the accelerator.

3.1.4 How RBTVM Works

In this subsection, we use an example in Fig. 3.2 to illustrate how the RBTVM works. As-

sume that the application in this example has multiple functions, among which are F1, F2, and

F3. We initially run the application IR on top of the RBTVM. At some point in time during the

execution (Ta), F1 is already compiled to the native binary code and executing, while F2 and

F3 are still in IR and not compiled to native binary code yet. When the statement “stub(F2)”

of F1 is executed, it means that F1 needs to call F2, and F2 will be compile to the native binary

10

F2() {

 //…..

 F3();

 //…..

}

F3() {

 //…..

 loop L1 {

 //…..

 }

 //…..

}

F2() {

 //…..

 stub(F3);

 //…..

}

F3() {

 //…..

 RBTMonitor(L1);

 loop L1 {

 //…..

 }

 //…..

}

F2() {

 //…..

 stub(F3);

 //…..

}

F3() {

 //…..

 RBTMonitor(L1);

 loop L1 {

 //…..

 }

 //…..

}

F3() {

 //…..

 RBTMonitor(L1);

 loop L1 {

 //…..

 }

 //…..

}

(a) F1 has already been compiled

to native binary code,while F2 and

F3 have not. F3 contains a loop

L1.

LLVM

IR

Native

binary

Time

(b) F1 is executed. Event (1)

occurs. L1JIT.B inserts a monitor

callback for L1 in F3’s IR. L1JIT.D

compiles F2’s IR to native binary.

(c) F2 is executed. stub(F2)

triggers event (1). F3 is compiled

to native binary code.

(d) F3 is invoked. Before L1 is

executed, the monitor callback

runs (i.e., event (3)) to profile L1.

F1() {

 //…..

 stub(F2);

 //…..

}

F2() {

 //…..

 F3();

 //…..

}

F1() {

 //…..

 stub(F2);

 //…..

}

F1() {

 //…..

 F2();

 //…..

}

F1() {

 //…..

 F2();

 //…..

}

Tb

Ta

Tc

Td

Figure 3.2: How Runtime Translation works.

code. Right at that time, event (1) occurs (see arrow (1) in Fig. 3.1) and the L1JIT starts to run.

While doing the compilation for F2, L1JIT finds out that F3 is a possible callee of F2.

L1JIT.A then finds all the loops in the IR of F3. After L1 is found by L1JIT.A, L1JIT.B

inserts a monitor callback right before L1. Then, L1JIT.C does the actual compilation of F2.

When the compilation is done, L1JIT.D replaces the instruction that calls stub(F2) in F1 native

binary code with the actual call instruction to F2 native binary code. After being compiled, at

Tc, F2 is executed and stub(F3) is called, causing the L1JIT to run for F3. Unable to find any

possible callees of F3, L1JIT.C just moves on to compile F3 and replace the stub of F3 in F2’s

binary code. After that, at Td, F3’s native binary code is executed and RBTMonitor callback

is called, causing Monitor.A to run, increasing the counter for loop L1.

11

During the execution of the application, the Monitor might be called many times for L1.

When the counter of L1 reaches the Kernel Threshold value, the Monitor invokes the L2JIT

callback. L2JIT first checks the suitability of L1 before running the subcomponents L2JIT.{A,

B, C, D, E, F}. Those subcomponents of L2JIT will translate L1’s body to accelerator config-

uration, recompile the F3 IR to native binary code, and update F3 binary code’s address, so

that the next time F3 is called, the execution of L1 is offloaded onto the accelerator.

3.2 Implementation of the RBTVM

As described above, the RBTVM consists of three main components: L1JIT, Monitor, and

L2JIT. For the L1JIT, the implementation of L1JIT.A is pretty straightforward where it just

needs to repeatedly picks the innermost loops in the possible callees of a function and passes

those to L1JIT.B. For the implementation of the subcomponent L1JIT.B, a callback to the

Monitor is inserted at the end of the preheader of each loop IR. The arguments to the monitor

call are i) the information (ID) that uniquely identifies the kernel (e.g., the kernel header IR

address in the memory), and ii) the address of the RBTVM in the memory. The implementation

of the two subcomponents L2JIT.C and L2JIT.D is reused from the Base JIT (see Section 2.1).

The Monitor contains a map mapping from the kernel ID, which is set by L1JIT.B, to a

record containing some metadata of the corresponding kernel, which also include the profiling

counter of the loop. When called, the Monitor just gets the record corresponding to the kernel

ID and increase the counter. When the counter reaches the Kernel Threshold value, the Monitor

invokes the L2JIT.

For the L2JIT, the implementation of the kernel suitability checking is as follows. To check

if a loop has loop-invariant number of iterations, the ScalarEvolution analysis pass in the LLVM

framework is used. The loop has loop-invariant number of iterations if the analysis pass can

compute a scalar expression of the number of iterations based on the related variables in the

application program. For the second criterion, examining each instruction inside the loop body

is required to make sure the loop contains no function call.

For each suitable kernel, the L2JIT.A goes through the define-use instruction chain in the

loop body, makes a data-flow graph (DFG) structure, and feeds that into L2JIT.B. L2JIT.B im-

plements the Edge-centric Modulo Scheduling (EMS) algorithm [4], which uses modulo schedul-

ing to allocate accelerator resources in a periodic fashion, with a primary focus on the routing

12

between the operations.

