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Abstract 

 

This thesis reports the design and experimental demonstration of a mode generator for a TE62 

mode, operating at 95 GHz. The excitation of a target mode for a cold test has been performed in the 

mode generator. The cavity mode of a mode generator excites the TE62 mode by means of a 

fundamental mode. A TE62 mode was chosen as a cavity mode for a W-band Gyrotron. In order to 

test the performance, the TE62 mode generator has been developed for a cold test.   

Quasi-optical analysis has been done for designing mode generator. A Gaussian-like beam from a 

corrugated feed horn using a vector network analyzer propagates to the cavity which was made 

translucent by array of holes. The measurement is very sensitive to the experimental conditions such 

as coupling of the cavity, alignment, and undesirable interception from the reflected beam. 

Simulations were done by High Frequency Structure Simulator (HFSS) and CST MICROWAVE 

STUDIO (CST MWS), and then compared to the experimental results. 
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Chapter 1 

Introduction 

A mode generator that is part of the gyrotron mainly studied by Germany, Russia, and USA. The 

low power excitation using quasi-optical techniques was studied by N. L. Alexandrov in Russia (1995) 

[1]. The experimental results of low power excitation of a 118GHz at 𝑇𝐸22.6 mode are presented. 

Fundamental modes of rectangular waveguide are converted to a 𝑇𝐸22.6 mode using quasi-optical 

techniques. The converter using a coaxial cavity was designed and tested. The design methods for the 

quasi-optical system are shown that convert the input Gaussian beam to a desired beam which will 

excite the 𝑇𝐸22.6 mode in the given coaxial cavity. This paper shown the converter is presently being 

successfully used to perform low power verification of the quasi-optical system design for a 118GHz 

at 𝑇𝐸22.6 gyrotron. And the mode generator was studied by D. Wagner in Germany (2002) [2]. This 

paper studied several high order cavity modes have to be excited at low power levels. Because they 

want to verify the performance of broadband quasi-optical mode converters of gyrotrons in cold-test 

experiments. The frequency range to be covered is 105-140 GHz. The preferred method is the direct 

excitation of a cavity through a translucent cavity wall. They studied mode generator consisting of 

dual-mode horn, two cylindrical lenses, and a quasi-parabolic mirror. This paper shown good 

agreement with the calculated and measured mode pattern of the 𝑇𝐸22.8 mode at 140 GHz. A mode 

generator has positive effect of the wide area such as military field, medical field, and bio-technology, 

therefore, we started this research. 

The mode generator typically excites a target mode for a cold test by exciting a cavity mode. A 

TE62  mode was chosen to beam cavity mode for W-band Gyrotron [3]. In order to test the 

performance of the Gyrotron cavity, the TE62 mode generator has been developed for a cold test [2]. 

The mode generator usually consists of a corrugated feed horn, mirrors and a resonator. The basic set-

up of the mode generator is shown in Figure 1-1 [1]. 
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Figure 1-1: Mode generator consists of horn, mirror, and coaxial cavity. 

A generated Gaussian beam from a horn antenna propagates to mirror system [4]. The mirrors are 

either parabolic shape or elliptical shape in perpendicular and parallel direction with respect to the 

beam propagation direction. Each directional component has been analyzed separately to determine 

the Gaussian beam size as the beam propagates using quasi-optical theory. Gaussian beam is focused 

at caustic through a translucent cavity wall. As shown in Figure 1-2, mode generation system is 

converted from Gaussian beam to TE62 mode. 

 

Figure 1-2: Mode conversion from Gaussian to 𝑇𝐸62 mode.  

 

1.1 Mode generator 

The motivation of the research is the development of a generation of higher order mode for W-band 

gyrotron oscillator. The mode generator is needed for cold test of a mode converter system of a high 

power gyrotron. After generating low mode at input part, we have to control beam by adjusting the 

size and position of beam using mirrors [5]. The cavity excites the target mode by coupling the beam 

Mode generator 

 Mode input section Mode control section Mode cavity section 

Horn Mirror Coaxial cavity 

(Elliptical + parabolic) 

Gaussian TE62 

Mode conversion 
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reflected off mirror arrays. As a result, the cavity at the aperture generates the desired higher-order 

modes [6].  

 

1.2 gyrotorn 

A gyrotron is a vacuum electronic device (VED) to generate high power and high frequency 

radiation. The operation of a gyrotron is based on the stimulated cyclotron radiation which is electron 

oscillation in a strong magnetic field [7].  

The electron emitted from the Electron gun in the gyrotorn will come out through the cavity and the 

mode convertor [8]. A cavity in the gyrotron excites the desired mode by coupling from the electron 

beam [9]. The mode convertor is converted from selected mode to a gaussian beam.  

 

1.3 Gaussian beam 

In order to apply to low power of the cavity at the input part, Gqussian mode is appropriate for 

designing quasi-optical mirror system. Gaussian beam with high transmission efficiency 

characteristics of the distribution of the electric field and magnetic field antennas are used [10]. 

What is Gaussian beam? Figure 1-3 shows the characteristics of a Gaussian beam [11]. When beam 

goes to the focus, it is the smaller beam width at the focus (z=0). The size of the beam passed through 

a focus linearly expands again. 

 

Picture 1-3: The characteristic of Gaussian beam [12] 

In order to derive the Gaussian beam formula, we assume that the electromagnetic wave progress 

the +z direction. In addition, Gaussian beam changed to propagate z direction such as Gaussian 

function [13]. 
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E(𝑟̅) = 𝐴(𝑧)𝑒𝑥𝑝 *𝑖
𝑘𝜌2

2𝑞(𝑧)
+ ∙ 𝑒𝑖𝑘𝑧 , 𝑤ℎ𝑒𝑟𝑒 𝜌2 = 𝑥2 + 𝑦2             (1.1)         

Where k is a wave number. When Gaussian beam propagates to z axis, a few condition changed 

such as beam width and phase. According to these, one may consider that q(z) is complex number.  

q(𝑧) = 𝑧 − 𝑖𝑧𝑅                                                                           (1.2) 

1

𝑞(𝑧)
=

𝑧

𝑧2+𝑧𝑅
2 + 𝑖

𝑧𝑅

𝑧2+𝑧𝑅
2 =

1

𝑅(𝑧)
+ 𝑖

2

𝑘𝑤2(𝑧)
                                (1.3) 

zR is not determined by equation 1.2. To arrange zR, we can consider figure 1-3. 

z = 0 , 𝑤0 = 𝑤(0)                                                                  (1.4)                             

1

𝑧𝑅
=

2

𝑘𝑤0
2  , 𝑧𝑅 =

𝑘𝑤0
2

2
=

𝜋𝑤0
2

𝜆
                                           (1.5) 

w(𝑧) = 𝑤0√1 +
𝑧2

𝑧𝑅
2                               (1.6) 

The beam waist(w0) is the smaller beam width by reference figure 1.3. So it can be measured. zR 

is determined by equation 3. zR is called as the Rayleigh length or the Rayleigh range [12]. w(z) is 

increased to sqrt 2times at z = zR. The position of z = zRis the Rayleigh length. The beam radius is 

distance to the position of the maximum intensity 1/ e2 (13.5%). 

