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Abstract

In this thesis, we aim to study finite volume approximations which approximate the

solutions of convection-dominated problems possessing the so-called interior transi-

tion layers. The stiffness of such problems is due to a small parameter multiplied to

the highest order derivative which introduces various transition layers at the bound-

aries and at the interior points where certain compatibility conditions do not meet.

Here, we are interested in resolving interior transition layers at turning points. De-

pending on the characteristics, the latters are identified as turning point layers or

characteristic interior layers. The proposed semi-analytic method features interior

layer correctors which are obtained from singular perturbation analysis near the

turning points. We demonstrate this method is efficient, stable and is of 2nd-order

convergence in the approximations.
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I

Introduction

1.1 Model Introduction

Consider the equation: {
Lϵ := −ϵuxx − bux = f in Ω = (−1, 1),

u(−1) = u(1) = 0,
(1.1.1)

where 0 < ϵ << 1, b = b(x), f = f(x) are smooth on [−1, 1], and for δ > 0, b < 0, for

−δ < x < 0, b(0) = 0, b > 0 for 0 < x < δ, and bx(0) > 0.

Eq. (1.1.1), in spite of quite simple, contains many interesting and challenging aspects

that are worth conducting researches on it. The equation can be seen as a linearized version

of a steady convection-diffusion equation. It is well-known that convection-diffusion equations

play important roles in many fields of science. They govern natural phenomena which are

driven by the interaction of two processes: convection and diffusion. One typical example of

these equations is the Navier-Stoke equations which govern the motion of fluid in fluid dynam-

ics. Therefore, understanding the properties of these equations is essential for researchers. In

mathematical view, a convection-diffusion equation can be classified into both a parabolic and

hyperbolic partial differential equation. In steady state, it takes the form of an elliptic equation.

Hence, a full-scale convection-diffusion equation is complicated and thus difficult to conduct an

analysis. Let us consider one case for example. Suppose that one wants to develop a new nu-

merical method to approximate the solution of a convection-diffusion equation, one needs first

to attack a simpler version of it. For this purpose, Eq. (1.1.1) is a good candidate because it

preserves most of important characteristics of a steady convection-diffusion equation that the

analyst is aiming for. The second derivative of Eq. (1.1.1) represents the diffusion process with

its coefficient ϵ; whereas the convection or advection process depends on the first derivative. On

different circumstances, ϵ is called a viscosity or diffusivity coefficient, and b(x)ux is a linearized

form of the convective acceleration term u · ∇u.
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1.1 Model Introduction

In addition, as in our assumption, the diffusivity coefficient ϵ is a very small positive number.

This makes the problem (1.1.1) stiff. A stiff problem implies several arguments. Firstly, the

behavior of the solution is different in different regions of the problem domain. There exist

thin regions in which the solution changes its values rapidly; whereas in other regions, the

solution is slowly changing. In a viewpoint of singular perturbation analysis, we name these

stiff regions as layers or inner solutions, and the others are outer solutions. Locations of these

layers can be at the boundaries or at some points in the interior domain. If a layer displays

near a boundary, it is called a boundary layer ; in the other case, transition layer or interior

layer. The point where an interior transition layer appears is named a turning point. And the

problem (1.1.1) is called a boundary layer problem or problem having a turning point depending

on which type of layers appearing in the solution. It is noted that the thickness of these layers

is very thin and dependent on the parameter ϵ. The second argument we want to refer to a

stiff problem is that convection is the dominant process over the diffusion. Convection plays

roles almost everywhere of the domain, except at the layers. Inside these layers, diffusion takes

place. It helps smooth out the discrepancies between the outer solutions. This explains why

we cannot ignore the diffusion term although it is very small in magnitude compared with

that of the convection term. One clear example to clarify this is the comparison of the Euler

and Navier-Stokes equations. It is known that the former is a viscous-free form of the latter.

It is also well-known that discontinuities or shocks may appear in the solutions of the Euler

equations even though smooth initial conditions are assumed. But this is not for the Navier-

Stokes equations (see [26]). The reason that shocks happening in Euler’s solutions is because a

viscous term is ignored. Or in viewing of Eq. (1.1.1), it is the removal of the diffusion term.

Physically, boundary and transition layers happen in fluid mechanics. A boundary layer is a

thin region at the boundary where the viscous forces dominate other non-viscous ones. On the

other hand, transition layers interpret significant physical phenomena, for instance, turbulent

boundary layers occurring at the points where the turbulent boundary layer separates since the

tangential velocity vanishes and changes sign at such points (see [2]) in fluid dynamics; or the

propagation of light in a nonhomogeneous medium as an application of Maxwell’s equations in

Electromagnetism (see [1]).

We now turn our attention to the convection coefficient b(x). The small parameter ϵ makes

the problem stiff and layers occur in the solution; whereas the positions and numbers of these

layers are dependent on b(x) and the boundary conditions. We recall that for a convection-

diffusion equation of type (1.1.1), convection is the main process and happens in most of the

domain. It is well-known that the motion of the quantity u is due to convection, or more

precisely, the characteristics of the problem. And the direction of these characteristics depend

on the sign of b(x). For our problem (1.1.1), since the convective coefficient b(x) has single zero

at x = 0, an interior layer displays near the turning point x = 0. We consider the following

examples to serve as illustrations for boundary layer and interior layer problems.

2



1.1 Model Introduction

Example 1.1.1. We solve Eq. (1.1.1) with b(x) = 1 and f(x) = 1, i.e.,


−ϵuxx − ux = 1 in (0, 1),

u(0) = u(1) = 0,

(1.1.2)

for an exact solution as:

u =
e−

x
ϵ − 1

e−
1
ϵ − 1

− x (1.1.3)

Example 1.1.2. We now change the convective coefficient b(x) to a function of x, say b(x) = x

and let f(x) = 0 to have:


−ϵuxx − xux = 0 in (−1, 1),

u(−1) = 1, u(1) = −1,

(1.1.4)

for which an exact solution is available:

u ≈ erf

(
− x√

2ϵ

)
, (1.1.5)

where,

erf(z) =
2√
π

∫ z

0
e−s2ds. (1.1.6)

Solutions of Eqs. (1.1.2)–(1.1.4) are shown in Figs. 1-1– 1-2, respectively, for ϵ = 10−1, 10−2.

From the figures, we can clearly see slow outer solutions and a stiff boundary at x = 0 for the

first case, or an interior layer at turning point x = 0 for the latter case. The thickness of these

layers depends on ϵ. The smaller ϵ is, the stiffer the layers are. And discontinuities do not

appear in these cases due to the presence of the layers where diffusion effects take place. In

case of boundary layer, i.e. in example 1, the convective coefficient b(x) = −1 = constant.

