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Abstract 

  

A flux decrease because of membrane biofouling is a crucial problem restricting membrane 

applications in conventional water treatment. Several investigations have been investigated to 

alleviate the biofouling problems; improving feed water qualities through coagulation, chlorine 

treatment, etc. Even though these methods improve the membrane performance, they are not 

sustainable due to the dosed chemicals. This is because the chemicals lead to the production of 

harmful disinfection by-products such as trihalomethanes, aldehydes, etc.  

In this study, the bacterial predators, BALOs (Bdellovibrio-and-like-organisms), were 

investigated, as an alternative treatment to alleviate biofouling and its consequent performance 

decrease. Dead-end microfiltration (MF) tests were conducted on Escherichia coli (E.coli) and 

BALOs co-culture feed solutions. Predation of E.coli was represented by the multiplicity of infection 

(MOI), which is explained as the proportion of predator to prey cell. The tested conditions of 

predation were both high MOI (high predator, HP) and low MOI (low predator, LP), and the total 

number of viable E.coli prey and predators were counted over 48 hr. The membrane performance of 

cultures such as NP (no predation), LP and HP was evaluated using a resistance-in-series model. In 

the performance experiments with a microbial solution containing predator bacterium, its total 

resistance became lower than the control (NP culture) over 48 hr. However, the LP culture showed an 

increase of irreversible fouling of the membranes. This was most likely due to prey cell debris 

produced by predation. 

In contrast, previous investigations of other research groups showed that coagulation using 

alum can mitigate membrane biofouling. Additionally, several studies found that lysing the 

microorganisms utilizing ultrasonication can enhance the membrane performance with alum 

coagulation. It was hypothesized that the predation impact may be comparable with that of the 

ultrasonication. This is because both predation and ultrasonication have an effect on the lysis of the 

bacteria leading to membrane fouling. Thus, it was predicted that a combined pre-treatment of 

bacterial predation and alum coagulation could improve the membrane performance. From this 

hypothesis, the goal of another investigation was to evaluate a combined pre-treatment using both 

bacterial predation and alum coagulation in order to reduce membrane biofouling, specifically, the 

irreversible fouling from the LP culture. Dead-end microfiltration (MF) tests were conducted on co-

culture feed solutions using Escherichia coli and B. bacteriovorus after coagulation with diverse 

concentrations of alum. The results represented that when 10 ppm of alum was utilized, the membrane 

fouling got worse for both NP and LP cultures, as compared to no alum addition, because the 
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irreversible resistance of the membrane was a lot higher. Conversely, using alum at 100 ppm reduced 

the total resistance similarly in both NP and LP cultures noticeably. In addition, for using 100ppm of 

alum, the LP culture led to both a lower total and irreversible resistance compared to the NP culture. 

This was because the LP culture with alum coagulation was well aggregated. These results indicate 

that combined treatments of both B. bacteriovorus predation and a suitable concentration of alum can 

be an effective pretreatment method for improving membrane performance. 

Powdered activated carbon (PAC) was used as alum coagulation, for the NP and LP cultures 

in order to decrease membrane biofouling caused by prey cell debris of the LP culture. Dead-end 

microfiltration (MF) tests were conducted on both NP and LP cultures, after treatment with various 

concentrations of PAC. The results showed that when 10 ppm or 100ppm of PAC were added, the 

performance of the membrane was better for both cultures as compared to no PAC addition. This was 

because using PAC could have effects on the reduction of reversible resistance. This finding concurs 

with another previous study that the application of PAC was related to decrease of reversible 

resistance. Furthermore, for the LP culture, 100ppm of PAC led to a decrease of irreversible resistance 

compared to 0ppm of PAC. In addition, when 10 ppm or 100ppm of PAC were added, the LP culture 

caused less total resistance of the membrane compared to the NP culture. These results also show that 

combined pre-treatments of bacterial predation and PAC treatment can be an effective method for 

enhancing membrane performance. 

In conclusion, this study showed that using bacterial predators at a suitably high 

concentration was useful at mitigating microbial fouling of the membrane. Also, even though using 

bacterial predators at a low concentration led to an increase of irreversible resistance of the membrane, 

either a proper alum concentration or PAC treatment, in combination with bacterial predation, can be 

a beneficial pretreatment method for reducing membrane biofouling. 
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Chapter 1. Introduction 

 

Ⅰ. Research background 

The membrane is used as a semi-permeable layer in the middle of two phases and separation 

technology with the membrane for water treatment has grown notably in the industry, especially with 

the introduction of low pressure membranes, i.e. microfiltration (MF) and ‘untied’ ultrafiltration (UF) 

membranes (Huang et al., 2009). Figure 1 shows various pressure-driven membranes for processes of 

water treatment. In particular, the membrane for microfiltration process which has a pore size range 

between 0.1 and 10 µm has been widely utilized for various chemical and biochemical processes in 

order to remove particulate matter (Keller et al., 2001). The sieving effect is generally considered 

being the major mechanism of the microfiltration process. This effect indicates that target materials 

could be controlled by the membrane according to its pore size (Hwang and Sz, 2011). 

 

 

Figure 1. Pressure-Driven Membrane Processes 

 

Nevertheless, one of the most critical disadvantages for membrane processes is membrane 

biofouling resulting in the deterioration of the membrane performance and increment of operation cost 

(Magara and Itoh, 1991). Furthermore, the adherence of microorganisms on the membrane surface 

generally causes membrane biofouling, and then the microorganisms begin to proliferate and grow a 

biofilm, including extracellular polymeric substance (EPS) (Kolari et al., 2001). The biofilms are 

communities of microbes related to a surface, generally enclosed in an extracellular matrix. It is hard 

to eliminate biofilms on the membrane surface because they are strongly attached. Figure 2 shows 
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formation steps of the biofilm. 

 

 

Figure 2. the formation step of biofilms 

 

Various studies have been conducted for solving the biofouling problem through: (i) 

improving feed water qualities using coagulation (Gamage and Chellam, 2011), and preoxidation 

through ozone (Hwang et al., 2010) and chlorine (Rajagopal et al., 2003), etc. ; (ii) modifying the 

membrane surface utilizing diverse antimicrobial matters such as silver nanoparticles (Mollahosseini 

et al., 2012, Sawada et al., 2012). Even though these methods improve the performance of the 

membrane processes, in some cases, it is not environment-friendly because of the dosed chemicals. 

For instance, the chlorine has an adverse impact on the polyamide membrane because amide bonds (-

CO-NH-) of the commercial membrane are extremely susceptible to chlorine (Kwon et al., 2011b). In 

addition, the oxidation treatments using ozone brought about destructive disinfection by-products 

(DBPs) such as aldehydes, bromated, carcinogenic haloacetic acids (HAAs), and trihalomethanes 

(THMs) (Boorman et al., 1999, Huang et al., 2005). 

With the increasing interest in finding effective, novel, and environmentally safe tools to 

alleviate membrane biofouling, researchers started investigating the utilization of biological 

treatments like eukaryotic predators as alternatives (Derlon et al., 2012). However, those predators 

could not penetrate bacterial cell aggregations (microcolonies) inside biofilms; hence their capabilities 

were limited (Bohme et al., 2009, Derlon et al., 2012). Unlike eukaryotic predators, which had some 

limitations in penetrating the biofilms and attacking the bacteria, another class of predators, bacterial 

predators such as BALO (bdellovibrio and like organisms) were shown previously to be able to 

penetrate deeply inside biofilms and effectively eradicate them (Dashiff et al., 2011, Fratamico and 

Cooke, 1996, Kadouri and O'Toole, 2005). In addition, previous studies also showed that the thick 

capsuled prey, which is usually resistant to bacteriophages, can still be attacked and predated easily by 
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Bdellovibrio (Koval and Bayer, 1997). 

 

Figure 3. the life cycle of Bdellovibrio bacteriovorus HD 100 

 

Bdellovibrio bacteriovorus HD 100 is a Gram negative predatory bacterium, which lives 

through attacking other Gram negative bacteria, penetrating into prey periplasm, where it multiplies 

and finally lyses the prey from inside to allow the progeny to eixt and attack other prey in the medium 

(Dwidar et al., 2012b, Sockett and Lambert, 2004), and it has a normal width of 0.3 μm (Stolp and 

Starr, 1963). Figure 3 represents its life cycle, which has two major phases; the assault phase in which 

the predatory bacterium swim in the medium utilizing its single polar flagellum finding for prey, and 

the intraperiplasmic phase in which the predatory bacterium begin to confront an appropriate prey 

cell(Sockett and Lambert, 2004). In this phase, the predatory bacterium mislay its flagellum and enter 

the prey periplasm, where it extends, lyses, and septates the prey from inside before the offspring 

finally emerge and assault other prey in the medium (Dwidar et al., 2012a, Sockett and Lambert, 

2004). This intraperiplasmic phase typically takes 3–4 hr and makes 3–6 progeny cells from a one E. 

coli cell (Sockett and Lambert, 2004). Actually, B. bacteriovorus was found in diverse studies to be 

very useful for attacking its prey bacteria and reducing their populations in the liquid medium 

(Dashiff et al., 2011, Dwidar et al., 2012b). 
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Ⅱ. Objectives of the study 

 

In this study, there were three specific objectives: 

 

1. BALOs (Bdellovibrio-and-like-organisms), a gram-negative predatory bacterium, were 

investigated as an innovative way to alleviate membrane biofouling and its consequent flux decrease. 