The implementation of the subcomponent L2JIT.C actually inserts a function call in the

preheader of the loop IR, which later will be compiled into a callback to a special function in

the RBTVM, that performs the accelerator control before the kernel execution. The implemen-

tation of L2JIT.F is interesting. Since updating the native binary code address of a function at

all of its callsites is not an easy thing to do, instead, we reuse a method existing in the LLVM

framework to put a forward instruction (i.e., a branch instruction) to the new function binary

code, overwriting the first binary instructions of the old function binary code. That means, all

the calls to the old function binary code together with the arguments will be forwarded to the

new function binary code.

3.3 Optimizations for the RBTVM

Noticing some shortcomings in the RBTVM design in Fig. 3.1, we come up with some opti-

mizations for i) reducing the monitoring overhead, and ii) avoiding the redundant recompilations

of functions. The optimized design is shown in Fig. 3.3, in which the components in the red line

boxes are the parts that we modify or newly add compared to the previous design in Fig. 3.1. In

this section, we are going to explain how these optimizations can reduce the runtime overheads

of the RBT system.

3.3.1 Reducing Monitoring Overhead

As described in Section 3.1, after a loop is detected as a kernel by the Monitor, the L2JIT

will check if that loop is suitable for running on the accelerator or not before doing the transla-

tion. We observe that this flow has some issue. A loop which is not guaranteed to be suitable

is still instrumented by L1JIT, profiled by Monitor and then finally checked by the L2JIT. If

that loop turns out to be unsuitable, the cycles spent on monitoring become a waste.

Recall that in the previous design in Fig. 3.1, the L1JIT.A identifies the loops in the possible

callees of a function F and inserts a monitor call in front of each loop. In this optimization, as

shown in Fig. 3.3, we force the L1JIT.A to check for the suitability of loops before allowing the

L1JIT.B to instrument it with monitor calls. Consequently, loops that are unsuitable are never

instrumented and never profiled. That also means that the monitoring overhead is reduced

compared to the previous design. We call the flow for checking the suitability in the previous

13

For RBT – Lazy Recompilation

yes

no

call L2-JIT at

the end of

function F

back to host

execution

switch to kernel

execution on RA

Accelerator Execution

back to host

execution of the

function

containing L

back to host

execution of the

old function native

binary

L2-JIT

yes

call

Monitor for

a suitable

loop L

no

jump back

to execute

native F

call L1-JIT

to compile

function F

L1-JIT

Host Execution

A. Identify Suitable Loops

in possible callees of F

D. Compile Function IR

E. Replace Stub with

Native Call

Monitor

A. Increase Loop Counter

= Kernel

Threshold?

A. Extract DFGs of Kernels

B. Map DFGs to RA

C. Insert Accelerator Control Callback

D. Remove Monitor & L2-JIT Calls

E. Recompile Function IR

F. Update Function Native Address

(1) (2) (3) (4)
(6)

(7) (8)

B. Insert Per-Loop

Monitor Call

C. Insert Per-Function

L2-JIT Call in callees

B. Add L to To-Be-Translated

Loop List (Kernel List)

(5)

some

kernels?

RBTVM

Figure 3.3: Runtime Translation Virtual Machine optimized design.

design L2-suitable, and the optimized flow introduced in this section L1-suitable. We discuss

the overhead reduction introduced by L1-suitable with experimental results in Section 5.2.1.2.

3.3.2 Avoid Redundant Recompilation of Functions

As shown in Fig. 3.1, the recompilation of a function IR is done by L2JIT.E immediately

after the translation of a kernel contained by that function takes place. We refer to this re-

compilation technique in the initial design as Immediate Recompilation. We can see that if the

function contains multiple kernels detected within a same invocation of that function, the func-

tion will still be recompiled immediately everytime each kernel is translated, although the newly

produced binary code of that function will not be used until the next invocation. Therefore,

the Immediate Recompilation technique can lead to redundant recompilations overhead.

To avoid the redundant recompilations of a function which has multiple kernels detected

within the same invocation of a function, we introduce a technique called Lazy Recompilation.

14

The basic idea is that the RBTVM will keep tracks of the kernels detected during the execution

of a function, and will call the L2JIT to do the translation and recompilation only at the end

of that function. As shown in Fig. 3.3, we modify the Monitor so that whenever it detects a

kernel, it will just add that kernel to a To-Be-Translated Loop List without immediately calling

the L2JIT like in the initial RBTVM design. And the callback to the L2JIT will be made just

before the function returns.

Since the function needs to make a call to L2JIT, we support this by adding the new compo-

nent L1JIT.C to the design in Fig. 3.3, so that a call instruction to the L2JIT is inserted at the

end of the IR of every function that contains suitable loops. We also modify the L2JIT flow as

follows. L2JIT will now check if there is some kernels in the To-Be-Translated Loop List or not

before proceeding. The component L2JIT.D is modified so that, in addition to removing the

monitor callback of the detected kernels, L2JIT.D will also remove the L2JIT callback at the

end of the function IR if all the kernels in the function have already been detected and translated.