This implies that the characteristics of the problem are x′(t) = −1, which causes the boundary

layer to occur at the left boundary in order to resolve the condition at this boundary. We

therefore cannot ignore the small diffusion term, or else the left boundary is not satisfied. In

case u(0) = 1 coincidentally, we do can ignore the term, but it is not likely the case to happen

physically. For the interior layer case, the characteristics are x′(t) = −b(x(t)) = −x and hence

x′ > 0 for x ∈ (−1, 0), x′ < 0 for x ∈ (0, 1). We thus observe that the characteristics converge to

the point x = 0. Hence, there is a discontinuity of the outer solutions at the point x = 0. In this

example, the outer solutions are simply constants. Thus a transition layer is needed to resolve

3
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Figure 1-1: Solution of Eq. (1.1.2) with ϵ = 10−1 solid curve, and ϵ = 10−2 dashed curve

the singularity at x = 0 (see Fig. 1-2). Moreover, a transition layer may also appear due to

logarithmic singularity if the forcing term 0 is replaced by f(x) with f(0) ̸= 0. This is because

of the noncompatibility in the data between b(x) and f(x) of the equation. For example, in

Eq. (1.1.4), if f(x) = 1, the limit problem (when ϵ = 0) reads −xux = 1, and thus u = −ln|x|
for |x| > 0. Here we observe logarithmic singularity at x = 0. This issue will be discussed in

chapter 2.

We expand the role of b(x) to more complicated cases. If b(x) has more than one zeros,

depending on the boundary conditions, whether multiple interior layers or both boundary and

interior layers will occur in the problem domain. If b(x) has zero multiplicity, the solution of

the interior layer will have a different form compared to that of single zero. We discuss more

on this in the conclusion section.

In the next section, we present analytic and numerical approaches and challenges one faces

when studying stiff problems of type (1.1.1). From then, we state the objectives of our work.

1.2 Challenges, Analytic and Numerical Approaches

With the occurrence of the perturbed parameter ϵ in the diffusion term, it is well-known that

such problems of the type as in (1.1.1) are stiff problems. Hence, usually, conventional numerical

methods using centered discretizations fail in approximating the solutions of these problems.

The challenge is that such a good method must give satisfactory approximations for the expo-

nentially thin layers. This difficulty has motivated many researchers to devote their efforts on

the problem, both analytically and numerically. In this section, we briefly present difficulties

when solving for the solutions of Eq. (1.1.1) and analytic and numerical approaches to it.
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Figure 1-2: Solution of Eq. (1.1.4) with ϵ = 10−1 solid curve, and ϵ = 10−2 dashed curve

A typical analytic approach when studying a stiff convection-diffusion equation is to use

so-called singularly perturbation methods. Following these methods, the exact solution is de-

composed into outer solutions or outer expansions which approximate the exact solution in

the slow-changing regimes; and an inner expansion which is the solution of the boundary or

interior layer. These expansions, are then matched to have an analytic approximation of the

exact solution. We call this approximation a composite solution. Outer and inner expansions

are constructed based on asymptotic expansions. Definition for an asymptotic expansion and

how to use it to derive the solutions are presented in chapter 2. Because a composite solution

is an analytic approximation of the exact solution, there exists errors between these two. These

errors come from the asymptotic expansions in the construction and matching of the solutions,

hence are called asymptotic errors. Depending on types of problems to be solved, different

perturbation methods are applied. For problems exhibiting boundary layers, typically one uses

singularly perturbed methods. Analytic analysis concerns how to construct and match the outer

and inner solutions; and more important, to estimate the asymptotic errors of the composite

solution. For reference sources, general introduction and classification of perturbation methods

can be found in [9], [11]. Singular perturbation methods for ordinary differential equations are

presented in [17], and in [27] for nonlinear problems. [7] is a survey of works on the theory of

singular perturbations for linear elliptic partial differential equations. Involving the interior lay-

ers and turning points, Wasow [23] carefully presents the asymptotic theory for linear equations

with turning points. In [5], DeSanti studies the theory for singularly perturbed problems having

a turning point with Dirichlet boundary conditions. Recently, in [13], the authors present a full

analytic analysis for singularly perturbed convection-diffusion equations exhibiting a turning

point. Other researches relating to singular perturbations are addressed in [19], [10], or in [16]

5



1.2 Challenges, Analytic and Numerical Approaches

for an analysis of corner singularities, which occur on the corners of the domain boundary in

case there are incompatible data. These corners usually induce a local singularity in the solu-

tion. If the problem is convective dominant, the corner singularity can be convected into the

interior of the domain.

Involving numerical treatments for problem (1.1.1), obstacles for analysts to overcome are

two-fold: how they can develop a numerical method which can correctly capture the exponen-

tially thin stiff layer ; yet prevent oscillations from appearing. Difficulties lie in the thin thickness

and stiff values of the layer. As indicated, the thickness of this layer depends on the perturbed

parameter ϵ, which is often very small in real applications. Hence, in order to capture the rapid

transition of the layer, exponentially small grid sizes are needed for the layer, which turns out

inefficient or impractical in implementation. In most cases, classical center discretizations do

not work because they cannot prevent the non-physical oscillations from happening. We refer

readers to section 1, chapter 3 for an explanation of the occurrence of these oscillations in view

of mathematical analysis and of practical implementation (see e.g., [18], [22]) Upwind methods,

on the other hand, can prevent oscillations but they fail to approximate the layer correctly.

In fact, the layer is much smeared out. We use the following example to explain why upwind

methods possess the above properties.

Example 1.2.1. Consider we have an equidistant grid system with grid size h and N is the

number of grid points, we discretize Eq. (1.1.1) using finite difference method. Supposing that

b(x) ≥ δ > 0 to have a boundary layer at x = 0, we approximate the diffusion and convection

term using 2nd-order centered and 1st-order upwind discretizations, respectively, as below:

d2uj
dx2

≈ uj+1 − 2uj + uj−1

h2
,

duj
dx

≈ uj − uj+1

h
, j = 1, . . . , N − 1 (1.2.1)

we have Eq. (1.1.1) is discretised:

−ϵuj+1 − 2uj + uj−1

h2
− bj

uj − uj+1

h
= 0, j = 1, . . . , N − 1 (1.2.2)

or

(
−ϵ+ bjh

2

)
uj+1 − 2uj + uj−1

h2
+ bj

uj+1 − uj−1

2h
= 0, j = 1, . . . , N − 1. (1.2.3)

We note that the convection term can be seen to be approximated by a 2nd-order centered

discretization. The coefficient of the diffusion part is now, besides −ϵ, added by additional

quantities
bjh
2 . Because ϵ << h and bj = O(1) > 0, the former is much less than, and hence, is

absorbed by the latter terms. The quantities
bj
2h are called artificial viscosities (see e.g., [28]).

With the introduction of these artificial viscosities, problem (1.1.1) turns out not stiff anymore.

6



1.2 Challenges, Analytic and Numerical Approaches

Hence, it can be approximated without oscillations to occur, but the boundary layer is not

as sharp as required, but instead, much smeared out. Indeed, as discussed in [18], by using

the discretizations (1.2.1), the order of accuracy of the scheme around the boundary layer is

only O(1), which is absolutely not a desired order. The order in other regions of the problem

remains O(h), which is of the upwind method. We call a numerical method that the order of

convergence depends on the location in the domain is non-uniformly convergent. The upwind

method discussed above is one of this type.

