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Abstract 

 

Nitrogen-doped carbon nanofibers have potential to be an alternative metal-free catalyst for the air-

electrodes in fuel cells and metal-air batteries because of their enhanced electro-catalytic activity 

toward oxygen reduction reaction (ORR). However, the available nitrogen doping processes require 

more than one step. Here we report a simple and cost-effective fabrication process, electrospinning of 

polymeric fibers followed by carbonization at 1100℃, for preparation of nitrogen-doped porous 

carbon nanofibers with extremely high surface area (1271 m
2
g

-1
), demonstrating excellent 

electrocatalytic activity toward ORR at low cost, which is attributed to proper nitrogen-doping and 

enhanced graphitic characteristics of carbon fibers. For example, the performance of a Zn-air cell 

based on the nitrogen-doped porous carbon nanofibers exhibits a peak power density of 194 mW/cm
2
, 

comparable to that based on a commercial Pt/C catalyst (192 mW/cm
2
). Further, the generation of 

hydrogen peroxide ion (< 20%) in a half cell on the new catalyst is similar to that on the commercial 

Pt/C catalyst. 
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Figure captions 

 

Figure 1. Working principle and each electrode reaction of zinc-air battery. Note the red circle where 

three phase reaction (oxygen (gas), catalysts (solid) and electrolyte (liquid)) occur in air cathode. 

 

Figure 2. Schematic polarization curves of zinc-air cell. The equilibrium potential of the zinc-air cell 

(black line) is 1.65 V, but the practical voltage (red line) in discharge is lower than 1.65 V due to the 

sluggish ORR. A large potential is needed to charge zinc-air battery, higher than the equilibrium 

potential (blue line). 

 

Figure 3. Trends in oxygen reduction activity (defined in the text) plotted as a function of the oxygen 

binding energy. Reprinted with permission. Copyright 2004, American Chemical Society. 

 

Figure 4. Nitrogen species commonly reported in post pyrolyzed nitrogencontaining carbon. 

 

Figure 5. Comparison of the XPS spectra of the N 1s region for Vulcan carbon treated 2 h at 900 ◦C 

with acetonitrile: (a) sample exposed to atmosphere; (b) sample transferred to XPS via a controlled 

atmosphere transfer chamber. 

 

Figure 6. XPS spectra of the C 1s regions demonstrating the widening of the C 1s peak in a sample 

containing nitrogen. 

 

Figure 7. Schematic illustration of the basic setup for electrospinning. The insets show a drawing of 

the electrified Taylor cone and a typical SEM image of the nonwoven mat of poly(vinyl pyrrolidone) 

(PVP) nanofibers deposited on the collector. 

 

Figure 8. Photographs illustrating the instability region of a liquid jet electrospun from an aqueous 

solution of poly(ethylene oxide) (PEO). The capture time was on two different scales: A) 1/250 s, and 

B) 18 ns, respectively. Note that the path of the jet shown in B has been traced to improve the 

visibility. Copyright Elsevier Science, 2001. 

 

Figure 9. TEM images showing the representative microstructures of (A) low temperature (1000 ℃) 

carbonized PAN nanofibers, and (B) high temperature (2200 ℃) carbonized PAN nanofibers. 
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Figure 10. a–c) Cross-sectional images of thermally treated nanofibers at 2800 
o
C PAN:PMMA= a) 

5:5, b) 7:3, and c) 9:1. d) TEM image of sample (a) showing structurally developed core walls after 

thermal treatment. 

 

Figure 11. Polyacrylonitrile (PAN) and polystyrene (PS) were dissolved in dimethylformamide 

(DMF) as a carbon precursor. Nitrogen-doped porous carbon nanofibers were obtained after 

electrospinning and pyrolysis at 1100℃ to investigate the electrocatalytic activity for ORR. 

 

Figure 12. A typical SEM image of (a) NPCNFs-800, (b) NPCNFs-900, (c) NPCNFs-1000, (d) 

NPCNFs-1100. The interconnected carbon nanofiber webs of NPCNFs-1100 offer a continuous 

electron pathway to enhance efficient current collection. 

 

Figure 13. TEM images of a NPCNFs-1100 sample prepared from carbonization at 1100℃ for 1h in 

nitrogen showing the porous structure. 

 

Figure 14. XRD patterns of NPCNFs carbonized at different temperatures (800
o
C to 1100

o
C). The 

patterns show that samples are composed of disordered carbon (hard carbon). 

 

Figure 15. Nitrogen adsorption-desorption isotherm of (a) NPCNFs-800, (b) NPCNFs-900, (c) 

NPCNFs-1000, and (d) NPCNFs-1100 samples. 

 

Figure 16. Pore size distribution of (a) NPCNFs-800, (b) NPCNFs-900, (c) NPCNFs-1000, and (d) 

NPCNFs-1100 samples. 

 

Figure 17. Cyclic voltammograms of NPCNFS-1100 and CNF-1000 samples obtained at a scan rate 

of 100mV/s in argon saturated 0.1 M KOH solution (stirring at 1600 rpm). The electrochemically 

active surface area (ECSA) of NPCNFs-1100 is approximately 2.5 times higher than CNF-1000. 

 

Figure 18. SEM images of a unmodified PAN based carbon fiber carbonized 1000℃ in N2 

atmosphere (CNF-1000). b Nitrogen-doped porous carbon nanofiber obtained via carbonized at 

1100℃ in N2. The image shows formation of inner and outer pores consisting of meso- and micro- 

structures. The deconvoluted high-resolution N1s XPS spectra of c NPCNFs-800, d NPCNFs-900, e 

NPCNFs-1000, and f NPCNFs-1100. These peaks were fitted mainly into four components centered 

at around 398.0, 400.0, 401.3, and 402-405 eV, corresponding to pyridinic N (Dark Cyan), pyrrolic N 

(Orange), graphitic N (Navy), and pyridinic N oxide (Olive), respectively. 
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Figure 19. Converted values of N-species of each samples in Table S2. 

 

Figure 20. Some typical XPS spectra of C1s for NPCNFs. 

 

Figure 21. Raman spectra of NPCNFs after thermal treatment at different temperatures. The number 

adjacent to each spectrum represents the ID/IG ratio, which diminished with increasing pyrolysis 

temperature. Also, the G band became shaper with higher peak intensity at higher pyrolysis 

temperature. 

 

Figure 22. (a) Polarization curves of a NPCNFs-1100 sample in O2-saturated 0.1M KOH electrolyte 

collected at different rotation rates at a scan rate of 10 mV/s, (b) Koutecky-Levich plots of the 

NPCNFs-1100 sample at potential -0.4, -0.5, -0.6, and -0.7 V vs. Hg/HgO. 

 

Figure 23. (a) Ring and disk current density in O2-saturated 0.1M KOH at a rotation rate of 2500 rpm. 

The disk potential was scanned at 10mV/s and the ring potential was kept constant at 0.3V (vs. 

Hg/HgO). (b) and (d) The number of electrons transferred and the percentage of peroxide at different 

potential range, respectively. (c) The kinetic-limiting current density at -0.15 V (vs. Hg/HgO). 

 

Figure 24. Electrochemical half-cell data of Pt/C catalysts. (a) Ring and disk current density in O2-

saturated 0.1M KOH at a rotation rate of 2500 rpm. The disk potential was scanned at 10mV/s and the 

ring potential was kept constant at 0.3V (vs. Hg/HgO). (b) and (d) The number of electrons 

transferred and the percentage of peroxide at different potential range, respectively. (c) The kinetic-

limiting current density at -0.15 V (vs. Hg/HgO). 

 

Figure 25. Cyclic voltammograms (the 1
st
 and the 300

th
) of NPCNFs-1100 and 20 wt% Pt/C samples 

at a scan rate of 50 mV/s in argon saturated 0.1M KOH solution to show the stability during cycling. 

 

Figure 26. (a) a zinc-air cell consisted of an air cathode, a separator, and a zinc powder anode with 

6M KOH. (b) the air electrode divided into gas diffusion layer (GDL), catalyst layer(NPCNFs-1100), 

and Ni mesh as a current collector. (c) polarization curve with a scan rate of 5 mA/cm
2
∙sec and d 

corresponding power density curves at a constant current density varied from 0 to 340 mA/cm
2
. 
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Table captions 

 

Table 1. Physicochemical characterization of CNF-1000, NPCNFs-800, NPCNFs-900, NPCNFs-1000, 

and NPCNFs-1100. 

 

Table 2. Characteristics of the PAN-based porous carbon nanofibers reported in previous studies. 

 

Table 3. Detailed breakdown of N 1s spectra from the NPCNFs samples from XPS analysis, 

indicating relative atomic ratios of N species. 
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I. INTRODUCTION 

 

Metal-air batteries and fuel cells have attracted much attention due to their low cost, relatively high 

capacity, easy handling, and environmental benignity.[1-3] However, the performance of these 

electrochemical devices is primarily limited by the sluggish oxygen reduction reaction (ORR) kinetics. 

