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Abstract 

Virtualization technology in Cloud computing environment offers efficient resource 

and power utilization through enabling multiple operating system instances to run 

concurrently within virtual machines on a single physical machine. Virtualization layers 

provide the billing system of clouds for business purpose. Current cloud computing systems 

focus processor utilization or number of virtual machines allocated by each user for billing. 

However, the billing system based on processor utilization may be unfair when several virtual 

machines that run on single physical machine have different workloads respectively. To 

improve fairness of billing and resource provisioning, the system has to consider about not 

only processer but also I/O resource utilization. The Xen virtual machine monitor follows a 

split device driver model to handle I/O requests from guest domains. Virtualized system has a 

driver domain, which performs I/O operations on behalf of guest domains and uses their 

native device to access I/O device directly. For this reason, the driver domain executes 

delegated instructions to processing I/O activities from guest domains. But the delegated 

instructions are not considered for scheduling domains or accounting. This paper presents the 

profiling technique of delegated processor usage to the driver domain for I/O operations per 

virtual machine in virtualized environment by Xen. And we introduce relationship between 

network utilization of guest domains and delegated processor utilization. 
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Chapter 1.     Introduction 

Cloud computing is to provide computing power through the network as a service. It 

facilitates to make efficient use of resources in data centers. So, the venders can provide 

services with less server equipment without decreasing quality of the service (Armbrust et al., 

2009). Nowadays, data centers are regarded as a big problem in economic, and environmental 

aspects, because they waste huge amount of energy. But the number of required data centers 

is increasing (Kumar, 2007). For this reason, the cloud computing attracts attention of venders 

as one of the effective solutions which reduce total cost of ownership (Armbrust et al., 2010). 

 

Figure 1.1: The Role of Virtualization 

Virtualization is an important technology in cloud software stack, which takes on a 

great role for managing resources. The hypervisor running between hardware and guest 

operating systems enables that multiple virtual machines (VMs) run on a physical machine 

concurrently. And applications running on VMs are isolated from underlying hardware and 
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other VMs by the hypervisor (Adams and Agesen, 2006, Barham et al., 2003, Nanda and 

Chiueh, 2005). 

For example, when multiple server applications share a physical server without 

virtualization, then the server faces a number of problems like security, performance isolation, 

scalability, stability and so on. A defect of an application that is running on the server can 

affect entire system because those applications share a file system and hardware resources. 

The simplest way to avoid these problems is to assign a server machine per application. 

However, this method requires the great expense to maintain severs, and also it decreases 

usability.  

Venders try to provide more services without degrading of stability or increase of the 

cost by using resources efficiently. Thus, the service providers may decide to assign each 

application to each VM like described in Figure 1.1. Although, the virtualization generates 

some overhead, but this solution makes the server more secure and safe with low additional 

cost. 

Likewise, the virtualization technology intensifies stability of servers, flexibility of 

resource distribution, and scalability of providing services (Armbrust et al., 2009). 

Virtualization also allows adjusting amount of resources provided to users through the 

hypervisor (or virtual machine monitor). And additionally some hypervisors provide live 

migration (Kallahalla et al., 2004, Clark et al., 2005), which moves VMs into other physical 

servers on the fly depending of utilization physical servers. Therefore, it helps to observe 

SLA (service level agreement) (Buyya et al., 2009). 

Cloud computing services can be classified as Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service (SaaS) depending on depth of 

software stack that vendors provide for customers. Especially, the IaaS is the delivery of 
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hardware and associated software. Amazon Elastic Compute Cloud (EC2)(Ostermann et al.) 

and Rackspace Hosting are the popular examples of IaaS and those services provide VMs to 

customers. VM instances have equivalent structure as physical machines, so users can 

organize software stack unconstrained from operating system to application level. 

Furthermore, users can purchase the VM instances and computation resources on a pay-as-

you-go basis without any extra cost for maintaining their server. 

Amazon EC2 is charging for VMs based on hours from time an instance is lunched 

until it is terminated. Whether the instance that consumes resources maximally or it is just on, 

the charge is equal for the same running hours. We saw this policy is not fair, considering the 

numerous factors that increase cost for providing the service. 