𝑧𝑅 =
𝜋𝑤0

2

𝜆
                                  (1.7) 

When linearly increasing the beam, we can know angle(θ is radians) [14]. 

θ ≃  
𝜆

𝜋𝑤0
                                  (1.8) 

The cavity transforms the Gaussian-like beam into a TE mode, which is guided to a cavity aperture. 
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Chapter 2 

Theory of Mode Generator 

 

2.1 Corrugated Feed Horn 

2.1.1 Hybrid modes 

The TM  and TE modes which are direct equation of the wave equation inside a smooth circular 

waveguide are fundamental modes in a circular waveguide. But if the waveguide is corrugated, it 

could be also useful to define the field inside the smooth circular waveguide by the hybrid modes EH 

and HE. So in fact we can choose to define the field inside the corrugated horn antenna is term of TE 

and TM modes or in terms of HE and EH modes [15]. 

Transvers electric and magnetic modes are well known in waveguide theory. A simple physical 

description of the properties of hybrid modes is going to be discussed. 

If we assume hybrid condition, it can be defined with the following simplified equation [16] 

𝐻𝐸𝑚.𝑛 𝑚𝑜𝑑𝑒𝑠 

𝐸𝑥(𝑟, ∅)  =  
√2∙𝑍0

𝑅∙√𝜋
∙
𝐽𝑚−1(

𝜒𝑚.𝑛∙𝑟

𝑅
)

𝐽′𝑚−1(𝜒𝑚.𝑛)
∙ 𝑐𝑜𝑠[(𝑚 − 1) ∙ 𝜙]             (2.1) 

𝐸𝑦(𝑟, ∅)  =  
√2∙𝑍0

𝑅∙√𝜋
∙
𝐽𝑚−1(

𝜒𝑚.𝑛∙𝑟

𝑅
)

𝐽′𝑚−1(𝜒𝑚.𝑛)
∙ 𝑠𝑖𝑛[(𝑚 − 1) ∙ 𝜙]               (2.2) 

𝐸𝐻𝑚.𝑛 𝑚𝑜𝑑𝑒𝑠 

𝐸𝑥(𝑟, ∅)  =  
√2∙𝑍0

𝑅∙√𝜋
∙
𝐽𝑚+1(

𝜒𝑚.𝑛∙𝑟

𝑅
)

𝐽′𝑚−1(𝜒𝑚.𝑛)
∙ 𝑐𝑜𝑠[(𝑚 + 1) ∙ 𝜙]              (2.3) 

𝐸𝑦(𝑟, ∅)  =  
√2∙𝑍0

𝑅∙√𝜋
∙
𝐽𝑚+1(

𝜒𝑚.𝑛∙𝑟

𝑅
)

𝐽′𝑚−1(𝜒𝑚.𝑛)
∙ 𝑠𝑖𝑛[(𝑚 + 1) ∙ 𝜙]              (2.4) 

Where χm.n are the roots of the Bessel functions (Jm−1(x) = 0 for the HE modes and Jm+1(x) =

0 for EH modes), R is the waveguide radius, m and n the radial and azimuthal indexes of the modes 

and Z0 is the impedance of free space. 
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2.1.2 Gaussian-like beam of a corrugated waveguide 

The HE1.1 mode is the fundamental mode of a corrugated waveguide at the aperture [17]. From Eq. 

(2.1), this mode is defined only by a distinct component 

𝐸𝑥(𝑟, ∅) =
√2 ∙ 𝑍0

𝑅 ∙ √𝜋
∙
𝐽0 (

𝜒1.1 ∙ 𝑟
𝑅

)

𝐽′0(𝜒1.1)
 

𝐸𝑦(𝑟, ∅) = 0                             (2.5) 

where χ1.1 is the root of the Bessel function J0(x) = 0 and in this particular case, for the HE1.1 

mode is χ1.1=2.404. Equation 2.5 can be obtained from a particularization of Eq. (2.1)and (2.2). 

TE modes TM modes 

𝑇𝐸1.1 84.496 % 𝑇𝑀1.1 14.606 % 

𝑇𝐸1.2 0.082 % 𝑇𝑀1.2 0.613% 

𝑇𝐸1.3 3.58 * 10−3% 𝑇𝑀1.3 0.121% 

𝑇𝐸1.4 4.94 * 10−4% 𝑇𝑀1.4 0.039% 

Table 2-1: 𝐻𝐸1.1 mode decomposition in terms of 𝑇𝐸1.𝑛 and 𝑇𝑀1.𝑛 modes 

The HE1.1 mode can be described as a combination of TM and TE modes. The HE11 mode is 

approximately a combination of 15 % (TM1.1) and 85 % (TE1.1) with the adequate phase shift them. 

But in fact, this mode mixture is not perfect, (99.2 % efficient with HE1.1 mode), the perfect mode 

mixture in terms of smooth waveguide modes, supposing hybrid condition can be seen in table 2-1 [18, 

19]. 

 

2.1.3 Gaussian modes 

It is well known that one of the best ways to define a free space radiation from an antenna is by 

beams of the paraxial free space modes, the Gaussian modes, which are a solution of the paraxial free 

space equation [20]. 

E(r, φ, z) =  
𝑊0

𝑊(𝑧)
∙ 𝑒

−𝑟2

𝑤2(𝑧) ∙ 𝑒
−

𝑘𝑟2

2∙R(z) ∙ 𝑒−𝑗(𝑘𝑧−𝜁(𝑧))              (2.6) 

where r2 = x2 + y2 and w(z) is the beamwidth where there is a field decay of 1/e respect to the 

maximum. In z=0, the function w(z) in Eq. (2.7), has a minimum known as beamwaist and called w0. 
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W(z) =  𝑊0 ∙  √1 + (
2 ∙z

𝑘 ∙ 𝑤0
)
2
                        (2.7) 

It is important also to check the similarity between the fundamental Gaussian mode and the HE1.1 

mode at a certain diameter aperture. 