One more drawback of upwind methods we want to address is that it is difficult in imple-

mentation for problem (1.1.1) if a turning point is introduced. It is well-known that upwind

methods only work if they are designed to follow the characteristics. But in case of problems

having turning points, the directions of their characteristics are different in different regions of

the problem domains and collide at the turning points causing interior layers to occur. Hence,

in order that upwind methods work well for these problems, they have to be equipped with

shock-capturing techniques, which are, in general, complicated in developing the algorithms

and not uniformly convergent. For the latter attribute, we note that for stability purposes,

upwind methods must sacrifice some accuracy near the turning points (see [26]).

There is an observation from the singular perturbation analysis of problem (1.1.1) that

different length scales exist in different subdomains of the solution, i.e., the boundary layers

and the outer solutions. Hence, for numerical methods, different grid systems are needed in

these different regions. This leads to a conclusion that equidistant grid systems are not efficient

in this case. Shishkin (see [28]) introduces a graded mesh for boundary layer problems. The

technique is that grid sizes are more refined when x approaches closer into the layers. It is

shown in [18] that schemes based on these graded meshes are uniformly convergent. The matter

of how to choose a precise transition point between the coarse mesh and fine mesh for a Shishkin

grid has still driven researchers’ interests.

An alternative approach to approximate the solution of a convection-dominated problem is

to enhance a classical method by incorporating the method with an analytic solution obtained

from the analysis via singular perturbation methods. Methods of this approach are called

semi-analytical numerical methods. The idea is that the basis spanning the space of numerical

solutions of some classical numerical method is embedded with an analytic solution of the layer

of Eq. (1.1.1). Then one applies this enriched method to approximate the outer solutions of

the problem. By this approach, the layer is captured analytically. Thus the scheme shows

uniform convergence on the whole computational domain and the grid system do not need to

be adapted following the layer. It much simplifies the scheme and is more efficient compared

with the methods using graded grids above. References for this approach include [3], [12], [15].

Reviews of analytic and numerical tools applied for a steady convection-diffusion displaying

a boundary layer can be founded in [18], or in [28] for more detailed discussions. Numerical

schemes using the enriched techniques for 1D steady convection-diffusion equations having a

7



1.3 Objectives

boundary layer are studied in [3] in the context of finite element method, in [15] for finite volume

method. In [15], the authors develop their scheme to solve a partial differential equation having

a boundary layer. For 2D problems, we refer readers to [12] for problems having a parabolic

boundary layer, and [14] for convection-diffusion equations in a square domain. For other

relating works, see e.g., [24].

1.3 Objectives

In this work, we aim to construct a new numerical method based on enriched techniques devel-

oped in [15] and the novel analysis as in [13] for approximating the solution of a stiff convection-

diffusion equation having a turning point (1.1.1). We emphasis that our new method is efficient

and accurate. The first attribute is due to the usage of an equidistant for discretization purposes

on the whole computational domain. Since both the interior layer and the incompatibility in

the problem data between b(x) and f(x) are resolved analytically, the new method captures the

layer accurately and shows 2nd-order convergence.

We organize our thesis as follows. In chapter 2, we introduce a singular perturbation analysis

for the model problem (1.1.1). Based on this, we construct a new numerical method in the

context of finite volumes in chapter 3. Numerical results are discussed in chapter 4 to argue for

the advantages of the new method. Finally, we close our work with a conclusion chapter.

8



II

Singular Perturbation Analysis

In this chapter, we present a novel analysis for problem (1.1.1). In the first part, core concepts

of perturbation methods are given. We then briefly present results for analyzing problem (1.1.1)

following the materials given in [13]. The purposes of this novel analysis are to show that the

solution of the turning point probem (1.1.1) can be analytically approximated by a composite

expansion comprising outer solutions and an inner layer with estimated asymptotic errors; and

the derivation of an analytic approximation of the inner solution which is later treated as a

corrector to the classical finite volume space.

2.1 Regular vs. Singular Perturbations

To begin, we first give a definition for a perturbed problem.

Definition 2.1.1. A problem is called perturbed if one or some of its parts is multiplied with a

small parameter 0 < ϵ << 1.

If the problem is an equation, in particular, a differential equation, a small parameter ϵ can

accompany with any terms in the equation, including its initial data and boundary conditions.

Below are some examples of perturbed problems.

Example 2.1.1.

x2 + ϵx− 1 = 0, (2.1.1)

ϵx2 + x− 1 = 0, (2.1.2)

ut + u− ϵu2 = 0, u(0) = 1, (2.1.3)

− ϵuxx − ux = 1, u(0) = u(1) = 0. (2.1.4)

For a perturbed problem, we are particularly interested in the behaviors of its solution in

its limit, i.e., as ϵ → 0. For solving this type of problems, we employ perturbation methods.

9



2.1 Regular vs. Singular Perturbations

The key point is that we construct an asymptotic approximation of the exact solution. An

asymptotic approximation is constructed based on the usage of an asymptotic sequence and

asymptotic expansion. Before giving definitions for these, we first introduce some notations

which are used when we do comparisons between two functions in their limits. These notations

are needed for our later construction of an asymptotic expansion.

Suppose we have functions f(x) and g(x) which are formally good enough for our analysis.

We write:

f(x) = o(g(x)) as x→ x0, (2.1.5)

if

lim
x→x0

f(x)

g(x)
= 0, (2.1.6)

and we say that “f(x) is little-oh of g(x)”as x→ x0.

Similarly, we write:

f(x) = O(g(x)) as x→ x0, (2.1.7)

if

lim
x→x0

f(x)

g(x)
= L ̸= 1, (2.1.8)

and we say that “f(x) is big-oh of g(x)”as x→ x0.

Especially, when L = 1, we say that “f(x) and g(x) are asymptotically equivalent,”and write:

f(x) ∼ g(x) as x→ x0. (2.1.9)

The above notations give us the information on the behaviors of f(x) and g(x) as x → x0.

For example, it f(x) is little-oh of g(x) as x → x0, it means that f(x) is much smaller than

g(x) as x → x0 and is negligible when making a comparison between the two. For example, if

f(x) = x2 and g(x) = x, we say that f(x) = o(g(x)) as x → 0 since it is clear that f(x) → 0

faster, hence smaller, than g(x) → 0 as x → 0. It is noted that the statements above without

the part x → x0 are meaningless because the notations are used only when the limit case of

f(x) and g(x) is considered. In the same manner, f(x) = O(g(x)) as x → x0 implies that the

two functions are of similar order of x as x → x0. Their difference is measured by the limit L.

Hence, if L = 1, f(x) and g(x) are equivalent, but asymptotically due to x→ x0. We illustrate

the usage of these notations by the following simple examples.
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2.1 Regular vs. Singular Perturbations

Example 2.1.2. Suppose f(x) = 2x2. We have below statements for different g(x):

• if g(x) = x, then f(x) = o(g(x)) as x→ 0, but

• g(x) = o(f(x)) as x→ ∞.