The operating expenses of a data center consist of equipment fund and cost of 

maintenance. Spending on cooling and power consumption accounts for a great part of 

maintenance expenditures. By the way, the cost of maintenance varies with the characteristics 

of workloads. The cost of providing VM increases naturally with the amount of used resource 

by the VM, and it even depends on which resource is used (Kim et al., 2011). 

However, it is not easy to measure resources used by each VM. Hardware cannot 

gauge the usage of a VM that is on the move with live migration or shares a host with other 

VMs. For this reason, profiling VM has to be performed by software (Kansal et al.). But also, 

virtualized environment has structural properties that make profiling real resource usage of a 

VM difficult. 

Xen (Barham et al., 2003), one of the most commonly used hypervisors by cloud 

vendors, has adapted the safe hardware interface which allows the unmodified device drivers 

to be shared across isolated operating system instances. When Xen boots, it loads a privileged 

domain (or domain 0) that has responsibility for handling devices. So every I/O request from 
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unprivileged domain (or domain U) is transferred to domain 0 (Fraser et al., 2004, Chisnall, 

2008). Consequentially, the I/O activities from domain U consume CPU and memory 

resources on the domain 0; in addition, the usages are accounted as the share of domain 0. We 

see those resource usages have to be regarded as consumed by domain U that has produced 

the requests. But, current virtualization frameworks do not have any way to profile real 

resource usage of VMs, including I/O activities processed by domain 0. 

Typically, a VM scheduler allocates CPU to VMs by time interval that depends of the 

scheduler algorithm and its quantum size. And the Credit Scheduler, default of Xen, targets a 

fair share CPU scheduler on a SMP host (Cherkasova et al., 2007). But the existence of 

domain 0 causes unfairness of CPU allocation, even if hypervisor uses a fair scheduler. The 

real CPU usage alters considerably following characteristic of workloads. 

Accordingly, accounting per-VM resource usage for I/O activities on domain 0 

should proceed to develop a fair billing system and VM scheduling. In this paper, we 

introduce a method to profile CPU time for network activities on domain 0 and the 

implementation in Xen. And also, we evaluated with various workload sets to show 

unfairness of current system. 

The rest of this paper is organized as follows: Chapter 2 introduces background and 

related work; it includes how Xen supports I/O requests and a motivational experiment. 

Chapter 3 introduces implementation of our accounting feature. Chapter 4 introduces some 

result of accounting with our implementation. Chapter 5 introduces some related work. 

Finally, we conclude with discussion in Chapter 6. 
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Chapter 2.     Background and Motivation 

2.1    Background 

Xen hypervisor is a layer of software running directly on a physical machine 

replacing the operating system thereby allowing the physical machine to run multiple guest 

operating systems concurrently. It was first created at Cambridge University; thereafter Xen 

was open sourced to improve the product. The latest version of Xen hypervisor supports x86, 

x86-64, Itanium, Power PC, ARM and other CPU architecture, and simultaneously it supports 

a wide range of guest operating systems. Thus, Xen powers most public cloud services and 

many hosting services. 

 

Figure 2.1: Virtual Machines on Xen Hypervisor 

Figure 2.1 describes virtualized environment, namely a structure of a physical 

machine running multiple VMs with Xen. The term domain refers to a running virtual 

machine within which a guest OS executes. Domain 0 is the first guest to run and has charge 
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of that handle devices and provides user interface. In contrast, other domains are referred to 

as domain U (or unprivileged domain). 

To support the range of hardware available for commodity machine, Xen reuse native 

device drivers that already provided by the operating system in domain 0. Xen device drivers 

typically consist of the real driver, the back-end driver, the front-end driver, and the I/O ring. 

Figure 2.2 shows the path of a I/O data sent from a domain U and the composition of a split 

device driver (Chisnall, 2008). 

 

Figure 2.2: Xen I/O Architecture 

The I/O ring provides a method for asynchronous communication between domains. 

It performs simple message-passing abstraction built on top of the shared memory mechanism. 