 

2.2 Mirror system 

2.2.1 Parabolic Mirror 

The paraboloid is formed by rotating a parabola about the axis including its vertex and its focus that 

is taken to be the z axis as indicated in Figure 2-1. The resulting surface having its vertex at the origin 

is described by 

z =  
𝑥2+ 𝑦2

4 𝑓𝑝
                                 (2.8) 

Where fp denoted the focal length. It is generally more convenient to use a spherical polar 

coordinate system with origin at the focal point, in which the surface is described by 

ρ =  
2 𝑓𝑝

1+ cos𝜃
                               (2.9) 

As shown in Figure 2-1, ρ is the distance from the origin to a point P on the surface and θ is the 

angle between the axis of symmetry and the line between the focus and point P. The polar angle ∅ 

about the z axis varies between 0 and 2π, but in much of what follows we will consider only the 

parabolic curve defined for ∅ = 0, which thus lies in the x, z plane [21, 22]. 

An incident ray parallel to the z axis in the x, z plane makes an angle θi, relative to the local 

normal to the reflective surface. 
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Figure 2-1 Parabolic mirror (A) Geometry (B) reflected beam of off axis paraboloid. 

 

2.2.2 Elliptical Mirror 

Ellipsoid takes rotationally symmetric about its major axis, which as shown in figure 3 is the z axis. 

The major axis has length 2a, and the mirror axis perpendicular to this has length 2b. The equation 

of the ellipsoid surface in Cartesian coordinates is [23] 

𝑥2+𝑦2

𝑏2
+

𝑧2

𝑎2
= 1                            (2.10) 

 

 

Figure 2-2 Geometry of ellipsoidal mirror. 

 

And the distances from the two focal points F1and F2, denoted R1and R2, respectively, to a point 

p on the surface are related by 

(𝐴) (𝐵) 
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𝑅1 + 𝑅2 = 2𝑎                            (2.11) 

The separation of the point is 

𝐴0 = 2𝑒𝑎                              (2.12) 

Focusing elements are used as shown in Figure 3. We define θi to be the angle of incidence of the 

beam relative to the local surface normal and consider an ellipse used to bend the beam in the x, z 

plane. 

 

2.3 Cavity 

The cavity of a gyrotron oscillator considered here takes the type of a cylindrical waveguide of 

radius rcavity. Modes propagated by an electron beam have the transverse pattern of a TE mode with 

an axial field along the cavity axis z.  

 

2.3.1 Electromagnetic Fields of a cavity [24] 

In a free-air medium without electric charge density and current sources (ρ = 0, J = 0) and with 

related equations B = μ0H, and D = ε0E, Maxwell’s equation can be written as below at a frequency 

ω. 

∇ × E = −jω𝜇0𝐻                            (2.13) 

∇ × H =  jω𝜀0𝐸                             (2.14) 

∇ ∙ E =  0                                (2.15) 

∇ ∙ H =  0                                (2.16) 

Where H represents the magnetic field density, B represents the magnetic flux density, E represents 

the electric field density, D represents the electric displacement, 

ε0 = 8.854187817 × 10−12 farad/m  is the permittivity of free space, and 

μ0  = 4π × 10−7 henry/m is the permeability of free space . Follow equation 2.15 and 2.16, E and 

H can be expressed as functions of the magnetic vector potential A and electric vector potential  

H = ∇ × A                               (2.17) 

E =  −∇ × F                              (2.18) 
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Solvable Eq. (2.14) and (2.18), the magnetic field H is 

H = −jω𝜀0𝐹 + ∇φ                            (2.19) 

with φ denoting an arbitrary scalar function. We can obtain the wave equation for the electric 

vector potential F 

(∇2 +𝜔2𝜇0𝜀0)𝐹 = 0                        (2.20) 

 For TE case in cylindrical coordinates (ρ, ϕ, z) and considering F = ψẑ, the E and H are 

E =  −
1

𝜌

𝜕𝜓

𝜕𝜙
𝜌̂ + 

𝜕𝜓

𝜕𝜌
𝜙̂                           (2.21) 

H =  −
𝑗

𝜔𝜇0

𝜕2ψ

𝜕𝜌𝜕𝑧
𝜌̂ −

𝑗

𝜔𝜇0𝜌

𝜕2𝜓

𝜕𝜙𝜕𝑧
𝜙̂ −

𝑗

𝜔𝜇0
(𝜔2𝜇0𝜀0𝜓 +

𝜕2𝜓

𝜕𝑧2
) 𝑧̂   (2.22) 

Where the function ψ can be found as a solution of the wave equation (∇2 +ω2μ0ε0)ψ = 0 

using separation of variables ψ(ρ, ϕ, z) = AR(ρ)Φ(ϕ)Ζ(z) where A is a constant [25] 

1

𝜌𝑅

𝜕

𝜕𝜌
(𝜌

𝜕𝑅

𝜕𝜌
) +

1

𝜌2Φ

𝜕2Φ

𝜕𝜙2
+

1

Ζ

𝜕2Ζ

𝜕𝑧2
+𝜔2𝜇0𝜀0 = 0            (2.23) 

the expression for each field component of a TE cylindrical waveguide mode can be found form Eq. 

(2.21) and (2.22) 

𝐸𝜌 = 𝑗𝐸1
𝑚

𝑘⊥𝜌
𝐽𝑚(𝑘⊥𝜌)𝑒

−𝑗𝑚𝜙𝑓(𝑧) 

𝐸𝜙 = 𝐸1𝐽𝑚
′ (𝑘⊥𝜌)𝑒

−𝑗𝑚𝜙𝑓(𝑧) 

𝐸𝑧 = 0 

              (2.24) 

𝐻𝜌 = −𝑗𝐸1
1

𝜔𝜇0
𝑗𝑚
′ (𝑘⊥𝜌)𝑒

−𝑗𝑚𝜙𝑓′(𝑧) 

𝐻𝜙 = −𝑗𝐸1
𝑚

𝜔𝜇0𝑘⊥𝜌
𝑗𝑚 (𝑘⊥𝜌)𝑒

−𝑗𝑚𝜙𝑓′(𝑧) 

𝐻𝑧 = −𝑗𝐸1
𝑘⊥
𝜔𝜇0

𝑗𝑚 (𝑘⊥𝜌)𝑒
−𝑗𝑚𝜙𝑓(𝑧) 

(2.25) 
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From the boundary conditions Eϕ = 0 and Hρ = 0, which yields the following expression for the 

transverse wavenumber 

𝑘⊥ =
𝑣𝑚𝑛
′

𝑎
=

𝑣𝑚𝑛
′

𝑟𝑐𝑎𝑣𝑖𝑡𝑦
                           (2.26) 

where a is radius of a cavity, n denote the radial mode number, vmn
′ is the n th non vanishing 

zero of the derivative of the Bessel function Jm
′ (x). 