For this objective, Dead-end microfiltration (MF) tests were conducted on prey (E. coli) and 

BALOs co-culture medium; control (no predation, NP), low MOI (low predator, LP) and high MOI 

(high predator, HP). The flux performance after filtration of these cultures was evaluated by 

resistance-in-series model. 

 

2. The objective of this study was to investigate combined pre-treatment methods such as 

alum and bacterial predation for reducing membrane biofouling. 

For this objective, Dead-end microfiltration (MF) tests were carried out using prey (E. coli) 

and BALOs co-culture medium; control (no predation, NP), low MOI (low predator, LP). After 

coagulation using diverse dosages of alum, the flux performance of membrane filtered these cultures 

was analyzed by a resistance-in-series model. 

 

3. The objective of this study was to investigate the combination of pre-treatments such as 

powdered activated carbon (PAC) and bacterial predation for reducing membrane biofouling. 

In order to mitigate membrane biofouling triggered by prey cell debris of the LP culture, the 

PAC was used for both the NP and LP cultures. After treatment using diverse concentrations of PAC, 

Dead-end microfiltration (MF) tests were carried out using both for both the NP and LP cultures. The 

membrane performance was evaluated using a resistance-in-series model. 
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Chapter 2. Experimental Methods & Materials 

 

.Ⅰ  Bacterial strains, media and culture conditions 

Culturing of the microorganisms was done by Mohammed Dwidar in Prof’s Robert J. 

Mitchell’s lab in UNIST. The detailed method for culturing was as described in the paper (Kim et al., 

2013).  
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. PreparationⅡ  of the experimental culture medium 

2.1. Investigation of Pre-treatment using Bdellovibrio-and-like-organisms (BALOs) on the dead-

end microfiltration of Escherichia coli (E.coli) solution 

In this study, Diluted nutrient broth (DNB) (1:10 dilution of nutrient broth, Difco) was 

applied for the experimental culture medium. 1.25 L of DNB was contained by 2 L flasks. This broth 

was prepared in 2 L flasks; each containing 1.25 L of media. After sterilization, 2 mM CaCl2 and 3 

mM MgCl2 was added to the broth. E. coli DH5α was then spiked into the broth at a beginning 

concentration of about 1 ´ 105 colony-forming units (CFU)/ml in all flasks. Comparably, the predator 

B. bacteriovorus HD 100 was inoculated at an initial concentration of about 2 ´ 105 plaque-forming 

units (PFU)/ml for the low predator (LP) culture, and 2 ´ 107 PFU/ml for the high predator (HP) 

culture. No predator was supplemented to the control sample. The cultures were then inoculated into 2 

L flask containing 1.25 L of DNB medium at 25°C with 350 rpm of agitation during for 48 h. At 

diverse time intervals, 400 ml of cultures were taken for OD at a wavelength of 600 nm (OD600) 

measurement, total organic carbon (TOC), and viable counts and flux analyses. Microbial solutions 

according to diverse samples (NP, LP, HP) were handled at 25℃ using a dead-end microfiltration 

(MF) system in order to estimate the permeability of the microbial solutions that were obtained after 

different growing time of 12, 24 and 48hr. 

 

2.2. Combined pre-treatments of bacterial predation and alum coagulation to reduce membrane 

biofouling & Combined pre-treatments of bacterial predation and powdered activated carbon 

(PAC) to reduce membrane biofouling 

In this study, DNB broth was prepared in 5 L flasks; each containing 1.5 L of media. In order 

to prepare the low predator (LP) culture, E. coli DH5α and B. bacteriovorus HD 100 were spiked into 

the broth at an initial concentration of about 1 ´ 105 CFU/ml and 2 ´ 105 PFU/ml respectively. 

Comparably, E. coli DH5α was inoculated at an initial concentration of about 1 ´ 105 CFU/ml for the 

no predation (NP) culture. The NP and LP cultures were then inoculated into 5 L flask containing 1.5 

L of DNB medium at 25°C with 350 rpm of agitation during for 48 h. All cultures were taken for 

coagulation and activated carbon experiments. 
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. PⅢ retreatments 

3.1. Combined pre-treatments of bacterial predation and alum coagulation to reduce membrane 

biofouling 

Coagulation experiments were conducted with 400mL of microbial samples in a glass beaker. 

The samples were stirred magnetically (200rpm). Aluminum sulfate hydrate (Al2(SO4)3·18H2O; Bodi, 

China, >99%) ‘alum’ was utilized as a coagulant in this study. Three dosages of coagulants, 0, 10 and 

100ppm of alum were used. For coagulation treatment, samples were mixed at 200rpm for 1min 

followed by 15min of slow agitation at 30rpm. After 30min of settling, supernatant samples were 

taken for OD600 determination, measurement of size and zeta potential, living cell counts, and flux 

analyses. 

 

3.2. Combined pre-treatments of bacterial predation and powdered activated carbon (PAC) to 

reduce membrane biofouling 

Samples were contacted with powdered activated carbon (PAC). The average size of the PAC 

was in the range of 250 µm passing 50-mesh sieve. Three dosages of coagulants, 0, 10 and 100ppm of 

PAC were utilized. For PAC treatment, samples were stirred at 100rpm for 30min. The treated 

samples were then filtered through a 10 µm pore size filter to remove remaining PAC. After that, 

samples were taken for OD600 determination, measurement of size and zeta potential, living cell 

counts, and flux analyses. 

 

Ⅳ. Membrane filtration system (Experimental set-up & procedure) 

Figure 4 shows the experimental setup in this study. Cellulose mixed ester (CM) membranes 

was used (Macherey-Nagel, Bethlehem, PA, USA). The average pore size of the membrane was 0.45 

µm and its geometric (flat surface) area was 41.8 cm2. The membranes were fully soaked for 

preparation during more than 24hours in deionized (DI) water. The MF experiments were carried out 

in Amicon cells with a capacity of 350mL which were pressurized at 50 kPa (0.5 bar) through 

laboratory N2 gas, and were stirred at 100rpm. The filtrate was accumulated in a plastic beaker 

located on an electronic mass balance, and its load was monitored at the time interval of 5s and 1min 

in the course of microfiltration. 
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Figure 4. Schematic of the MF (microfiltration) dead-end system 

 

Ⅴ. Microbial solution analysis and Membrane morphology 

OD600 was measured using an S-3100 UV/VIS spectrophotometer (Scinco Co, Seoul, Korea). 

In order to determine the concentration of DNB broth depends on the time, total organic carbon (TOC) 

was measured by a Shimadzu TOC analyzer (Shimadzu, Tokyo, Japan) after filtration using a 0.22 μm 

pore size filter to remove microorganisms such as E.coli and BALOs. The morphology of the 

membrane surface was detected by a scanning electron microscope (SEM) (Cold FE-SEM s-4800, 

Hitachi, Japan). For SEM analyses, the membranes were dried at 30℃ in an oven during 7 days 

before measuring and then coated by platinum at 20mA for 30s through sputter coater (K575X, 

TESCAN, Seoul, Korea). Also, S8000 digital camera (Nikon, Tokyo, Japan) was used for 

determination of top views of filtered membranes. Fluorescent images of the membranes were 

photographed utilizing an SZX16 stereoscope linked to a DP72 CCD camera, and managed by DP2-

BSW imaging software (Olympus, Center Valley, PA, USA).  

 

Ⅵ. Analysis of membrane performance 

6.1. Investigation of Pre-treatment using Bdellovibrio-and-like-organisms (BALOs) on the dead-

end microfiltration of Escherichia coli (E.coli) solution 
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The permeate flux (J) had a unit of Lm-2h-1, and it was calculated as 

J = (ΔM /ρ) / (A×t)         (1) 

where ΔM is filtrate mass(g) collected at a particular time (h-1); ρ is the density of filtrate 

(g/L) and A is the effective membrane area(m2) in contact with the solution. 

Flux decline in dead-end filtration system can be induced by diverse factors such as 

concentration polarization, cake formation and plugging of the pores (Mulder, 1991). Based on these 

factors, the resistance of fouled membrane was measured by a resistance-in-series model:  

J = ΔP / (μ×R)     (2) 

where R is filtration resistance (m-1), ΔP is applied pressure (Pa), μ is solution viscosity (Pa·s). 

Through the resistance-in-series, the total filtration resistance (Rt) illustrates the sum of specific 

resistances: 

Rt = Rm + Rcp + Rc + Rp           (3) 

where Rm is the intrinsic membrane resistance, Rcp is the resistance due to concentration 

polarization, Rc is the resistance caused by the cake layer, and Rp is the resistance due to pore blocking 

and is further defined by an irreversible resistance (Rir) . 

The Rm was calculated from Eq. 2 by measuring the flux of virgin membrane using pure 

water, while Rt was determined from pure water flux after filtration of 350mL microbial solution. 

After the Amicon cell was evacuated and the fouled membranes were gently wiped away with 150mL 

of pure water through stirring at 100rpm for 5min using a shaker. The value of (Rc + Rp) was obtained 

from pure water flux by deducting (Rm + Rcp). Lastly, the irreversible resistance (Rir) was determined 

from Eq. 3 after tough washing with 150mL of pure water through stirring at 200rpm for 15min, and 

then pure water flux was estimated once more. 

 

6.2. Combined pre-treatments of bacterial predation and alum coagulation to reduce membrane 

biofouling & Combined pre-treatments of bacterial predation and powdered activated carbon 

(PAC) to reduce membrane biofouling 

In order to analyze membrane performance, a resistance-in-series model was used for 

measurement of intrinsic membrane resistance, cake layer resistance, and pore blocking resistance. 