The Lazy Recompilation technique can potentially reduce the redundant recompilation over-

head. However, we should be aware of some technicality related to the nested function calls

that could make the To-Be-Translated Loop List keep tracks of the kernels from different func-

tions. In the implementation, we need to somehow separate kernels from different functions to

make sure only kernels of the currently executed function are translated when calling the L2JIT.

15

CHAPTER IV

Install-time Binary Translation

In the previous chapter, we explain the RBT approach which dynamically instruments and

profiles loops, and translates kernels at the runtime. In this chapter, we describe the Installation-

time Binary Translation (IBT) approach which is a simpler version of the RBT approach. The

IBT approach is different from the RBT approach in that it does the translation for all suitable

loops right at the install-time instead of at the runtime, using an Install-time Translator. At the

runtime, the IBT Virtual Machine (IBTVM) will be used to execute the original IR, together

with the accelerator configuration produced at the install-time. Compared to the RBTVM, the

IBTVM has a much simpler design and incurs less runtime overhead.

4.1 High-Level Design of IBT

4.1.1 Install-time Translator

Fig. 4.1 shows the design of the IBT tool flow. At the install-time, the Install-time Transla-

tor takes the IR of an application as the input. The translator iterates over the functions in the

IR and analyze the loops inside. Using the same set of criteria as used in the RBT approach,

the translator determines whether a loop is well-suited for running on the accelerator or not.

The set of criteria includes i) the number of iterations of the loop must be loop-invariant, and

ii) there must be no function call in the loop body.

16

Runtime

IBTVM

Install Time

Accelerator
exe

IR

Yes

There is still

unchecked

loop?

Loop is

suitable?

DFG

Extractor

Accelerator

Configuration

Generator

No

Yes

No

Bitcode

Writer

IR

IR DFG

Accelerator

Configuration

Storage

Acc.

Configuration

Acc.

Configuration

IR

IR + Acc.Conf

Install-time Translator

Bitcode

Reader

Accelerator

Configuration

Storage

Acc.

Configuration

Acc.

Configuration

IR
Control & Data

Data

Figure 4.1: Install-time Binary Translation tool flow.

If the loop is suitable, the translator proceeds to extract the Data-Flow Graph (DFG) from

the loop body and feed that to the configuration generator to generate the accelerator config-

uration (i.e., accelerator binary code) for that loop. This accelerator configuration is stored in

a storage in the memory for later use. Following the same steps, the translator carries out the

translation for all other loops. After the translation is done for all the suitable loops in the IR,

the Bitcode Writer component in the translator loads the IR and the accelerator configuration

from the storage and mixes them down to a single bitcode file.

4.1.2 IBTVM

As can be seen from Fig. 4.1, at the runtime, the Bitcode Reader parses the bitcode file

produced at the install-time by the Install-time Translator into two parts, the IR and the ac-

celerator configuration. The accelerator configuration of all the suitable loops are stored in a

storage in the memory. The design of the IBTVM, as shown in Fig. 4.2, is much simpler than the

RBTVM (see Section 3.1). This is because the IBTVM does not have to support the runtime

features such as profiling the loops execution, translating loops to accelerator configuration, or

recompiling the functions.

For each function F, the IBTVM just needs to instruments the suitable loops in the possible

callees of F, which have already been translated at the install-time, with corresponding accel-

erator control callbacks. Then the IBTVM proceeds to compile F and replace the stub calls at

17

Install-time Binary Translation Virtual Machine

switch to kernel

execution on

accelerator

Accelerator Execution

jump back

to execute

native F

compile

function F

Host Execution

A. Insert Per-Loop

Accelerator Control

Callback in Possible

Callees of F

B. Compile Function IR

C. Replace Stub with

Native Call

(1)
(2)

(3)

IBTVM

back to host

execution
(4)

Figure 4.2: Install-time Binary Translation Virtual Machine design.

all of F’s call sites the with actual function calls to the F’s binary code. This flow guarantees

that right before a suitable loop is executed, the accelerator control callback will be triggered

and the execution of the loop will be offloaded onto the accelerator.

4.2 Implementation of IBT

The implementation of the Install-time Translator is separate from that of the IBTVM.

The Install-time Translator is implemented as an LLVM Pass that will be loaded by the LLVM

Optimizer tool at the install-time and will operate on the input IR. The checking of loop suit-

ability is implemented similarly to the way the checking of kernel suitability is implemented in

the RBTVM (see Section 3.2).

For each suitable loop, the DFG Extractor goes through the define-use instruction chain in

the loop body and make a graph structure and feeds that into the Accelerator Configuration

Generator. Similar to the component L2JIT.B in the RBTVM (see Fig. 3.1), the configuration

generator implements the Edge-centric Modulo Scheduling (EMS) algorithm [4], which uses

modulo scheduling to allocate accelerator resources in a periodic fashion, with a primary focus

18

IR Size

II * NPE * 6 4 2 2 2 FnameLen 2 bytes

24 bytes

Header Accelerator Configuration Intermediate Representation

IR

Offset

Loop 1

Configuration

Loop 2

Configuration

Loop N

Configuration
............