• if g(x) = 5x2 + 6x3, then f(x) = O(g(x)) as x→ 0.

• if g(x) = 2x2 + 6x3, then f(x) ∼ g(x) as x→ 0.

We now give a definition for an asymptotic sequence.

Definition 2.1.2. We say a sequence of functions {φn(x)}∞n=0 is an asymptotic sequence if

φn+1(x) = o(φn(x)), as x→ x0 (2.1.10)

for every n.

With the above discussions, we finally come with a definition for an asymptotic expansion,

following the one given in [11]:

Definition 2.1.3. The series of terms written as

N∑
n=0

anφn(x) + O(φN+1(x)), (2.1.11)

where the an can be constants or functions which are independent of x, is an asymptotic expan-

sion or asymptotic approximation of f(x), with respect to the asymptotic sequence {φn(x)}∞n=0

if, for every N ≥ 0

f(x)−
N∑

n=0

anφn(x) = o(φN (x)), as x→ x0. (2.1.12)

The term R = o(φN (x)) is called an asymptotic error of the approximation. We can also write:

f ∼
N∑

n=0

anφn(x), as x→ x0. (2.1.13)

From the above definition, we notice that given function f(x) and x → x0, the asymptotic

expansion of f(x) is not unique. In fact, with different asymptotic sequences, we can construct

different asymptotic expansions of f(x) if they exist. But if the above condition, i.e., given f(x)

and x → x0, goes with a predefined asymptotic sequence, the asymptotic expansion of f(x) is

then unique since each an can be computed analytically (see [11]) as follows:
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2.1 Regular vs. Singular Perturbations

Consider

f(x)−
∑N−1

n=0 anφn(x)

φN (x)
=
f(x)−

∑N
n=0 anφn(x) + aNφN (x)

φN (x)
(2.1.14)

=
f(x)−

∑N
n=0 anφn(x)

φN (x)
+ aN . (2.1.15)

Taking the limit, we obtain:

aN =
f(x)−

∑N
n=0 anφn(x)

φN (x)
. (2.1.16)

It is also noted that an asymptotic expansion of f(x) need not to converge to f(x) as x→ x0.

In fact, most of the asymptotic expansions are divergent as x → x0 (see the example on p.12,

[9] for an illustration). This implies that adding more terms into an asymptotic expansion does

not result in a decrease in the asymptotic error. In fact, as we mentioned in the definition of

an asymptotic expansion, the terms, e.g., φn+1(x) = o(φn(x)) only when x→ x0. Hence, if we

fix x, we have no conclusion in comparing the magnitudes between an+1φn+1(x) and anφn(x).

In other words, an asymptotic expansion relates to an approximation of f in a limit sense, i.e.,

fixing n and letting x→ x0; whereas adding terms relates to fixing x and letting n→ ∞. These

two cases are different in general.

We now use asymptotic expansions to analytically approximate the first 2 quadratic equa-

tions in example 2.1.1 to illustrate for 2 types of perturbed problems: regularly and singularly.

We notice that the asymptotic expansions of the solutions of a perturbed problem are con-

structed based on asymptotic sequences of the small parameter ϵ, not of the variable x of the

problem.

Example 2.1.3.

x2 + ϵx− 1 = 0, 0 < ϵ << 1. (2.1.17)

We can easily calculate the exact solutions of Eq. (2.1.17):

x1,2 =
1

2

(
−ϵ±

√
ϵ2 + 4

)
. (2.1.18)

Substituting the asymptotic expansion of x: x ∼
∑∞

j=0 ajϵ
j into Eq. (2.1.17), we obtain:

 ∞∑
j=0

ajϵ
j

2

+ ϵ

 ∞∑
j=0

ajϵ
j

− 1 = 0. (2.1.19)
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2.1 Regular vs. Singular Perturbations

Balancing terms at each order of ϵ gives us:

O(1) : a20 − 1 = 0,

O(ϵ) : 2a0a1 + a0 = 0,

O(ϵ2) : a21 + 2a1a2 + a1 = 0,

· · ·

(2.1.20)

Solving for aj , we obtain two expansions which approximate the two zeros of Eq. (2.1.17):

x1 = 1− 1

2
ϵ+

1

8
ϵ2 + O(ϵ3), (2.1.21)

and

x1 = −1− 1

2
ϵ− 1

8
ϵ2 + O(ϵ3), (2.1.22)

We observe that as ϵ → 0, the asymptotic expansions give satisfactory approximations to

the exact zeros of the quadratic equation. Furthermore, these approximations also agree with

the zeros of the limit case, i.e., x2 − 1 = 0. This implies the occurrence of the small term ϵx

in Eq. (2.1.17) plays little roles in the equation, hence it is possible if we neglect this term and

consider it is absorbed by other bigger terms. We call a perturbed problem in which ϵ does not

effect the behaviors of the solutions of the problem as ϵ→ 0 a regularly perturbed problem.

Example 2.1.4. We now make a small change in Eq. (2.1.17) by shifting ϵ to accompany with

the higher-order term, i.e. x2, to have:

ϵx2 + x− 1 = 0, 0 < ϵ << 1, (2.1.23)

for which exact solutions are calculated:

x1 =
−1 +

√
1 + 4ϵ

2ϵ
→ 1 as ϵ→ 0, (2.1.24)

x2 =
−1−

√
1 + 4ϵ

2ϵ
→ ∞ as ϵ→ 0. (2.1.25)

Carrying the technique as above with an expansion x ∼
∑∞

j=0 ajϵ
j , we find that:

x1 = 1− ϵ+ 2ϵ2 + O(ϵ3), (2.1.26)

We notice that by applying the same technique of a regularly perturbed problem, we can only
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2.1 Regular vs. Singular Perturbations

obtain one zero of Eq. (2.1.23). This zero is also the one of its limit case, i.e. x − 1 = 0. The

other is missing. To seek for the missing zero, we use a technique called singular perturbation.

We proceed as follows:

Set:

X = ϵx ⇒ x = ϵ−1X (2.1.27)

Eq. (2.1.23) is rewritten:

ϵ−1X2 + ϵ−1X − 1 = 0 (2.1.28)

Substituting the expansion X =
∑∞

n=0Xnϵ
n into Eq. (2.1.28), and follow the steps as in the

regular case, we obtain:


x1 = −1

ϵ
− 1 + ϵ+ . . . ,

x2 = 1− ϵ+ . . . .

(2.1.29)

We note that by using a change in the variable x, we retrieve 2 expansions, which give

satisfactory approximations to the zeros of the equation. We explain more on why a regularly

asymptotic expansion can only capture one zero and miss the other. We note that the behaviors

of the two roots are very different as ϵ → 0. The root x = 1 is the intersection point of the

graph of ϵx2 + x − 1 = 0 and its limit form x − 1 = 0, hence remains unchanged as ϵ → 0.