And the I/O ring is a kind of ring buffer that contains two types of data, requests and 

responses, updated by back-end and front-end driver. Each request and response is signaled to 
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other domains through an event channel. Event channel is a notification mechanism between 

domains asynchronously (Barham et al., Fraser et al.). 

Front-end driver running on domain U initializes a memory page with a ring data 

structure and exports it to domain 0. Back-end driver handles multiplexing to allow more than 

one VM to use the device and provides a generic interface for various operating systems. 

Actually, some features of a Linux kernel commonly used for domain 0 already provide 

service to multiplex access to devices. For example, access to hard disk is multiplexed using 

file system abstraction, network devices using a socket abstraction, and so on. For this reason, 

Xen driver use real drivers via those abstractions in existing operating system (Chisnall, 

2008). 

Watching the process of sending a packet from an application run on domain U to 

external node is a good example of how a Xen driver works. The packet travels through the 

TCP/IP stack normally, and the bottom of the stack, front-end driver, put it into shared 

memory. The back-end driver, running on the domain 0, reads the packet from the buffer and 

insert it into the exist networking stack of the operating system, which routes it as it would a 

packet coming from a real interface. Finally, it goes to the real device driver and the physical 

network device sends the packet. 

2.2    Motivation 

The network activities of domain U contain some process done by domain 0 guest. In 

other word, domain 0 uses processor and other resource for domain U guest. The structural 

characteristic may induce the resource distribution unfairness between domains. 

If there are two domain U guests configured with same VM definition, which is 

running on same server. They have same value of priority for CPU scheduling, but different 

workload respectively. The Xen hypervisor employs Credit scheduler by default, so allocated 
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CPU time for each VM is proportionally equal. But one of them can use more resource except 

CPU depends on the workload.  

 

Figure 2.3: Various Workload sets used in the experiment 

To make sure our supposition, we performed a simple experiment. We conducted a 

group of experiments on a Xen virtualized environment, which runs two domain U guests 

with exactly same definition and uses domain 0 to provide I/O features. Figure 2.3 describes 

three workload pairs for VMs. We measured average CPU time of domain 0 and two domain 

U guests for one second. 

The CPU intensive processes were included in every workload pair and they 

performed floating-point operations without sleep. As a result, guests that run the process 

consumed allocated CPU time maximally. In the second case, CPU-Network workload, 

DomU(2) VM had Network intensive process. It sent fixed size of packets continuously. In 

the final case, both guest have network intensive process. In this experiment VMs could use 
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only a portion of the network bandwidth because of the interference of other processes or 

other VM.  

Figure 2.4 shows the result of this experiment. All unprivileged domains consumed 

same amount of CPU time, regardless of which workload was allocated. However, CPU 

usage of domain 0 was increasing depend on the number of VM that has network intensive 

process. In the second case, only DomU(2) used network. Thus, the excess CPU usage, 

comparing with the case that uses CPU only, had come from DomU(2). In conclusion, VMs 

that used network caused more CPU usage than those who did not.  

 

 

Figure 2.4: CPU Usages of Domains under Various Workload pairs 
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However, exist hypervisors do not consider about the delegated CPU usage for use of 

I/O device of domain U. There is no way to show the unfairness and adjust it. Besides, the 

unfair resource allocation of hypervisor can corrupt reliability of fair share scheduler, billing 

system of IaaS, and load balancing via live migration on VM server cluster. The feature to 

gauge delegated CPU usage per-VM for the I/O activity is necessary for the accurate resource 

accounting. 
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Chapter 3.     Accounting per-VM processor usage 

3.1    Accounting framework 

To measure delegated CPU usage by domain U, all measurement should be 

performed at domain 0. The front-end driver is run on each domain U guest, and the CPU 

usage of the driver is included in the usage of guest that generate I/O request. On the other 

hand, CPU usage of back-end and real driver those are run on domain 0 is the delegated from 

unprivileged domains. We implemented the accounting of the delegated CPU usage on Linux 

2.6.32, which is used for domain 0.  

The implementation had required measurement of how much CPU time had been 

consumed by processing a packet in driver threads. The measurement should be conducted at 

entire software stack of network. And the stack can be roughly subdivided into a section for 

virtualization and the other of original operating system.  