Accordingly, Pt-based catalysts have been widely used to enhance the ORR;[4-6] however, they are 

very expensive and have limited availability. Nitrogen atoms doped in a carbon plane with lone pair of 

electrons are reported to significantly enhance the electrocatalytic activity for oxygen reduction 

reaction (ORR).[7-14]  Although many different approaches have been studied for doping nitrogen 

into graphene, including nitrogen plasma treatment[15], chemical vapor deposition of methane in 

NH3,[16] and electrothermal reaction in NH3,[17] they require multiple steps to functionalize nitrogen 

atoms on carbon-based materials such as carbon nanotube[18] and graphene.[19] In contrast, 

nitrogen-doped carbon nano-fibers can be easily fabricated using nitrogen-containing compounds 

through electrospinning, which is a simple, convenient, and versatile technique widely used for 

fabrication of extremely long nanofibers with diameters ranging from tens of nanometers to a few 

micrometers.[20-25]  

Here we report a highly-active electrocatalyst based on nitrogen-doped carbon nanofibers for 

ORR, which is as efficient as a commercial Pt/C catalyst but at much lower cost. The dramatically 

enhanced electrocatalytic activity of the electrospun carbonfibers is attributed to their unique 

molecular structure under proper processing conditions: more nitrogen atoms were doped at the edge 

of carbon planes and a churros-like porous structure with very high surface area was created at high 

carbonization temperatures. Further, when used as the cathode in a Zn-air cell, power density of ~194 

mWcm
-2

 was demonstrated, which is comparable to that of a similar cell based on a commercial Pt/C 

catalyst (~192 mWcm
-2

).  
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II. REVIEW OF RELATIVE LITERATURE 

 

2.1 Introduction to Zinc-air batteries  

Zinc-air cells are composed of three parts; zinc metal as an anode, an air electrode as the cathode, 

which is divided into a gas diffusion layer and a catalytic active layer, and a separator, as shown in 

Figure 1 . Because the solubility of oxygen is very low at atmospheric pressure, it is necessary to use 

oxygen in the gas phase, not liquid.[26, 27] Oxygen from the atmosphere diffuses into the porous 

carbon electrode by difference in pressure of oxygen between the outside and inside of the cell, and 

then the catalyst facilitates the reduction of oxygen to hydroxyl ions in the alkaline electrolyte with 

electrons generated from the oxidation of zinc metal as the anode reaction. This is why we call this 

process a three-phase reaction: catalyst (solid), electrolyte (liquid), and oxygen (gas). Note in Figure 

1 the red circle where this three phase reaction occurs. This structure favors the gain of oxygen in 

zinc-air batteries. Generated hydroxyl ions migrate from the air cathode to the zinc anode to complete 

the cell reaction; this overall procedure during discharge can be described as the following 

electrochemical reactions of anode and cathode in alkaline solution, respectively. 

 

Figure 1. Working principle and each electrode reaction of zinc-air battery. Note the red circle where three phase reaction 

(oxygen (gas), catalysts (solid) and electrolyte (liquid)) occur in air cathode.[2] 

 

Anode:         Zn → Zn
2+

 + 2e
−
 

Zn
2+

 + 4OH
−
 → Zn(OH)4

2−
 

(E
o
 = −1.25 V vs. NHE) 

Zn(OH)4
2−

 → ZnO + H2O + 2OH
−
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Zn + 2H2O → Zn(OH)2 + H2 ↑ 

(also possible) 

Cathode:       O2 + 2H2O + 4e
−
→ 4OH

−
 

(Ε
o
 = 0.4 V vs. NHE) 

Overall reaction: 2Zn + O2 → 2ZnO (E
o
 = + 1.65 V) 

 

From the above chemical equation, with the exception of HER (which will be discussed later), the 

equilibrium potential of the zinc-air cell should be 1.65 V, where E eq = E 0 (cathode) – E 0 (anode). 

However, the practical working voltage of the zinc air cell is less than 1.65 V due to the internal loss 

of the cell due to activation, and ohmic and concentration loss.[28] In this review, we will not discuss 

these kinds of electrochemical losses in detail. However, it may be helpful to understand the 

electrochemical behavior of zinc-air batteries through a schematic polarization curve of each anode 

and cathode reaction.  

Figure 2 is a schematic potential ( v )-current ( i ) curve to efficiently understand the major origin 

of potential loss in zinc-air cells using oxygen. Note that the overpotential at the zinc anode is 

relatively smaller than that at the air electrode; also, the cathodic current occurs at the cathode, the air 

electrode. Conversely the anodic current occurs at the anode, the zinc electrode, in the discharge (red 

line). Of course, each current direction is reversed upon charging (blue line). From the polarization 

curve, it is possible to see that a large overpotential (the green line in Figure 2 ) is needed to generate 

hydroxyl ions by oxygen reduction reaction (ORR). This is why the working voltage of the actual 

zinc-air cell ( E 1 , Figure 2 , red line) is much smaller than 1.65 V, the open-circuit potential (OCV) 

( E eq , black line). Considering the reverse reaction (the oxygen evolution reaction) (OER), a larger 

potential is needed for charging (Figure 2 , blue line). From the brief discussion above, it can be seen 

that using the ORR has both positive and negative effects on zinc-air cells. The positive point enables 

this cell to have large energy density because of the lack of oxygen active material in the cell. We 

have already discussed this point. The negative point, conversely, forces the zinc-air cell to have 

significant potential loss, which eventually causes a decrease in the power density of the cell. This is 

why many studies have focused on how to minimize the large overpotential in the cathode reaction by 

developing new catalysts and modifying air electrode structures. Of course, when it comes to a 

primary zinc-air cell, it is not necessary to consider any problem in the zinc anode because the utilized 

zinc metal can be replaced with fresh metal via mechanical charging. However, for the purpose of 

developing an electrically rechargeable zinc-air battery, it is also important to study how to improve 

the electrochemical behavior of the zinc anode. Setting aside these two major drawbacks in zinc-air 

cells, other problems could still be obstacles in developing a secondary zinc air battery. In this review, 

we will deal with selected efforts to overcome possible problems in zinc-air cells and also discuss 

how to approach the development of a secondary zinc-air battery. 
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Figure 2. Schematic polarization curves of zinc-air cell. The equilibrium potential of the zinc-air cell (black line) is 1.65 V, 

but the practical voltage (red line) in discharge is lower than 1.65 V due to the sluggish ORR. A large potential is needed to 

charge zinc-air battery, higher than the equilibrium potential (blue line).[2] 

 

2.1.1 Cathode : Air Electrode and Catalysts 

The concept of using oxygen in a zinc-air battery requires the air electrode to have both proper 

catalysts for oxygen reduction reaction (ORR) and a highly porous structure. These two requirements 

should be considered simultaneously for designing an air electrode. As mentioned in the introduction, 

catalysts are needed to alleviate the large activation energy for ORR, but the structure of the air 

electrode is also an important factor affecting the performance of the zinc-air cell. In actual fact, the 

air electrode acts simply as a substrate where ORR occurs. Considering the overall reaction of the 

zinc-air battery (2Zn + O2 → 2ZnO), the only consumed materials are zinc metal and oxygen. Since 

oxygen is supplied endlessly from the atmosphere, in principle, the air electrode itself can be used 

repeatedly unless there is physical damage such as cracking in the air cathode after discharge.  

The highly porous structure of air electrodes makes a diffusion path for oxygen and functions as a 

substrate for catalysts. Therefore, carbon materials such as activated carbon and carbon nanotubes 

(CNT) can be used as substrates for the air electrode. Typically, an air electrode consists of a gas 

diffusion layer and a catalytic active layer and is prepared by laminating these together with a metal 

grid as a current collector.[29] (see Figure 1 ) The gas diffusion layer is composed of carbon material 

and a hydrophobic binder such as polytetrafluoroethylene (PTFE) as a wet-proofing agent. It is 

important to maintain hydrophobicity, which makes gas diffusion layer permeable to air but not water. 

The catalytic active layer consists of catalysts, carbon materials, and the binder. It is in the catalytic 

active layer that the oxygen reduction reaction (ORR) takes place. From the above discussion, it is 
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reasonable to assume that types and amounts of each material[30] and structure of air electrode[31-34] 

affect the performance of the air electrode. Eom et al. reported that micropores (0.2 ∼ 2 nm) of 

activated carbon did not affect the performance of the cathode in zinc air batteries.[35] By placing 

carbon particles in a sinter-locked network of metal fibers, Zhu et al. developed a thin layer air 

electrode ( < 0.15 nm) that is 30 ∼ 75% thinner than the commercial air electrode; they suggested 

that this structure makes the three-phase reaction sites more efficient. [26] To make a secondary zinc-

air battery, developing a bifunctional catalyst is important. In addition to the catalyst itself, the 

oxidation of the catalyst[36] and the carbon substrate should also be considered in air electrodes 

where the oxygen evolution reaction (OER) takes place during charging, because the high surface area 

of the carbon substrate is severely attacked by the highly reactive oxygen generated from the OER.[37] 

Ross and Sattler demonstrated that graphitized carbon led to a reduction of the corrosion rate under 

anodic conditions in alkaline solutions.[38] 

Although the oxygen reduction mechanism is very complex, it is believed that there are two kinds of 

mechanism. One is a direct four-electron pathway, in which oxygen directly reduces to OH
−
 ; the 

other is a peroxide two-electron pathway, in which oxygen indirectly reduces to OH
−
 via HO2

−
 .[39]  

Because the two-electron process is more common in alkaline solutions, proper catalysts are needed to 

facilitate the decomposition of HO2
−
 into OH

−
 . It is well known that the kinetics of the oxygen 

reduction reaction (ORR) are very sluggish and that overpotentialis required for the desired reaction. 