The modes in a cylindrical waveguide can be explained as a rays propagating tangentially to a 

cavity of caustic radius rcaustic and Brillouin angle θB 

𝑟𝑐𝑎𝑢𝑠𝑡𝑖𝑐 =
𝑚

𝑘⊥
= 𝑟𝑤𝑔 (

𝑚

𝑣𝑚𝑛
′ ) 

𝜃𝐵 = arcsin (
𝑘⊥
𝑘
) 

(2.27) 

Which can be approximated as θB = arcsin (rcavity / rwg). 
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Chapter 3 

Design and experiment of a mode generator 

 

3.1 Design and experiment of a corrugated feed horn 

A mode generator device uses a gaussian-like beam of the corrugated feed horn. It excites a mixture 

of TE11 and  TM11 mode content which has an E-field distribution similar to the HE11 mode and 

forms Gaussian-like beam. A corrugated feed horn is consistent up to 98.1% efficient with a 

fundamental Gaussian beam.  

For low loss transmission, the desired operating mode of corrugated waveguide is the HE11 mode 

[26, 27]. It is a linearly polarized HE11 mode in the waveguide which has a corrugation depth of 

λ /4  . The final mode in free space is formed to be a Gaussian-like mode.  

Mode conversion TE11to HE11 of corrugated feed horn can be done using a smooth depth 

transition from λ /2  to λ /4 [28-35].  

 

 

Figure 3-1: Schematic of a corrugated waveguide 

p,w, d  and a  represent the corrugation period, the slot width, corrugation depth and the 

waveguide radius, respectively as shown in Figure 3-1. The frequency for the simulation is set to be at 

W-band where geometrical parameters such as depth (d), pitch (p), width (w) and thickness (t) 

defined have chosen accordingly as. d= λ/4, t= λ/6, w= λ/3 [36, 37]. 

After measuring beam generated from corrugated feed horn, we compared with simulation results 

obtained by HFSS program. The figure 3-2 is a corrugated feed horn. 
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Figure 3-2: Corrugated feed horn (WR-08) 

Circular corrugated horn is shown in figure 4.4.The inner surface of the waveguide is repeated 

periodically by an array of corrugated structure. Typically a λ/4 uniformly corrugated tapered section 

is attached at the end of the λ/2 to λ/4 transiton. The effect on the attachment of the λ/4 corrugated 

tapered section was investigated and the geometry considered in the simulation is shown in Fig. 3-3 

[38, 39]. 

 

Figure 3-3: 95GHz corrugated horn. 

Based on this, the entire length of corrugated feed horn is 129mm and radius at horn aperture is 

16mm [40]. 

 

Rec to cir adapter Corrugated region  

=129mm 
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Figure 3-4: The structure of 95GHz corrugated horn. 

 

Based on this, the E-field pattern is confirmed by HFSS program. Due to limited computer 

resources (Table 3-1) and run-time, we used symmetry of the structure 

 Simulation computer 

OS Window7 Professional 

CPU I7 870 

RAM 10.0 GB 

Table 3-1: Computer resources of corrugated feed horn simulation 

 

Table 3-2 shows the parameter setting for HFSS simulation. The entire structure was set aluminum 

and using wave-port of the excitation and a symmetry boundary structure. The entire structure of the 

horn simulation is 118×1×32mm.  

 

 Set up of a simulation 

Simulation program HFSS 

Solution Type Driven Modal 

Frequency 95GHz 

Excitations Wave port 

Boundary Symmetry Boundary 

Material Aluminum 

Boundary Size 118×1×32mm 

Table 3-2: The parameter setting for horn simulation. 

 

The simulation results of the E-field pattern were confirmed. An electric beam pattern is converted 

from 𝐻𝐸11  mode to Gaussian-like beam pattern at the horn aperture which is confirmed by 

simulation results. 
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Figure 3-5: Simulation results of the corrugated feed horn (E field pattern). 

 

In order to check the simulation result, the field pattern from the horn antenna was measured. 

Figure 3-6 is an experimental setup for measuring the horn using VNA. An Agilent PNA-X N5247A 

was connected to W-band corrugated feed horn and open-cut waveguide probe. Also, we used a xyz 

scanning device made by MTG Corp. If we want to measure the beam properties, x, y axis were 

measured at certain resolution.  And the distance between horn and open waveguide was measured 

by the z axis. 

 

Figure 3-6: Experimental environment for the horn. 

E- field Pattern Aperture Pattern 

Port 1 Port 2 

0mm 
50mm 
100mm 



29 

 

 

Figure 3-7: Experimental results of 0mm distance from a horn aperture to open-cut waveguide.  

(A) Amplitude plot by 12dB (B) 3D amplitude plot (C) 1D amplitude plot (D) 1D phase plot 

 

The Fig. 3-7 is experimental results of 0mm distance from a horn aperture to open-cut waveguide. 

If the distance changes at z axis, the beam characteristics can be measured by VNA. So, we changed 

the z axis and measured. The red color represents the calculated beam size by 8.7dB. Fig. 3-7(A) 

shows a guassian-like beam amplitude by 12dB. Fig. 3-7(C) shows a guassian-like beam amplitude 

expressed as 1D. Fig. 3-7(D) shows a Gaussian-like beam phase expressed as 1D.  

dB 

dB 

18mm 

  

Horn aperture 
(A) (B) 

(C) (D) 

dB 

X axis y axis 
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Figure 3-8: Experimental results of 50mm distance from a horn aperture to open-cut waveguide.  

(A) Amplitude plot by 12dB (B) 3D amplitude plot (C) 1D amplitude plot (D) 1D phase plot 

 

The Fig. 3-8 is experimental results of 50mm distance from a horn aperture to open-cut waveguide. 