J = (ΔM /ρ) / (A×t)          (1) 

where J is permeate flux (Lm-2h-1); ΔM is filtrate mass(g) collected at a particular time (h-1); 

ρ is the density of filtrate (g/L) and A is the effective membrane area(m2) in contact with the solution. 

J = ΔP / (μ×R)     (2) 
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where R is filtration resistance (m-1), ΔP is applied pressure (Pa), μ is solution viscosity (Pa·s). 

Based on the resistance-in-series model, the total filtration resistance (Rt) shows the sum of specific 

resistances: 

Rt = Rm + Rc + Rp                 (4) 

where Rm is the intrinsic membrane resistance, Rc is the cake layer resistance which is 

defined by hydraulically reversible resistance (Rrev), and Rp is the resistance due to pore blocking and 

is further defined by an irreversible resistance (Rir) . 

 The Rm was determined from Eq. 2 by measuring the pure water flux of clean membrane, 

while Rt was estimated from pure water flux after filtration of pre-treated and non pre-treated samples. 

After the Amicon cell was evacuated and the fouled membranes were toughly washed with 150mL of 

pure water through stirring at 200rpm for 15min using a shaker, the value of (Rm + Rc) was obtained 

from pure water flux through washed membranes, thus Rp can be calculated. After calculating Rt, Rm 

and Rp, Rc can be estimated from Eq. 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 11 - 

 

Chapter 3. Results and discussion 

 

.Ⅰ  Investigation of Pre-treatment using Bdellovibrio-and-like-

organisms (BALOs) on the dead-end microfiltration of Escherichia 

coli (E.coli) solution 

 

1.1. Microbial solution quality 

The viability of E. coli within DNB media was observed over 48 h when E. coli alone or in 

the existence of the bacterial predation from B. bacteriovorus HD 100. Predation of E. coli was 

achieved at either a low or high multiplicity of infection (MOI), i.e., 2 and 200. The MOI is defined as 

the predator to prey cell ratio. Concretely, the predatory bacterium was either not supplemented, i.e., 

no predation (NP), or at a low predator (LP) or high predator (HP) concentration in accordance with 

MOIs of 2 and 200, particularly. Figure 5 represents the evaluated OD of these cultures. 

 

 

Figure 5. Optical density at 600nm 

 

According to spiking various initial concentrations of the predatory bacterium (B. 

bacteriovorus HD 100), microbial growth could be different over the time. In the case of LP sample, it 

had a similar pattern with NP sample during the first 24 hr in Figure 5. However, its OD value 

decreased significantly after 48hr by comparing with NP case. Likewise, viable E. coli cell counting 
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values from CFU method showed a resembling tendency with OD values in Figure 6a. The similar 

patterns of OD values and living E. coli cells in NP and LP until initial 24hr are because of the longer 

doubling time of B. bacteriovorus in comparison with that of E. coli. In addition, the decrease of OD 

and viable E. coli cells in LP sample after 24hr shows predation of E. coli prey because the OD and 

living E. coli cells of NP sample was not adequately changed from 24 to 48 hr. That was why 

predatory activities of B. bacteriovorus started vigorously following complete E. coli propagation. In 

contrast, in the case of HP sample (an initial MOI of 200), its values of OD and living E. coli cells 

were lower than other samples such as NP and LP from start to finish (Figure 5 and Figure 6a). This 

was due to continuous predation of B. bacteriovorus to begin with. 

 

(a)                                         (b) 

 

Figure 6. Viable cell counts; (a) E. coli, (b) B. bacteriovorus 

 

Figure 6b shows the viable predator population over time from plaque-forming units (PFUs). 

The PFUs of LP cultures were constantly escalating over time. Also, its value after 48hr was larger 

than that of HP cultures. The difference of PFUs in LP and HP cultures can be contributed to the 

number of E. coli prey available. In the case of LP cultures, the E. coli cells could grow initially 

during 24 hr and, thus, could also devour more of the soluble organics in the DNB media shown as 

Figure 7. The higher viable E. coli number suggested that predation of B. bacteriovorus showed more 

active, which also triggered a much higher predator number later. On the other hand, the number of 

predators was inversely proportional to that of living E. coli cells in the HP culture. This was in that 

remaining DNB media after microbial consumption was used continuously in the Figure 7. Therefore, 

the number of E. coli cells which were not completely removed by predatory bacterium showed a 

repeat performance of the increase and the decline depends on the growth of B. bacteriovorus. 
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Figure 7. TOC analysis of microbial solutions based on the initial TOC of DNB broth; TOC 

indicates the organic concentrations following filtration (0.22µm) of the cultures of 

microorganisms. TOC0 shows the organic concentrations following filtration of DNB broth only. 

 

1.2. Filtration of microbial solution with 350ml 

As aforementioned in the introduction, the ‘Sieving effect’ is a major mechanism in the MF 

membrane system. Based on this effect, the MF membrane of 0.45 µm pore size was investigated in 

the experiment. Particles of DNB medium and B. bacteriovorus HD 100 mostly permeated through 

the MF membrane. In addition, because E. coli had a size of 2~3µm, it was filtrated by the MF 

membrane of 0.45 µm pore size. Therefore, it could be observed whether B. bacteriovorus had 

abilities to remove biofouling from E. coli or not. 

The MF membrane was used to conduct the experiment to permeate 350mL of different 

microbial solutions according to spiking various initial concentrations of predated bacteria. Its results 

of normalized & original flux are shown in Figure 8 and Figure 9 below. For HP cultures, its flux 

values were significantly higher than other cultures, such as NP and LP over the experimental time, 

for the reason that its total number of living E. coli cells was reduced as shown in Figure 6a. Also, the 

LP cultures represented lower decrease of flux when compared with the NP cultures. On the contrary, 

in the case of NP cultures, they had reduced flux values compared to that of LP and HP cultures 

throughout the whole time. These results indicated that viable E. coli cells had an important effect on 

the MF membrane performance due to the sieving mechanism, and membrane biofouling caused by 

viable E. coli cells was able to be mitigated because of bacterial predation. 
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Figure 8. Original flux of membranes subsequent to (a) 12, (b) 24, and (c) 48hr of cultivation 
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Figure 9. Normalized flux of membranes subsequent to (a) 12, (b) 24, and (c) 48hr of cultivation 

The normalized flux is ((LMH value of microbial solution * 100) / (LMH value of prue water)) 
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There are more detailed flux results in Table 1. The flux values of the HP sample were much 

higher than other two samples of NP and LP over the experimental time. Furthermore, when 

comparing the NP sample with the LP sample, these values at 12hr & 24hr were analogous. However, 

the values of flux were totally dissimilar at 48hr because the living cells of E. coli decreased after 

48hr in the case of the LP sample. Even though the E. coli populations of the LP and HP samples were 

comparable at 48hr (Figure 6a), their flux values were completely different (40.9% and 86.5% 

respectively). Also, Figure 5 shows the solution of LP cultures after 48hr was quiet transparent. 

Nevertheless, Table 1 points out that the MF membrane of 0.45 µm pore-size could filtrate E. coli 

debris caused by bacterial predation. Therefore, the E. coli debris as well as living E. coli cells caused 

the MF membrane performance to be worse. In addition, Figure 9 and Table 1 show that normalized 

flux values of the 48hr LP cultures after 1min and 2min were 40.9% and 10.1% correspondingly. On 

the other hand, the values were 21.1% and 5.4% in the case of NP cultures. That was why the living E. 

coli cells more adversely influenced the membrane performance in comparison with the E. coli debris. 

 

Table 1. Normalized flux point at 1min for NP, LP, and HP cultures 

  12hr 24hr 48hr 

  Average SD Average SD Average SD 

NP (E. coli only) 44.8% 6.52 19.4% 3.57 21.1% 1.28 

LP (MOI = 2) 53.1% 4.07 23.0% 4.73 40.9% 13.96 

HP (MOI = 200) 79.5% 7.62 78.1% 9.63 86.5% 7.64 

* The normalized flux is ((LMH value of microbial solution * 100) / (LMH value of prue water)). The 

SD is a standard deviation. 

 

Fluorescent images of the membranes by stereomicroscopy directly after filtration, but before 

washing, represented that the number of E. coli cells filtered by membranes at 48 hr was considerably 

decreased in the samples of LP and HP (Figure 10b). A fluorescent signal was still observed in 

membrane filtering the LP cultures (Figure 10b), whereas membrane filtering the HP cultures was 

optically comparable to that of the virgin membrane. Figure 10b shows membrane filtering the NP 

solution was green because a lot of the E. coli was still alive. However, the membranes filtering the 

LP and HP solutions became dark since B. bacteriovorus preyed upon a large amount of E. coli. In 

addition, the membrane filtering of an initial MOI of 200 (HP) solution was a white color in the same 

way as the DNB solution filtration, whereas the LP solution case became yellow (Figure 10a). This 

implies E. coli debris on the membranes which was filtered by the MF membrane of 0.45 µm pore 

size (Figure 10a). In the case of LP cultures, its E. coli growth increased until 24hr, and then this 



- 17 - 

 

growth declined after 48hr because of bacterial predation (Figure 6a). This difference of E. coli 

populations between 24hr and 48hr was comparable to the amount of the E. coli debris produced by 

bacterial predation. Even if the OD and prey viability of LP cultures were basically comparable to that 

of HP cultures, the difference in the visualization of membrane filtering the HP and LP cultures after 

48 hr suggests that an initial MOI of two (LP) conditions led to notably higher quantities of E. coli 

cell debris. 