FNameLen FName LocalID nStages II nIters PE Configuration

Figure 4.3: Accelerator configuration and IR wrapper format. The header is 24 bytes long
consisting of Magic number, Version, IR Offset, IR Size and CPUType, each of which is 4
bytes long. The Magic number is 0x0B17C0DE, the Version and CPUType are not important.
FNameLen: function name length; FName: function name; LocalID : local ID of the loop within
FName; II : Initiation Interval; nStages: number of stages; nIters: number of iterations.

on the routing between the operations.

To store the accelerator configuration alongside the IR, the LLVM bitcode file format needs

to be changed. Based on the wrapper structure of the LLVM bitcode, we suggest an accelerator

configuration structure as shown in Fig. 4.3. The bitcode now contains a header that indicates

the offset to and size of the original IR. Consequently, the serialization and deserialization pro-

cesses in the Bitcode Writer and Bitcode Reader are also changed to support the bitcode format

modification. The accelerator configuration structure will be put between the header and the

embedded IR. The Accelerator Configuration Storage is implemented as a map mapping from

FName and LocalID, which are the information for uniquely identifying a specific loop, to the

corresponding configuration of that loop in the memory.

The accelerator configuration, as shown in Fig. 4.3, consists of the configuration of all the

loops translated at the install-time. Each Loop Configuration in turns, encompasses several

loop-specific information such as the number of iterations (nIters), the initiation interval (II),

PE Configuration, etc. It is important to note that for the nIters field, we assume that we can

determine the fixed number of iterations of each suitable loop right at the install-time. For

each cycle in the II cycles, each PE is configured with an instruction consisting of an opcode

(4 bytes) and stage (2 bytes). Therefore, the PE Configuration field of the Loop Configuration

is II ∗ NPE ∗ 6 bytes long. Our experimental results in Section 5.2 show that the size of the

19

additional accelerator configuration is small compared to the size of the original bitcode file.

The implementation of the IBTVM is almost the same with that of the base JIT (see

Section 2.1). The only thing to note is that the insertion of the per-loop accelerator control

callbacks must be done at the runtime. This is because what we insert are actually the call-

backs to a special function that runs in the IBTVM context, which is responsible for running

the loop-specific accelerator control instructions, and the address of this special function is only

available at the runtime.

20

CHAPTER V

Experiments

In this chapter, we attempt to quantify various aspects of the RBT and IBT approaches, in

order to provide an idea of the efficiency of the two approaches in the role of an infrastructure

that enables making use of a CGRA accelerator to speed up kernels when executing application

IRs. We first describe the setup that we use for the experiments. Then we evaluate the RBT

and IBT approaches against several criteria, such as runtime improvement, runtime overheads,

etc. We also evaluate the effectiveness of the optimizations we apply for the RBT approach,

and finally, we compare the two approaches against each other.

5.1 Experimental Setup

We base our implementation of the RBT (see Section 3.2) and the IBT (see Section 4.2)

on LLVM [2] version 3.1 (svn revision: 155980). Since LLVM version 3.1 provides full JIT

support for only X86 and PowerPC targets, we choose PowerPC because it has a simpler in-

struction set. For the RBTVM implementation, to determine if a loop is a kernel, we set

the Kernel Threshold at 50 times. Also, the RBTVM will avoid spending too much cycles on

the kernel translation by dropping every kernel, the DFG of which contains more than 78 nodes.

For the evaluation, we use a chain of simulators including QEMU [12] PowerPC full system,

21

PSIM [13], and Dinero IV Cache simulator [14]. We set the clock rates of the SP and the RA

accelerator at 400MHz and 600MHz, respectively. Due to some limitations in the current im-

plementation as well as in the simulators, we make the following assumptions. First, the actual

control and execution of the RA accelerator is not modeled, so we estimate the kernel execution

cycle count on the RA based on the loop mapping results obtained from the EMS [4] algorithm.

Second, since we are targeting the SPIRA architecture [9] which uses hardware-double-buffered

SPM, the DMA and computation can be overlapped. Hence we assume that the DMA overhead

is hidden.

We use benchmarks from Mibench [15] (cjpeg, djpeg, blowfish encoder/decoder, and gsm) and

Mediabench [16] (mpeg2dec). The benchmarks are compiled to LLVM IR bitcode using Clang,

the front-end of the LLVM framework. To make the analyses at the runtime more effective,

we turn on some compiler optimizations such as -loop-simplify for canonicalizing the loops IR,

-indvars for canonicalizing induction variables, etc.

5.2 Experimental Results

5.2.1 RBT Evaluation

For the RBT approach, we evaluate the runtime improvement and the effectiveness of the

optimizations. We compare four cases: BaseJIT as the baseline, RBT-l2imm, RBT-l1imm, and

RBT-l1lazy. The BaseJIT case uses the base JIT (see Section 2.1), which does not have any

accelerator support. The latter three cases runs the RBTVM with different levels of optimiza-

tion, and dynamically makes use of the accelerator at the runtime.