This phenomenon conversely decreases power density and high rate discharge. On the other hand, this 

problem is a commonly observed one in batteries using oxygen as active material, such as other metal 

air cells and fuel cells. Therefore, many efforts to overcome this problem have focused on finding 

proper catalysts to reduce the oxygen reduction overpotential (see Figure 2 ). 

Advances in computational catalysis have enabled us to screen inactive catalysts and to predict 

which catalysts will have more activity for ORR, which prediction helps save time and costs in 

developing proper catalysts. D-band center theory, suggested by Norskov, has played an important 

role in studies of catalysts,[40, 41] and a famous volcano plot has been used to predict activity and 

selectivity of catalysts for ORR when designing better fuel cells[42] as shown in Figure 3. Based on 

this plot, many noble metal catalysts, both alloy and faced-metal catalysts, have been studied to 

improve ORR activity.[5, 43-49] Although noble metal catalysts such as platinum have high activity 

for ORR, the cost of manufacturing an air cathode increases dramatically when using such metals, 

which impedes commercialization. And, because oxygen reduction in alkaline solution is used as the 

cathode reaction in the zinc-air system, it is not necessary to use a pure noble metal catalyst.[37] With 

an advantage in the alkaline system, it is possible to use typical transition metal oxides such as 

perovskite, pyrochlore and spinel, individual oxides, and their mixtures for air cathodes.[37, 39, 50-52] 

Gorlin et al. reported that Mn oxide thin fi lm showed higher activity for both ORR and OER, similar 

to that of noble metal catalysts: Pt, Ru, and Ir.[53] Han et al. reported on the dependence of particle 
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size on the oxygen reduction reaction (ORR). Using cyclic voltammetry and a rotating disk electrode 

(RDE), they found that the direct four electron pathways were preferred by larger Ag particles (174 

nm), and that simultaneous four electron and peroxide two-electron pathways were preferred by finer 

Ag particles (4.1 nm).[54] Recently, graphene has been used as an ORR catalyst without metal. Qu et 

al. showed that nitrogen-doped graphene (N-graphene) has much better activity than platinum for 

ORR via the four electron pathway in alkaline solution; it also has long-term operation stability.[16] 

 

Figure 3. Trends in oxygen reduction activity (defined in the text) plotted as a function of the oxygen binding energy. 

Reprinted with permission. Copyright 2004, American Chemical Society.[2] 

 

2.1.1.1 Nitrogen-Doped Carbon 

 Nitrogen-containing carbons have been studied extensively, particularly with XPS, for coal and Li 

ion battery electrode applications. Pels et al. performed a detailed XPS analysis of the transformation 

of carbon and nitrogen model compounds into nitrogen-containing graphite during high-temperature 

pyrolysis [55] and reported that nitrogen functional groups in carbon decompose at higher 

temperatures to form two species, quarternary nitrogen and pyridinic nitrogen. Quarternary nitrogen 

can be described as “graphitic nitrogen,” in which nitrogen is within a graphite plane and bonded to 

three carbon atoms. This type of nitrogen is known to have a characteristic N 1s peak in the XPS 

spectra at around 401.3 ± 0.3 eV. Pyridinic nitrogen exists on the edge of graphite planes, where it is 

bonded to two carbon atoms, donates one p electron to the aromatic π-system, and has a resulting N 1s 

binding energy near 398.6 ± 0.3 eV. Therefore, XPS can be used to quantify these species based on 

differences in the N 1s spectra. 

 Although the two previously mentioned nitrogen species are the most stable in carbon treated at high 

temperatures (>600 ◦C), some additional nitrogen functional groups are possible in carbon. Pyrrolic 

nitrogen is often assigned to peaks at 400.5 ± 0.3 eV. Pyridone (pyridinic-N next to an OH group) has 
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a similar assignment, and the two are considered indistinguishable.[55] Both of these species have 

been shown to decompose at temperatures above 600 ◦C to pyridinic-N and quarternary-N.[55] A 

nitrogen species has also been reported in pyrolyzed samples with a high binding energy (402–405 

eV), typical of oxidized nitrogen. Several authors have termed this feature a pyridinic–N+–O− species 

that forms after the sample is exposed to air.[55-57] The species discussed thus far are depicted in 

Figure 4. Computer simulations have shown that the pyridinic–N+–O− species can form during the 

combustion of nitrogen-containing carbon with oxygen.[58] 

 

Figure 4. Nitrogen species commonly reported in post pyrolyzed nitrogencontaining carbon.[9] 
 

However, assignment of a pyridinic–N+–O− peak cannot be made with a high level of certainty 

Figure 5 compares the N 1s region for Vulcan carbon after treatment with acetonitrile at 900 ◦C for 2 

h. The O 1s spectra could not contribute any useful information in this regard because of the low 

oxygen concentrations on the surface of the samples (<2%) and the wide variety of possible oxygen 

species on the surface of carbon, thus further reducing the confidence in any deconvolution in this 

region. Alternative assignments to the high-binding energy shoulder in the N 1s region may be related 

to the interaction of graphitic nitrogen with other nitrogen atoms or to differences in the binding 

energy of graphitic nitrogen, depending on its position in the graphite plane. For instance, it has been 

documented that the presence of nitrogen in graphite stretches the C 1s peak to higher values[59]; 
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Figure 5. Comparison of the XPS spectra of the N 1s region for Vulcan carbon treated 2 h at 900 ◦C with acetonitrile: (a) 

sample exposed to atmosphere; (b) sample transferred to XPS via a controlled atmosphere transfer chamber.[9] 

 

Figure 6 shows an example of this phenomenon. It is possible that because some carbon atoms are 

closer to a nitrogen atom in the graphite matrix than others, some carbon will inherently have a higher 

C 1s binding energy. The C 1s peak has been shown to grow wider as more nitrogen is added to 

graphite.[59] A similar phenomenon may occur in the N 1s spectra. Some nitrogen atoms will be 

closer to one another and thus have higher binding energy. Alternatively, Casanovas et al. developed a 

hypothesis to explain this shoulder based on modeling of the binding energy of various nitrogen 

species present in graphite layers.[60] These authors predicted pyridinic-N and pyrrolic-N to have N 

1s binding energies of 399.0 eV and 400.3 eV, respectively, similar to the assignments proposed by 

Pels et al..[55] However, their calculations revealed that the “graphitic nitrogen” (quarternary-N) can 
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have a binding energy ranging between 401 and 403 eV, even in the absence of oxidized nitrogen, 

depending on its location in the carbon plane. Because the cause of the higher-binding energy N 1s 

shoulder is not obvious, this area of the deconvolution was not assigned. In addition, contributions to 

the N 1s spectra from pyrrolic nitrogen (or pyridone) were ignored for the samples treated at 900 ◦C, 

because such species are not thought to be stable at this temperature,[55] and during deconvolution 

they appeared to contribute only minimally, if at all. However, samples treated for shorter times and at 

lower temperatures were difficult to deconvolute in the N 1s spectra, because the nitrogen content was 

typically lower and perhaps because pyrrolic nitrogen was more abundant. Consequently, only 

samples treated at 900 ◦C for 2 h or longer are compared in this work, and for the purposes of this 

study, the ratio of quarternary to pyridinic nitrogen is of the greatest importance, because this will 

give some indication to the extent of edge plane exposure and the corresponding nanostructure. 

 

Figure 6. XPS spectra of the C 1s regions demonstrating the widening of the C 1s peak in a sample containing nitrogen.[9] 

 

Lai et al. prepared N-doped RG-O by annealing of G-O under ammonia and found that this material 

tends to show superior ORR catalytic performance to catalysts produced by annealing of G-O with N 

containing polymer composites,[7] perhaps due to the considerable content of both pyridinic N and 

graphitic N. Annealing of PANi/RG-O and Ppy/RG-O gives products containing predominately 

pyridinic N and pyrrolic N species, respectively. Most importantly, the electrocatalytic activity of N-

containing metal-free catalysts is highly dependent on the graphitic N content while pyridinic N 

species improve the onset potential for ORR. However, the total atomic content of N in the metal-free, 

graphene-based catalyst did not play an important role in the ORR process. Graphitic N can greatly 

increase the limiting current density, while pyridinic N species might convert the ORR reaction 

mechanism from a 2e
-
 dominated process to a 4e

-
 dominated process.[7] 

 And also it is clearly shown by Geng et al. that nitrogen-doped graphene catalysts can be synthesized 

by the treatment of graphene by ammonia under different temperatures.[8] The highest ORR activity 

in alkaline solution was obtained with the catalyst treated at 900 °C. XPS indicated that only 2.8% 
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nitrogen was introduced into the graphene for N-graphene (900). Quaternary type nitrogen species 

seem to play the most important role for ORR activity. Moreover, their electrochemical measurements 

showed that N-graphene (900) catalysts promote the desired 4e
-
 ORR in alkaline solution. In 

comparison to the commercial Pt/C catalyst, N-graphene (900) catalyst presented higher ORR onset 

potential(0.308 V) and 43 mV more positive ORR half-wave potential. Also importantly, it 

demonstrated better stability than Pt/C (loading: 4.85 μgPt cm
-2

) in the studied conditions. Therefore, 

N-doped graphene may have the potential to replace the costly Pt/C catalyst in fuel cells in an alkaline 

solution.[8] 

 Matter et al. have concluded that Pyridinic nitrogen itself may not be the active site for the ORR, but 

may be a marker for edge plane exposure.[9] XPS can possibly give a qualitative measure of edge 

plane exposure for nitrogen containing carbons, assuming no other nitrogen species present and no 

additional influence on the formation of quarternary versus pyridinic nitrogen during carbon growth. 