 

 

Figure 10. Digital (a) and Fluorescent (b) membrane images following filtration of microbial 

solutions during 48hr of culturvation 

 

1.3. Resistance-in-series model 

In order to measure which elements of membrane fouling attributed most to the problem, a 

resistance-in-series model was applied. As shown in Figure 11, there are results of various membrane 

resistances after filtration for three kinds of microbial solutions such as NP, LP and HP cultures. From 

eq. (2) and (3), the value of Rm was 0.4 × 1011 m-1. The total resistance is defined by the sum of Rm, 

Rcp, Rc, and Rp (Figure 11a). Also, this resistance tendency was much similar to the trends observed in 

Figure 5 and Figure 6a. Concretely, the total resistance value of HP cultures was lower than that of NP 

and LP cultures over the experimental time. This even showed a 35 times reduced value when 

comparing the HP cultures with the LP cultures at 24hr. This was due to continuous bacterial 

predation from B. bacteriovorus HD 100 to begin with, resulting in a decrease of overall E. coli 
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propagation (Figure 6a). 

In contrast, in the case of the LP cultures, total resistance values of the LP cultures were 

similar to that of NP cultures at both 12hr and 24hr, whereas its value decreased after 48hr. This was 

because the predatory activities of B. bacteriovorus started vigorously depending on the experimental 

time (Figure 6b), and then bacterial predation produced a lot of E. coli cell debris at 48hr, which 

caused a lower total resistance. In addition, this cell debris amount almost contained the difference 

between the viable E. coli cells at 24hr and at 48hr from Figure 6a. 

 

  

  

Figure 11. Membrane resistances using the Resistance-in-series model at diverse time intervals 

such as 12, 24, and 48hr; (a) Total resistance (Rt), (b) Resistance of concentration polarization 

(Rcp), (c) Resistance of cake layer(Rc), (d) Resistance of pore block(Rp) 

 

(b) (a) 

(c) (d) 
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Since MF membrane filtered the E. coli cell debris, even though the total living E. coli cell 

number of LP and HP cultures was comparable (Figure 6a) at 48hr, its total resistance value of LP 

cultures was 23 times that of HP cultures (13.67 and 0.59 respectively). In the case of NP cultures, the 

main influence resulting in membrane fouling was concentration polarization which contained a ratio 

of more than 98% of the total resistance. The resistances caused by cake layer and pore blockage 

became minor. Since viable E. coli cells triggered deposition on the membrane surface, they formed a 

reversible cake layer. Interestingly, its irreversible resistances for LP cultures, such as Rp, remained 

greater than other solutions of NP and HP cultures (Figure 11d). This increasing membrane resistance 

was caused by pore blockage through smaller particles and debris from the LP cultures. 

In a study performed by V. Naddeo (Naddeo et al., 2007), small molecules broken by 

ultrasonic treatment could severely block the pores of the microfiltration membrane. The bacterial 

predation enables cell structures of viable E. coli to split biologically. This tendency of increasing 

irreversible resistance was in agreement with previous studies (Bai and Leow, 2002, Song, 1998)  

which suggested that smaller particles result in much rougher fouling than larger particles in cases of 

microfiltration. That was why irreversible resistances of LP cultures were higher than the other two 

cases, such as NP and HP cultures, because the debris blocked the pores of the MF membrane more 

severely even after tough washing of the membrane as shown in Figure 12, SEM images. 
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Figure 12. Scanning electron microscopy (SEM) images of the MF membranes following 

filtration of microbial solution during 48hr of cultivation 

 

The table 2 illustrates the overall percent of membrane resistances depends on the time with 

three cases; the NP, LP and HP cultures. For NP cultures, the reversible resistances such as Rcp and Rc 

were mainly involved over the experimental time. This could lead to Biofilm formation on the 

membranes after a long period of time. In order to prevent the formation, suitable contents of 

predatory bacterium can be an alternative pre-treatment method, as shown in this study due to 

reduction in the total microbial individuals. The intrinsic membranes resistances of HP cultures, not 

biofouling resistances caused by microorganisms, was over 50% in the total resistance. Even though 

overall resistance tendencies of LP cultures were similar to that of NP cultures after 12hr & 24hr, its 

irreversible resistances of LP cultures increased at 48hr. The percents values between 24 and 48hr 

were about from 0% to 40% in the total resistance of LP cultures.  

In conclusion, Figure 11 and Figure 12 show that the HP cultures result in a decrease of the 

membrane fouling. The HP condition provides the supplementary benefit of a reduced number of 

bacteria that caused membrane biofouling (Figure 6a) and, as a result, lower membrane resistances 

(Figure 11). This condition could lead to decreasing the times given to membrane washing and 

unnecessary treatment.  
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Table 2. Fouling resistance of microfiltration after 48hr  

 NP (E. coli only) LP (MOI = 2) HP (MOI = 200) 

Total Resistance 31.5 ± 9.64 13.67 ± 5.89 0.59 ± 0.12 

Rm  1.3% (0.41) 3.0% (0.41) 76.3% (0.45) 

Rcp 98.3% (30.98) 63.1% (8.62) 5.1% (0.03) 

Rp 0.2% (0.07) 10.5% (1.44) 16.9% (0.1) 

Rc 0.1% (0.04) 23.4% (3.2) 1.7% (0.01) 

* The values in parentheses are the average determined resistances for each (unit: 1011m-1). 

 

1.4. Discussion 

From Figure 5 & Figure 6a, in the case of MOI=200, the total number of E.coli cells was a 

lower value than both the NP and LP cultures throughout the entire time. There were other researches 

about microbial control using chemicals in the biological targets that were a major cause of membrane 

biofouling. Using chemicals leaded to inhibit microbial growth by producing less its ATP energy (Xu 

and Liu, 2011) or handling quorum sensing of Gram-negative bacteria (Dobretsov et al., 2009). 

Traditionally, it has been known that the growth of microorganisms can be controlled by the chemical 

treatments using chlorine and ozone. In the same way, this study suggested that it could be an 

alternative pre-treatment by utilizing suitable content of BALOs. Moreover, in the case of MOI=200, 

population of E.coli was similar to the initial dose or decreased during 48hr (Figure 6a). 

The experimental results of indicate that flux was enhanced, and membrane fouling was 

decreased when MF was used with an adequate number of bacterial predators, like B. bacteriovorus 

HD 100. This is clearly useful to water/wastewater treatment plants using membrane processes. 

Notably, BALOs will not be possible to mitigate the membrane fouling triggered by gram-positive 

bacterial strains. Even if this is a restriction, it does not prevent bacterial predation from reducing the 

number of prey bacteria and their contrary influences on membrane processes. Actually, diverse 

studies have represented that in the existence of gram positive bacterial strains, such as Bacillus sp. 

(Hobley et al., 2006), B. bacteriovorus HD 100 was still efficient to preying upon and decreasing 

viable prey inhabitants. These results can help to overcome the limitation of this study and 

recommend that predation will still be useful under non-prey conditions, but the study of this 

condition is necessary. Another benefit of using bacterial predators is their wide prey spectrum. At 

least one BALO strain attacked a broad number of gram negative bacteria, including abundant human 

pathogens (Dashiff et al., 2011). Since human pathogens often inhabit wastewater streams and can be 

fouled on membrane filters (Jong et al., 2010, Kwon et al., 2011a), predation ability of BALOs is a 

supplementary advantage to these processes. 
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Ⅱ. Combined pre-treatments of bacterial predation and alum 

coagulation to reduce membrane biofouling 

 

2.1. Microbial solution quality 

2.1.1. Microbial solution characterization before coagulation using alum 

Particle size distribution (PSD) and zeta potential of both the NP and LP cultures were 

investigated before alum coagulation. This was because these characteristics of bacteria can explain 

bacterial aggregation through the coagulation. The particle size distribution (PSD) was shown in 

Figure 13.  PSD of NP and LP cultures were mainly between 200 and 2000 µm. The figure 13 shows 

that the intensity of particle size within the range 500-1000 nm was higher in the NP cultures by 

comparison with that of the LP cultures. Also, the average particle sizes were measured to be 2078 ± 

147, 845 ± 149 nm in the NP and LP respectively. Due to the predation of BALOs, living E. coli 

cells were lysed and produced by a lot of cell debris. The cell debris from bacterial predation was 

attributed to a decrease of average particle size in the LP cultures. 

 

 

Figure 13. The particle size distribution (PSD) of both the NP and LP cultures 

 

In addition, measurements of the zeta potential were performed for the NP and LP cultures. 

Actually, it was found that Gram-negative bacteria show a more negative charge as compared to 
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Gram-positive bacteria. Figure 14 represents distribution of zeta potential for both the NP and LP 

cultures. The distributions of both the NP and LP cultures were between -50 and 0 mV. The figure 14 

describes that the total counts of zeta potential from -50mV to -30 mV was higher in the NP cultures 

by comparison with that of the LP cultures. Also, the average values of zeta potential were measured 

to be -33.3 ± 1 mV, -20.9 ± 2 mV in the NP and LP respectively. The zeta potential of the LP 

cultures showed low absolute value in comparison with that of the NP cultures. This result concur 

with finding of the work (Klodzinska et al., 2010), which found that dead bacterial cells showed lower 

zeta potential. This was because there was a lot of cell debris, dead bacterial cells in LP cultures 

caused by bacterial predation. 

