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Abstract 

 

Lithium manganese oxide spinel materials have been extensively studied as a cathode material for 

lithium ion batteries because it is inexpensive, safe, and eco-friendly. One critical shortcoming for this 

material is, however, the poor cycle stability that is mainly associated with manganese dissolution 

during extended cycling, especially at elevated temperature (> 50 oC). To relieve the capacity fading 

of LiMn2O4/graphite cells caused by manganese dissolution, we develop the functional binder and 

separator having ion exchangeability between dissolved Mn ions and Na ions of functional materials. 

First of all, three ion-exchangeable binders including carboxymethyl cellulose sodium salt (CMC), 

poly(sodium 4-styrenesulfonate) (PSS), and alginic acid sodium salt (AGA) are compared with the 

conventional binder of polyvinylidene fluoride (PVdF). From the galvanostatic experiments of 

LiMn2O4/graphite full cells at high temperature (60 oC), the ion-exchangeable binders for graphite 

anode show a noticeable improvement in the capacity retention. This is attributed to that the dissolved 

Mn ions are trapped in the ion exchangeable binders due to ion exchange between manganese ions in 

electrolytes and sodium ions of binders. In other words, the ion-exchangeable binders prevent the 

reduction of dissolved Mn ions at the surface of graphite anode, resulting in the improvement of cycle 

performance. This is supported by the analysis using inductively coupled plasma mass spectrometry 

(ICP-MS) for Mn-dissolved electrolytes and X-ray diffraction (XRD) for lithiated graphite anode. 

Also, the effect of ion exchange is further examined using an ion exchangeable separator. The surface-

modified separator shows the improved cycle retention of LiMn2O4/graphite full cell at 60 oC due to 

ion exchange between manganese ions in electrolytes and sodium ions of separators. 
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1. Introduction 

1.1. Lithium-ion batteries 

The rapid development of innovative technologies raised the need for new and efficient power source 

systems. In response to the need, advanced and environmental friendly batteries has been developed 

to replace the nickel-cadmium (Ni-Cd) or nickel-hydride (Ni-MH) batteries. The motivation for using 

a battery technology based on lithium metal as anode relied initially on the fact that lithium is the 

most electropositive (-3.04 V versus standard hydrogen electrode) as well as the lightest (equivalent 

weight M = 6.94 g mol-1, and specific gravity ρ = 0.53 g cm-3) metal, thus facilitating the design of 

storage systems with high energy density. The advantage in using lithium metal was first 

demonstrated in the 1970s with the assembly of primary lithium cells. A strong research effort then 

was mounted to convert lithium primary cells into rechargeable cells with high energy density. In 

1972, Exxon used TiS2 as the positive electrode, lithium metal as the negative electrode and lithium 

perchlorate in dioxolane as the electrolyte. The early rechargeable lithium cells were plagued with 

safety problems caused by the tendency of lithium metal anodes to form dendrites and powder 

deposits on recharging. To circumvent the safety issues surrounding the use of lithium metal, several 

alternative approaches were pursued in which either the electrolyte or the negative electrode was 

modified. The first approach involved substituting metallic lithium for a lithium intercalation material 

as an anode. The concept was first demonstrated in the laboratory by Murphy et al. and then by 

Scrosati et al. and led, at the end of the 1980s and early 1990s, to the so-called Li-ion technology and 

the C/LiCoO2 lithium-ion cell first commercialized by Sony Co. in 1991.1-3 

Many of the lithium battery cathode materials have a layered structure, which enables the two-

dimensional diffusion of the lithium-ion. Layered lithium transition metal oxides arguably represent 

the most successful category of positive electrode, comprising compounds with formula of LiMO2 (M: 

Mn, Co, and Ni) that crystallize in a layered structure. The main cathode material, LiCoO2, is widely 

used in commercial Li ion batteries, de/intercalating Li around 4 V, and has been improved in terms of 

rate capability and capacity. Although the reversible delithiation of LiCoO2 beyond 0.5 Li is feasible, 

alternatives to LiCoO2 are necessary because of its high cost, toxicity, and poor safety that make it 

unsuitable for electric vehicles (EVs) and large-scale energy-storage applications. Initially, the use of 

layered LiNiO2 was considered, as this displayed favourable specific capacity of 200 mA h g-1 

compared to only 140 mA h g-1 for LiCoO2. But expectations were dismissed for safety reasons after 

exothermic oxidation of the organic electrolyte with the collapsing delithiated LixNiO2 structure. 

Delithiated LixCoO2 was found to be more thermally stable that its LixNiO2 counterpart. Thus, 

substitution of Co for Ni in LiNi1-xCoxO2 was adopted to provide a partial solution to the safety 
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concerns surrounding LiNiO2. 