While the network back-end driver initialize, it allocates memory as the purpose of 

storing various device information and queue of buffered data. And also, Xen creates a virtual 

network device for each domain, which is attached to a bridge. Tasklets are registered for 

transmitting and receiving to kernel respectively and adds timers to wake up them.  

A running tasklet for transmitting requests checks whether one or more events from 

network front-end driver was occurred or not. If there exist some works to do, it calls the 

net_tx_action function, which reads requests from I/O ring, fills socket structures with the 

data, and adds to socket buffer of operating system. The submitted requests to buffer are 

handled in the same way as requests from applications run over domain 0. This process is 

described in Figure 3.1 (a).  
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(a) Tx 

 

(b) RX 

Figure 3.1: Network drivers run on domain 0 
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A receiving tasklet sends data in the opposite direction of transmitting, like described 

at Figure 3.1 (b). Network component of operating system put received socket to a buffer. A 

tasklet check the buffer and when the buffer has more then one element, it generates I/O ring 

data from them and adds to I/O ring. After submitting all requests, back-end driver signals an 

event to domain U guests. 

Fortunately, drivers are run in form of tasklet as mentioned above. Tasklet 

mechanism of Linux kernel offers a number of interesting features: a tasklet can register itself 

like timers, it can be scheduled to execute at normal or high priority, it may be run 

immediately and never later than the next timer tick, and it is strictly serialized with respect to 

itself. Namely, the same tasklet never runs simultaneously on more than one processor 

(Corbet et al., 2005). With understanding about these characteristics of tasklet, we decided 

that our implementation does not require consideration of synchronization or preemption of 

other threads.  

The fact of that the device drivers needed no consideration of preemption made the 

implementation of measuring time laps simple. So, we just inserted time stamp to every step 

of handling network requests and got the remainder of the two time stamps. If a thread 

preempts a processor while it runs network driver, measured information is no more reliable 

because it include time laps for irrelevant jobs.  

The function native_sched_clock used for time stamp returns current time in nano 

second units. Linux kernel process scheduler usually calls this function. A guest operating 

system scheduler uses virtual time to ensure correct sharing of its time slice between threads. 

Using this function, we got CPU time consumption without interference of other domains.  

The VM scheduler allocates CPU to VMs by time slices calculated by scheduling 

algorithm. The CPU time information is measured using TSC (Time Stamp Counter) resister 
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of a processor. And also, measured CPU time should include the time of that the processor 

was idle but occupied by a guest. Drivers applied the criterion of scheduler to measuring CPU 

consumption.  

Accounted information has to be categorized according to domain that generation the 

request. Back-end driver is wakened up by timer and process every request in I/O ring at that 

time. Chiefly, back-end driver has a number of loops, in which remove an element form a 

queue and do something with the element repeatedly until the queue is empty. In this case, 

time stamps inserted inside of the loop. Figure 3.2 is the example of adding time stamps when 

requests from multiple domains are handled at once.  

Xen manage domains with assigning unique number to identify each domain. 

Similarly, virtual network device of each domain has a device number locally, and the device 

has a name consisted domain ID and device number. Our purpose is to know delegated CPU 

usage from domain. So, Our implementation measures CPU time for each request and reads 

domain ID from processed data for categorizing. And the activity of transmitting and 

receiving is separated as different processes. Thus, it is possible to measure them respectively.  
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Figure 3.2 Example of CPU time measurement 

The source code listed in Figure 3.2 is the part of the function of net_rx_action. The 

native_sched_clock gets current value of TSC and convert it as nano second. The structure of 

variable netif has domain ID data in it. Profiled data added to array rx_cycles indexed by 

domain ID. Time stamps inserted in the function measure CPU usage of skb_dequeue 

function. 

Back-end and networking component of operating system use different data structure. 

Back-end driver read a request by I/O ring data structure, xen_netif. The structure has domain 

ID field, so it is possible to get domain information that had been sent the request by simply 

reading it.  