The red color represents the calculated beam size by 8.7 dB. Fig. 3-7(A) shows a guassian-like beam 

amplitude by 12dB. Fig. 3-7(C) shows a guassian-like beam amplitude expressed as 1D. Fig. 3-7(D) 

shows a Gaussian-like beam phase expressed as 1D. In the case of 50mm distance, the cavity was 

designed to be located.  

 

27mm 

  

dB 

(A) (B) 

(C) (D) 

dB 

X axis y axis 
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Figure 3-9: Experimental results of 100mm distance from a horn aperture to open-cut waveguide.  

(A) Amplitude plot by 12dB (B) 3D amplitude plot (C) 1D amplitude plot (D) 1D phase plot 

 

The Fig. 3-9 is experimental results of 100mm distance from a horn aperture to open-cut waveguide. 

As shown in the Fig. 3-7, 3-8, and 3-9, we found good agreement between the measurement results 

and calculation data. 

 

 

 

 

 

 

35mm 

  

dB 
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(C) (D) 

dB 
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Figure 3-10 Data comparison plots of measurement, calculation and simulation results. It is 

propagated from corrugated feed horn. 

 

              (3.1) 

Equation 3.1 is Gaussian beam equation. Where W(z) is the radius after the wave has propagated 

a distance z, Wo is the radius of the 1/e2 where wavefront is flat and z is the distance propagated 

from the plane the distance. 

We confirmed Gaussian-like beam through measured horn data. The figure 3-10 describes 

measurement results of beam size that propagated from corrugated feed horn. Experimental beam size 

shows a good agreement to the simulation result. Based on this, one can confirm that the expected 

beam size is going to be injected to the cavity. 

 

3.2 Design and experiment of a mirror 

Quasi-optical analysis has been done for designing mirror structures [41]. Parameters for mirror 

structures have been extracted and the design parameters were validated using a commercial finite 

element code, High Frequency Structure Simulator (HFSS).  

The mirrors are either parabolic shape or elliptical shape in perpendicular and parallel direction 

𝑊(𝑧) = 𝑊𝑜  1 +  
𝜆𝑧

𝜋𝑊𝑜
2 

2

 

0.5
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with respect to the beam propagation direction. Each directional component has been analyzed 

separately to determine Gaussian beam size as the beam propagates. 

We compared measurement data with results of simulation using HFSS program. We have designed 

that Gaussian beam is supposed to inject the cavity. To do so, we must control the gaussian beam 

using mirrors. 

As shown in the figure 3-11, the beam waist from the corrugated feed horn is 6 mm(radius). The 

coupling holes of a cavity are 10×20 mm in size. Based on Section 2.2, we have designed mirrors. It 

consists of parabolic share and elliptical shape. 

 

Figure 3-11: The design drawing of a parabolic mirror 

 

W in W out Z focal F R1(=din) R2(=dout) Ao Angle 

6.00 5.65 9.00 25.00 50.00 50.00 50.00 120.00 

6.00 3.69 9.00 21.39 55.00 35.00 42.78 140.48 

6.00 2.90 9.00 16.67 50.00 25.00 33.33 153.62 

Table 3-3: The calculation of parabolic mirror. 

The beam size located inner cavity is 2.9mm (radius). It enters to the cavity by ray optics. As based 

on the parameters of mirrors, mirrors are designed by HFSS software. 

Due to limited computer resources and run-time, we used limited geometrical size by applying 

symmetry. 

Table 3-6 shows the parameter setting for HFSS simulation. The entire structure was set aluminum 

and using Gaussian beam of the excitation and a radiation boundary structure. The entire structure of 



34 

 

the mirror simulation is 58×25×3mm.  

Frequency 95 GHz 

Excitations Gaussian beam 

Mesh size 0.6667 Lambda 

Boundary Radiation field 

Boundary size (x,y,z) 58×25×3 (mm) 

Material Aluminum 

Table 3-4: The parameter setting for horn simulation. 

 

 

Figure 3-12: Simulation results on E-field pattern at mirror. 

Figure 3-12 is the result of the simulation. A beam reflected by mirror propagates into the cavity, 

and we want to control desired beam size. The beam size of 25mm from reflected mirror is simulated 

to be the smalles. Figure 3-13 shows the simulation results by distance. 
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Figure 3-13: 1D amplitude plot of mirror simulation from reflected mirror 

 

The beam size was measured for comparing to simulation results. Figure 3-13 is an experimental 

environment for measuring the mirror and an experimental environment for measuring the horn using 

VNA on S-parameter. 

 

 

Figure 3-14: Experimental environment of reflected beam from mirror. 

 

15mm 20mm 25mm 

40mm 35mm 30mm 

Distance 
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1D plot of the high intensity showed picture 3-15, 3-16, and 3-17. One can check measurement 

results such as elliptical mirror of x axis and parabolic mirror of y axis. 

The Fig. 3-15, 3-16, and 3-17 are experimental results of 15, 20, and 25 mm distance from reflected 

mirror to open-cut waveguide. The red color represents the calculated beam size by 8.7 dB. Fig. 3-

15(A) shows contour plot of 2D beam amplitude by 12dB. Fig. 3-15(B) shows a beam amplitude 

expressed as 2D by 12dB. Fig. 3-15(C) shows 1D amplitude plot of the high intensity at the x axis. 

Fig. 3-15(D) shows 1D amplitude plot of the high intensity at the y axis. Fig. 3-15(E) shows 1D phase 

plot of the high intensity at the x and y axis. 
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Figure 3-15: Experimental results of 15mm distance from reflected mirror to open-cut waveguide.  

(A) 2D amplitude plot (B) Amplitude plot by 12dB (C) 1D amplitude plot of x axis (D) 1D 

amplitude plot of y axis (E) 1D phase plot 

(By 12dB) (Contour plot) 

(x axis) (y axis) 

(phase) 

(x axis) 

(y axis) 

(A) (B) 

(C) (D) 

(E) 
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Figure 3-16: Experimental results of 20mm distance from reflected mirror to open-cut waveguide.  

(A) 2D amplitude plot (B) Amplitude plot by 12dB (C) 1D amplitude plot of x axis (D) 1D 

amplitude plot of y axis (E) 1D phase plot 

 

(By 12dB) (Contour plot) 

(x axis) (y axis) 

(phase) 

(x axis) 

(y axis) 
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Figure 3-17: Experimental results of 25mm distance from reflected mirror to open-cut waveguide. 