Another line of investigation involved the synthesis by soft chemistry of the layered LiFeO2 and 

LiMnO2 phase to take advantage of the Fe4+/Fe3+ or Mn4+/Mn3+ redox couples, respectively. In spite of 

the numerous and diverse synthesis methods attempts to prepare electrochemically attractive LiFeO2 

phases failed. In contrast, research on LiMnO2 has been more fruitful, and the structural instability of 

the layered phase reversing to the spinel LixMn2O4 upon cycling has been diminished through cationic 

substitution. 

Studies to inhibit the transformation led to solid-solution approaches to LiMO2 (M = Ni, Mn, Co, 

etc/) that could be considered as compensation one metal’s disadvantage with another’s advantage. 

Reversible capacities exhibited by LiNi0.5Mn0.5O2 were reported to be 200 mA h g-1 (2.5-4.5 V 

window vs. Li/Li+) with little capacity fading. Other advantages of LiNi0.5Mn0.5O2 are lower thermal 

runaway, better structural thermal stability than LiCoO2 or LiNiO2, and greater inhibition to reaction 

with electrolytes in the charges state. The metals Co, Ni, and Mn can all be accommodated in the 

layered metal oxide structure, to give a range of composition Li[CoxNiyMnz]O2 (x + y + z = 1). One 

composition, LiCo1/3Ni1/3Mn1/3O2 reported in 2001 by Ohzuku et al., has shown particularly promising 

electrochemistry and intriguing structural behavior. The material shows good rate capability (200 mA 

h g-1 at 18.3 mA g-1 and 150 mA h g-1 at 1600 mA g-1). Another attractive property is its excellent 

safety properties at a high state of charge, compared to LiNiO2 and LiCoO2. 

In the search for improved materials for positive electrodes, it has been recognized recently that 

olivine (magnesium iron silicate) oxyanion scaffolded structures, built from corner-sharing MO6 

octahedra (where M is Fe, Ti, V or Nb) and XO4
n- tetrahedral anions (where X is S, P, As, Mo or W), 

offers interesting possibilities. Polyoxyanionic structures possess M-O-X bonds; altering the nature of 

X will change (through an inductive effect) the iono- covalent character of the M-O bonding. In this 

way it is possible to systematically map and tune transition-metal redox potentials. For instance, with 

the use of the phosphate polyanions PO4
3-, the Fe3+/Fe2+ and V4+/V3+ redox couples lie at higher 

potentials than in the oxide form. One of the main drawbacks with using these materials is their poor 

electronic conductivity, and this limitation had to be overcome through various materials processing 

approaches, including the use of carbon coatings, mechanical grinding or mixing, and low-

temperature synthesis routes to obtain tailored particles. LiFePO4, for example, can presently be used 

at 90% of its theoretical capacity (165 mA h g-1) with decent rate capabilities, and thus is a serious 

candidate for the next generation of Li-ion cells.3-7 
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Figure 1. Comparison of the different battery technologies in terms of volumetric and gravimetric 

energy density. 

 

Figure 2. Schematic illustration of the first Li-ion battery (LiCoO2/Li+ electrolyte/graphite). 
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1.2. Spinel lithium manganese oxide 

Manganese, whose resource is abundant and inexpensive, is used worldwide as an environmentally 

friendly and inexpensive dry battery material. Moreover, when a spinel type manganese-based 

material is used as the electrode material of a lithium-ion battery, the battery has the advantages of 

greatly improved safety and an inexpensive battery control circuit. The market trend for the 

manganese-based cathode material in a lithium-ion battery is roughly divided into two categories. The 

first category is materials used in portable electronic devices such as the mobile phone. And the 

second category is the cathode materials for large size lithium-ion batteries as power sourced for 

electric vehicles, hybrid vehicles, and so forth. High power, safety, and low cost are strongly required 

among their performances, so manganese-based cathode materials are suitable for such applications. It 

overwhelmingly excels in the power density compared to cheaper iron-based cathode material 

(LiFePO4) and it is used in a large-sized battery. The spinel type manganese oxide has been used for 

the main cathode material of the lithium-ion battery as a power source for the hybrid vehicle and the 

electric motorcycle. Although the iron-based material (LiFePO4), which is expected to succeed the 

manganese-based cathode material, is being studied all over the world; it has not reached practical use 

yet because of its poor electric conductivity and its complicated synthesis method.3, 8-12 

At ambient temperature, the crystal structure of LiMn2O4 belongs to the Fd3m space group of a 

cubic system; lithium ions occupy the tetrahedral 8a site, manganese ions the octahedral 16d site and 

oxygen ions the 32e site (Fig. 3). Since the average valence of manganese ions in LiMn2O4 is 3.5, the 

same amounts of Mn3+ and Mn4+ ions are distributed randomly on the 16d site. That is, the distribution 

of cations in LiMn2O4 can be represented by the following ionic formula: (Li+)8a[Mn3+Mn4+]16dO
-2

4. 