However, other components do not handle any domain information directly. To get 

domain ID, Our implementation use device name. Xen initialize a virtual network device with 

a name that consist domain number and device number for that a device can have unique 

… … 

 

while ((skb = skb_dequeue(&netbk->rx_queue)) != NULL) { 

start = native_sched_clock(); 

netif = netdev_priv(skb->dev); 

 

… … 

 

end = native_sched_clock(); 

rx_cycles[netif->domid] += end - start; 

} 

 

… … 
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name in the system. When a packet is converted to I/O ring data, the back-end driver also 

uses device name to get domain ID of destination. 

Drivers run some jobs those are not separated which domain had generated them. 

Especially, back-end driver deallocates some shared pages at what point they are not 

necessary any more. And besides deallocation there are common CPU usage for Network 

activities from all domain U guest and we measured them separately. 

Our implementation used 64 bit integer arrays to profile delegated CPU usage of each 

domain U. Indices of these arrays mean domain ID directly. Back-end driver sets every 

element of the arrays by 0 when it is initialized. Values of profiled data are total delegated 

CPU usage since than. 

To avoid synchronization problem through gathering all measurement, each driver 

has arrays for profiling. Network drivers run through completely separated context from each 

other, and data transfer is conducted via a number of buffers. In multiprocessor system, they 

may run at the same time. For this reason, it is dangerous to share an array between those 

drivers.   

3.2    Interfaces and Monitor Application 

Our implementation measured actually the CPU usage of domain 0 while domain U 

guest network. And code for measurement inserted to network drivers. All variables and 

arrays of drivers are in kernel memory space. That is, the measured information is stored in 

kernel memory space of domain 0.  

It is possible to access profiled data from domain 0 operating system. But there is no 

way to access them directly from user application or hypervisor. Thus, interfaces to get the 
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data are required for an accurate monitor application and a fair share scheduler with minimum 

overhead.  

Applications can get data in kernel memory space using a system call. But the system 

call requires overhead of two mode switches. Drivers can also export the data as a file. 

However, the general file systems for storage are the most time consuming interface and 

driver must update the file periodically. Finally, to read and use these data on user space, we 

implemented an interface to export them using sysfs. 

Sysfs is a mechanism for representing kernel objects, their attributes, and their 

relationships with each other. It provides two components: a kernel programming interface 

for exporting these items via in-memory file system, and a user interface to view and 

manipulate these items that maps back to the kernel objects which they represent. Table 3.1 

shows the mapping between kernel constructs and their external sysfs mappings. 

Table 3.1: Mapping between Kernel construct and Sysfs 

Internal External 

Kernel Objects Directories 

Object Attributes Regular Files 

Object Relationship Symbolic Links 

 

A file in sysfs is usually formatted in ASCII and when a read operation occurs, the 

function registered as show attribute return as contents of the file. As a result, user programs 

can get the information with simple file read operations and the overhead to interface is 

required only when user read them. 
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Each device class contains subdirectories for each class object that has been allocated 

and registered with that device class. And each class object contains files for each attribute. 

We registered a class device named netback_stat using class_register function. The class has 

attributes of rx_stat and tx_stat to show delegated CPU usage since a VM is launched. 

When a user application read an attribute file, sysfs calls a function registered to show 

contents of the file. The show function for rx_stat and tx_stat return a string generated with 

total delegated CPU usage of all drivers and blanks as delimiter between values of each 

domain. Therefore, user applications can get profiled data of every domain at one read 

operation. 

 

Figure 3.3: Interface to userspace on domain 0 and hypervisor 

There is no other way to access kernel memory space of domain 0 guest from 

hypervisor except shared memory mechanism. Usually, the operating system can access 

hypervisor through hypercall. If domain 0 sends the profiled data to hypervisor using 
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hypercall, it generates high overhead. And also, hypervisor does not support general file 

system as a kernel. However, using shared memory mechanism support simple 

communication method. And hypervisor can get latest profiled data in real time. 

When back-end driver is initialized, it gets a page to share for each array using the 

function __get_free_page. The function returns pseudo-physical memory addresses of domain 

0 for allocated page. And using the function virt_to_mfn, convert returned address to machine 

frame number and map to a pointer of hypervisor using function map_domain_page. Finally, 

the pointer value is sent via an implemented hypercall. 