 

 

Figure 14. The distribution of zeta potential for both the NP and LP cultures 

 

2.1.2. Microbial solution characterization after coagulation using alum 

The survival of E. coli within DNB (0.1 x nutrient broth) media was observed over alum 

concentration when the NP and LP cultures after cultivation during 48hr. Figure 15 represents the 

observed OD of these cultures. The ODs of the NP and LP cultures showed a similar pattern which the 

values of OD were inversely proportional to alum contents. The decrease of OD in both the NP and 

the LP samples indicated that some particles in the samples were precipitated due to alum coagulation. 

Especially, in the case of 100ppm alum, the ODs showed the lowest values. This is further 

demonstrated by the count of viable E. coli cells (Figure 16). 
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Figure 15. Optical density at 600nm for both the NP and LP cultures depending on the alum 

concentration 

 

In addition, the count number of viable E. coli cells for the NP and LP cultures showed a 

similar pattern which the values of the count number were inversely proportional to alum 

concentrations, and the values of the count number for the LP cultures were always lower than that of 

NP cultures over all concentration of alum. For the NP cultures, the count number of viable E. coli 

cells dropped 37-fold from 1.16 x 108 CFU to 3.13 x 106 CFU under 100ppm alum, and the cell 

number of LP cultures decreased 5-fold from 8.33 x 104 CFU to 1.67 x 104 CFU under 100ppm alum. 

In addition, for LP cultures between 0ppm and 10ppm of alum, the count number of viable E. coli 

cells decreased 2.5-fold. When the initial MOI was 2, the difference of viable E. coli cell number over 

alum concentration was not much big as compared to the control sample. However, as the results of 

the study, Investigation of Pre-treatment using Bdellovibrio-and-like-organisms (BALOs) on the dead-

end microfiltration of Escherichia coli (E.coli) solution, the E. coli debris of the LP cultures from 

bacterial predation should be considered, because MF membrane of 0.45 µm pore-size could filter the 

debris. 
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Figure 16. Viable E. coli cell counts for both the NP and LP cultures depending on the alum 

concentration 

 

In the chemical-physical treatment, the sludge is produced because of the quantity of total 

solids and organic substance that are eliminated. The flocs are formed from the alum coagulation 

because approximately all of the material will produce a kind of the sludge solids. Typically, the 

characteristics and amount of the sludge formed from coagulation are related to the operating 

conditions and the type of coagulants (Ahmad et al., 2008). In addition, the settling of the flocs is 

crucial in the coagulation process because this will have a positive effect on the cost and effectiveness. 

In order to investigate the settling characteristics and overall volume of the sludge formed, 

settled sludge volume (SSV) was detected. The results are shown in Table 3. The value of the SSV 

represented 0 when the concentration of alum was 0 and 10ppm in both the NP and the LP cultures. 

This indicated that 10ppm of alum was not a suitable dosage for both the NP and the LP cultures. That 

was why there was not precipitation, and almost all of the particles were present in active flocs in the 

suspension of both the NP and the LP cultures.  

On the other hand, settlement was observed when 100ppm of alum was used. In Table 3, the 

SSV increased from 0 mL/L up to 22 mL/L when 100ppm of alum was used on the NP cultures, and 

the SSV increased from 0 mL/L up to 34 mL/L when 100ppm of alum was used on the LP cultures. In 

addition, the SSV of the LP cultures was higher than that of the NP cultures when 100ppm of alum 

was used. This pointed out that the particles of the LP cultures were well aggregated and more 

precipitated in comparison with that of the NP cultures when 100ppm of alum was used. 
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Table 3. Settled Sludge Volume (SSV) for both the NP and LP cultures depending on the alum 

concentration 

Alum concentration 0ppm 10ppm 100ppm 

  Average SD Average SD Average SD 

NP (E. coli only) 0 0 0 0 22 1.41 

LP (MOI = 2) 0 0 0 0 34.25 1.77 

* The unit of the SSV is mL/L. The SD is a standard deviation. 

 

From Figure 15, Figure 16, and Table 3, it was found that the number of viable E. coli, the 

ODs and the SSV were different according to alum concentration. When 100ppm of alum was used, 

precipitation was observed, and it caused the increase of SSV in both the NP and the LP cultures. 

Specifically, the SSV of the LP cultures was higher than that of the NP cultures in the case of 100ppm 

alum. Furthermore, in Figure 16, the difference of viable E. coli cell number in the LP cultures was 

not much big from 10ppm to 100ppm of alum. However, the SSV was completely different when 

10ppm and 100ppm of alum. This was because the E. coli debris in LP cultures produced bacterial 

predation was well precipitated in the case of 100ppm alum as compared to the 10ppm alum, which 

led to production of active floc, not settlement of particles in LP cultures. 

 

2.2. Filtration of 200ml microbial supernatant 

The MF membrane was conducted to permeate 200ml of both the NP and the LP cultures 

after coagulation with various concentration of alum. The result of the original flux is represented in 

Figure 17 below. The flux of the NP and LP cultures represented comparable tendency which the 

values of flux were proportional to alum contents. The increase of flux in both the NP and the LP 

samples implied that some materials leading to the membrane fouling in the samples were precipitated 

and removed because of alum coagulation. In addition, for LP cultures, their flux values were always 

higher than NP cultures over all concentration of alum, because their total number of living E. coli 

cells was always lower than NP cultures, as shown in Figure 16. This result showed that viable E. coli 

cells had a crucial effect on the MF membrane performance because of the sieving mechanism, and 

membrane biofouling caused by viable E. coli cells was able to be alleviated by using alum 

coagulation and bacterial predation. 
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Figure 17. Original flux of membranes for both the NP and LP cultures after coagulation with (a) 

0ppm, (b) 10ppm, and (c) 100ppm of alum 
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There are more detailed flux results in Table 4. The normalized flux of both the NP and LP 

cultures showed analogous trend which the normalized flux was proportional to alum concentration. 

Also, when comparing 0ppm of alum with 10ppm of alum, these flux values of the NP cultures were 

not much different (29% and 33% respectively). As the case of the NP cultures, the normalized flux of 

LP cultures represented comparable values for both 0ppm and 10ppm of alum (40% and 39% 

respectively). This result indicated that 10ppm of alum was not a suitable concentration of alum for 

the NP and LP samples. Thus, the value of the SSV represented 0 when the concentration of alum was 

0 and 10ppm in both the NP and the LP cultures, as shown Table 3. 

On the other hand, for the NP and LP cultures after coagulation with 100ppm of alum, their 

flux performance was enhanced in comparison to the flux using coagulation with 0, 10 ppm of alum. 

This was because using 100ppm of alum removed particles of both the NP and the LP cultures leading 

to membrane fouling. Specifically, the particles were precipitated, and removed when 100ppm of 

alum used, as shown in Table 3. 

 

Table 4. Original and Normalized flux point at 1min for both the NP and LP cultures after 

coagulation with various concentration of alum 

Dosage of alum 0ppm 10ppm 100ppm 

  LMH % LMH % LMH % 

NP (E. coli only) 1225 29 1393 33 2648 62 

LP (MOI = 2) 1712 40 1680 39 3053 71 

* LMH value is an average of original flux until 1 min. The % value, a normalized flux, is ((LMH 

value of microbial solution * 100) / (LMH value of prue water)). 

 

Furthermore, for LP cultures, the normalized flux of the LP cultures became significantly 

different when comparing 10ppm of alum with 100ppm of alum (39% and 71% respectively). This 

was because 100ppm of alum led to aggregation of the E. coli debris produced through bacterial 

predation. For LP cultures, the SSV increased after coagulation with 100ppm of alum, as shown in 

Table 3. The increased SSV indicated that the E. coli debris was aggregated and precipitated by using 

100ppm of alum, even though the difference of viable E. coli cell number for LP sample between 

10ppm of alum and 100ppm of alum was not much large (Figure 16). Therefore, for LP cultures, the E. 

coli debris was removed, and the normalized flux showed the highest in all of alum concentration, 

following coagulation with 100ppm of alum, not 10ppm of alum. 
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2.3. Resistance-in-series model 

In order to detect which components of membrane fouling contributed most to the fouling 

issue, a resistance-in-series model was used. As shown in Figure 18, there are consequences of diverse 

membrane resistances, following filtration of 200mL supernatant of the NP and LP cultures, with 

coagulation treatment using various concentration of alum such as 0, 10 and 100ppm. From eq. (2) 

and (4), the Rm value was obtained by 0.4 × 1011 m-1. The total resistance of the membrane is 

described by the sum of Rm, Rc, and Rp (Figure 18a). In addition, the total resistance of both the NP 

and LP cultures became inversely proportional to alum concentration. In the concrete, in the case of 

100ppm alum, the total resistance of both the NP and LP samples represented the lowest values. The 

total resistance of LP cultures even became a 14 times decreased value, and that of NP cultures 

showed a 6 times reduced value, when comparing 100ppm of alum with 10ppm of alum. 

This was because particles in the samples causing membrane fouling were precipitated and 

removed by the coagulation using 100ppm of alum, of which the SSV demonstrated settlement of the 

particles (Table 3). In addition, the total resistance of LP sample was lower than that of NP sample. 

This tendency was related to SSV results; Table 3 represents the SSV of LP sample is higher than that 

of NP sample, SSV results indicated that the particles of the LP cultures were well aggregated and 

more precipitated in comparison with particles of the NP cultures when 100ppm of alum was used. 