According to neutron and x-ray diffraction analyses, the Mn2O4 spinel framework remains during the 

insertion of excess lithium into LiMn2O4 as well as during lithium extraction from the stoichiometric 

material. In other words, the process of the insertion and the extraction of Li+ is found to be via 

intercalation of Li+ between two layers consisting of MnO6 octahedra.9-12 
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Figure 3. Structure of LiMn2O4 spinel. 

  

 

Figure 4. a) Initial charge and discharge curves of Li1.04Mn1.98O4 cathode, lithium metal anode, and 1 

M LiPF6 in EC:DMC (1:2) at a current density of 0.5 mA/cm2 at 25oC, and b) Cycle performance. 

 

The 4-V region of LiMn2O4 consists of two smooth plateaus (Fig. 4a): the 4.0-V region (low-

voltage plateau) and the 4.15-V region (high-voltage plateau). Here, the charge/discharge product of 

LiMn2O4 is expressed as Li1-xMn2O4. The low-voltage plateau (x < 0.5) is a single-phase region where 

the a-axis of spinel Li1-xMn2O4 successively shrinks as the increase in x. The high-voltage plateau (x > 

0.5) is a two-phase region where two cubic phases with different lattice parameter, Li0.5Mn2O4 and λ-

MnO2, coexist. Figure 4b shows the decay of the discharge capacity with cycling. After 100 cycles,  
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the discharge capacities at 25 and 55 oC were 102 and 84 mAh/g, respectively. Their capacity loss is 

15% at 25 oC and 28% at 55 oC, respectively. The elevated temperature thus accelerates the capacity 

fading. Several mechanisms such as Jahn-Teller distortion of Mn3+, Mn dissolution into the electrolyte; 

loss of crystallinity; development of microstrain due to lattice mismatch between two distinct cubic 

phases formed on cycling; and an increase in oxygen deficiencies or oxygen loss upon cycling have 

all been suggested to be the source of capacity fade. 13-19 

Some spinel-structured manganese oxides, such as MnMn2O4 (hausmannite), ZnMn2O4 

(hetaerolite), etc., show a tetragonal symmetry I41/amd(D4h
19) due to Jahn-Teller distortion of a 

Mn3+O6-octahedron. Although the crystal structures are quite different between the two structures 

from an x-ray crystallographic point of view, MnO6-octahedral linkage to form these two structures is 

exactly the same as was illustrated in Figure 5 Large and small regular squares indicate a cubic unit 

cell and that of a tetragonal unit cell, respectively. From a relation between cubic and tetragonal 

setting in a lattice, one can convert a cubic unit cell parameter, ac, into tetragonal unit cell parameters, 

aT and cT and also Miller indexes (h, k, l) for I41/amd are converted into (h + k, h - k, l) for Fd3m. 

Such an anisotropic change in a unit cell dimension is derived from a change in a local symmetry of a 

MnO6-octahedron from Oh to approximate D4h, i.e., Jahn-Teller distortion of MnO6-octahedron. It is 

worthwhile to note that Jahn-Teller distortion of a MnO6-octahedron begins at the composition of 

Li1.0Mn2O4(MnO1.75) at which half of the octahedral Mn4+ ions are already reduced to Mn3+ ions in a 

cubic close-packed oxygen matrix. Consequently, further reduction of this Li1.0Mn2O4-matrix having a 

critical composition of being cubic symmetry induce a phase separation to Li1.0Mn2O4 (cubic) and 

Li2.0Mn2O4 (tetragonal). Since the lattice parameters of these two phases are quite different especially 

in the cT-axis, a disorder due to an internal stress may exist at an interphase between the cubic and the 

tetragonal phases. 20-24 

 

Figure 5. Schematic illustrations of a spinel skeleton structure. a) top view and b) side view of ‘spinel’ 

structure. Large and small regular squares in a) indicate cubic and tetragonal unit cells, respectively. 
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Among various mechanism of capacity fading, Mn dissolution is considered to be the predominant 

cause (Fig. 6). A considerable dissolution of manganese ions into the electrolyte occurs in the 

presence of hydrofluoric acid (HF) formed by the hydrolysis of LiPF6 salt. In the discharged state, HF 

induced manganese dissolution has been found to be the main failure mechanism active at elevated 

temperatures. It was proposed that LiPF6 salt assists Mn-O bond activation of MnO generated from λ-

MnO2 in the presence of water trace and provokes manganese dissolution. 25-26 

 