In the case of RBT-l2imm, our initial RBTVM design (see Section 3.1) without any op-

timization. The RBTVM in the case of RBT-l1imm is with the first optimization turned on

(i.e., checks for the loop suitability right in L1JIT instead of in L2JIT, see Section 3.3.1). The

RBTVM used in the RBT-l1lazy is the most optimized one, with the second optimization (i.e.,

uses Lazy Recompilation instead of Immediate Recompilation, see Section 3.3.2) also turned on,

in addition to the first optimization.

22

5.2.1.1 Runtime Improvement

In this evaluation, we vary the number of application runs (nruns) to each application in {100,

500, 1000}. Fig. 5.1 shows the total run time speedup of the RBT cases over the BaseJIT case.

We can see a general trend that we get better runtime improvement as nruns increases. Also,

we get better speedup as we apply more optimizations. On the average, across all benchmarks

and different values of nruns, the runtime improvements of the three RBT cases RBT-l2imm,

RBT-l1imm, and RBT-l1lazy are 1.32, 1.41, and 1.44 times speedup, respectively. The RBT-

l1lazy case, which runs the most optimized RBTVM, achieves the best runtime improvement.

0.00

0.50

1.00

1.50

2.00

2.50

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
u

n
ti

m
e

 Im
p

ro
ve

m
e

n
t

(t
im

e
s)

Number of application runs nruns ∈ {100, 500, 1000}

BaseJIT

RBT-l2imm

RBT-l1imm

RBT-l1lazy

Figure 5.1: Runtime improvement of applications on the RBT system.

To see what leads to the runtime improvement, we go further and break the runtime down

into three parts: sequential execution, kernel execution and runtime overheads, which are shown

shown in Fig. 5.2. For the BaseJIT case, the kernel execution is on the SP, while in the three

RBT cases, it is offloaded onto the accelerator. We see that the main factor leading to the

runtime improvement is the kernel speedup, which is about 5.88 times on the average, across

all benchmarks and different values of nruns.

From Fig. 5.2, we also see that when increasing the number of application runs, the portion

of the execution parts (including kernel and sequential) in the total runtime tend to go up. This

together the with the kernel speedup explains why the runtime improvement gets better as nruns

23

increases, as discussed previously. The kernel speedup is similar across the RBT cases because

they use the same algorithm for mapping from the kernel DFGs to accelerator configuration.

However, since the runtime overheads are different for each case, the runtime improvement are

also different.

0%

20%

40%

60%

80%

100%

120%

140%

160%

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
e

la
ti

ve
 R

u
n

ti
m

e
 B

re
ak

d
o

w
n

 (
%

)

Number of application runs nruns ∈ {100, 500, 1000}

Runtime Overheads

Kernel Execution

Sequential Execution

Figure 5.2: Relative runtime breakdown of the BaseJIT system and the RBT system. For each

number of inputs, 100% represents the runtime of the BaseJIT.

5.2.1.2 Effectiveness of the Optimizations for RBTVM

To evaluate the effectiveness of the optimizations for RBTVM, we break the runtime over-

heads down into three parts: L2JIT-Translation, L2JIT-Recompilation, and Other Overheads,

as shown in Fig. 5.3. L2JIT-Translation is the time spent on the mapping of DFGs to ac-

celerator configuration, while L2JIT-Recompilation is the time spent on the recompilation of

functions (see Section 3.1.3). The Other Overheads include Monitoring (i.e., profiling) and

Context Switching overheads. One thing to note is that in this graph, we exclude the L1JIT-

Compilation overhead which is the time spent on the first compilation for each function, and

which is almost the same for all cases.

As described, the first optimization is turned on in the third case (i.e., RBT-l1imm). From

Fig. 5.3, it can be seen that compared to the second case (i.e., RBT-l2imm) which uses the

initial RBTVM design, the RBT-l1imm case incurs much less Other Overheads. The reason is

24

because as the first optimization is applied, the RBTVM drops all the unsuitable loops right in

L1JIT, thus no cycles will be spent on the monitoring and context switching for those loops.

On the average, across all benchmarks and different values of nruns, RBT-l1imm reduces the

Other Overheads by 75.00%.

0%

10%

20%

30%

40%

50%

60%

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

B
as

e
JI

T
R

B
T-

l2
im

m
R

B
T-

l1
im

m
R

B
T-

l1
la

zy

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
e

la
ti

ve
 O

ve
rh

e
ad

 B
re

ak
d

o
w

n
 (

%
)

Number of application runs nruns ∈ {100, 500, 1000}

L2JIT-Translation

L2JIT-Recompilation

Other Overheads

100% = Total BaseJIT Runtime

Figure 5.3: Relative runtime overheads breakdown of the BaseJIT and RBT systems. For each

number of inputs, 100% represents the total runtime of the BaseJIT.

When the second optimization is also turned on in addition to the first optimization (i.e.,

the RBT-l1lazy case), the redundant recompilations of functions containing multiple kernels

detected within the same invocation will be eliminated. This is why compared to the RBT-

l1imm case, the RBT-l1lazy case reduces the Recompilation Overhead by almost 31.94% on the

average, across all benchmarks and different values of nruns. There are, however, exceptions in

the two benchmarks blowfish encoder and blowfish decoder, where the Recompilation Overhead

is almost the same for all three RBT case. The reason is because each of these two benchmarks

contains only one kernel, so the second optimization we apply does not have any impact.