The other, which depends strictly on ϵ, goes to −∞ when ϵ → 0. Hence, an expansion with a

stretched variable is needed in this case.

From the above example, an observation is that although the term ϵx2 is small compared

to the others, it plays an important role. If we ignore the term, the properties of the equation

change completely (e.g. from a quadratic to linear equation as in our example). We call such

type of problems singularly perturbed problems.

Remark 2.1.1. • In case of a differential equation which is of singularly perturbed types,

a separation of the solution domain into sub-domains possessing different behaviors and

the occurrence of a layer as ϵ → 0 is observed. As proceeded in example 2.1.4, we

apply singular perturbation methods to handle this case. We use a regularly asymptotic

expansion to seek for the outer solutions, and an expansion using a stretched variable to

derive the approximation of the layer analytically.

• For our Eq. (2.2.1), the problem is more complicated because not only the interior layer is

stiff, but also the outer solutions do if the incompatibility happens between the convection
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2.2 Singular Perturbation Analysis

and force terms (see the condition (2.2.11) below). We refer readers to the discussion of

the example 1.1.2. In [13], the authors present a full analysis via singularly perturbation

for a problem of type (2.2.1) having a turning point. These results provide us an insight

about the behaviors of the solution as ϵ → 0 to construct our new numerical method for

the problem.

In the next section, to set up the mathematical foundation for our later development of the

new method, we briefly summarize important results from [13], and then apply it to our case.

2.2 Singular Perturbation Analysis

In this section, we present a singular perturbation analysis for the problem for which we will

construct a new numerical method in the next section. As mentioned in the introduction section,

the problem we are dealing with is a steady convection-dominated equation. For the sake of

clarification, we rewrite the model as below:{
−ϵ2uxx − bux = f in Ω = (−1, 1),

u(−1) = u(1) = 0,
(2.2.1)

where 0 < ϵ << 1, b = b(x), f = f(x) are smooth on [−1, 1], and for δ > 0, b < 0, for

−δ < x < 0, b(0) = 0, b > 0 for 0 < x < δ, and bx(0) > 0. The ϵ2 serves for simpler formulae

and calculations and to agree with the analysis given in [13].

As stated in the previous section, the convection-diffusion model (2.2.1) is a type of singular

perturbed problem, i.e., there exists a thin layer in the domain in which the solution changes

rapidly. Because b(x) changes sign at x = 0, this transition layer occurs at this turning point.

Via singular perturbation methods, we present how to derive the outer expansions of the

solution and the exact solution of the interior layer. Furthermore, we indicate that the asymp-

totic errors of the composite solution, i.e., the combination of the outer expansions and interior

layer to make an approximation of the exact solution, depend on the asymptotic parameter ϵ

and get smaller when there are more terms in the expansions are used. Here, we use the word

approximation to refer to an analytical approximation, not to an approximate solution given by

a numerical method.

One of the challenges when dealing with singularly perturbed problems exhibiting an interior

layer to those having boundary layers is that, besides the troublesome of the layer analysis,

one must also care about the position of the turning point, and the complexity of the outer

expansions around this point. For the former, thanks to the linearity of our model, we know

exactly that the turning point, hence the interior layer, is located at x = 0. And for the later

remark, as presented in the introductory example 1.1.2 in the introduction section, if the data

between b(x) and f(x) are not compatible, as well as the stiff solution of the interior layer, the
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2.2 Singular Perturbation Analysis

outer expansions also exhibit stiff solutions, e.g., due to logarithmic singularities. To recall,

for Eq. (2.2.1), if f(0) = 1 on the whole domain, the limit problem (i.e., when ϵ = 0) reads

−ux = 1, and thus u = − ln |x| for |x| > 0. Here we observe a logarithmic singularity at x = 0.

Hence, it is natural to classify the singular perturbation analysis of our problem into two cases

dependent on the compatibility condition of b(x) and f(x).

2.2.1 Case I: f , b compatible

We first give a mathematical analysis for the case that f and b are compatible to each other. The

procedure is as follows. We seek for the approximations of the outer solutions using regularly

asymptotic expansions. For the interior layer, we use a stretched variable to derive the inner

solutions or the approximations of the interior layer. We then present the estimates of the

asymptotic errors of these expansions and of the composite solution compared to the exact

solution.

We now construct the outer expansions for the solutions of Eq. (2.2.1). Via this, we indicate

the compatibility condition for f and b.

•Outer expansions

Substituting formal expansions:

u ∼
∞∑
j=0

ϵjujl in x < 0 (2.2.2)

and,

u ∼
∞∑
j=0

ϵjujr in x > 0, (2.2.3)

into the Eq. (2.2.1), and balancing terms at each O(ϵ), we derive:

O(1) : −bu0lx = f in [−1, 0) − bu0rx = f in (0, 1], (2.2.4)

O(ϵ) : −bu1lx = 0 in [−1, 0) − bu1rx = 0 in (0, 1], (2.2.5)

O(ϵj) : −bu0lx = uj−2
lxx in [−1, 0) − bu0rx = uj−2

rxx in (0, 1], (2.2.6)

for j ≥ 2,

with boundary conditions for all equations above to be ujl (−1) = ujr(1) = 0, j ≥ 0.
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2.2 Singular Perturbation Analysis

Analytical solutions of Eqs.(2.2.4)–(2.2.6) are available and as follows:

u0l = −
∫ x

−1
b(s)−1f(s)ds, u0r = −

∫ 1

x
b(s)−1f(s)ds, (2.2.7)

u2kl = −
∫ x

−1
b(s)−1u2(k−1)

xx (s)ds, u2kr = −
∫ 1

x
b(s)−1u2(k−1)

xx (s)ds, (2.2.8)

for all j = 2k, k ≥ 1,

ujl = ujr = 0, for all odd j’s. (2.2.9)

From the integrations (2.2.7)–(2.2.8), to make sure the regularities of the outer solutions,

i.e.: ∣∣∣∣dmu2kldxm
(0−)

∣∣∣∣ , ∣∣∣∣dmu2krdxm
(0+)

∣∣∣∣ ≤ κkm, (2.2.10)

with m ≥ 1 and k ≥ 0 and κ is a constant independent of ϵ which depends on k,m, we need

the following condition, i.e., the compatibility condition of b and f :

dif

dxi
(0) = 0, i = 0, 1, · · · , N, (2.2.11)

with N = m+ 2k − 1.

•Interior layers θjl , θ
j
r, ζj

From the condition (2.2.11), we now guarantee that there are no singularities in the outer

solutions around x = 0 as ϵ → 0. But usually, the values ujl (0
−) ̸= ujr(0+). To resolve

these discrepancies between the outer solutions smoothly, we introduce the inner expansions∑∞
j=0 ϵ

jθjl ,
∑∞

j=0 ϵ
jθjr with θjl = θjl (x̄), θ

j
l = θjl (x̄) where x̄ = x/ϵ is called a stretched variable.