Figure 3.3 describes all interfaces implemented our accounting framework. Using the 

interface between user application and kernel memory space, a user application get profiled 

data by simple file read operation. And using the interface between hypervisor and domain 0 

guest, hypervisor can read the data from shared memory directly. These interfaces do not 

decrease the overall system hardly at all. 
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Figure 3.4: Monitor application using accounting per-VM processor usage 

We implemented a monitor program run on domain 0 guest using our accounting 

framework and the interface to userspace. It can collect not only delegated CPU usage for 

network activities, but also network and CPU usage of unprivileged domains. The monitor 

aggregates all profiled data every one second. 

It read the file whose path is  /sys/class/netback_stat to collect delegated CPU usage. 

The returned string consists of profiled data and blank, so the monitor has to pars it. Collected 

data is managed by domain id like the accounting framework. 

VM scheduler profiles the CPU usage of VMs, so the data can be accessed by hyper 

call. For this reason, we added new hypercall to get accurate time information directly. This 

hypercall returns CPU time as nanosecond unit and the number of instructions when the 

argument is domain id of running VM. 
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The network usage of VMs, like number of transferred packets and byte, are obtained 

from files in procfs. Xen hypervisor resisters a virtual network card as a device that is 

connected to bridge. Thus, the network usage is profiled by operating system of domain 0. 

The monitor is also able to read by file operation. 

The collected information is profiled since the server had been booted or the domain 

had been launched. The monitor save last data to memory, and get difference between current 

data. As a result, the printed value is usage for one second. 

Using the monitor, users can compare and analyze scheduled CPU usage and 

delegated for Networking. We used this monitor program in our all evaluation. 
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Chapter 4.     Evaluation 

 All the experiments were performed on a VM server with Intel core i7 processor and 

8G of RAM memory. For these measurements, we used the Linux 2.6.32 and Xen hypervisor 

4.1.0. Each VM has one virtual CPU and a 512M memory and the guest operating system is 

Ubuntu 10.04 server. 

4.1    Experiments while VMs running various workload sets 

 The first group of experiments is same as introduce above at 2.2    . In the 

experiments, hypervisor assigned same time slice to both domain U guests. And only one of 

the domains used network additionally. From previous experiments, we knew that every 

domain U guest consumed same amount of CPU time. However, domain 0 guest consumed 

more CPU time while one or both domain used network. And now, we address where these 

usage comes from. 

Using our monitor program introduced above, we measured some resource usage 

while two domains run workload pairs respectively. The monitor read profiled information 

every one-second, but each operation may be executed at once. For example, the monitor read 

delegated CPU usage, after than back-end device driver woke up and process some network 

request. After finishing them, kernel scheduler reruns the monitor, which gets network usage. 

In this situation, there is no coherence between delegated usage and network usage. To hide 

this kind of error, we measured 500 times continuously, and used average of them for 

comparison.  

Table 4.1 summarizes the measurements collected during these experiments. 

``Common CPU time'' is time for networking of unprivileged domains but unable to 
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categorize. ``Packets means'' the number of packets each domain sent or received. ``CPU 

time'' means CPU usage that an unprivileged domain delegates to network. 

At first experiment, the CPU-CPU workload set, all delegated CPU time include 

common is close to 0. The reason that the value is not perfectly zero is operating system send 

or receives keep its networking state connected. But it can be ignored. 

Table 4.1: Resource usage while VMs run various workload pairs 

  
Common 

DomU(1) DomU(2) 

  
Packets 

CPU time 

(ms) 
Packets 

CPU time 

(ms) 

CPU-CPU 

Rx 0.130 0.051 0.000 3.413 0.008 

Tx 0.027 32.810 0.037 46.703 0.064 

CPU-NET 

Rx 24.099 0.020 0.000 19835.535 29.012 

Tx 21.151 13.608 0.015 39688.393 35.945 

NET-NET 

Rx 32.545 11057.220 16.832 10807.201 17.152 

Tx 32.888 22139.772 19.818 21637.495 21.188 

 

We analyzed the results of the experiments on the workload pairs including network 

in two aspects. The first aspect is the relationship between network usages as the number of 

transferred packet and delegated CPU usage classified into domain that generated network 

requests. The other aspect is the relationship between network usage and common delegated 
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CPU usage for network. For more definite comparison, Figure 4.1 presents the delegated CPU 

usage under given workload pair. 