Based on these insights into the role of nanostructure, there is a large potential for improvement in 

ORR activity of nonnoble metal materials considering the advancements being made in the formation 

of carbon nanostructures.[9] 

 Gong et al. reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs)[10] 

can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation 

stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells. In 

air-saturated 0.1 molar potassium hydroxide, they observed a steady-state output potential of –80 

millivolts and a current density of 4.1 milliamps per square centimeter at –0.22 volts, compared with –

85 millivolts and 1.1 milliamps per square centimeter at –0.20 volts for a platinum-carbon electrode. 

The incorporation of electron-accepting nitrogen atoms in the conjugated nanotube carbon plane 

appears to impart a relatively high positive charge density on adjacent carbon atoms. This effect, 

coupled with aligning the NCNTs, provides a four-electron pathway for the ORR on VA-NCNTs with 

a superb performance.[10] 

 

2.2 Electrospinning 

 Figure 7 shows a schematic illustration of the basic setup for electrospinning. It consists of three 

major components: a high-voltage power supply, a spinneret ( a metallic needle ), and a collector ( a 

grounded conductor ). Direct current (DC) power supplies are usually used for electrospinning 

although the use of alternating current (AC) potentials is also feasible.[61-64] The spinneret is 

connected to a syringe in which the polymer solution (or melt) is hosted. With the use of a syringe 

pump, the solution can be fed through the spinneret at a constant and controllable rate. When a high 

voltage (usually in the range of 1 to 30 kV) is applied, the pendent drop of polymer solution at the 

nozzle of the spinneret will become highly electrified and the induced charges are evenly distributed 

over the surface. As a result, the drop will experience two major types of electrostatic forces: the 
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electrostatic repulsion between the surface charges; and the Coulombic force exerted by the external 

electric field. Under the action of these electrostatic interactions, the liquid drop will be distorted into 

a conical object commonly known as the Taylor cone (see the inset of Figure 7).[61-63, 65, 66] Once 

the strength of electric field has surpassed a threshold value, the electrostatic forces can overcome the 

surface tension of the polymer solution and thus force the ejection of a liquid jet from the nozzle. This 

electrified jet then undergoes a stretching and whipping process, leading jet is continuously elongated 

and the solvent is evaporated, its diameter can be greatly reduced from hundreds of micrometers to as 

small as tens of nanometers. Atrracted by the grounded collector placed under the spinneret, the 

charged fiber is often deposited as a randomly oriented, non-woven mat, see the inset of Figure 7 for 

the scanning electron microscope (SEM) image of a typical sample. With the use of this relatively 

simple and straightforward technique, more than 50 different types of organic polymers have already 

been processed as fibers with diameters ranging from tens of nanometers to a few micrometers.[61-63] 

 

Figure 7. Schematic illustration of the basic setup for electrospinning. The insets show a drawing of the electrified Taylor 

cone and a typical SEM image of the nonwoven mat of poly(vinyl pyrrolidone) (PVP) nanofibers deposited on the 

collector.[20] 

  

Although the setup for electrospinning is extremely simple, the spinning mechanism is rather 

complicated. As in electrospray, electrospinning also involves complex electro-fluid-mechanical 

issues. Before 1999, the formation of ultrathin fibers by electrospinning was often ascribed to the 

splitting or splaying of the electrified jet as a result of repulsion between surface charges.[61] Recent 
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experimental observations demonstrate that the thinning of a jet during electrospinning is mainly 

caused by the bending instability associated with the electrified jet.[65-68] Figure 8A shows the 

photograph of a spinning jet.[68] It is obvious that the jet was initially a straight line and then became 

unstable. It appears that the cone-shaped, instability region is composed of multiple jets. However, a 

closer examination using high-speed photography (Figure 8B) establishes that the conical envelope 

contains only a single, rapidly bending or whipping thread. In some cases, splaying of the electrified 

jet might also be observed, though it was never a dominant process during spinning.[67, 68] The 

frequency of whipping is so high that conventional photography cannot properly resolve it, giving the 

impression that the original liquid jet splits into multiple branches as it moves toward the collector. 

 Based on experimental observations and electrohydrodynamic theories, mathematical models have 

been developed by several groups to investigate the electrospinning process. Reneker and co-workers 

treated the charged liquid jet as a system of connected, viscoelastic dumbbells and provided a good 

interpretation for the formation of bending instability.[65, 67] They also calculated the three-

dimensional trajectory for the jet using a linear Maxwell equation and the computed results were in 

agreement with the experimental data. Rutledge and co-workers considered the jet as a long, slender 

object and thereby developed a different model to account for the electrospinning phenomenon.[68-71] 

Their experimental and theoretical studies clearly showed that the spinning process only involves 

whipping (rather than splaying) of a liquid jet. The whipping instability is mainly caused by the 

electrostatic interactions between the external electric field and the surface charges on the jet. The 

formation of fibers with fine diameters is mainly achieved by the stretching and acceleration of the 

fluid filament in the instability region. The same group further showed that the model could be 

extended to predict the saturation of whipping amplitude, as well as the diameter of resultant 

fibers.[71] In some related studies, Feng proposed another model to describe the motion of a highly 

charged liquid jet in an electric field, and the role of nonlinear rheology in the stretching of an 

electrified jet was also examined.[72, 73] All these studies provide a better understanding of the 

mechanism responsible for electrostatic spinning process. More importantly, they may assist 

experimentalists enormously in the design of new setups that may provide a better control over the 

diameter and structure of electrospun nanofibers. 
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Figure 8. Photographs illustrating the instability region of a liquid jet electrospun from an aqueous solution of poly(ethylene 

oxide) (PEO). The capture time was on two different scales: A) 1/250 s, and B) 18 ns, respectively. Note that the path of the 

jet shown in B has been traced to improve the visibility. Copyright Elsevier Science, 2001.[74] 

 

2.2.1 Carbon Nano fibers 

 In order to convert electrospun polymer nanofibers to carbon nanofibers, carbonization process at 

around 1000 °C has to be applied. In principle, any polymer with a carbon backbone can potentially 

be used as a precursor. For the carbon precursors, such as PAN and pitches, so-called stabilization 

process before carbonization is essential to keep fibrous morphology, of which the fundamental 

reaction is oxidation to change resultant carbons difficult to be graphitized at high temperatures as 

2500 °C. During stabilization and carbonization of polymer nanofibers, they showed significant 

weight loss and shrinkage, resulting in the decrease of fiber diameter. 

Here, the results obtained in these papers are reviewed by dividing into the sections based on the 

purposes of the research works; fundamental structure and properties of the carbon nanofibers, their 

performance in energy storage devices, lithium-ion rechargeable batteries and electrochemical 

capacitors, and composite nanofibers with carbon nanotubes. 

 

2.2.1.1 Structure and Properties 

PAN nanofibers were prepared by electrospinning from DMF solution, on which structure and 

electromagnetic properties were studied.[75-77] Structural analysis was performed on carbon 

nanofibers, which were prepared from PAN/DMF solution by carbonization at 750 °C followed by 

1100 °C.[78] The resultant carbon nanofibers had average diameter of 110 nm, interlayer spacing d002 

of 0.368 nm and Raman band intensity ratio ID/IG of 0.93. From SEM and TEM observations, the fiber 

was concluded to have skin-core heterogeneity; in the skin carbon layers being oriented 

predominantly parallel to the fiber surface. PAN-based carbon nanofiber bundles, which were 

prepared from 10 wt% PAN/DMF solution added 5 wt% acetone and 0.01 wt% 
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dodecylethyldimethylammonium bromide, and collected on the rim of the rotating disc covered with 

Al foil, were subjected to the heat treatment at 1400, 1800, and 2200 °C for 1 h.[79] The diameter of 

nanofibers composing the bundles was approximately 330 nm for as-spun, 250 nm for 1000 °C-

treated and 220 nm for 1800 °C-treated. TEM images are shown in Figure 9 on 1000 ° C-treated and 

2200 ° C-treated nanofibers, the latter having d002 of 0.344 nm and ID/IG of larger than 1.0. Aiming to 

have better alignment of basic structural units of hexagonal carbon layers along the fiber axis, multi-

walled carbon nanotubes (MWCNTs) were embedded into electrospun PAN-based carbon nanofibers, 

although the improvement was observed just around MWCNTs.[80] TEM observation on MWCNTs-

embedded PAN-based nanofibers by in-situ heating up to 750 °C showed only a local orientation of 

carbon layers.[81] On PAN-based nanofibers web after the activation by steam at 800 °C, adsorption 

behavior of benzene vapor was studied at a temperature of 343–423 K under a pressure up to 4.0 kPa, 

confirming a high adsorption in comparison with activated carbon fiber A-10.[82] By focusing on 