(A) 2D amplitude plot (B) Amplitude plot by 12dB (C) 1D amplitude plot of x axis (D) 1D 

amplitude plot of y axis (E) 1D phase plot 

 

 

(By 12dB) (Contour plot) 

(x axis) (y axis) 

(phase) 

(x axis) 

(y axis) 
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As shown in Fig. 3-17(B), the desired beam is injected into the cavity. According to measured 

results in figure 3-15, 3-16, and 3-17, we were compared with calculated data. Figure 3-18 describes 

the beam size reflected from a mirror to cavity. Controlled Beam propagates to the cavity. Each 

directional component has been analyzed separately to determine the gaussian beam size as the beam 

propagates. The measurement results of beam reflected from mirror are in good agreement with 

calculations and simulations. 

 

 

Figure 3-18: Data comparison plots of measurement, calculation and simulation results. It is 

propagated from reflected mirror. 

 

We compared measurement data with results of simulation. The measurement results of beam 

reflected from mirror are in good agreement with calculations and simulations. 

3.3 Design and experiment of a cavity 

The beam is injected into the hole of cavity structure. The injected beam can interpret as plane 

wave. This can have two different interpretations. Firstly, the beam progress along the caustic of 

cavity and rotates according to Aximuthal bounce angle. Secondly, the propagating beam is supposed 

to follow Brillouin angle. The cavity must create TE mode of desired pattern. Table 10 shows the 

design parameter of the cavity. 
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Operating Mode 𝑇𝐸62 

Waveguide radius 𝑟𝑐𝑎𝑣𝑖𝑡𝑦 6 mm 

Waveguide radius 𝑟𝑤𝑔 7 mm 

Caustic radius 𝑟𝑐𝑎𝑢𝑠𝑡𝑖𝑐 3 mm 

Brillouin angle 𝜃𝐵 60° 

Bounce angle ψ 60° 

Table 3-5: Design parameter of the cavity. 

 

 

Figure 3-19: Geometrical optics view of a cylindrical waveguide 

 

The inner metal rod was inserted to control desirable mode [42]. 

The cavity aperture of up taper section is 14 mm. it can be divided into two kinds of reasons. Firstly, 

the aperture of cavity is larger, the measurement of the beam pattern at the aperture would be easier. 

Secondly, one can test the launcher and mode converter system by directly attaching the cavity. 

The cavity is usually a nonlinear taper cylindrical waveguide structures as shown in the figure 3-20. 

The input part of down taper is a cut off section, which blocks the back propagation of beam.  

Beam 
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Figure 3-20: Schematic of coaxial cavity [3] . 

 

 

Figure 3-21: Schematic of holes on coaxial cavity wall. The section consists of 15 axially × 25 

azimuthally. 

 

The requirements to provide good coupling are chosen by the diameter of the holes and the 

thickness of the wall. We have made holes consist of 15(axially) × 25 (azimuthally). The wall with a 

thickness of 0.2mm is made, and the size of the holes is λ/3 diameter. 

    

𝜆/3 

𝜆/2 

22mm 
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Figure 3-22: The picture of the coaxial cavity. Due to good coupling, the cavity thickness 

changed from 2mm to 0.2mm. 

We had to change the thickness from 2mm to 0.2mm because of the coupling. The thickness of 

0.2mm occurs good-coupling. We learned through experimentation. Figure 3-22 is a modified cavity. 

Due to complex structures of the cavity, we divided two kinds of simulations such as up taper 

section and coupling simulation. The first simulation is CASCADE code. The commercial software, 

CASCADE code, has implemented the briefly mentioned mode matching technique with the 

scattering matrix formulation [43, 44]. We used the CASCADE for obtaining scattering parameters in 

a waveguide. The cavity can create neighboring modes while passing through the taper section. In 

order to prevent other modes, we designed optimized tapered section. We achieved almost 100% 

purity through CASCADE code.  

 

 

Thickness of a cavity at holes section: 2mm 

Modification 

Thickness of a cavity at holes section: 

0.2mm 
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Figure 3-23: CASCADE Code Simulation. (a) CASCADE View (b) S21 Amplitude 𝑇𝐸62 mode 

 

S21 Amplitude 𝑇𝐸62 

𝑇𝐸61 8.1 × 10−5 % 

𝑇𝑀61 1.67 × 10−4 % 

𝑇𝐸62 99.99 % 

𝑇𝑀62 4.9 × 10−5 % 

Table 3-6: Simulation results of CASCADE Code (Input mode: 𝑇𝐸62 mode). 

The hole structure of cavity is difficult to analyze than previous simulations. The second simulation 

using HFSS program analyzed coupling interpretation. In order to interpret the complex structures, we 

used a 128 RAM memory workstation. The run-time of simulation analysis took 43hours. Based on 

this, the E-field pattern is confirmed by HFSS program. Table 3-7 is the parameter setting for horn 

simulation. 

Frequency 95 GHz 

Excitations Waveguide port 

Mesh size 0.6667 Lambda 

Boundary Symmetry Boundary 

Boundary size (x,y,z) 16 * 14 *20 (mm) 

Material Aluminum 

Run time 43 hour 

Table 3-7: Simulation set-up of hole structure cavity using waveguide port. 

 

 

(A) (B) 
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Simulation computer resources 

OS Win7 Professional 64bit 

CPU I7 870 

RAM 128 GB 

Table 3-8: Computer specification for simulation of coupling. 

 

 

Figure 3-24: Simulation set-up for a hole structure cavity using HFSS program (a) Excitation 

view (b) Mesh set-up: 0.6667 Lambda 

Through this simulation, we confirmed TE62 mode pattern from the aperture of the cavity. Figure 

3-25 is results of the coupling simulation. We saw TE62 mode at number 4 in figure 3-25. A short 

length of the entire structure had confirmed that desired pattern was shown by simulation. Base on 

this simulation, we made a cavity. 

 

(A) (B) 
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Figure 3-25: Coupling simulation of a cavity using HFSS program (E-field pattern) 

 

We confirmed E- field patterns of x axis and y axis using CST program. Figure 3-26 shows the 

simulation results of each direction. The measurement results were determined by comparing CST 

simulations. Figure 3-26 (C) shows the pattern of the 𝑇𝐸62 mode. In the case of the simulation, we 

were easy to see the desired mode. However, in the case of actual measurement for a mode generator, 

we had to consider a lot of parts. The measurement is very sensitive on the experimental condition 

such as alignment, coupling of the cavity, and unwanted interception from reflected beams. 