For the LP cultures, coagulation with 100ppm of alum led to decrease of the irreversible 

resistance as well as the total resistance. Concretely, the irreversible resistance of the LP cultures 

became about a 4 times decreased value, when comparing 100ppm of alum with 0ppm of alum. This 

was because the E.coli debris, leading to increase of the irreversible resistance of the LP cultures, was 

precipitated and removed after coagulation with 100ppm of alum. 
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Figure 18. Membrane resistances for both the NP and LP cultures using the Resistance-in-series 

model at various concentration of alum such as 0, 10, and 100ppm; (a) Total resistance (Rt), (b) 

Resistance of cake layer(Rc), (c) Resistance of pore block(Rp) 
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As 100ppm of alum, the total resistance and reversible resistance of LP sample were lower 

than that of NP sample. Also, the total and reversible resistances were decreased for both the NP and 

LP samples, when comparing 10ppm of alum with 0ppm of alum. However, 10ppm of alum triggered 

the increase of the irreversible resistance of both the NP and LP samples. The difference of the 

irreversible resistance between the NP and the LP samples after coagulation with 10ppm alum was 

similar with that of the irreversible resistance for no coagulation.  

As shown in Table 3, the value of the SSV showed 0 when the concentration of alum was 

10ppm in both the NP and the LP cultures. Thus, there was not precipitation, and almost all of the 

particles were present in active flocs in the suspension of both the NP and the LP cultures. The active 

flocs caused an opposing effect on membrane performance of the NP and LP samples.  

In other investigations, Howe and Clark represented that membrane performance consistently 

improved with doses for enhanced coagulation but that coagulation may improve or degrade 

membrane performance when low doses are used (Howe et al., 2006). Therefore, 10ppm alum was not 

a suitable dosage for both the NP and the LP cultures, and then the 10ppm of alum led to the MF 

membrane performance to be worse.  

Since the irreversible resistance of both NP and LP cultures was increased after coagulation 

of 10ppm alum, the pores of the MF membrane were severely blocked even after tough washing of 

the membrane, as shown in Figure 19, SEM images. Furthermore, for LP cultures, the E. coli debris 

blocked the pores of the MF membrane with no coagulation treatment. However, in the case of 

coagulation with 100ppm alum, the pores of the MF membrane for LP cultures could be observed 

(Figure 19). This indicated that 100ppm alum led to decrease of irreversible resistance for LP cultures. 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 32 - 

 

 

Figure 19. Scanning electron microscopy (SEM) images of the MF membranes filtered both the 

NP and LP cultures after coagulation with various concentration of alum 

 

Table 5 represents this in detail. Table 5 illustrates overall percent of membrane resistances, 

depending on the alum concentration with two cases; E. coli and MOI = 2. In the case where alum 

was not used, the reversible resistance such as Rc was mainly involved for the NP cultures (97.4%). 

On the other hand, for the LP cultures, the irreversible resistance was higher compared to that of NP 

cultures. In addition, when 10ppm of alum was used, the ratio of the irreversible resistance to the total 

resistance was increased for both the NP and LP cultures (34.4% and 55.4% respectively).  

Since 10ppm alum was not a suitable dosage for both the NP and the LP cultures, the 10ppm 

of alum triggered increase of the irreversible resistance for both cultures. However, both the NP and 

LP cultures represented greatly low total and reversible resistances, when 100ppm of alum was used. 

Also, the intrinsic membrane resistance (Rm) of LP cultures was the main portion to the total 

resistance, indicating the possible advantage of using both the alum and the predation for mitigating 

membrane biofouling. 

 

 

 

 

 

 

 



- 33 - 

 

Table 5. Fouling resistances of membranes filtered both the NP and LP cultures after 

coagulation with various concentration of alum 

 0ppm 10ppm 100ppm 

 NP LP NP LP NP LP 

Total  

Resistance 

18.5 ± 0.42 11.8 ± 2.77 10.5 ± 3.04 10.1 ± 1.91 2.79 ± 0.31 0.79 ± 0.2 

Rm  2.5% (0.46) 3.8% (0.45) 4.1% (0.43) 4.3% (0.44) 15% (0.42) 58.3% (0.46) 

Rp 0.1% (0.01) 11.5% (1.36) 34.4% (3.61) 55.4% (5.57) 78.6% (2.19) 39.8% (0.32) 

Rc 97.4% (18.0) 84.7% (10.0) 61.5% (6.47) 40.3% (4.06) 6.4% (0.18) 1.9% (0.02) 

* The values in parentheses are the average determined resistances for each (unit: 1011m-1). 

 

2.4. Discussion 

From the results of resistance-in-series model, at low concentration of alum (10ppm), the 

membrane performance was poor for both the NP and LP cultures, in that the irreversible resistances 

of both cultures were increased in comparison with the cases of no alum treatment. However, at 

suitable dosage of alum (100ppm), it caused the considerable decrease of total and reversible 

resistances for both cultures. Furthermore, the total, reversible and irreversible resistances of LP 

cultures became less than that of NP cultures, and the SSV value of LP cultures was larger than that of 

LP cultures. This pointed out that the cultures of low MOI with 100ppm alum were well cohered and 

precipitated in comparison with the cultures of E. coli, and there were two factors for the phenomenon 

of coagulation, using 100ppm of alum.  

At first, the size of particles has been considered to influence membrane process using 

coagulation. Figure 13 shows the particle size distribution (PSD), which represents the average 

particle size of LP cultures were lower than that of NP cultures. Because of the predation of BALOs, 

living E. coli cells were lysed and made by a lot of cell debris, which led to the improvement of 

membrane performance with alum coagulation.  

Other investigations found that the combination of pre-treatment using ultrasonic and alum 

coagulation caused enhancing the permeate flux, by comparison with the case of utilizing coagulation 

alone. This was attributed to the disintegration of the particles (Hakata et al., 2011). The effects of 

predation seem to be similar with that of ultrasonic, because both predation and ultrasonic effects led 

to lysis of the fouling microorganisms. It was known that the predation resulted in the fragmentation 

of the particles, a lot of cell debris (as shown Figure 3). Thus, as the results of Hakata, a combined 

pre-treatment using both bacterial predation (low MOI) and alum coagulation (100ppm) led to 

enhance membrane performance. 
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Next, zeta potential is one of the important factors for the membrane performance using 

coagulation. Figure 14 represents the zeta potential, which shows the zeta potential of the LP cultures 

became a lower absolute value in comparison with that of the NP cultures. This result concurs with 

finding of Klodzinska work which found that dead bacterial cells showed lower zeta potential 

(Klodzinska et al., 2010). From bacterial predation, it was produced a lot of dead cells, debris in LP 

cultures.  

The work of Sharp suggested that intense flocs and low residual contents could be produced 

by minimizing the zeta potential (Sharp et al., 2006). Clearly, decreased negative surface charge of 

particles could help the particles to aggregate strongly together, and further hinder membrane fouling, 

as shown in the study (Liu and Sun, 2010). Figure 14 shows that the particles of the LP cultures 

became a lower negative surface charge in comparison with that of the NP cultures. In addition, high 

negative surface charge of particles led to the harsh membrane fouling in MBR (Lee et al., 2003). 

Consequently, bacterial predation for LP cultures led to particles having a lower negative surface 

charge, which improved membrane performance after coagulation with 100ppm of alum. 
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Ⅲ. Combined pre-treatments of bacterial predation and powdered 

activated carbon (PAC) to reduce membrane biofouling 

 

3.1. Microbial solution characterization after treatment using powdered activated carbon (PAC) 

The survival of E. coli within DNB (0.1 x nutrient broth) media was observed over PAC 

concentration when the NP and LP cultures after cultivation during 48hr. Figure 20 represents the 

observed OD of these cultures. The ODs of the NP cultures showed a pattern which the values of OD 

were inversely proportional to PAC contents. However, The ODs of the LP cultures represented a 

different pattern that the values of OD were slightly proportional to PAC contents. This was because 

of particles of PAC which permeated by a 10 µm filter. The decrease of OD in the NP sample 

indicated that some particles in the sample were removed due to PAC treatment. Especially, in the 

case of 100ppm PAC, the ODs showed the lowest values. This is further demonstrated by the count of 

viable E. coli cells (Figure 21). 

 

Figure 20. Optical density at 600nm for both the NP and LP cultures depending on the PAC 

concentration 

 

In addition, the count number of viable E. coli cells for both the NP and LP cultures showed a 

similar pattern which the values of the count number were inversely proportional to PAC 

concentrations. However, the decrease of viable E. coli cells for both the NP and LP cultures was 

much low depending on the PAC concentrations. Also, the values of the count number for the LP 
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cultures were always lower than that of NP cultures over all concentration of PAC. For the NP 

cultures, the count number of viable E. coli cells dropped 2.1-fold from 1.31 x 108 CFU to 6.26 x 107 

CFU under 100ppm PAC, and the cell number of LP cultures decreased 2.1-fold from 2.33 x 103 CFU 

to 1.09 x 103 CFU under 100ppm PAC. In addition, for LP cultures between 0ppm and 10ppm of PAC, 

the count number of viable E. coli cells decreased 1.2-fold. When PAC treatment was used, the 

difference of viable E. coli cell number for both the NP and LP cultures was not much big as 

compared to coagulation treatment using alum. However, as the results of the study, Investigation of 

Pre-treatment using Bdellovibrio-and-like-organisms (BALOs) on the dead-end microfiltration of 

Escherichia coli (E.coli) solution, the E. coli debris of the LP cultures from bacterial predation should 

be considered, because MF membrane of 0.45 µm pore-size could filter the debris. 