In the experiment of CPU-Network workload pair a domain, DomU(2), had 

networked alone, so it got much higher throughput. And two domains got definitely lower 

throughput in third experiment of Network-Network pair. However, the total throughput of all 

unprivileged domains was higher then the second experiment. They could not consume 

network bandwidth fully. Because of the interference other   process of CPU intensive 

workload, the networking process cannot make enough packets to use the network bandwidth 

fully. But when two domains network concurrently, that two guests produce requests and 

domain 0 consumes at once can be more efficient.   

 

Figure 4.1: Delegated CPU usage while VM runs various workload pairs 
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We analyzed how much CPU usage unprivileged domains delegated for networking. 

Figure 4.1 shows that CPU usage that each domain delegates to network have a similar result 

to the number of packets. DomU(2) delegated most CPU time in second experiment, DomU(1) 

and DomU(2) in third experiment delegated slightly more than half of them. Comparing with 

both domain of only third experiment, although a domain that networked more delegates less 

CPU usage but the values are kind of similar. With consideration about measurement error, 

we can say a domain delegates more CPU usage when they network more. 

Domain 0 consumed more common CPU usage when both domains use network. 

Form this group of experiments; it is hard to ensure what is the reason of increase of common 

usage. There are two possibilities in our experiments to increase common usage. At first, total 

network usage in the VM server was increased. Second, more domain were using network 

concurrently. Or both of them can affect in combination. To ensure its reason of the increase, 

we performed another experiment with various number of domains that is networking. 

4.2    Experiments on various number of networking domains 

The purpose of this experiment is to show effects of number of unprivileged domains 

that networking concurrently. Thus, every domain was created with same VM definition, 

installed same operating system, and run same applications. The VM server runs 4 VMs 

always, and we changed the number of networking domain by executing the application that 

uses network or not. 

Unlike the experiment that introduced previously, domains did not run CPU intensive 

process. As a result, domains could not consume assigned time slice fully, and the networking 

domains required more CPU time then others not networking. According to result of 

measurement described in Table 4.2, domains transmitted or received about double amount of 

networking usage compared with previous experiments. And total network usage is more 
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when number of networking domains on a VM server was smaller. But as in previous 

experiment, unprivileged domains shared limited network bandwidth. 

Table 4.2: Average of transferred packets while multiple domains network 

Number of 

Networking 

guests 
 

Guest (1) Guest (2) Guest (3) Guest (4) 

4 
Tx 11398 9320 9239 9708 

Rx 22786 18636 18472 19409 

3 
Tx 14793 12719 12146 0 

Rx 29581 25439 24293 0 

2 
Tx 23339 16420 0 0 

Rx 46668 32847 1 1 

1 
Tx 39790 0 0 0 

Rx 79520 0 0 0 

Figure 4.2 is a graph for comparison of delegated CPU usage of all domains. The 

total sum of delegated CPU usage by each domain except common usage has always a similar 

value no matter how many VMs are using network. When VMs share network hardware, 

networking domains delegates a portion of total usage at a rate of occupied network 

bandwidth.  

The common CPU usages for network activities of domain U spend a great part of 

entire CPU usage of domain 0. And it made a difference of total delegated CPU usage while 

various numbers of VMs using network. That the common usage is large means that total 

delegated usage is also large. Domain U guests transferred fewer packets while more VM sent 
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and received packets and produced more common usage. So, we had believed the number of 

networking domain affects common CPU usage. 

 

Figure 4.2: Delegated CPU usage while a server runs multiple networking domains 
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Figure 4.3: Common CPU usage for total networked packets 
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The categorized usage was larger when the domain sends or receives more packets 

although it was not always true. Data that was used experiment above was average. It made 

hard to get correlation of delegated CPU usage and network usage. To see the relationship 

between delegation and network usage, Figure 4.4 shows categorized CPU usage that 

delegates from domain U for number of sent or received packets of them. 