① ② ③ ④ 



47 

 

 

Figure 3-26: Simulation results of CST for pattern of each axis. (A) x-axis E-field pattern (B) y-axis 

E-field pattern (C) Sum E-field pattern 

 

 

 

Figure 3-27: Experimental environment of a mode generator. (A) Experiment using scan device (B) 

A mode generator 

y axis 
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device 
VNA 

Horn 

Mirror 

Cavity 

(A) (B) 



48 

 

3.3.1 Comparison between counter clockwise and clockwise 

We designed the mode generator system and measured it. We wanted to find a way to get good 

measurement data. E-field pattern was measured by distance from aperture to open waveguide probe. 

When the incidence wave is injected on inner surface of the cavity, the results differ from the way it 

takes such as the counter clockwise or clockwise. We chose E-field pattern at the scan area. 

 

Figure 3-28: Propagating to cavity. (A) The counter clockwise (B) The clockwise 

The scan area is 40×40mm. We measured S21 parameter at a 1.75 cm distance from aperture to 

open waveguide. 

 

 

 

 

 

 

Cavity Cavity 

Beam Beam 

(A) (B) 
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Figure 3-29: E-field Magnitude pattern of the counter clockwise. (A) The vertical axis (B) The 

horizontal axis (C) The sum of vertical and horizontal axis 

 

Figure 3-29 is the E-field Magnitude pattern of the counter clockwise. We can not confirm that E-

field pattern generate at the cavity. So, we were thinking the other way such as the inner rod. Figure 3-

30 is the E-field Magnitude pattern of the clockwise and insertion of the inner rod. 

 

(A) 

(B) 

(C) 

94GHz 94.1GHz 

94GHz 94.1GHz 

94GHz 94.1GHz 
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Figure 3-30: E-field Magnitude pattern of the clockwise and insertion of the inner rod. (A) The 

vertical axis (B) The horizontal axis (C) The sum of vertical and horizontal axis 

 

Fig. 3-29 and Fig. 3-30 are measurement results for vertical and horizontal axis. The clockwise 

beam pattern is better than the counter clockwise beam pattern in the cavity. So we chose a 

measurement way of the clockwise. In other words, the counter clockwise at injected beam direction 

is better than the clockwise. 

 

3.3.2 Inserting an inner rod in a cavity 

94GHz 94.1GHz 

94GHz 94.1GHz 

94GHz 94.1GHz 

(A) 

(B) 

(C) 
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Figure 3-31: E-field Magnitude pattern of no insertion of the inner rod in the cavity. (A) The 

vertical axis (B) The horizontal axis (C) The sum of vertical and horizontal axis 

 

As shown in Figure 3-30 and 3-31 we saw the results of the measurement. According to the effect 

of an inner rod, the measurement results were different. We thought that an inner rod is used in a 

coaxial cavity for improvement of the mode purity. The effects of the inner rod are shown in Fig. 3-30. 

The desired mode pattern did not occur. So, we had to look for another way. Fig. 3-32 is Modification 

of measurement environment such as absorber and arrangement. 

(A) 

(B) 

(C) 

94GHz 94.1GHz 

94GHz 94.1GHz 

94GHz 94.1GHz 
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Figure 3-32: Modification of measurement environment such as absorber and arrangement. 

 

3.3.3 Changing the measurement distance 

The distance between the aperture of the horn and the probe was changed to as close as 1mm. And 

the beam absorber was carefully adjusted to avoid interference. The E-field distribution has been 

scanned directly at the output of the cavity in vertical polarization. The canned area is 15 × 15 mm 

with 75 × 75 points of resolution. Figure 3-34 is 1mm distance measurement from aperture to open 

waveguide probe, the vertical E-field magnitude pattern. Figure 3-34 is 1mm distance measurement 

from aperture to open waveguide probe, the horizontal E-field magnitude pattern. 

 

93.3GHz 93.2GHz 

93.4GHz 93.5GHz 
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Figure 3-33: 1mm distance measurement from aperture to open waveguide probe, the vertical E-

field magnitude pattern. 

 

 

Figure 3-34: 1mm distance measurement from aperture to open waveguide probe, the horizontal E-

field magnitude pattern. 

 

93.5GHz 93.4GHz 

93.2GHz 93.3GHz 
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Figure 3-35: 1mm distance measurement from aperture to open waveguide probe. The sum of 

vertical and horizontal axis magnitude 

This is shown in Fig. 3-35, where the sum of vertical and horizontal axis is plotted with respect to 

the distance of a cavity. The intensity is low at the inner rod position of the center, the radially axis is 

similarly the desired mode pattern.  

 

Figure 3-36: The most optimized 1D amplitude plot through rotating axis of measurement data. 

93.3GHz 93.2GHz 

93.4GHz 93.5GHz 
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The desired mode should occur at the aperture of a cavity. As shown in Figure 3-35, the exact mode 

did not occur. We got the most optimized 1D plot through rotating axis of measurement data in picture 

3-36. We define a function called a 1D error function calculated by summing the difference results of 

the CST 𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖) and measurement data 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(𝑖) at every point as [45-47] 

error =  
∑ (|𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)| − |𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡(𝑖)|)

2
𝑖

∑ |𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)|
2

𝑖

 

                                                                 (3.2)      

The error function is shown in Fig. 3-36. An error coefficients are approximately 0.17796. The 

good matching coefficient indicates the amplitude intensity at aperture. However, one mirror system 

interferes with each beam propagation due to the narrow distance among the systems. In order to 

measure the desired mode patterns, we have designed two mirror systems. 

 

3.3.4 Two mirror system of a mode generator 

We measured one mirror system until now. However, due to the close proximity to arrange the each 

structures, one mirror system undergo interference such as coupling of the cavity, alignment, and 

unwanted interception form reflected beam.  

The new mirror system will have the new t mirrors. The mirror design is started from beam waist of 

the corrugated feed horn. Fig. 3-37 shows the schematic of the beam of geometric optics. The mirror 

design is done using Gaussian optics.  From Gaussian beam optics, Eq. (3.1) is useful.   

 

Figure 3-37: Curvature of a geometrical optics 

𝑅𝑟𝑒𝑓 𝑅𝑖𝑛𝑐 

F 
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As shown in Fig. 3-37, the mirror curvature can be determined by matching the incoming Gaussian 

beam with the reflecting Gaussian beam by means of the Eq. (3.3) [23]. 

1

𝐹
= 

1

𝑅𝑖𝑛𝑐
+

1

𝑅𝑟𝑒𝑓
                           (3.3) 

The mirror curvature is then, 

F =
𝑅𝑚

2
                                (3.4) 

 

  

Figure3-38: Schematic of the two mirror system. 