Substituting these expansions into Eq. (2.2.1), and the formal Taylor expansion for b = b(x) at

x = 0:

b(x) =
∞∑
j=1

bjx
j =

∞∑
j=1

bjϵ
j x̄j , (2.2.12)

where bj =
1
j!

djb
dxj (0); we note that here j starts from 1 due to b0 = b(0) = 0; we have Eq. (2.2.1)

written as below:

for x ∈ (−∞, 0):
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2.2 Singular Perturbation Analysis


−
(∑∞

j=0 ϵ
jθjlx̄x̄

)
−
(∑∞

j=1 bjϵ
j−1x̄j

)(∑∞
j=0 ϵ

jθjlx̄

)
= 0,∑∞

j=0 ϵ
jθjl (x̄) = ur(0

+),∑∞
j=0 ϵ

jθjlx̄(x̄) =
∑∞

j=0 ϵ
j+1θjlx = urx(0

+) at x̄ = 0;

(2.2.13)

for x ∈ (0,∞):


−
(∑∞

j=0 ϵ
jθjrx̄x̄

)
−
(∑∞

j=1 bjϵ
j−1x̄j

)(∑∞
j=0 ϵ

jθjrx̄

)
= 0,∑∞

j=0 ϵ
jθjr(x̄) = ul(0

−),∑∞
j=0 ϵ

jθjrx̄(x̄) =
∑∞

j=0 ϵ
j+1θjrx = ulx(0

−) at x̄ = 0.

(2.2.14)

Again, balancing terms at each O(ϵ), we obtain the equations for each θjr:

O(1) :

{
−θ0rx̄x̄ − b1x̄θ

0
rx̄ = 0,

θ0r(x̄) = u0l (0
−), θ0rx̄(x̄) = ϵu0l (0

−) at x̄ = 0,
(2.2.15)

O(ϵ) :

{
−θ1rx̄x̄ − b1x̄θ

1
rx̄ = b2x̄

2θ0rx̄,

θ1r(x̄) = u1l (0
−), θ1rx̄(x̄) = ϵu1l (0

−) at x̄ = 0,
(2.2.16)

O(ϵj) :

{
−θjrx̄x̄ − b1x̄θ

j
rx̄ =

∑j−1
k=0 bj−k+1x̄

j−k+1θkrx̄,

θjr(x̄) = ujl (0
−), θjrx̄(x̄) = ϵujl (0

−) at x̄ = 0,
(2.2.17)

which allow us to determine θjr explicitly. Notice that ujr = ujl = 0 for j odd. In particular, for

j = 0, 1, we find that:

θ0r = ϵu0lx(0
−)

∫ x̄

0
exp

(
−b1s

2

2

)
ds+ u0j (0

−), (2.2.18)

θ1r = −ϵu0lx(0−)b23−1

∫ x̄

0
s3 exp

(
−b1s

2

2

)
ds+ u0j (0

−). (2.2.19)

Here, we note that as x̄→ ∞,

θ0r → ϵu0lx(0
−)cr,0 + u0l (0

−) =: c0r,∞(ϵ), (2.2.20)

θ1r → −ϵu0lx(0−)b23−1cr,1 =: c1r,∞(ϵ), (2.2.21)

where cr,0 =
∫∞
0 exp(−b1s2/2)ds, cr,1 =

∫∞
0 s3 exp(−b1s2/2)ds.

Remark 2.2.1. 1. Solutions of θjl can be deduced in a similar procedure.
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2.2 Singular Perturbation Analysis

2. The source term f only affects the outer expansions, thus it does not appear in Eqs.

(2.2.13)–(2.2.14).

3. We explain more on the boundary conditions used in Eq. (2.2.13) and (2.2.14). The

Dirichlet boundary conditions are to make sure continuity of the outer and inner solutions

at the matching points; whereas the smoothness of the approximation at these joints are

guaranteed by the Neumann boundary conditions.

We are now close to a composite expansion which asymptotically approximates solution u

of Eq. (2.2.1). We denote the functions gj := −(ujl ∪ θ
j
r)− (θjl ∪ u

j
r) where the notation ϕ∪φ is

for a function on (−1, 1) equal to (the restriction of) ϕ on (−1, 0) and to (the restriction of) φ

on (0, 1). We notice that, by (2.2.20), u and gj are different from each other quantities −cjl,∞ at

x = −1 and −cjr,∞ at x = 1. To remedy these discrepancies, we introduce more interior layers

ζj which are same as θjl and θjr, i.e., ζj are also derived from Eqs. (2.2.15)–(2.2.17), but have

different boundary conditions:

ζj = −θjl at x = −1, ζj = −θjr at x = 1 for j ≥ 0. (2.2.22)

With the introduction of ζ, we define a composite expansion:

g̃ϵn := ψϵn + ηϵn + ζϵn ∼ u, (2.2.23)

where

ψϵn =

2n∑
j=0

ϵj(ujl ∪ θ
j
r), ηϵn =

2n∑
j=0

ϵj(θjl ∪ u
r
l ), ζϵn =

2n∑
j=0

ϵjζj . (2.2.24)

In [13], we have the following estimate for the asymptotic errors of the expansion (2.2.23):

∥u− g̃ϵn∥Hm(Ω) ≤ κnϵ
2n+3/2ϕ(ϵ,m), m = 0, 1, 2, (2.2.25)

where ϕ(ϵ,m) is defined:

ϕ(ϵ,m) =


1 for m = 0,

ϵ−1 for m = 1,

ϵ−3 for m = 2.

(2.2.26)

Remark 2.2.2. 1. From (2.2.25), we observe that the asymptotic errors become smaller when

more terms in the composite expansion (2.2.23) are introduced.

2. From the error estimation (2.2.25), we notice that the solution of Eq. (2.2.1) can be
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2.2 Singular Perturbation Analysis

approximated by the composite expansion (2.2.23) using singular perturbation methods.

Moreover, from this expansion, it is shown that the solution can be decomposed into a

slow part which represents for the slow outer solutions, and a fast part which is the stiff

interior layer.

3. In the above analysis, three types of interior layers, i.e., θjl , θ
j
r, and ζj , are used for the

matching purpose, which are different from a conventional matched asymptotic technique.

We recall that for the latter, only one approximation for the interior layer is sought for

by solving equation (2.2.13) or (2.2.14) without injecting boundary conditions. Hence,

there are two integration constants remained. These constants are then verified through

a matching process of the inner and outer solutions. This matching is carried out in

transition regions where both inner and outer solutions approach to the same values.

Hence, there exist two common terms in the composite expansion, in which one is needed

to be subtracted (see [11]). For the analysis presented in this work, via the applying of the

boundary conditions when solving for interior layers θjl , θ
j
r as in Eqs. (2.2.13) and (2.2.14),

the discrepancies of the outer solutions are moved to two boundaries, and then resolved

by other layers, i.e., ζj by fulfilling the boundary conditions of Eq. (2.2.1). Hence, no

common terms result in our composite expansion (2.2.23).