Figure 6. Schematic illustration for the manganese dissolution out of a delithiated lithium manganese 

oxide cathode (a) by HF attack and (b) by anion oxidation. 
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To overcome the shortcomings of LiMn2O4, several approaches have been carried out One way to 

solve the problem is the substitution of mono-, di-, or trivalent cations in LiMn2O4 to decrease Mn3+ 

ions which cause disproportion reactions. It was well established that the partial substitution of 

manganese ions with transition metal ions like Co, Cr, and Ni enhances the structural stability and 

electrochemical performances of spinel LiMn2O4. The partial substitution of manganese ions with 

transition metal ions enhances the structural stability (Fig. 7). 27-37 An alternative approach is to coat 

the LiMn2O4 particles with various protective layers of ZrO2, ZnO, Al2O3, and SiO2. This is because 

these oxides can suppress Mn dissolution by scavenging HF from the electrolyte (Fig. 8). Protecting 

the LiMn2O4 particles from HF in the electrolyte appears successful in improving the structural 

stability of the cathode and maintaining the capacity of Li-ion batteries. The detailed mechanism of 

the successful treatments for better performance, however, has not been reported and has yet to be 

elucidated. 38-43 

 

Figure 7. Discharge capacity for spinel LiMn2O4 and doped LiMn2−xNixO4 (x=0.01, 0.02, 0.04, and 

0.06). 
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Figure 8. a) A schematic diagram of the coating procedure and b) discharge capacity of the uncoated 

spinel nanorods, bulk spinel particles, and coated spinel nanoparticles at 65oC in coin-type half cells. 
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Capacity fading of batteries based on a spinel structure cannot be solely explained by the loss of 

cathode active materials. Dissolved manganese ions move to the anode and thus lead to the self-

discharge of lithiated graphite.44-45 I. H. Cho et al. applied SEI-forming additive to inhibit Mn deposits 

on the graphite anode surface and attains a remarkable enhancement of the discharge capacity 

retention of cells with spinel lithium manganese oxides (Fig. 9).26 

 

Figure 9. a) Discharge profiles of Li1.1Mn1.9O4/graphite cells charged in EC/EMC/1 M LiPF6 with (a) 

5 wt % FEC and (b) 2 wt % VC. The specific capacities obtained were based on the weight of 

Li1.1Mn1.9O4 in a cell. b) XRD patterns of graphite anodes charged in EC/EMC/1 M LiPF6 with (a) 5 

wt % FEC and (b) 2 wt % VC before and after being stored at 60 oC. 
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2. Theoretical development 

2.1. Ion exchange 

Ion exchange materials are insoluble substances containing loosely held ions which are able to be 

exchanged with other ions in solutions which come in contact with them. These exchanges take place 

without any physical alteration to the ion exchange material. Ion exchangers are insoluble acids or 

bases which have salts which are also insoluble, and this enables them to exchange either positively 

charged ions (cation exchangers) or negatively charged ones (anion exchangers). Many natural 

substances such as proteins, cellulose, living cells and soil particles exhibit ion exchange properties 

which play an important role in the way the function in nature. Generally the affinity is greatest for 

large ions with high valency. For dilute solutions the order of affinity for some common cations is 

approximately: 

Hg2+ <Li+ <H+ <Na+ < K+ ≈ NH4+ < Cd2+ < Cs+ < Ag+ < Mn2+ < Mg2+ < Zn2+ < Cu2+ < Ni2+ < Co2+ < 

Ca2+ < Sr2+ < Pb2+ < Al3+ < Fe3+ 

Ion exchange resins are polymers that are capable of exchanging particular ions within the polymer 

with ions in a solution that is passed through them. In water purification the aim is usually either to 

soften the water. The water is softened by using a resin containing Na+ cations but which binds Ca2+ 

and Mg2+ more strongly than Na+. As the water passes through the resin the resin takes up Ca2+ and 

Mg2+ and releases Na+ making for softer water.46 

 

Figure 10. a) Expanded view of polystyrene bead and b) water softening. 
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2.2. Ion exchangeable binder and separator 

We introduce, for the first time, ion-exchangeable binders and separator that have functional groups 

of sodium carboxylate or sulfonate. These functional groups of binders and separator play a role of 

ion exchange between Na+ ions of functional groups and dissolved Mn2+ ions of LiMn2O4 electrodes. 

This ion exchange traps dissolved Mn2+ ions to inhibit the reduction of Mn2+ on the surface of 

lithiated graphite anode, resulting in improved cycle performance at high temperature. 

 

 

Figure 11. Schematic presentation for functional roles of ion-exchangeable binder. 