The measurement results of the mirror 1 are shown in Fig. 3-39 and 3-40. The red color represents 

the calculated beam sizes. 
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Figure 3-39: M1 measurement results for the vertical axis (by 12dB) 

 

Figure 3-40: Comparison with ideally Gaussian beam and M1 measurement results for the vertical 

axis. 

We didn't know the position of generating the beam waist in the corrugated feed horn. Therefore the 

beam waist could be a decisive factor in the mirror system. Based on this information, the 

measurement results could be +4 mm shift. As shown on Figure 3-40, the ideal beam size and the 

measured data can be seen almost similar.  

 

90 mm 

110 mm 

104 mm 

z = 104mm 
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Figure 3-41: M1 measurement results for the horizontal axis. 

 

 

Figure 3-42: Comparison with ideally Gaussian beam and M1 measurement results for the 

horizontal axis. 

The reflected beam from M2 is the smallest beam size, the beam size on 17.2×3.8mm is the last 

 

230 mm 248 mm 

260 mm 

z = 248mm 
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beam size form M2.  

 

Figure 3-43: M2 measurement results (by 12dB) 

Based on figure 3-43, we check the size of each axis of the beam. 120mm is located in the caustic 

of a cavity. The comparison with ideally Gaussian beam and M2 measurement results for the 

vertical axis is shown in Figure 3-44 and 3-45.  

 

by 12dB 
110mm 120mm 

130mm 
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Figure 3-44: Comparison with ideally Gaussian beam and M2 measurement results for the vertical 

axis. 

 

 

Figure 3-45: Comparison with ideally Gaussian beam and M2 measurement results for the 

horizontal axis. 

 

Figure 3-46: The measurement environment of two mirror system. 

A measurement environment of two mirror system is shown in Fig. 3-46. When measuring the 

beam pattern, one has to consider many challenging parts such as alignment of mirrors. The 

measurement takes significant amount of time because the measurement is so sensitive to the 

alignment, position, and unwanted interceptions of the beams. The measurement results are the 

significant challenge, 𝑇𝐸62 mode pattern will constantly try different ways. 

VNA 

Extender 

Corrugated horn 
Mirror 1 

Cavity 

Mirror 2 
open w/g 
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Figure 3-47: 1mm distance measurement from aperture to open waveguide probe, the vertical E-

field magnitude pattern (Two mirror system). 
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Figure 3-48: 1mm distance measurement from aperture to open waveguide probe, the horizontal E-

field magnitude pattern (Two mirror system). 

 

The pictures of the measurement results in each axis are shown in Fig.3-47 and 3-48. We should 

check mode pattern of sum plot in each axis. After that, measurement data are compared with 

reference data that show 1D plot of radial and azimuthal axis. 

 

Figure 3-49: 1mm distance measurement from aperture to open waveguide probe. The dB sum of 

vertical and horizontal axis (Two mirror system). 

The sum result of polarizations is shown in Fig. 3-49. TE62-like mode on hole structure cavity is 

found in W band between 93 and 94GHz. We can be found that TE62 mode at radial axis showed at 

aperture, it should be analyzed optimization for 1D plot. However, mode pattern at radial axis can not 

see. So the distance of measured the beam pattern was changed to 10mm. 
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93.44GHz 93.45GHz 

93.46GHz 93.47GHz 
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Figure 3-50: The measurement environment of G.A mode generator. 

At figure3-50, TE mode generator was manufactured by General Atomics in the USA. it was 

compared with our designed mode generator. To check the 𝑇𝐸62 mode as shown in Figure 3-50, GA 

mode generator was set as reference. Based on the measurement results of General Atomics generator, 

we were compared with rotating mode pattern in the cavity.  
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G.A mode generator 

Open W/G 

G.A mode 

generator 

Inner rod 
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Figure 3-51: 1mm distance measurement from aperture of G.A generator to open waveguide probe. 

The dB sum of vertical and horizontal axis. 

. 
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95GHz 96GHz 
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Figure 3-52: 10mm distance measurement from aperture of G.A generator to open waveguide probe. 

The dB sum of vertical and horizontal axis. 

 

The measurement result of G.A generator is shown in Figure 3-51. It is E-field pattern of 1mm 

distance from aperture to open waveguide. 𝑇𝐸62 mode pattern was also checked at radial axis. the 

intensity in the center part of cavity can be see the lowest power and other modes do not occur. 

Figure3-52 is measurement results by changing the distance from aperture to waveguide as 10mm. 

We confirmed TE mode pattern at radial axis as figure 3-51. we should check 1D in order to confirm 

radial plot. 

 

Figure 3-53: The most optimized 1D amplitude at radial axis plot through rotating axis of 

measurement data. Measurement result of UNIST mode generator was compared with G.A generator 

data. 

Horizontal axis 

Vertical axis 



66 

 

As figure 3-53, hole structure generator (UNIST mode generator) is compared with G.A generator 

about 1D plot at radial axis. the errors are either 0.09606 or 0.099543 in perpendicular and parallel 

direction.  

 

Figure 3-54: The most optimized 2D amplitude at azimuthal axis plot through rotating axis of 

measurement data. Measurement result of UNIST mode generator was compared with G.A generator 

data. 

The peaks at azimuthal axis were shown both G.A generator and UNIST mode generator in figure 

3-52. These are consistent with the number of peaks with 𝑇𝐸6𝑛 mode. When you see figure 3-51 and 

3-52, the optimized1d plot was coincide with te62 mode. 
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chapter 4 

Summary & conclusion 

In this thesis, I proposed experimental study on generation of a higher order mode for W-band 

gyrotron oscillator. The purpose for this study was to generate the desired mode at aperture of a cavity. 

The quasi-optical system was designed to convert the input Gaussian-like beam to a beam pattern 

which will excite the 𝑇𝐸62 mode at the aperture of a cavity. The design of a mode generator has been 

carried out using Ansoft HFSS and CST software and validated with experimental results. 

This way of mode excitation is especially useful for the cold test. The results of Mirrors between 

the analytic solutions and the simulations match remarkably well. However, the cavity part seems to 

need more research. The measurement is very sensitive on the experimental condition such as 

alignment, coupling of the cavity, and unwanted interception from reflected beam.  

This mode generator is successfully designed to perform low power verification of the quasi optical 

system for a W-band 𝑇𝐸62  mode. The electric field pattern at output of the cavity is under 

investigation about back propagation. 
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