4. The above remarks provide us the idea of constructing a numerical method for approx-

imating u. The procedure is that we first seek for an analytical approximation of the

interior layer via singular perturbations (as presented in this section); then we numer-

ically approximate the outer solutions by a type of numerical methods. In this thesis,

we use finite volume method. Unlike the analytical analysis to use three interior layers

serving for the matching of the inner and outer solutions, in our numerical methods, we

remedy these discrepancies numerically via redefining the boundary conditions satisfying

the problem (2.2.1). This method will be presented in the next chapter.

2.2.2 Case II: f and b are non-compatible

In this section, we briefly present the case that f and b are non-compatible, that is, the condition

(2.2.11) is violated. As presented in example 2 in the introduction, for this case, the solution is

stiff not only in the interior layer but also in the outer solutions near the turning point. This is

due to logarithmic singularities due to the incompatibility of b and f .

As proven in [13], one can still apply the analysis for case I above given that f is decomposed
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2.3 Apply to our problem

into f̂ and Bj as below:

f̂ = f −
N∑
k=0

γkBk(x), (2.2.27)

where

B0 = bx(x), B1 = b(x), Bk+2 = b(x)

∫ x

0
Bk(s)ds, k ≥ 0. (2.2.28)

We note that since diBk

dxi (0) = 0 for i < k and diBk

dxi (0) ̸= 0 for i = k, we can recursively find

that all the γk, k ≥ 0 so that the compatibility condition (2.2.11) holds for f̂ . For the other

terms, i.e.,
∑N

k=0 γkBk(x), it turns out that singularities happen only for terms Bk, k = 2J, J ≥
0.

The analysis procedure of the interior layers in this case is similar to that in the previous

section. The only change is that due to singularities at x = 0, we do not match the solutions

at x = 0 but rather at the boundaries x = −1 and x = 1, For detailed arguments, see [13].

2.3 Apply to our problem

From the analysis above, in case of a compatible f , we notice that the solution u of Eq. (1.1.1)

can be decomposed into a stiff part (the transition layer), where large values of the derivative are

observed, and the non-stiff part (outer solutions) away from the turning point. We, therefore,

introduce a decomposition of the solution u as follows:

u = us + λθ0, (2.3.1)

where us is considered a slow variable, θ0 is the transition layer defined by (2.3.6) below, and λ

an unknown.

We now derive the interior layer. We recall that for our problem, the turning point is x0 = 0.

We first start with a compatible f , i.e., f(x0) = 0 = b(x0). In this case, the outer expansions

are considered slow. Using a formal asymptotic expansion for the solution u at the transition

layer, and Taylor expansion for b about x = x0 = 0, we write:

u ∼
∞∑
k=0

ϵkθk(x̄), x̄ =
x− x0√

ϵ
. (2.3.2)

and

b ∼
∞∑
k=0

1

k!
bk(

√
ϵ)kx̄k, (2.3.3)
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2.3 Apply to our problem

where bk are kth order derivatives of b with respect to x, at x = 0. Substituting these expansions

into Eq. (1.1.1) with a note that b(0) = f(0) = 0, and balancing terms, we can obtain a system

of equations at each order of ϵ. It turns out that, for numerical purposes, the leading term θ0

suffices to catch the sharp transition layer, which is the solution of

−θ0x̄x̄ − b1x̄θ
0
x̄ = 0; (2.3.4)

this equation is the zeroth order approximation near x = 0 of

−ϵθxx − b(x)θx = 0. (2.3.5)

Transforming Eq. (2.3.4) back to variable x, we obtain

−ϵθ0xx − b1xθ
0
x = 0; (2.3.6)

whose an explicit form of θ0 is available:

θ0 =
2√
π

∫ x
√

b1
2ϵ

0
e−s2ds = erf

(
x

√
b1
2ϵ

)
. (2.3.7)

The corrector θ0 will be incorporated into the classical finite volume space Vh to absorb

transition layer singularity (see section 2.3). We can infer from the local asymptotic behavior

(2.3.7) that exponentially refined meshes are required at x = 0 for the classical numerical

method. This leads to expensive computations, even more expensive in higher dimensional

problems.

In the case of a noncompatibe f , i.e., f(0) ̸= 0 = b(0), as well as the inner expansion, the

outer expansions also display sharp transitions like spikes, e.g., logarithm, due to the small

variable b(x) and non-degenerate f(x) near x = 0. In order to resolve the sharp transition due

to the noncompatibility between b(x) and f(x) at x = 0, we introduce the zeroth corrector φ0:

φ0 = −
∫ x√

ϵ

0

∫ t

0
exp

(
−b1

t2 − s2

2

)
dsdt. (2.3.8)

The φ0 is the solution of the equation:

−ϵφ0
xx − b1xφ

0
x = 1, (2.3.9)

which is the zeroth order approximation near x = 0 of

−ϵφxx − b(x)φx = 1. (2.3.10)
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2.3 Apply to our problem

Using polar coordinates s = r cos θ, t = r sin θ in (2.3.8), we rewrite φ0(x):

φ0(x) = − 1

b1

∫ π
2

π
4

1

cos 2θ

[
exp

(
b1 cos 2θ

2 sin2 θ

x2

ϵ

)
− 1

]
dθ. (2.3.11)

Notice that the double integration (2.3.8) is transformed to the single one (2.3.11). Hence,

computational cost in the numerical simulations will be much reduced.

Substituting (2.3.1) into Eq. (3.1.1) and using (2.3.5), we can write:

Lϵ(us + λ(θ0 − θ)) = f(x), in Ω, (2.3.12)

which is supplemented with boundary conditions:{
us(−1) + λθ0(−1) = u(−1) = 0,

us(1) + λθ0(1) = u(1) = 0.
(2.3.13)

The slow variable us will be approximated by the usual step functions and we now propose

a new finite volume method in the following chapter.

23



III

New Numerical Method

In this chapter, we present a new numerical method for problem (1.1.1) based on a classical

finite volume method and the novel analysis given in the previous chapter. The chapter is

divided into two parts. In the first part, we apply classical Finite Volume methods to solve for

an approximate solution of the problem (1.1.1) numerically. The purposes for this part are two-

fold: to introduce numerical concepts from the numerical method that are used in our specific

cases; and to explain why such a classical method fails for approximating a stiff problem. Then,

in the second part, we incorporate the analytic approximation (2.3.7) into the classical method

to produce a new and accurate method.

Finite volume methods approximate the solution of a differential equation by its integral

form. The computational domain is divided into a finite number of small intervals called control

volumes. One then approximates the solution at each control volume by its average value on

that control volume via the fluxes coming in and out the volume through its edges (see [22], [25]).

Finite volume methods have advantages compared with other numerical methods. Firstly, the

average values of the control volumes of the approximated solution change depending only on

the changes of the flux; hence the quantities are conserved. This property is very preferable for

problems of conservation laws which are essential in many research fields, e.g., fluid dynamics.

secondly, finite volume methods do not use point-wise values but average ones on each control

volume, thus unstructured grids can be constructed to adapt with difficult geometries. Based

on these reasons, finite volume methods are dominant in computational fluid dynamics and

aerodynamics.
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3.1 Classical Finite Volume

3.1 Classical Finite Volume

In this section, we apply finite volume discretizations in approximating the solution of Eq.