 

 

Figure 21. Viable E. coli cell counts for both the NP and LP cultures depending on the PAC 

concentration 

 

From Figure 20 and Figure 21, it was found that the number of viable E. coli and the ODs 

were different according to PAC concentration. However, for both the NP and LP cultures after 

treatment using various concentrations of PAC, the extent of decrease of the viable E. coli cell showed 

a slight difference in comparison with coagulation treatment using alum. Even if same dosage of both 

the alum and PAC was used, the influence on a decrease of the viable E. coli cell was different for the 

NP and the LP cultures. This could be due to the dissimilar mechanism of treatment using the alum 

and the PAC. It has been known that coagulation treatment leads to change of surface charge for target 
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compounds, and this treatment cause the aggregation and the precipitation of the target compounds. 

On the other hand, the mechanism of the PAC treatment is the adsorption to the target compounds. 

These different mechanisms of both the coagulation and PAC treatments triggered different tendencies 

of both the viable E. coli cell and the ODs, when compared the results of the PAC treatment with that 

of coagulation treatment. 

 

3.2. Filtration of 200ml microbial solution after treatment with the PAC 

The MF membrane was conducted to permeate 200ml of both the NP and the LP cultures 

after treatments with various concentration of the PAC. The result of the original flux is shown in 

Figure 22 below. The flux of the NP and LP cultures represented comparable tendency which the 

values of flux were proportional to the PAC concentrations. The increase of flux in both the NP and 

the LP samples indicated that some particles causing the membrane fouling in the samples were 

adsorbed and removed due to the PAC treatment. Besides, for LP cultures, their flux values were 

always higher than NP cultures over all concentration of the PAC, because the total number of living 

E. coli cells of the LP cultures was always lower than that of the NP cultures, as shown in Figure 21. 

This result implied that viable E. coli cells had an important influence on the MF membrane 

performance because of the sieving mechanism, and membrane biofouling caused by viable E. coli 

cells was able to be mitigated by using the PAC treatment and bacterial predation. 
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Figure 22. Original flux of membranes for both the NP and LP cultures after treatment with (a) 

0ppm, (b) 10ppm, and (c) 100ppm of the PAC 
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There are more detailed flux results in Table 6. The normalized flux of both the NP and LP 

cultures represented a similar tendency which the normalized flux was proportional to the PAC 

concentration. In addition, when comparing 0ppm of the PAC with 10ppm of the PAC, these flux 

values of the NP cultures were not much different (29% and 33% respectively). As the case of the NP 

cultures, the normalized flux of LP cultures showed analogous values for both 0ppm and 10ppm of 

alum (40% and 41% respectively). This result implied that 10ppm of the PAC was not an appropriate 

concentration of the PAC for both the NP and LP cultures. 

On the other hand, for the NP and LP cultures after treatment with 100ppm of the PAC, their 

tendencies of flux performance were totally different. For the LP cultures, the flux performance was 

improved in comparison to the flux using the treatment with 0, 10 ppm of the PAC. This was because 

using 100ppm of the PAC removed particles of the LP cultures causing to membrane fouling. 

Specifically, for the LP cultures, the normalized flux of the LP cultures became significantly different 

when comparing 10ppm of the PAC with 100ppm of the PAC (41% and 55% correspondingly). This 

was because 100ppm of the PAC caused the adsorption of the E. coli debris produced through 

bacterial predation.  

When comparing 10ppm of the PAC with 100ppm of the PAC, the flux performance for the 

LP cultures was much different, even if the difference of viable E. coli cell number for LP sample 

between 10ppm of the PAC and 100ppm of the PAC was not much large (Figure 21). This indicated 

the treatment with 100ppm PAC led to removing a lot of the E. coli debris, not living E. coli cells. 

Thus, for LP cultures, the E. coli debris was removed, and the normalized flux showed the highest in 

all of the PAC concentration, after treatment with 100ppm of the PAC, not 10ppm of the PAC. 

 

Table 6. Original and Normalized flux point at 1min for both the NP and LP cultures after 

treatment with various concentration of the PAC 

Dosage of PAC 0ppm 10ppm 100ppm 

  LMH % LMH % LMH % 

NP (E. coli only) 1225 29 1406 33 1495 35 

LP (MOI = 2) 1712 40 1768 41 2352 55 

* LMH value is an average of original flux until 1 min. The % value, a normalized flux, is ((LMH 

value of microbial solution * 100) / (LMH value of prue water)). 

 

In addition, when 100ppm of the PAC was even used, the flux performance for the NP 

cultures was not much enhanced in comparison to the flux using treatment with 0, 10 ppm of the PAC. 

Concretely, the flux of the NP cultures was slightly increased from 29% to 35%, when comparing 



- 40 - 

 

100ppm of the PAC with 0ppm of the PAC. This result represented a different trend in comparison 

with the case of using alum. When 100ppm of alum was used, the flux of the NP cultures was 

significantly enhanced from 29% to 62%, when comparing 100ppm of alum with 0ppm of alum 

(Table 4). This indicated that the coagulation using 100ppm of alum had a better effect on removing 

viable E. coli cells, compared to the treatment using 100ppm of the PAC. 

In conclusion, it was found that the flux of the LP cultures was improved when 100ppm of 

the PAC was used. Thus, as using 100ppm alum for the LP cultures, the PAC treatment of 100ppm led 

to removing the E. coli debris and improving the flux performance. However, for the NP cultures, the 

treatment using 100ppm of the PAC did not have a considerable effect on removing viable E. coli 

cells and enhancing the flux performance, when comparing the coagulation using 100ppm of alum. 

 

3.3. Resistance-in-series model 

In order to detect which components of membrane fouling contributed most to the fouling 

issue, a resistance-in-series model was used. As shown in Figure 23, there are consequences of diverse 

membrane resistances, following filtration of 200mL supernatant of the NP and LP cultures, with the 

treatment using various concentration of the PAC such as 0, 10 and 100ppm. From eq. (2) and (4), the 

Rm value was obtained by 0.4 × 1011 m-1. The total resistance of the membrane is described by the sum 

of Rm, Rc, and Rp (Figure 23a). In addition, the total resistance of both the NP and LP cultures became 

inversely proportional to the PAC concentration. In the concrete, in the case of 100ppm PAC, the total 

resistance of both the NP and LP samples showed the lowest values in the overall concentration of the 

PAC. The total resistance of LP cultures even became a 6 times decreased value, and that of NP 

cultures showed a 2 times reduced value, when comparing 100ppm of the PAC with 0ppm of the PAC. 

This was because particles in the samples leading to membrane fouling were adsorbed and 

removed by the treatment using 100ppm of the PAC. Furthermore, the total resistance of the LP 

cultures was lower than that of the NP cultures. This tendency was related to flux results; Table 6 

implied that the treatment using 100ppm of the PAC triggered removing the E. coli debris as well as 

enhancing the flux performance of the LP cultures, and the PAC treatment was not considerably 

efficient for both removing viable E. coli cells and improving the flux performance of the NP cultures. 

For the LP cultures, the treatment with 100ppm of the PAC caused the decrease of the 

irreversible resistance as well as the total resistance. In the concrete, the irreversible resistance of the 

LP cultures became about a 2.7 times decreased value, when comparing 100ppm of the PAC with 

0ppm of the PAC. This was because the E.coli debris, triggering the increase of the irreversible 

resistance of the LP cultures, was adsorbed and removed after the treatment with 100ppm of the PAC. 
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Figure 23. Membrane resistances for both the NP and LP cultures using the Resistance-in-series 

model at various concentration of the PAC such as 0, 10, and 100ppm; (a) Total resistance (Rt), 

(b) Resistance of cake layer(Rc), (c) Resistance of pore block(Rp) 
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Since the irreversible resistance of the NP cultures became significantly low over all 

concentration of the PAC, the pores of the MF membrane were observed after tough washing of the 

membrane, as shown in Figure 24, SEM images. In addition, for LP cultures, the E. coli debris 

blocked the pores of the MF membrane, when the treatment of PAC was not used. However, in the 

case of treatment with the PAC, the pores of the MF membrane for LP cultures could be observed 

(Figure 24). This implied that 100ppm PAC caused a decline of the irreversible resistance for LP 

cultures. 

 

 

Figure 24. Scanning electron microscopy (SEM) images of the MF membranes filtered both the 

NP and LP cultures after treatment with various concentration of the PAC 

 

Table 7 shows the fouling resistances of the MF membranes in detail. Table 7 represents 

overall percent of membrane resistances, according to the PAC concentration with two cases; E. coli 

and MOI = 2. For the NP cultures, the reversible resistance such as Rc was mainly involved over all 

concentration of the PAC. In concrete, it became more than 90% of the total resistance. Furthermore, 

when the PAC treatment was used, the total resistances of the NP cultures showed larger values in 

comparison with the cases of coagulation using alum. For example, the total resistance of the NP 

cultures was about a 2 times decreased value, when comparing 100ppm of the PAC with 0ppm of the 

PAC. On the other hand, the total resistance of the NP cultures became about a 23 times decreased 

value, when comparing 100ppm of alum with 0ppm of alum. This tendency was related to the number 

of viable E. coli cells. 
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Table 7. Fouling resistances of membranes filtered both the NP and LP cultures after the 

treatment using various concentration of the PAC 

 0ppm 10ppm 100ppm 

 NP LP NP LP NP LP 

Total  

Resistance 

18.5 ± 0.42 11.8 ± 2.77 12.9 ± 2.51 4.57 ± 4.93 8.95 ± 3.65 1.98 ± 1.80 

Rm  2.5% (0.46) 3.8% (0.45) 3.1% (0.40) 9.2% (0.42) 4.7% (0.42) 20.6% (0.41) 

Rp 0.1% (0.01) 11.5% (1.36) 0.6% (0.08) 28.7% (1.31) 0.6% (0.05) 25.6% (0.51) 

Rc 97.4% (18.0) 84.7% (10.0) 96.3% (12.4) 62.1% (2.84) 94.7% (8.48) 53.8% (1.07) 

* The values in parentheses are the average determined resistances for each (unit: 1011m-1). 