 

 

Figure 12. Schematic presentation for functional roles of ion-exchangeable separator. 
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3. Experimental 

3.1. Ion-exchangeable binder 

3.1.1. Electrochemical measurements 

Li1.1Mn1.86Mg0.04O4 (Mitsui Co., Ltd.) and natural graphite (DAG-87, Sodiff Advanced Material Co., 

Ltd.) were used as the active materials of the cathode and anode, respectively. Cathodes were 

prepared by mixing 80 wt.% of Li1.1Mn1.86Mg0.04O4, 10 wt.% of carbon black (Super-P, Timcal Inc.) as 

a conducting material, and 10 wt.% of polyvinylidene fluoride (PVdF) (KF1000, Kureha Chemical 

Industry) binder. The slurry was coated onto aluminum foil. Anodes were prepared by mixing 80 wt.% 

of the natural graphite powder, 10 wt.% of carbon black, and 10 wt.% of binder. Four anode 

electrodes were made with four binders, PVdF, carboxymethyl cellulose sodium salt (CMC) (Sigma 

Aldrich), poly(sodium 4-styrenesulfonate) (PSS) (Sigma Aldrich), and alginic acid sodium salt (AGA) 

(Sigma Aldrich), respectively. The slurries were coated onto copper foil. The electrolyte solution 

(PANAX E-Tec Co., Ltd.) was composed of a commercially available 1.3 M lithium 

hexafluorophosphate (LiPF6) dissolved in a solvent mixture of ethylene carbonate (EC) and diethyl 

carbonate (DEC) with a 3:7 volume ratio. 

The coin-type half cells (2016) with Li1.1Mn1.86Mg0.04O4 cathode or nature graphite anode were 

assembled in an argon filled glove box with a Li metal electrode. For Li1.1Mn1.86Mg0.04O4 cathode 

galvanostatic experiments were performed at a current density of 14.8 mA g-1 (ca. 0.1C) and a 

temperature of 30 oC and 60 oC in the voltage range of 4.3 and 3.0 V (vs. Li/Li+). For nature graphite 

anode galvanostatic experiments were performed at a current density of 19 mA g-1 (ca. 0.05C) and a 

temperature of 30 oC in the voltage range of 0 and 3.0 V (vs. Li/Li+). The coin-type full cells (2032) 

with Li1.1Mn1.86Mg0.04O4 cathode and nature graphite anode were assembled in an argon filled glove 

box. The full cells were cycled between 4.25 and 2.0 V (vs. Li/Li+) at a constant current of 0.1C (10.3 

mA g-1) at 30 oC and 60 oC. 

 

3.1.2. Supporting experimental 

To clarify the ion exchange between manganese ions and sodium ions, inductively coupled plasma 

(ICP) spectrometry was observed. After Li1.1Mn1.86Mg0.04O4 was stored in electrolyte at 60 oC for 1 

week, electrolyte was obtained with dissolved manganese ions. Then electrolyte containing dissolved 

manganese ions was restored with powder of five different binders used for nature graphite anodes at 

room temperature for 1 week and filtered out powder of binder to measure the amount of manganese 
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ions and sodium ions in the electrolytes by means of ICP. Also to identify crystal structure of lithiated 

graphite depending on the type of binder, after the coin-type half cells (2016) with PVdF binder and 

CMC binder respectively were lithiated to a potential 0.005 V and kept at 0.005 V for 10 h, they were 

carefully opened in an argon filled glove box and the electrodes were rinsed in a dimethyl carbonate 

(DMC) solvent to remove residual electrolyte. They were then stored respectively in electrolyte 

containing dissolved manganese ions for 5, 10, 30, and 60 min and analyzed by the X-ray diffraction 

(XRD). 

 

3.2. Ion-exchangeable separator 

3.2.1. Modification of separator 

Process to prepare ion-exchangeable separator is presented in Figure 13. Al2O3 ALD films were 

grown directly on a porous PE separator at 100 oC using a rotary ALD reactor. The precursors utilized 

for Al2O3 ALD were trimethylaluminum (TMA) and H2O. The separator was then boiled in 30% 

hydrogen peroxide for 15 min to clean the surface and introduce –OH groups on the surface, which 

facilitated subsequent surface modification. Clean and dry separator was incubated in 5% solution of 

(3-aminopropyl)-triethoxysilane (APTES) (Aldrich) in toluene for 8 h. After the reaction, the 

separator was washed with toluene and deionized water. In the next step, the separator was incubated 

for 2 h at room temperature with a solution of toluene containing terephthaloyl chloride and washed 

with deionized water. The terephthalic acid-grafted separator was wet with ethanol and incubated in 

0.3 mM sodium hydroxide solution for 8 h at room temperature. 