PAN, electrospinnability, environmentally benign nature and commercial viability were recently 

reviewed.[83] 

 

Figure 9. TEM images showing the representative microstructures of (A) low temperature (1000 ℃) carbonized PAN 

nanofibers, and (B) high temperature (2200 ℃) carbonized PAN nanofibers.[79] 

 

Core-shell polymeric nanofibers were electrospun through a doubled capillary, PAN/DMF solution 
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in the outer capillary and poly(methyl methacrylate) PMMA in the inner capillary, and converted to 

hollow carbon nanofibers by carbonization up to 1100 °C.[84] Similar hollow nanofibers were 

synthesized by electrospinning of emulsion-like DMF solution of PAN and PMMA in different ratios 

through a single capillary of 0.5 mm diameter, followed by carbonization at 1000 °C and heat 

treatment up to 2800 °C,[85] as shown in Figure 10. By changing PAN/PMMA ratio, mesopore 

volume could be controlled; mesopore volume Vmeso changed from 0.18 cm
3
 g

−1
 for 9/1 ratio to 0.47 

cm
3 

g
−1

 for 5/5 ratio, although micropore volume Vmicro was almost constant of 0.34 cm
3
 g

−1
.[85] 

Mixing of poly(vinylpyrrolidone) (PVP) into PAN was also employed to control pore structure in the 

nanofibers.[86] PVP was dissolved out from as-spun fibers at 100 °C under hydrothermal condition 

and the resultant PAN nanofibers were carbonized at 1000 °C after stabilization. The change of 

PAN/PVP ratio in the precursor solution from 0.8/0.2 to 0.8/1.0 resulted in the carbon nanofibers with 

SBET from 237 to 571 m
2
 g

−1
 and total pore volume Vtotal from 0.10 to 0.19 cm

3
 g

−1
. PVP/PAN 

solutions were separately fed into the spinneret to form side-by-side bicomponent nanofi bers and 

compared with PAN/PVP blend nanofibers after carbonization up to 970 °C and their activation at 

850 °C in CO2.[87] Side-by-side bicomponent nanofibers changed the cross-section morphology from 

round to cocoon-like shape by PVP extraction. 

 

Figure 10. a–c) Cross-sectional images of thermally treated nanofibers at 2800 oC PAN:PMMA= a) 5:5, b) 7:3, and c) 9:1. d) 

TEM image of sample (a) showing structurally developed core walls after thermal treatment.[85] 
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The DMF-insoluble fraction of a petroleum-derived isotropic pitch in THF solution (40 wt% pitch) 

was successfully electrospun to form the web of carbon fibers with 2-6 μm diameter.[88, 89] The 

difficulty to prepare thinner fiber was pointed out to be resulted from the low boiling point (65–67 °C) 

of the solvent THF, the viscosity of the jet increasing due to the volatilization of THF during 

electrospinning. After activation, the webs were microporous, showing very high SBET as 2200 m
2 
g

−1
. 

By mixing PAN with a pitch, spinnability using a binary solvent DMF + THF (1/1) was improved, 

resulting in the fibers with the diameter of 750 nm.[90] After activation by using steam at 900 °C, 

SBET of 1877 m
2
 g

−1
 and Vtotal of 1.11 cm

3
 g

−1
, consisting of both micro- and meso-pores, were 

obtained. THF soluble component of the pitch with a low molecular weight of 556 gave better 

spinnability on its 40 wt% THF solution, but the carbon nanofibers prepared from a high molecular 

weight pitch as 2380 showed higher development of micropores, giving SBET of 2053 m
2
 g

−1
, after 

carbonization at 1000 °C and activated at 900 °C in steam/N2 flow. Highly porous carbon nanofi bers 

were obtained by electrospinning of THF solution of polycarbosilane, followed by pyrolysis at 

different temperatures and chlorination to extract Si.[91] The nanofibers pyrolyzed at 900 °C and 

chlorinated at 850 ° C had very high SBET as 3116 m
2 

g
−1

 and Vtotal of 1.66 cm
3
 g

−1
, which were 

reported to have a high storage capacity for hydrogen as 3.86 wt% at 17 bar and 77 K. 

Polyimide (PI) was also spun to prepare carbon nanofibers.[92-96] Carbon nanofibers prepared from 

a PI of PMDA/ODA with the diameter less than 2-3 μm could give relatively high tensile strength as 

74 MPa and electrical conductivity of 5.3 S cm
−1

 after the heat treatment at 2200 °C.[92] A 

thermotropic PI (Matimid 5218) dissolved into dimethylacetamide (DMAc) together with 0.3–3.0 wt% 

iron(III) acetylacetnate (AAI) was spun to nanofibers in the atmosphere with 24% humidity and then 

carbonized at 400–1200 ° C.[94] It was declared that AAI worked as a catalyst after decomposing to 

a-Fe and Fe3O4 during carbonization, although the structure parameters changed a little, d002 

decreasing from 0.37 to 0.34 nm, Lc(002) increasing from 1.0 to 4.2 nm. The addition of PAN in PI 

solution improved spinnability and decreased the diameter of resultant carbon fibers.[96] 

Poly(vinylidene fluoride) (PVDF) nanofibers were spun from the solution of DMF with 

poly(ethylene oxide) (PEO) and water, of which the webs were dehydrofluorized by using 1,8-

diazabicyelo[5,4,0]undec-7-ene at 90 °C, followed by carbonization at 1000 °C for 1 h in N2 to 

convert to carbon nanofiber webs.[97] They contained three kinds of pores; the largest pores were the 

interstices among nanofibers, intermediate-sized pores with 100-300 nm size were formed on the fiber 

surface due to liquid-liquid phase separation and the micropores were due to the decomposition of 

PEO during carbonization. Dehydrofluorination process was found to be the key to retain the pore 

morphology in as-spun fibers during carbonization.  

For electrospinning of phenolic resin (novolac type), its concentration had to be selected, the 

solution with more than 65 wt% was difficult to be spun and that with less than 50 wt% gave fibers 

having beads. Spinnability of phenolic resin solution was improved by the addition of a small amount 
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of poly(vinyl butyral) (PVB) with a molecular weight (Mw) of 110,000, 1 to 3 wt%. The resultant 

carbon nanofiber fabrics prepared at 900 °C were flexible and had SBET of ca. 500 m
2
/g. Addition of a 

high molecular weight PVB (Mw of 340,000) markedly improved the spinnability of phenolic resin 

solution due to decreasing solution viscosity and the addition of an electrolyte (pyridine or Na2CO3) 

allowed to give thinner fibers because of increasing electrical conductivity of the precursor solution; 

0.1 wt% Na2CO3 resulting in the carbon nanofibers with an average diameter of 110 nm and SBET of 

790 m
2
 g

−1
. Microporous carbon nanofibers having Vmicro of 0.9 cm

3
 g

−1
 were prepared from 

novolactype phenol-formaldehyde by adding PVB and Na2CO3, followed by carbonization at 800 °C 

without activation.[98] Electrical conductivity of these carbon nanofiber fabrics was 5.29 S cm
−1

. 

Carbon nanofibers with a narrow pore size distribution of 0.4–0.7 nm were prepared from novolac-

type phenolic resin via electrospinning of its methanol solution, curing in formaldehyde/HCl and 

carbonization at 800 °C.[98] Even though no activation was applied, the nanofibers had SBET of 812 

m
2
 g

−1
, V total of 0.91 cm

3
 g

−1
 and relatively low ID/IG of 0.88.  

Electrical conductivity was measured to be 4.9 S cm
−1

 on 800 °C-carbonized PAN-based carbon 

nanofibers[75] and the 1000 °C-treated nanofibers showed a large negative magnetoresistance, -0.75 

at a temperature of 1.9 K under a magnetic field of 9 T.[77] Although the papers have said that fibrous 

morphology was survived under the heat treatment, it has to take into account that these nanofi bers 

are not stabilized before carbonization when these properties were compared with those of 

commercial PAN-based carbon fibers. The PAN-based carbon nanofiber bundles prepared by 

carbonization at 2200 °C showed the conductivity of 840 S cm
−1

 in parallel with fiber axis, but 61 S 

cm
−1

 in perpendicular to the fiber axis.[79] Electrospun PAN-based carbon nanofibers showed 

electrical conductivity changes sensitive to NO gas after activation through immersion into 80 wt% 

H3PO4 aqueous solution for 12 h and then heat treatment at 750 °C in Ar. 