 

From Figure 21, it was found that the count number of viable E. coli cells for the NP cultures 

decreased 2.1-fold from 1.31 x 108 CFU to 6.26 x 107 CFU after the treatment with 100ppm PAC. 

However, when the coagulation with 100ppm of alum was used, the count number of viable E. coli 

cells for the NP cultures dropped 37-fold from 1.16 x 108 CFU to 3.13 x 106 CFU (Figure 16). This 

indicated that the decreased viable E. coli cells led to a decline of the total resistance. Thus, the 

coagulation using 100ppm of alum was more efficient than the treatment using the PAC, in that both 

the number of viable E. coli cells and the total resistance were reduced for the NP cultures. 

On the other hand, for both the NP and LP cultures, the total resistance was decreased 

according to the concentration of the PAC. This tendency was mainly due to a decline of the 

reversible resistance, which represented more than half of the total resistance (Table 7). Hence, the 

PAC treatment had an effect on reducing the reversible resistance. These results concur with findings 

of Khan who found that the application of PAC was responsible for decrease of the cake layer 

resistance (Khan et al., 2012). Furthermore, for the LP cultures, the ratio of the reversible resistance to 

the total resistance was decreased according to the concentration of the PAC. In the case where 

100ppm of the PAC was used, the ratio dropped from 84.7% to 53.8%. However, for the NP cultures, 

the ratio decreased from 97.4% to 94.7%, which the trend seemed to be comparable.  

From Table 6, it was found that the treatment using 100ppm of the PAC did not have a 

considerable effect on removing viable E. coli cells and enhancing the flux performance for the NP 

cultures. However, Table 7 represents that the treatment using 100ppm PAC was in charge of the 

decrease of both the reversible and irrversible resistances for the LP cultures. This implied that the 

treatment with 100ppm PAC led to removing a lot of the E. coli debris, not most of vialbe E. coli cells. 

Therefore, both the PAC treatment and the bacterial predation contributed to alleviating membrane 

biofouling. 
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3.4. Discussion 

From the results of resistance-in-series model, at appropriate concentration of the PAC 

(100ppm), it triggered the considerable decrease of total and reversible resistances for the LP cultures, 

while the decrease of both resistances was not much great for the NP cultures. Furthermore, the 

irreversible resistances of LP cultures became less than the case where the PAC was not used. This 

indicated that the cultures of low MOI were well adsorbed and removed by using the treatment with 

100ppm PAC in comparison with the cultures of E. coli, and there were two factors for the 

phenomenon of the treatment, using 100ppm of the PAC. 

At first, the size and shape of particles has been considered to influence membrane process 

using the treatment with the PAC. Figure 3 represents the observation of the bacterial predation 

process. The predator (B. bacteriovorus) approached the prey (E. coli), and then broke through the 

prey cell of which the shape was changed into a sphere. This sphere shape has been found in other 

investigations as a bdelloplast (Park et al., 2011, Varon and Shilo, 1968). From the result of 

‘Investigation of Pre-treatment using Bdellovibrio-and-like-organisms (BALOs) on the dead-end 

microfiltration of Escherichia coli (E. coli) solution’, the debris produced by bacterial predation 

blocked the pores of the MF membrane more severely. This meant that the debris was attached to the 

pores of the MF membrane. As this trend, for the LP cultures, it is possible that the debris was well 

adsorbed after treatment using 100ppm of the PAC. This was because a shape of the E. coli debris was 

more appropriate to adsorbing the debris through the PAC particles, compared by the shape of the 

living E. coli cells. 

Next, zeta potential is one of the crucial factors for the membrane performance using the PAC 

treatment. Figure 14 shows the zeta potential, which represents the zeta potential of the LP cultures 

became a lower absolute value in comparison with that of the NP cultures. The study of Matsushita 

found that a decreased repulsive force between the PAC particles and the microorganisms attributed 

considerably to removal of the microorganisms (Matsushita et al., 2013). Figure 14 represents that the 

particles of the LP cultures became a lower negative surface charge in comparison with that of the NP 

cultures. Thus, bacterial predation for LP cultures led to particles having a lower negative surface 

charge, which enhanced membrane performance after treatment with 100ppm of the PAC. 

In addition, at low concentration of alum (10ppm), the membrane performance was poor for 

both the NP and LP cultures, in that the irreversible resistances of both the NP and LP cultures were 

increased in comparison with the cases of no alum treatment. This tendency was similar with the Goh 

work in the view of the increase of the irreversible resistance even after using alum coagulation (Goh 

et al., 2010). On the other hand, the treatment using the PAC did not have an effect on the increase of 

the irreversible resistances for both cultures. This could be because of the different mechanism of the 
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treatment using the alum and the PAC. It has been known that coagulation treatment causes a change 

of surface charge for target compounds, and this treatment trigger the aggregation and the 

precipitation of the target compounds. However, the mechanism of the PAC treatment is the 

adsorption to the target compounds. These different mechanisms of both the coagulation and PAC 

treatments caused different trends of membrane performance, when compared the results of the PAC 

treatment with that of coagulation treatment. Concretely, 10ppm of alum produced a lot of active flocs, 

which led to the increase of the irreversible resistances for both cultures. However, the treatment did 

not cause the increase of the irreversible resistances for both cultures. This was because the treatment 

using the PAC did not have an impact on the change of the surface charge of particles. 
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Chapter 4. Conclusions 

 

In the first part of this investigation, Dead-end microfiltration (MF) tests were carried out on 

E. coli feed solutions, which were prepared by spiking various initial concentration of BALOs. The 

flux performance was analyzed by resistance-in-series model. Surface morphology was analyzed with 

Digital camera, Stereomicroscopy and SEM(Scanning Electron Microscopy). According to the initial 

concentration of spiked BALOs, microbial growth can be different over the time. In addition, when 

the feed solutions were initially contained by predatory bacteria in the DNB broth, the total resistance 

of the MF membrane became lower than the control over the experimental time. However, in the case 

where the initial MOI of 2 was used, there were still possibilities to induce a long term of the 

membrane fouling because its irreversible resistances were increased due to the E. coli debris from 

bacterial predation. Therefore, these results indicate that pre-treatment using an appropriate 

concentration of predatory bacteria such as BALOs is promising for an improvement of the membrane 

performance. 

From the results of the first part, the low MOI triggered the irreversible fouling of the 

membrane due to the debris of prey cell. However, other research groups found that the ultrasonic 

treatment resulted in enhancing the coagulation performance. It was assumed that the effect of 

bacterial predation may be comparable with that of the ultrasonic treatment because both led to lysis 

of the microorganisms. Based on this assumption, the aim of the second study was to evaluate 

combined treatments of both the bacterial predation and the coagulation in order to decrease the 

membrane biofouling. The feed solutions were prepared by using E. coli and B. bacteriovorus after 

coagulation with diverse concentrations of alum. The results showed that when low concentration of 

alum (10ppm) was used, the membrane fouling got worse for both NP and LP cultures, as compared 

to no alum addition, in that the irreversible resistance of the membrane was much higher. On the 

contrary, using a suitable concentration of alum (100ppm) decreased the total and reversible 

resistances similarly in both NP and LP cultures considerably. Furthermore, at 100ppm of alum, the 

LP culture led to both a lower total and irreversible resistance compared to the NP culture. This was 

because the LP culture with alum coagulation was well aggregated. These results point out that 

combined treatments of both B. bacteriovorus predation and a suitable concentration of alum can be 

an efficient pretreatment method for improving membrane performance. 

As the coagulation using alum, the feed solutions were prepared by using E. coli and B. 

bacteriovorus after treatment with various concentrations of the powdered activated carbon (PAC) in 
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order to mitigate membrane biofouling triggered by E .coli cell debris of the LP culture. The results 

represented that when 10ppm or 100ppm of PAC were used, the membrane performance became 

better for both cultures as compared to no PAC addition, in that the reversible resistance was 

decreased. In addition, for the LP culture, 100ppm of PAC caused reducing the irreversible resistance, 

as compared to 0ppm of PAC. In the case where 10ppm or 100ppm of the PAC was used, the LP 

culture led to less total membrane resistance as compared to the NP culture. These results also 

represent that an appropriate concentration of the PAC in combination with bacterial predation is an 

effective treatment for mitigating the membrane biofouling. 

Consequently, this investigation represented that using bacterial predators at a suitable 

concentration was beneficial for reducing the membrane biofouling. In addition, even if using 

bacterial predators at an unsuitable concentration triggered an increase of the irreversible membrane 

resistance, combined treatments of both bacterial predation and an appropriate concentration of alum 

or the PAC, can be beneficial for enhancing the performance of MF membranes, which utilized for 

facilities of wastewater treatment. 
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