5.2.2 IBT Evaluation

For the IBT approach, we evaluate the following criteria: runtime improvement, accelerator

configuration size, and install-time increase. Regarding the runtime improvement, we compare

25

two cases: BaseJIT (i.e., the baseline, without any accelerator support) and IBT. The IR used

in the case of BaseJIT is the original IR produced by the front-end (Clang), while the IR used

in the IBT case is coupled with the accelerator configuration generated at the install-time.

5.2.2.1 Runtime Improvement

0.00

0.50

1.00

1.50

2.00

2.50

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

1
0

0

5
0

0

1
0

0
0

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
u

n
ti

m
e

 Im
p

ro
ve

m
e

n
t

(t
im

e
s)

Number of application runs nruns ∈ {100, 500, 1000}

BaseJIT

IBT

Figure 5.4: Runtime improvement of the IBT system.

0%

20%

40%

60%

80%

100%

120%

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

B
as

e
JI

T
IB

T

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
e

la
ti

ve
 R

u
n

ti
m

e
 B

re
ak

d
o

w
n

 (
%

)

Number of application runs nruns ∈ {100, 500, 1000}

Other Overheads

JIT Compilation

Kernel Execution

Sequential Execution

Figure 5.5: Relative runtime breakdown of the BaseJIT system and the IBT system.

26

For this evaluation, we also vary the number of application runs (i.e., nruns) for each bench-

mark in {100, 500, 1000}. From Fig. 5.4, we can see that the IBT case improves the runtime

by almost 1.61 times on the average across all benchmarks and values of nruns, compared to

the BaseJIT case. As shown in Fig. 5.5, we also break down the runtime of the two cases

into 4 parts: Sequential Execution, Kernel Execution, JIT Compilation Oerhead, and the Other

Overheads (which include the context switching and instrumentation overheads).

In the BaseJIT case, both the sequential and kernel parts are executed on the SP, while in

the case of IBT, the kernel execution is offloaded onto the accelerator. Similar to what we see

in the RBT evaluation, the main factor that leads to the runtime improvement of the IBT case

is also the kernel speedup, which is about 5.88 times on the average, across all benchmarks and

different values of nruns.

5.2.2.2 Accelerator Configuration Size and Install-time Increase

 2.52
 2.65

 0.58

 0.20
 0.27

 1.77

 0.84

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

In
st

al
l-

ti
m

e
 In

cr
e

as
e

 (
se

cs
)

Figure 5.6: Install-time on the IBT system.

As explained in Chapter IV, the IBT approach translates all well-suited loops to accelerator

configuration right at the install-time, and couples the configuration produced with the IR, so

that the configuration can be used at the runtime. The install-time increase due to the trans-

lation is shown in Fig. 5.6, and the relative accelerator configuration size is shown in Fig. 5.7.

27

4.85% 6.29% 7.03%

0.82% 1.08%

9.51%
4.93%

0%

20%

40%

60%

80%

100%

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
el

at
iv

e
A

cc
e

le
ra

to
r

C
o

n
fi

gu
ra

ti
o

n
 S

iz
e

(%
)

100% = Original (unmodifed) IR file size

Figure 5.7: Accelerator configuration size relative to the whole IR file size.

From these graphs, we can see that the average install-time increase is only about 0.84

second. Also, the relative accelerator configuration size is only about 4.93% the size of the

original IR on the average, across all benchmarks. Consequently, the store and load time of the

configuration is very short. The store time is always less than 2% of the install-time increase,

and the load time is always less than 1% of the total runtime.

5.2.3 Comparison between RBT and IBT

In this evaluation, we attempt to compare the RBT and IBT approaches in terms of run-

time improvement and runtime overheads. There are three cases in the evaluation: BaseJIT

(baseline, without any accelerator support), RBT (the best RBT case, i.e., RBT-l1lazy), and

IBT. Fig. 5.8 shows the runtime improvement of RBT and IBT over the BaseJIT. We can see

that the IBT can always improve the runtime, while the RBT sometimes slows down, especially

when the number of application runs is small such as in the cases of cjpeg, djpeg and gsm with

nruns = 100. In these cases, the kernel speedup is not enough to compensate for the runtime

costs the RBT spend. On the average, the runtime improvement over the BaseJIT of the IBT

case is 1.61 times, which is 11.33% better than that of RBT.

28

0.00

0.50

1.00

1.50

2.00

2.50

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
u

n
ti

m
e

 Im
p

ro
ve

m
e

n
t

(t
im

e
s)

Number of application runs nruns ∈ {100, 500, 1000}

BaseJIT

RBT

IBT

Figure 5.8: Runtime improvement on the RBT system and IBT system.