Mechanical property measurements on single fibers were carried out on PAN-based carbon nanofi 

bers.[78] Averaged bending modulus was measured to be 63 GPa by mechanical resonance method 

and Weibull fracture stress was 640 MPa with a failure probability of 63%. Tensile strength and 

Young’s modulus measured on the bundles of electrospun PAN-based carbon nanofibers were 542 

MPa and 58 GPa, respectively.[79] These mechanical properties reported on electrospun carbon 

nanofibers are much inferior to commercially available PAN-based carbon fibers. Since oxidative 

stabilization of PAN fibers has been known to be the most important unit-process for PAN-based 

carbon fibers, optimization of stabilization condition for electrospun PAN nanofibers has to be studied 

in detail. Relatively high tensile strength and Young’s modulus were reported on electrospun single 

nanofibers prepared from 9 wt% PAN/DMF solution, followed by stabilization at 300 °C for 1 h in air 

and carbonized at 800, 1100, 1400 and 1700 °C in N2.[99] Tensile strength depended strongly on heat 

treatment temperature, showing the maximum of 2.30 GPa at 1400 °C, and Young’s modulus 

increased with increasing temperature, giving 181 GPa at 1700 °C. These changes in mechanical 
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properties with heat treatment were explained by the growth of crystallite in nanofibers. However, it 

has to be pointed out that orientation of crystallites in the nanofibers is randomly oriented, not axial. 

Stretching on as-spun PAN nanofiber bundles was applied before and during their stabilization, 

expecting well-developed nanotexture and high mechanical properties,[83, 100] although no detailed 

experimental data were presented regrettably. 

Loading of nanoparticles of various metals and metal oxides were performed via electrospinning 

process. Various transition metal nanoparticles were loaded to carbon nanofibers in order to improve 

the performance of electrochemical capacitors and lithium-ion rechargeable batteries, and also loading 

of platinum to carbon nanofiber webs was carried out for fuel cell applications, as described 

separately in the following sections. By electrospinning of lignin/ethanol solution containing 0.2 and 

0.4 wt% Pt acetylacetonate, followed by stabilization at 200 °C in air and carbonization at 600–

1000 °C, microporous Pt-loaded carbon nanofibers were obtained.[101] Pd-loaded carbon nanofi bers 

were prepared from 8 wt% PAN/DMF solution containing 4.8 wt% Pd acetate Pd(OAc)2 by 

electrospinning, accompanying by the stabilization in steps from 230 to 300 ° C and carbonization at 

1100 °C.[102] The resultant nanofibers showed high electrocatalytic activity toward the reduction of 

H2O2. Magnetic CoFe2O4 nanoparticles were embedded in PAN-based carbon nanofibers via 

electrospinning of PAN/DMF solution with dispersed oleic acid-modified CoFe2O4 nanoparticles with 

5 nm size, followed by stabilization and carbonization.[103] CoFe2O4-embedded nanofibers were 

superparamagnetic because of nanosized magnetic particles and saturation magnetization increased 

from 45 to 63 emu g
−1

 by carbonization. SiO2-embedded carbon nanofibers were prepared by 

electrospinning of PAN/DMF solutions containing different amounts of SiO2, followed by 

stabilization and carbonization.[104] SiO2 particles embedded in carbon nanofibers were washed out 

by HF, but SBET and Vtotal increased only to 340 m
2
 g

−1
 and 0.472 cm

3
 g

−1
. Vanadium embedded 

carbon nanofibers were prepared by electrospinning of PAN/DMF solutions containing different 

amounts of V2O5.[105] After activation by using KOH at 750 °C, nanoporous nanofiber were obtained, 

SBET reaching to 2780 m
2
 g

−1
, Vtotal to 2.67 cm

3
 g

−1
 and Vmicro to 1.52 cm

3
 g

−1
, which gave a hydrogen 

storage capacity of 2.41 wt% at 303 K and 10 MPa. Mn-loaded carbon nanofibers, which were 

activated by steam at 850 °C and had Vmicro of 0.42 cm
3
 g

−1
, gave relatively high adsorption capacity 

for toluene at 289 K.[106] 
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III. EXPERIMENT 

 

The polymer blend solution for electrospinning was prepared by dissolving polyacrylonitrile (99.9%, 

PAN, Mw = 150,000 g/mol, purchased from Aldrich) and Polystyrene (99.9%, PS, Mw = 230,000 

g/mol, purchased from Aldrich) in N,N-dimethylformamide (DMF) with the concentration of 10 wt% 

and 6 wt%, respectively. This blend solution was stirred at room temperature for 24 h to attain 

homogeneous solution. The PAN/PS fibers were fabricated by a homemade electrospinning setup, 

which consisted mainly of a high voltage power supply (0-30kV), an ordinary syringe with a plastic 

nozzle (25G, Nano NC, Korea), and a syringe pump.  Aluminum foil was used as the collector. The 

electrospinning was carried out at a fixed voltage of 15 kV and a tip-to-collector distance of 15 cm. 

The electrospun nanofibers were oxidized in air at 400℃ for 1h, and then carbonized at 800, 900, 

1000, and 1100℃ for 1h in N2 atmosphere. The obtained samples were denoted as NPCNFs-800, 

NPCNFs-900, NPCNFs-1000 and NPCNFs-1100, respectively. 

Catalyst ink was prepared by ultrasonically mixing 2.0 mg as-prepared sample with 1.0 mL of 0.05% 

nafion (Aldrich) dispersion solution in DI-water for 1 h in order to make homogeneous suspension. 

Then, 6 μL of the prepared catalytic ink was transferred to the surface of a glassy carbon electrode of 

5 mm diameter using a micropipette. The ink was then dried for 15 min under vacuum at room 

temperature to form thin catalyst film on glassy carbon electrode as a working electrode Pt/C sample 

was obtained from Premetec. (20 wt% Pt on Vulcan XC-72).   

All half-cell experiments for ORR activity study using rotating disk electrode (RDE) and rotating ring 

disk electrode (RRDE) (ALS Co., Ltd) were carried out in 0.10 M KOH electrolyte under the same 

conditions using Pt wire and Hg/HgO as the counter and the reference electrode, respectively; Oxygen 

gas (99.9%) was purged for 30 min before each RDE and RRDE experiments to ensure that the 

electrolyte was saturated with oxygen. Rotation speed was varied from 900 to 2500 rpm to determine 

the kinetic parameters relevant to ORR using Koutecky-Levich equation. Elecrochemical 

characterization of as-prepared catalysts was performed using a potentiostat (Ivium) at a scan rate of 

10 mV/sec in the potential range of 0.15 V to -0.7 V. For the RRDE measurements, a potential of 0.3V 

was applied to ring electrode to obtain the ratio of ring to disk current. 

The gas diffusion layer (GDL) was prepared from a mixture of activated carbon (Darco G-60A, 

Sigma Aldrich) and PTFE binder (60 wt% PTFE emulsion in water, Sigma Aldrich) at a weight ratio 

of 7 to 3.[107] Activated carbon and PTFE were first dispersed in DI-water. The two suspensions 

were then mixed in desired proportion ultrasonically for 1 h to form a homogeneous suspension. After 

filtering to remove water and drying at 60
o
C, a mixed powder was obtained. Proper amount of 

isopropyl alcohol was then added to the dried black powder to form slurry. GDL was manufactured 

via kneading and rolling process to control the thickness. Subsequently, a Ni-form was attached to 
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back side of the GDL as a current collector. The thickness of the GDL was kept at ~350 µm to ensure 

proper gas distribution and sufficient current collection in electrochemical testing. This GDL (without 

catalyst) was used as the baseline reference for comparison. 

The air electrodes containing ORR catalysts were deposited on the GDL as follows: 2.0 mg catalyst 

powder was dispersed in 1 mL ethanol to form a homogeneous suspension. Then, 200 µL of the 

catalytic ink was transferred to the surface of the as-prepared GDL, which was subsequently dried at 

room temperature under vacuum for 0.5 h. To assemble a Zinc-air cell, 1 g of Zinc powder (Umicore) 

was used as the anode whereas Nylon net filters (Millipore) were used as the separator. 16–pi Air 

electrode was used as the cathode. Galvanodynamic experiments were carried out with a multichannel 

potentiostat (WBCS 3000, WonA Tech, Korea) at a wide range of current densities (0 to 340 mA/cm
2
) 

to characterize the performance of the catalyst in a practical Zinc-air cell. 

The materials structure, composition, morphology, and other properties were examined using an 

SEM (Nanonova 230, FEI) operating at 10kV, a TEM (JEOL JEM-2100F) operating at 200kV., an X-

ray diffractometer (XRD, D/Max2000, Rigaku), an XPS (Thermo Fisher, UK), and a micro-Raman 

(WITec). 

 

IV. RESULTS AND DISCUSSIONS 

 

As schematically illustrated in Figure 11, a homogenous blend solution of polyacrylonitrile (PAN) 

and polystyrene (PS) dissolved in dimethylformamide (DMF) can be electrospun to nanofibers of 

tunable diameters. Upon stabilization at 400℃ in air for 1 h, they can then be carbonized in N2 

atmosphere at different temperatures to form nitrogen-doped porous carbon nanofibers (NPCNFs). 
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Figure 11. Polyacrylonitrile (PAN) and polystyrene (PS) were dissolved in dimethylformamide (DMF) as a carbon 

precursor. Nitrogen-doped porous carbon nanofibers were obtained after electrospinning and pyrolysis at 1100℃ to 

investigate the electrocatalytic activity for ORR 

 

For brevity, the samples carbonized at 800, 900, 1000, and 1100℃ are denoted as NPCNFs-800, -900, 

-1000, and -1100, respectively. Nitrogen-containing polyacrylonitrile (PAN) precursor can introduce 

the nitrogen atoms on the carbon plane. Further, the carbon nano-fibers derived from PAN (without 

PS) using the sample fabrication process and carbonized at 1000℃ are denoted as CNF-1000. Under 

a scanning electron microscope (SEM), the NPCNFs-1100 sample has a nanofiber and churros-like 

morphology with diameters of 300 to 500 nm. Formation of the churros-like morphology is attributed 

to the carbonization of PS at >400℃.[108] It is noted that the interconnected carbon nanofiber 

networks after carbonization (Figure. 12) offer a continuous pathway for efficient current collection. 