 

3.2.2. Electrochemical measurements 

A coin-type full cell (2032) of Li1.1Mn1.86Mg0.04O4 cathode and nature graphite anode prepared with 

PVdF binder was assembled respectively with pristine separator and modified separator in an argon 

filled glove box. The full cell were cycled between 4.25 and 2.0 V (vs. Li/Li+) at a constant current of 

0.1C (10.3 mA g-1) at 60 oC. 

 

3.2.3. Supporting experimental 

As stated in ion-exchangeable binder experimental the amount of exchanged manganese ions for 
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sodium ions was measured by ICP. Pristine separator and modified separator were stored respectively 

in electrolyte containing dissolved manganese ions at room temperature for 1 week. 

3.3. Characterization 

Powder XRD data were collected on a Rigaku D/MAX2500V/PC powder diffractometer using Cu-Kα 

radiation (λ = 1.5405Å) operated from 2θ = 10 - 80°. SEM samples were examined in a Quanta 200 

field-emission SEM (FE-SEM) instrument. The atomic composition of the samples was determined 

by Varian 720-ES inductively coupled plasma (ICP) spectrometry. IR spectra were recorded on a 

Nicolet FT-IR 200 from Thermo Scientific. Absorption maxima were recorded in wavenumbers 

(cm−1). Surface analysis was examined with XPS (Thermo Fisher). 
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Table 2. Electrochemical measurement condition. 

Cell type Cathode (binder) Anode (binder) Separator 
Voltage window 

(vs. Li/Li+) 

Half cell 

LiMn2O4 (PVdF) Lithium metal 

Pristine 

4.3 – 3.0 V 

graphite (PVdF) 

Lithium metal 0 – 3.0 V 
graphite (CMC) 

graphite (PSS) 

graphite (AGA) 

Full cell 
LiMn2O4 (PVdF) 

graphite (PVdF) 

4.25 – 2.0 V 

graphite (CMC) 

graphite (PSS) 

graphite (AGA) 

LiMn2O4 (PVdF) graphite (PVdF) Modificated 
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Figure 13. Schematic diagram of grafting of terephthalic acid with ALD on separator. 
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4. Results and discussion 

To emphasize the role of ion exchange on cycle performance at high temperature, the commercialized 

Li1.1Mn1.86Mg0.04O4 spinel materials (Mitsui Co. Ltd) and DAG-87 nature graphite (Sodiff Advanced 

Material Co., Ltd.) are used for the evaluation of electrochemical performance. XRD patterns of 

Li1.1Mn1.96Mg0.04O4 spinel and nature graphite are presented in Figure 14. SEM images are also 

presented in Figure 15. 
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Figure 14. XRD patterns of a) Li1.1Mn1.86Mg0.04O4 and b) natural graphite. 
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Figure 15. SEM images of a-b) Li1.1Mn1.86Mg0.04O4 and c-d) natural graphite. 
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Li1.1Mn1.86Mg0.04O4 spinel showed very stable cycle performance at 30 oC and even at 60 oC, when 

this is examined using a half cell with Li metal anode (Fig. 16). This electrode exhibited 95% and 90% 

of capacity retention after 50 cycles at 30 oC and 60 oC, respectively. This means that the capacity 

fading of manganese spinels is not mainly caused by the mass loss of active materials, as well known. 

However, full cells comprised of Li1.1Mn1.86Mg0.04O4 spinel cathode with graphite anode showed 

different behavior from half cells (Fig. 17). Both electrodes were prepared using a conventional PVdF 

binder. As shown in Figure 17, full cells showed stable cycle performance at 30 oC, but exhibited 

severe capacity fading at 60 oC. 
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Figure 16. Electrochemical performances of Li1.1Mn1.86Mg0.04O4 half cell with Li metal: a) cyclability, 

b) voltage profiles at 30 oC, and c) 60 oC. 
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Figure 17. Electrochemical performances of Li1.1Mn1.86Mg0.04O4 (PVdF) / graphite (PVdF) full cell: a) 

cyclability, b) voltage profiles at 30 oC, and c) 60 oC. 
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As reported previously, this capacity fading at high temperature is attributed to that the dissolved 

manganese ions cause the self-discharge of lithiated electrodes. Therefore, ion-exchangeable polymers 

with functional groups of sodium carboxylate and sulfonate including CMC, PSS, and AGA are 

examined as binders for graphite anodes to alleviate the reduction of dissolved manganese ions on the 

surface of lithiated graphite anodes (Fig. 18). The concept of ion exchangeable binders is same as the 

cation exchange resin for water softening. The ion exchange relies on coulombic interaction between 

the negative charge immobilized on the resin (COO- or SO3-) and the opposite positive charge of 

samples (dissolved Mn2+ ions). The trapping of Mn2+ ions takes place with simultaneous releasing of 

Na+ ions from binders due to the stronger coulombic attraction between Mn2+ ions and negative 

charge of binders, as shown in the schematic diagram (Fig. 11), and this process reaches equilibrium 

with a decreased concentration of manganese ions in electrolytes. Before full cell test, to confirm 

function of CMC, PSS, and AGA as the binders, half cells of graphite are tested with Li metal (Fig. 