0%

20%

40%

60%

80%

100%

120%

140%

B
as

eJ
IT

R
B

T
IB

T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

eJ
IT

R
B

T
IB

T

B
as

eJ
IT

R
B

T
IB

T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

eJ
IT

R
B

T
IB

T

B
as

eJ
IT

R
B

T
IB

T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

B
as

eJ
IT

R
B

T
IB

T

B
as

eJ
IT

R
B

T
IB

T

B
as

e
JI

T
R

B
T

IB
T

B
as

e
JI

T
R

B
T

IB
T

100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000 100 500 1000

cjpeg djpeg mpeg2dec blowfish_e blowfish_d gsm average

R
e

la
ti

ve
 R

u
n

ti
m

e
 B

re
ak

d
o

w
n

 (
%

)

Number of application runs nruns ∈ {100, 500, 1000}

L2JIT-Translation
L2JIT-Recompilation
Other Overheads
L1JIT-Compilation
Kernel Execution
Sequential Execution

Figure 5.9: Relative runtime breakdown of the BaseJIT system, the IBT system, and the RBT

system.

Finally, we compare the runtime overheads of RBT and IBT. Fig. 5.9 shows the relative

runtime breakdown of the three cases. The runtime now consists of 6 parts: Sequential Execu-

tion, Kernel Execution, L1JIT Compilation (i.e., overhead of the first compilation of functions),

29

L2JIT Recompilation (i.e., overhead of the recompilation of functions), L2JIT Translation (i.e.,

overhead of the kernel translation at the runtime), and Other Overheads (includes Monitoring

and Context Switching overheads).

It can easily be seen from Fig. 5.9 that both IBT and RBT share the L1JIT Compilation

overhead, and the Context Switching part of the Other Overheads. However, only RBT has to

incur the L2JIT Translation, L2JIT Recompilation, and Monitoring overheads at the runtime.

Therefore, on the average across all benchmarks and values of nruns, the runtime overheads of

the RBT case are 61.91% higher than that of the IBT case. In summary, the IBT case has

higher runtime improvement and less runtime overheads than the RBT case.

30

CHAPTER VI

Conclusions

In this work, we propose the Runtime Binary Translation (RBT) approach to support mak-

ing use of the CGRA accelerator to speedup the execution of application IR. The IR is run

on the RBT Virtual Machine (RBTVM), which dynamically identifies suitable kernels inside

the application, translates them to the accelerator configuration, and offloads the execution of

those kernels on to the accelerator. Since the RBTVM incurs a lot of runtime overheads, we also

introduce two optimizations for reducing the unnecessary monitoring overhead and redundant

recompilation overhead at the runtime.

We also simplify the RBT approach to come up with the Install-time Binary Translation

(IBT) approach, which does the translation for all the suitable loops at the install-time instead

of at the runtime. Experimental results show that, on the average, our RBT and IBT tech-

niques can improve the runtime of the application IR by 1.44 times and 1.61 times, respectively,

compared to the runtime on the JIT that does not support making use of the accelerator. In the

comparison between RBT and IBT, we also show that IBT has 11.33% better runtime improve-

ment over RBT, which has 61.91% higher runtime overheads than IBT. The IBT approach does

increase the install-time and the IR file size, but the increase amounts are almost negligible,

given the 1.61 times runtime improvement IBT brings with it.

For the future work, we intend to implement more mapping algorithms on our current frame-

work to investigate the tradeoff between the translation cost and the mapping quality of those

algorithms. Also, we intend to overcome the limitations in the experimental setup by extending

the simulators to model the actual CGRA accelerator execution and control.

31

References

[1] Gosling, J., 1995. ‘Java intermediate bytecodes: ACM SIGPLAN workshop on intermediate

representations’ (IR95). SIGPLAN Not. 30, 111-118. 1

[2] Lattner, C., Adve, V., 2004. LLVM: A Compilation Framework for Lifelong Program Analy-

sis & Transformation, in: Proceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimization, CGO 04. IEEE Computer

Society, Washington, DC, USA, p. 75. 2, 5, 21

[3] Mei, B., Vernalde, S., Verkest, D., De Man, H., Lauwereins, R., 2003. ‘Exploiting Loop-

Level Parallelism on Coarse-Grained Reconfigurable Architectures Using Modulo Schedul-

ing’, in: Proceedings of the Conference on Design, Automation and Test in Europe - Volume

1, DATE 03. IEEE Computer Society, Washington, DC, USA, p. 10296. 7

[4] Park, H., Fan, K., Mahlke, S., 2008. ‘Edge-centric modulo scheduling for coarse-grained

reconfigurable architectures’, in: In Proc. of the 17th International Conference on Parallel

Architectures and Compilation Techniques. pp. 166-176. 7, 12, 18, 22

[5] Rau, B.R., 1994. ‘Iterative modulo scheduling: An algorithm for software pipelining loops’,

in: In Proceedings of the 27th Annual International Symposium on Microarchitecture. pp.