 

Figure 12. A typical SEM image of (a) NPCNFs-800, (b) NPCNFs-900, (c) NPCNFs-1000, (d) NPCNFs-1100. The 

interconnected carbon nanofiber webs of NPCNFs-1100 offer a continuous electron pathway to enhance efficient current 

collection. 

 

Furthermore, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses 

(Figure 13 and 14) suggest that the NPCNFs-1100 consisted of disordered carbon (hard carbon).[109, 

110] 
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Figure 13. TEM images of a NPCNFs-1100 sample prepared from carbonization at 1100℃ for 1h in nitrogen showing the 

porous structure. 

 

Figure 14. XRD patterns of NPCNFs carbonized at different temperatures (800oC to 1100oC). The patterns show that 

samples are composed of disordered carbon (hard carbon). 

 

Pore size distribution was estimated from the adsorption data using the Barrett-Joyner-Halenda 

(BJH) model; the pore diameters are approximately 20 to 100 nm and the average pore volume is 

~0.74 cm
3
g

-1
. The NPCNFs a wide range pore size distribution, from mesopores (tens of nanometers) 
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to macropores (~110 nm), ideally suited for fast mass transport while maintaining high surface area 

(~1,271 m
2
g

-1
). (Figure 15 and 16).  

 

Figure 15. Nitrogen adsorption-desorption isotherm of (a) NPCNFs-800, (b) NPCNFs-900, (c) NPCNFs-1000, and (d) 

NPCNFs-1100 samples. 

 

 

Samples 
BET surface area 

( m
2
∙g

-1
) 

Average pore diameter 

(nm) 

Total Pore volume 

(cm
3
∙g

-1
) 

CNF-1000 747.03 1.80 0.34 

NPCNFs-800 905.44 3.49 0.79 

NPCNFs-900 914.32 4.33 0.99 

NPCNFs-1000 1055.6 3.63 0.96 

NPCNFs-1100 1271.2 3.78 1.21 

 

  Table 1. Physicochemical characterization of CNF-1000, NPCNFs-800, NPCNFs-900, NPCNFs-1000, and NPCNFs-1100. 
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Figure 16. Pore size distribution of (a) NPCNFs-800, (b) NPCNFs-900, (c) NPCNFs-1000, and (d) NPCNFs-1100 samples. 

 

Its surface area is the highest among all porous carbon nanofiber samples prepared from 

electrospinning of polymer solution (Table 2). Such an increase in surface area is expected to enhance 

electrochemical activity of the sample. Cyclic voltammograms collected for CNF-1000 and NPCNFs-

1100 samples suggested that the electrochemically active surface area of the NPCNFs-1100 sample is 

approximately 2.5 times higher than that of the CNF-1000 sample (Figure 17). In addition, the 

electrical conductivities of the NPCNFs-1100 and the CNF-1000 samples were ~3.61 S/cm and ~1.76 

S/cm, respectively (average value of measurements repeated by 10 times). Accordingly, the NPCNFs-

1100 sample has large amount of pore volume that may facilitates fast transport of oxygen gas and 

aqueous electrolyte to the active sites. 
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Method 

BET surface 

area 

( m
2
∙g

-1
) 

BJH pore 

size (nm) 

BJH Pore 

volume 

(cm
3
∙g

-1
) 

Morphology Application Refs 

PAN/PMMA 940 11.89 0.82 Hollow - [85] 

PAN/PVP 571 12.93 0.19 Porous - [86] 

PAN/PS - ~25 - Porous - [111] 

PAN/poly(AN-co-

MMA) 
321 100 0.36 Porous - [112] 

 

Table 2. Characteristics of the PAN-based porous carbon nanofibers reported in previous studies.[85, 86, 111, 112] 
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Figure 17. Cyclic voltammograms of NPCNFS-1100 and CNF-1000 samples obtained at a scan rate of 100mV/s in argon 

saturated 0.1 M KOH solution (stirring at 1600 rpm). The electrochemically active surface area (ECSA) of NPCNFs-1100 is 

approximately 2.5 times higher than CNF-1000. 

 

While the active sites for ORR on nitrogen-doped carbon materials are still controversial, it is 

believed that the nitrogen groups play an essential role in the enhancement of ORR kinetics.[10, 113, 

114] To correlate the ORR activity with the local atomistic structure of nitrogen, we carefully 

performed XPS analysis of the samples (Figure 18). The XPS spectra were deconvoluted to several 

different signals with binding energies of 398.0, 400.0, 401.3, and 402-405 eV corresponding to 

pyridinic N, pyrrolic N, graphitic N, and pyridinic N oxide, respectively[55, 115]. It is noted that 

spectral features of these peaks were significantly modified by the carbonization temperature. 

Previously, Matter et al. described the graphitic-N atoms at the edge sites are related to the binding 

energy of 401.3 eV,[9] which was also observed in the XPS spectra of our samples. Recent studies 
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concluded that graphitic-nitrogen enhanced the limiting current density due to the fact that N atoms 

reduce the electron density on the adjacent C nuclei, which facilitates electrons transfer from the 

adjacent C to N atoms and N backdonates electrons to adjacent C pz orbitals.[7, 8, 116] For the 

NPCNF samples, the amount of the pyridinic type of nitrogen decreased whereas those of the 

pyrrolic- and the graphitic-like nitrogen increased with increasing annealing temperature (Table 3 and 

Figure 19). The peak of pyridinic nitrogen was up-shifted to more graphitic nitrogen peak as the 

annealing temperature was increased. This is due to the fact that the thermally unstable pyridinic-

nitrogen groups at high temperature are converted to pyrrolic-nitrogen and graphitic-nitrogen groups. 

This is consistent with a previous study.[7] Therefore, it is believed that an increase in pyrolysis 

temperature of the as-prepared samples leads to higher ORR activity. Moreover, the peak at 285.0 eV 

in the XPS spectra of C1s corresponds to graphitic sp
2
 carbon, which is responsible for the electrical 

conductivity affecting ORR activity.[21] 

 

Figure 18. SEM images of a unmodified PAN based carbon fiber carbonized 1000℃ in N2 atmosphere (CNF-1000). b 

Nitrogen-doped porous carbon nanofiber obtained via carbonized at 1100℃ in N2. The image shows formation of inner and 

outer pores consisting of meso- and micro- structures. The deconvoluted high-resolution N1s XPS spectra of c NPCNFs-800, 
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d NPCNFs-900, e NPCNFs-1000, and f NPCNFs-1100. These peaks were fitted mainly into four components centered at 

around 398.0, 400.0, 401.3, and 402-405 eV, corresponding to pyridinic N (Dark Cyan), pyrrolic N (Orange), graphitic N 

(Navy), and pyridinic N oxide (Olive), respectively 

 

Samples NPCNFs-800 NPCNFs-900 NPCNFs-1000 NPCNFs-1100 

Nitrogen ( at % ) 5.88 4.66 2.96 2.2 

Pyridinic-N 2.52 1.18 0.48 0.36 

Pyrrolic-N 1.5 1.5 1 0.34 

Graphitic-N 1.78 1.77 1.25 1.39 

Pyridinic-N oxide 0.08 0.21 0.23 0.11 

 

Table 3. Detailed breakdown of N 1s spectra from the NPCNFs samples from XPS analysis, indicating relative atomic ratios 

of N species. 

 

 
Figure 19. Converted values of N-species of each samples in Table S2. 

 

Note that the half width of C1s peaks became narrower with increasing pyrolysis temperature, 

which can be ascribed to enhanced graphitization (Figure 20).[117] This result was further supported 

by the intensity ratio of the D to G bands observed at approximately 1310 cm
-1

 and 1583 cm
-1

, 

respectively, in the Raman spectra (Figure 21), where the D band is attributed to amount of structural 

defects and G band is caused by the E2g vibration mode of graphitic network.[118] The intensity ratio 

of D to G band (ID/IG) for NPCNFs-800, NPCNFs-900, NPCNFs-1000, and NPCNFs-1100 were 

1.637, 1.556, 1.333, and 1.252, respectively. Clearly, the ID/IG decreased with increasing pyrolysis 

temperature, implying that the graphitic characteristics increased with pyrolysis temperature and so 

did the electrical conductivity.  
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Figure 20. Some typical XPS spectra of C1s for NPCNFs. 

 

 

Figure 21. Raman spectra of NPCNFs after thermal treatment at different temperatures. The number adjacent to each 

spectrum represents the ID/IG ratio, which diminished with increasing pyrolysis temperature. Also, the G band became shaper 

with higher peak intensity at higher pyrolysis temperature. 