19). At first and second cycle voltage profiles of graphite with each binder there is no noticeable 

difference. 
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Figure 18. Structures of a) polyvinylidene fluoride (PVdF), b) carboxymethyl cellulose sodium salt 

(CMC), c) poly(sodium 4-styrenesulfonate) (PSS), and d) alginic acid sodium salt (AGA). 
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Figure 19. First and second cycles of graphite with a) PVdF, b) CMC, c) PSS, and d) AGA as binder. 
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Figure 20 shows the cycle performance of full cells at 30 oC and the corresponding voltage profiles, 

respectively. All binders including PVdF and ion exchangeable binders showed similarly stable cycle 

performance, and this is ascribed by that manganese dissolution is not severe during cycling at 30 oC. 

However, at 60 oC, all ion exchangeable binders exhibited more stable cycle performance than PVdF 

due to the ion exchange (Fig. 21). 
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Figure 20. Electrochemical performances of Li1.1Mn1.86Mg0.04O4 (PVdF) / graphite (binder) full cell at 

30 oC: a) cyclability, b) capacity retention, voltage profiles Li1.1Mn1.86Mg0.04O4 (PVdF) full cell with c) 

graphite (PVdF), d) graphite (CMC), e) graphite (PSS), and f) graphite (AGA). 
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Figure 21. Electrochemical performances of Li1.1Mn1.86Mg0.04O4 (PVdF) / graphite (binder) full cell at 

60 oC: a) cyclability, b) capacity retention, voltage profiles Li1.1Mn1.86Mg0.04O4 (PVdF) full cell with c) 

graphite (PVdF), d) graphite (CMC), e) graphite (PSS), and f) graphite (AGA). 
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The ion exchange between dissolved Mn2+ ions and Na+ ions of binders is supported by three designed 

experiments. First of all, the Na+ and Mn2+ concentrations in electrolytes were measured via 

inductively coupled plasma mass spectrometry (ICP-MS) before and after ion exchange occurred. 

Mn-dissolved electrolyte solution was prepared via storage of Li1.1Mn1.86Mg0.04O4 powders in LiPF6-

dissolved EC:DMC solution at 60 oC for 1 week, and then Li1.1Mn1.86Mg0.04O4 powders were removed 

through filtration. A considerable amount of manganese ions were dissolved in electrolyte at 60 oC, 

and Mn2+ concentration of the electrolyte solution was 0.14 mmol/kg. Powders of each binder was 

then added in the obtained manganese-dissolved electrolyte solution using a same weight ratio of 

binder/solution (300 mg/5 ml), and stored for 1 week. The binders were removed through filtration 

again, and the change of Na+ and Mn2+ concentrations of the resulting solutions were measured. As 

shown in Figure 22, Mn2+ concentration of the electrolyte solution slightly decreased into 0.98 

mmol/kg after storage of the PVdF binder, but the other ion exchangeable binders showed that the 

negligible amount of Mn2+ was remained in the electrolytes and the concentration of Na+ was highly 

increased after storage of binders. This implies that Mn2+ is bound to functional group of binders due 

to ion exchange. Also, after storage of ion exchangeable binders, the Na+ concentration is observed 

much more than the expected value from ion exchange with Mn2+ in electrolytes, and this is attributed 

to the ion exchange between Li+ of LiPF6 salts and Na+ of binders. Also, the ion exchange is further 

supported by that the IR spectra of the alginic acid binder is changed before and after storage in the 

manganese-dissolved solution (Fig. 23). The peak for symmetric carboxylate stretch was shifted from 

1410 cm-1 to 1420 cm-1 after ion exchange. Finally, the change of XRD patterns of fully lithiated 

graphite electrodes (LiC6) was observed before and after ion exchange due to the self-discharge. Half 

cells of graphite electrodes were first fully discharged when the redox potential reaches to 0V vs. 