We ignored which domain produce the usage, how many VMs connected and 

transferred data through network. Figure 4.4 shows only correlation of CPU usage and packet 

number, which is directly proportional to each other.  According to our measurements, the job 

to send a packet consumes more CPU time than receive a packet. The slope of trend line of 

"Tx" is greater then "Rx". 

 

Figure 4.4: Delegated CPU usage of domain U guests for the number of packets 
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Chapter 5.     Related work 

 

Pu et al. introduced performance interference among different VMs running on the 

same hardware platform with the focus on network I/O processing. According to their study, 

network intensive workloads can lead to high overheads due to extensive context switches 

and events. But when the server runs CPU intensive and network intensive workloads in 

conjunction incurs the least resource contention, delivering higher aggregate performance. 

(Pu et al.). 

Cherkasova and Gardner introduced a light weight monitoring system for measuring 

the CPU usage of different VMs including the CPU overhead in the privileged domain caused 

by I/O processing oh behalf of a particular VM. They measured the number of memory page 

exchanges between domain 0 and domain u performs over arbitrary time interval when 

domain 0 is in execution state. They derived the CPU cost through dividing the time interval 

by the number of memory page exchanges. They used the calculated cost to ``charge'' the 

corresponding VM that caused the I/O activities (Cherkasova and Gardner).  

The use of driver domains to host device drivers has become popular for the reason of 

reliability and extensibility. Xen had started to use driver domain since the version 2.0, and 

VMware workstation (Sugerman et al.) also used it. But the existence of driver domain causes 

a performance penalty for device access. The problems introduced in Sugernam et al. 

(Sugerman et al.) and in Menon et al. (Menon et al.) 

Xenoprof (Menon et al.) is a system-wide statistical profiling toolkit and developed 

for Xen hypervisor environment. Also, the toolkit provides capabilities similar to Oprofile  

that using performance monitoring hardware to collect periodic samples of performance data. 
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It is not a system embedded profiler, and users have to instruct the start and end point. Thus, 

it is suitable for performance debugging or measure the overhead. 

Menon et al. addressed a number of techniques for optimizing network performance 

with retaining the basic Xen architecture of locating device driver in a privileged domain and 

providing network access to unprivileged domain through virtualized network interface. This 

optimization improved network throughput and reduce execution overhead by I/O channel 

optimization. 

Joule meter (Kansal et al.) is a software approach to measure the energy consumption 

of virtual machines in a consolidated server environment. Joule meter estimates the amount 

energy that each virtual machine consumes by monitoring its resource usage dynamically. 

This research supposed accounted resource usage is accurate but is not. Our accounting 

framework can be applied for software base power metering. 
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Chapter 6.     Conclusion 

When a VM server runs multiple VMs concurrently that have different workload 

characteristics, current Xen hypervisors cannot distribute hardware resource to VM fair. One 

reason for this, virtualized environment have a separated privileged domain to perform I/O 

activities multiplexed from all VMs run on same host. We experimented to see that when 

hypervisor divides CPU time fair, some VMs required using network cause extra usage in 

privileged domain. 

We considered that the CPU usage to handle I/O request of unprivileged domains is 

delegated from the domain that generates the request. In this paper, we introduced the 

implementation of accounting delegated CPU usage per-VM for network activities. The 

implementation includes accounting framework, user interface, and a monitor program. 

We measured delegated CPU usage by separating CPU time that is able to categorize 

by unprivileged domains that requests and common usage. And also, the measurement was 

performed at each process of sending and receiving separately. Through two group of 

experiment, we showed the proportional relationship between number of networked packets 

and delegated CPU usage per-VM except common usage. The common delegated CPU usage 

was increased according to the number of VMs that network concurrently on a shared 

machine. 

In result of our experiment, a domain U guest had stolen about 110ms of CPU time of 

domain 0 when one VM use network and another never uses network. It caused over resource 

of 11\% as compared with resource usage of other VM run at the same time. 

The features introduced in this paper can show how much CPU resource is really 

consumed by VMs. Using the resource accounting adjusted our implementation, VM 
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providers can allocate hardware resource fair. And on a cloud service, it is possible to build a 

fair billing system based on real resource usage of VMs.   
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