 

We performed rotating-disk electrode (RDE) and rotating-ring-disk electrode (RRDE) experiments 

to characterize the electrocatalytic activities of CNF-1000 (as a control sample) and NPCNFs. Both 

RDE and RRDE voltammetry were performed in O2-saturated 0.1M KOH solution at a voltage 

scanning rate of 10 mVs
-1
. The current densities of the air-electrode containing NPCNFs were 

increased with increasing rotation rate from 900 to 2500 rpm (Supplementary Fig. S9). As the 

pyrolysis temperature was increased from 800℃ to 1100℃, the onset potentials were increased in the 



- 38 - 

 

more positive direction and finally reached about 0 V (vs. Hg/HgO), similar to the onset potential of a 

commercial Pt/C catalyst (19.1 µg/cm
2
). To gain some insight into the ORR kinetics in a more 

quantitative manner, we analyzed the RDE and RRDE data using the Koutecky-Levich (K-L) 

equation. The average number of electrons transferred (n) in the electrode reaction was determined for 

the NPCNFs samples carbonized at 1100℃ (Figure 22). With the RRDE technique, the 

electrocatalytic activity for ORR can be directly estimated from the ratio of disk to ring current. The 

amount of HO2
-
 ion that usually recognized to be two-electrons pathway[4] affects low activity of 

ORR.  

 

Figure 22. (a) Polarization curves of a NPCNFs-1100 sample in O2-saturated 0.1M KOH electrolyte collected at different 

rotation rates at a scan rate of 10 mV/s, (b) Koutecky-Levich plots of the NPCNFs-1100 sample at potential -0.4, -0.5, -0.6, 

and -0.7 V vs. Hg/HgO. 

 

As can be seen in Figure 23b and 23d, the amount of hydrogen peroxide that produced from the 

NPCNFs-1100 sample is similar to that of the commercial Pt/C catalyst (19.1 µg/cm
2
) in the potential 

range of -0.2 V and -0.5 V (vs. Hg/HgO). In addition, the average number of electrons transferred for 

our best catalysts (NPCNFs-1100) was ~ 3.7 to 3.85 (close to 4) in the voltage range of -0.2 V to -0.5 

V (vs. Hg/HgO), similar to that for the Pt/C sample, suggesting that it is an efficient 4-electron 

transfer process[119]. These results indicate that the composite samples are very promising 

electrocatalysts for ORR in an alkaline solution, demonstrating highly competitive performance but at 

a much lower cost than the benchmarked Pt/C catalysts. Moreover, the kinetic current density can be 

estimated using the Koutecky-Levich (K-L) equation.[4, 120] In a rotating disk electrode (RDE) 

measurement, the total current, j, can be described as, 

     (1) 

 (kinetic current)    (2) 
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 (diffusion limiting current) (3) 

where jk is the kinetic current density, jdl is diffusion limiting current density, n is the number of 

electrons transferred per O2 molecular, F is the Faraday constant (96485 C/mol), A is the geometric 

area of the disk electrode (7.06 × 10
-6

 m
2
), k is the rate constant (m/s) for the ORR, CO2 is the 

saturated concentration of O2 in solution (1.21 mol/m
3
 in 0.1 M KOH), DO2 is the diffusion coefficient 

of O2 in solution (1.87 × 10
-9
 m

2
/s in 0.10 M KOH), v is the kinetic viscosity (1 × 10

-6 
m

2
/s in 0.1M 

KOH) and  is the electrode rotation rate (rpm). 

The percentage of peroxide ion and the number of electrons transferred (n) were determined from a 

rotating ring-disk electrode (RRDE) measurement as follows, 

    (4) 

     (5) 

where Id is the disk current, Ir is the ring current, and N is the current collection efficiency of the Pt 

ring, which was determined to be 0.41 from the reduction of K3Fe[CN]6. 

Note that overall performance of CNF-1000 is similar to that of NPCNFs-800. On the other hand, 

the Pt catalyst with a one-step and four-electron pathway exhibits a kinetic current density of 7.48 

mA/cm
2
 at -0.15 V, which is similar to that of the NPCNFs-1100 (~6.87 mA/cm

2
 at -0.15 V) but much 

higher than that of the NPCNFs-1000 (~2.91 mA/cm
2
) and NPCNFs-900 (0.68 mA/cm

2
) samples. The 

pyrolysis temperature critically affected the ORR activity because of its effect on the degree of 

graphitization and the nature or content of nitrogen doping. These results are consistent with the 

findings of Wang et al.; electrocatalytic activity depended not only on the surface area but also on the 

local atomistic structure of nitrogen.[121] The latter plays a greater role in enhancing ORR 

activity.[74] 
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Figure 23. (a) Ring and disk current density in O2-saturated 0.1M KOH at a rotation rate of 2500 rpm. The disk potential 

was scanned at 10mV/s and the ring potential was kept constant at 0.3V (vs. Hg/HgO). (b) and (d) The number of electrons 

transferred and the percentage of peroxide at different potential range, respectively. (c) The kinetic-limiting current density 

at -0.15 V (vs. Hg/HgO). 
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Figure 24. Electrochemical half-cell data of Pt/C catalysts. (a) Ring and disk current density in O2-saturated 0.1M KOH at a 

rotation rate of 2500 rpm. The disk potential was scanned at 10mV/s and the ring potential was kept constant at 0.3V (vs. 

Hg/HgO). (b) and (d) The number of electrons transferred and the percentage of peroxide at different potential range, 

respectively. (c) The kinetic-limiting current density at -0.15 V (vs. Hg/HgO). 

 

Since durability is one of the major concerns in practical applications of batteries and fuel cells, the 

stability of NPCNFs-1100 was examined by measuring dimensional change of the redox peaks during 

cycling in a 0.1M KOH solution (Figure 25). The NPCNFs-1100 exhibited retention of 94% whereas 

the Pt/C showed retention of only 73% after 300 cycles. This result suggested that the stability of 

NPCNFs-1100 is much better than that of the commercial Pt/C catalyst. 
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Figure 25. Cyclic voltammograms (the 1st and the 300th) of NPCNFs-1100 and 20 wt% Pt/C samples at a scan rate of 50 

mV/s in argon saturated 0.1M KOH solution to show the stability during cycling. 

 

The enhanced ORR activity of the NPCNFs-1100 catalyst was further evaluated in a Zn-air cell 

using an aqueous 6M KOH solution as the electrolyte. As illustrated in Figure 26a, the Zn-air cell 

was composed of an air cathode, a separator, and a zinc powder anode. The air cathode consisted of a 

gas diffusion layer (GDL) and a catalyst layer (e.g., NPCNFs-1100 or Pt/C catalysts). The current 

densities of the test cells were varied from 0 to 340 mA/cm
2
, demonstrating peak power densities of 

194 mW/cm
2
 for the cell with a NPCNFs-1100 catalyst and 192 mW/cm

2
 for that with the Pt/C 

catalyst. As depicted in Figure 26c, even though there was a relatively small potential difference 

between the cell with the NPCNFs-1100 catalyst and the one with the Pt/C catalyst at low current 

densities, similar I-V characteristics were observed for both at current densities greater than 180 

mA/cm
2
. This result suggests that the NPCNFs-1100 catalyst is comparable to the commercial Pt/C 

catalyst in performance but the former is much less expensive than the latter. 
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Figure 26. (a) a zinc-air cell consisted of an air cathode, a separator, and a zinc powder anode with 6M KOH. (b) the air 

electrode divided into gas diffusion layer (GDL), catalyst layer(NPCNFs-1100), and Ni mesh as a current collector. (c) 

polarization curve with a scan rate of 5 mA/cm2∙sec and d corresponding power density curves at a constant current density 

varied from 0 to 340 mA/cm2. 

 

It is also noted that this power density is similar to that demonstrated in a Zn-Air cell with 

Ketjenblack carbon supported MnOx nanowires, although the cell configurations used in the two 

cases are different (a single catalytic layer of MnOx/C vs a cathode consisting of two layers: a gas 

diffusion layer and a catalytic layer of NPCNFs). 
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V. CONCLUSIONS 

 

we have developed a simple and cost-effective process for fabrication of nitrogen-doped highly 

porous carbon nanofibers with diameters of 300 to 500 nm via electrospinning of PAN/PS blend 

followed by carbonization at high temperatures. The ORR activity of the nitrogen-doped carbon 

nanofibers depended strongly on the carbonization temperature, which determines the nature and 

amount of nitrogen doping. Graphitic structures and high specific surface areas formed at higher 

temperatures enhanced electrical conductivity and ORR activity while facilitating fast mass transport 

through porous electrodes. Also, the local atomistic structures of nitrogen functional groups play a key 

role in altering the ORR activity.  The pyrrolic-N and graphitic-N at the edge carbon planes appear to 

be beneficial to enhancing ORR activity. The NPCNFs catalyst prepared at 1100℃ showed the 

highest ORR activity with one-step and quasi-four-electron transfer pathway. Further and in particular, 

a Zn-air battery based on the NPCNFs catalyst demonstrated comparable power density to that based 

on a commercial Pt/C catalyst. 
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