Li/Li+. Then, the cells were disassembled and the graphite electrodes were soaked in the manganese-

dissolved electrolyte. After various soaking times from 0 to 60 min, the XRD patterns of the lithiated 

graphite electrodes were obtained. As shown in Figure 24, the lithiated graphite electrodes (LiC6) 

prepared with the PVdF binder showed the formation of secondary phase of LiC12 after 10 min, and 

the mixture composed of LiC12 and LiC24 phases were observed after 60 min accompanying with 

disappearance of LiC6 phase. This is attributed to that dissolved Mn2+ ions were reduced into Mn 

metal with the oxidation of the lithiated graphite. However, in the case of the lithiated graphite 

electrodes (LiC6) with CMC binder, the negligible formation of LiC12 phase is observed even after 60 

min, because most of dissolved Mn2+ ions were preferentially exchanged with Na+ ions of binders, 

resulting in inhibiting self-discharge. 
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Figure 22. Mn and Na concentrations in an electrolyte before and after storage with binders. 
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Figure 23. FT-IR spectra for alginic acid sodium salt before and after storage in the manganese-

dissolved solution. 
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Figure 24. XRD patterns of lithiated graphite prepared with a) PVdF and b) CMC binder. 
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In addition, the ion exchangeable separator having a functional group of sodium carboxylate was 

synthesized to improve cycle performance of the Li1.1Mn1.86Mg0.04O4 electrode, as shown in the 

schematic diagram (Fig. 13). First, Al2O3 is homogenously coated on conventional polyethylene (PE) 

separators via atomic layer deposition (ALD) method. Because the typical growth rate for Al2O3 ALD 

is 1.1 - 1.2 Å per ALD cycle,47-48 separator after 10 cycles ALD remain porous (Fig.25). Al2O3 is 

hydroxylized with treatment of H2O2. Then, 3-Aminopropyltriethoxysilane (APTES) was grafted on 

the surface of hydroxylized Al2O3. Carboxylic acid group of terephthalic acid is further reacted with 

amine group of grafted APTES by formation of amide group. Finally, carboxylic acid groups of the 

functionalized separator are changed into sodium carboxylate by treatment with NaOH. This synthesis 

is supported by IR spectra and XPS profile of surface-treated separators, as shown in Figure 26 and 

Figure 27, respectively. From IR spectra broad peaks at near 1000~1200 cm-1 are observed after 

treatment with APTES, and this indicates Si-O-Si stretching of APTES. After the reaction of 

terephthalic acid with APTES, the peaks at 1530 cm-1 and 1630 cm-1 are observable, indicating 

aromatic ring of teretphthalic acid and amide group, respectively. To clarify reaction of terephthalic 

acid, separator synthesized with terepahalic acid grafted iodine was used for XPS analysis. From XPS 

profile it is ascertained that terephthalic acid were grafted well onto the separator. Figure 28 shows the 

cycle performance of full cells at 60 oC and the corresponding voltage profiles. Full cells are 

comprised of Li1.1Mn1.86Mg0.04O4 spinel cathode with graphite anode, and electrodes are prepared with 

PVdF binders. It is notable that the ion exchangeable separator improved cycle performance at 60 oC, 

and this is attributed to the ion exchange between dissolved Mn2+ ions and Na+ ions of the surface-

treated separator with sodium terephtalate. This is supported by the decrease of Mn2+ concentration in 

the electrolyte from 0.082 mmol/L to 0.009 mmol/L after storage of the surface-treated separator in 

the manganese-dissolved electrolyte for 1 week. 
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Figure 25. SEM images of a) PE bare separator and b) PE separator after 10 cycles ALD. 
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Figure 26. FT-IR spectra of separator according to priority of reaction. 

 

 

 

 

 

 

 

 

 

36 



 

 

 

Figure 27. XPS profile of separator synthesized with terephthalic acid grafted with iodine. 
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Figure 28. Electrochemical performances of Li1.1Mn1.86Mg0.04O4 (PVdF) / graphite (binder) full cell at 

60 oC: a) cyclability, b) capacity retention, and c) voltage profiles of full cell with ion-exchangeable 

separator. 
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5. Conclusion 

The ion-exchangeable binders and separator having functional groups of sodium carboxylate or 

sulfonate are, for the first time, suggested and examined for the improvement of high temperature 

cycle performance of Li1.1Mn1.86Mg0.04O4 spinel cathode materials. These functional groups of binders 

and separator cause the ion exchange between Na+ ions of functional groups and dissolved Mn2+ ions 

of LiMn2O4 electrodes. This results in the trapping of dissolved Mn2+ ions to inhibit the reduction of 

Mn2+ on the surface of lithiated graphite anode. In this report, sodium carboxymethyl cellulose (CMC), 

poly(styrene sulfonate) (PSS) and alginate (AGA) were utilized as a function binder, and surface-

treated separator with sodium terephthalate was synthesized for the ion exchangeable separator. Using 

these functional binders and separator, the cycle performance of Li1.1Mn1.86Mg0.04O4 spinel at 60 oC 

was highly improved due to ion exchange. The effect of ion exchange was supported by IR spectra of 

binders, ICP analysis of electrolytes and ex situ XRD patterns of lithiated graphite electrodes. 
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