63-74. 7

32

[6] Greskamp, B., Sass, R., 2005. ‘A virtual machine for merit-based runtime reconfiguration’,

in: 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

2005. pp. 287-288. 7

[7] Beck, A.C.S., Carro, L., 2005. ‘Application of binary translation to Java reconfigurable

architectures’, in: Parallel and Distributed Processing Symposium 2005. Proceedings. 19th

IEEE International p. 8. 7

[8] Beck, A.C.S., Rutzig, M.B., Gaydadjiev, G., Carro, L., 2008. ‘Transparent Reconfigurable

Acceleration for Heterogeneous Embedded Applications’, in: Design, Automation and Test

in Europe 2008. pp. 1208-1213. 7

[9] Lee, J., Jeong, Y., Seo, S., 2013. ‘Fast Shared On-Chip Memory Architecture for Efficient

Hybrid Computing with CGRAs’. Proc. Int’l Conf. Design, Automation and Test in Europe

(DATE) 2013. 2, 7, 10, 22

[10] Lee, D., Jo, M., Han, K., Choi, K., 2009. ‘FloRA: Coarse-grained reconfigurable archi-

tecture with floating-point operation capability’, in: International Conference on Field-

Programmable Technology, 2009. pp. 376-379. 2, 7

[11] Mei, B., Vernalde, S., Verkest, D., Man, H.D., Lauwereins, R., 2003. ‘ADRES: An Architec-

ture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix’, in:

Field Programmable Logic and Application, Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pp. 61-70. 2, 7

[12] http://qemu.org 21

[13] http://sourceware.org/psim/ 22

[14] http://pages.cs.wisc.edu/∼markhill/DineroIV/ 22

[15] Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B., 2001.

‘MiBench: A free, commercially representative embedded benchmark suite’. 2001 IEEE

International Workshop 2001. IEEE Computer Society, Washington, DC, USA, pp. 3-14.

22

[16] Lee, C., Potkonjak, M., Mangione-Smith, W.H., 1997. ‘MediaBench: a tool for evaluating

and synthesizing multimedia and communicatons systems’, in: Proceedings of the 30th An-

nual ACM/IEEE International Symposium on Microarchitecture, MICRO. IEEE Computer

Society, Washington, DC, USA, pp. 330-335. 22

33

Acknowledgements

In particular, I would like to express my sincere gratitude to my advisor, Professor

Jongeun Lee for accepting me as his student. I would have never completed the

Master’s program and this thesis without his extensive and constant guidance and

support. I own him my deepest thanks for his patience and his trust.

I would also like to express my appreciation to Professor Beomseok Nam and Profes-

sor Won-ki Jeong for their support, advice, and suggestions during the preparation

of this thesis.

In addition, I would like to give thanks to my labmates and friends for their generous

helps, both in study and in life.

Finally, and most importantly, I would like to thank my family, especially my par-

ents for their encouragement, love, and care for me on every step of my life.

	Contents vi
	List of Figures viii
	I. Introduction
	1.1 Thesis Statement
	1.2 Challenging Issues
	1.3 Contributions of this Thesis
	1.4 Document Organization

	II. Background and Related Work
	2.1 LLVM JIT Compiler
	2.2 Related Work

	III. Runtime Binary Translation
	3.1 High-Level Design of RBTVM
	3.1.1 The Design of L1JIT
	3.1.2 The Design of Monitor
	3.1.3 The Design of L2JIT
	3.1.4 How RBTVM Works

	3.2 Implementation of the RBTVM
	3.3 Optimizations for the RBTVM
	3.3.1 Reducing Monitoring Overhead
	3.3.2 Avoid Redundant Recompilation of Functions

	IV. Install-time Binary Translation
	4.1 High-Level Design of IBT
	4.1.1 Install-time Translator
	4.1.2 IBTVM

	4.2 Implementation of IBT

	V. Experiments
	5.1 Experimental Setup
	5.2 Experimental Results
	5.2.1 RBT Evaluation
	5.2.1.1 Runtime Improvement
	5.2.1.2 Effectiveness of the Optimizations for RBTVM

	5.2.2 IBT Evaluation
	5.2.2.1 Runtime Improvement
	5.2.2.2 Accelerator Configuration Size and Install-time Increase

	5.2.3 Comparison between RBT and IBT

	VI. Conclusions
	References

<startpage>10
Contents vi
List of Figures viii
I. Introduction 1
 1.1 Thesis Statement 2
 1.2 Challenging Issues 3
 1.3 Contributions of this Thesis 4
 1.4 Document Organization 4
II. Background and Related Work 5
 2.1 LLVM JIT Compiler 5
 2.2 Related Work 7
III. Runtime Binary Translation 8
 3.1 High-Level Design of RBTVM 8
 3.1.1 The Design of L1JIT 9
 3.1.2 The Design of Monitor 10
 3.1.3 The Design of L2JIT 10
 3.1.4 How RBTVM Works 10
 3.2 Implementation of the RBTVM 12
 3.3 Optimizations for the RBTVM 13
 3.3.1 Reducing Monitoring Overhead 13
 3.3.2 Avoid Redundant Recompilation of Functions 14
IV. Install-time Binary Translation 16
 4.1 High-Level Design of IBT 16
 4.1.1 Install-time Translator 16
 4.1.2 IBTVM 17
 4.2 Implementation of IBT 18
V. Experiments 21
 5.1 Experimental Setup 21
 5.2 Experimental Results 22
 5.2.1 RBT Evaluation 22
 5.2.1.1 Runtime Improvement 23
 5.2.1.2 Effectiveness of the Optimizations for RBTVM 24
 5.2.2 IBT Evaluation 25
 5.2.2.1 Runtime Improvement 26
 5.2.2.2 Accelerator Configuration Size and Install-time Increase 27
 5.2.3 Comparison between RBT and IBT 28
VI. Conclusions 31
References 32
</body>