(1.1.1). For clarification, we rewrite Eq. (1.1.1) as follows:

{
Lϵ := −ϵuxx − bux = f in Ω = (−1, 1),

u(−1) = u(1) = 0,
(3.1.1)

where 0 < ϵ << 1, b = b(x), f = f(x) are smooth on [−1, 1], and for δ > 0, b < 0, for

−δ < x < 0, b(0) = 0, b > 0 for 0 < x < δ, and bx(0) > 0.

Firstly, we define the mesh parameters for our scheme. We rather use a uniform mesh

for our computation. Let xj , uj be nodal points and values, respectively. The xj are located

at x = −1 + (j − 1/2)h, h = 2/N, j = 0, 1, 2, . . . , N,N + 1 where h is the mesh size and

N is the number of control volumes (see Fig. 3-1). The points x0, xN+1 are called ghost

points or fictitious points which do not belong to the computational domain Ω and their nodal

values u0, uN+1 are determined via boundary conditions and appropriate interpolations at

the boundaries (see (3.1.7) and (3.1.8) below). Then the control volumes at xj have faces

at xj− 1
2
= xj − h/2, xj+ 1

2
= xj + h/2, j = 1, 2, . . . , N . Note that the boundary points are

x 1
2
= −1, xN+ 1

2
= 1.

Figure 3-1: Grid system used for the numerical method.

For finite volume methods, we use step functions for discretization purposes. Hence, the

solution u and its derivative ux are interpolated as follows:

u ≈ uh =
N∑
j=1

ujχ(x
j− 1

2
, x

j+1
2
)(x), ux ≈ ∇huh =

N∑
j=0

uj+1 − uj
h

χ(xj , xj+1)(x), (3.1.2)

where uj = u(xj) and χ(a,b)(x) is the characteristic function of the interval (a, b).

In [15], it is proved that

{
|u− uh|L2(x 1

2
, x

N+1
2
) ≤ κh|u|H1(x 1

2
, x

N+1
2
),

|ux −∇huh|L2(x0, xN+1) ≤ κh|u|H2(x0, xN+1).
(3.1.3)

Hence, we are motivated to discretize Eq. (3.1.1) via (3.1.2) with the unknown nodal values

uj . The function uh thus belongs to the finite dimensional space Vh, which is a classical finite

25



3.1 Classical Finite Volume

volume space, where

Vh =
N
⊕
j=1

Rϕj(.), (3.1.4)

with

ϕj = ϕj(x) = χ(x
j− 1

2
, x

j+1
2
)(x), j = 1, . . . , N . (3.1.5)

When we integrate the first derivative over a control volume, i.e.,∫ x
j+1

2

x
j− 1

2

ux dx = u(xj+ 1
2
)− u(xj− 1

2
), (3.1.6)

we need to interpolate these values using the nodal values uj , j = 1, . . . , N since uh is not

defined at the volume faces xj− 1
2
, xj+ 1

2
. Here, we adopt a central difference scheme at faces,

including the boundaries:

u(−1) = u(x 1
2
) ≈ uh(x 1

2
) =

u0 + u1
2

= 0, (3.1.7)

u(1) = u(xN+ 1
2
) ≈ uh(xN+ 1

2
) =

uN + uN+1

2
= 0, (3.1.8)

u(xj+ 1
2
) ≈ uh(xj+ 1

2
) =

uj + uj+1

2
, j = 1, . . . , N − 1. (3.1.9)

Hence, from (3.1.2), ∇huh is,

∇huh =
2u1
h
χ[x 1

2
, x1)(x) +

−2uN
h

χ(xN , x
N+1

2
](x) +

N−1∑
j=1

uj+1 − uj
h

χ(xj , xj+1)(x). (3.1.10)

Eq. (3.1.1) is discretized by multiplying by the step functions χ(x
j− 1

2
, x

j+1
2
)(x) and integrat-

ing over Ω, we obtain that

−ϵux
∣∣∣∣xj+1

2

x
j− 1

2

−
∫ x

j+1
2

x
j− 1

2

b(x)uxdx =

∫ x
j+1

2

x
j− 1

2

f(x)dx, j = 1, . . . , N, (3.1.11)

which is equivalent to

(−ϵux − b(x)u)

∣∣∣∣xj+1
2

x
j− 1

2

+

∫ x
j+1

2

x
j− 1

2

bx(x)u dx =

∫ x
j+1

2

x
j− 1

2

f(x)dx, j = 1, . . . , N. (3.1.12)
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3.1 Classical Finite Volume

Substituting the approximations (3.1.2) into Eq. (3.1.12), we obtain that

(−ϵ∇huh − b(x)uh + b(x)uj)

∣∣∣∣xj+1
2

x
j− 1

2

=

∫ x
j+1

2

x
j− 1

2

f(x)dx, j = 1, . . . , N. (3.1.13)

Applying the boundary conditions (3.1.7), (3.1.8) and arranging terms, we can write the

classical finite volume discretization (3.1.13) as follows, for j = 1, . . . , N ,

aj,j−1uj−1 + aj,juj + aj,j+1uj+1 = fj . (3.1.14)

This system corresponds to (3.2.13)–(3.2.14) below with deleting the first row and column.

However, as indicated in the interpolation errors (3.1.3), if |u|H1 , |u|H2 are large, e.g., due

to the large gradient of u, the numerical approximation will be poor. Indeed, the classical

numerical method experiences oscillations (see some numerical examples in section 3 below)

near the large gradient of the solution due to the sharp transition layer. To understand why

oscillations occur in the numerical solutions of the classical finite volume method, we look at

the algebraic system (3.2.13) with Eq. (3.1.14) with aj,j−1, aj,j and aj+1,j written as below:

aj−1,j = − ϵ

h
+

1

2
b(xj− 1

2
), aj,j = − ϵ

h
− 1

2

[
b(xj+ 1

2
)− b(xj− 1

2
)
]
, aj+1,j = − ϵ

h
− 1

2
b(xj+ 1

2
).

(3.1.15)

As pointed out in [22] (see case 2 of example 5.1, p. 137), in order that the solutions of

the algebraic system (3.2.13) are stable, the entries of matrix A must satisfy the following two

conditions:

• the diagonal entries are dominant, i.e.,

|ajj | ≥
∑
j ̸=i

|aij |, for all j. (3.1.16)

• all aij with i ̸= j must have the same sign (all positive or negative).

The first condition is satisfied for our system. But for the second condition, we must have

a grid of size

h ≤ 2ϵ

∥b∥∞
, (3.1.17)

where

∥b∥∞ = max
1≤j≤N

|bj |, (3.1.18)
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3.2 New Finite Volume

which is impractical in most cases, especially for small ϵ, say, e.g., ϵ = 10−5. To overcome

such numerical difficulties, near the sharp layer, we correct the numerical approximation by

incorporating appropriate analytic functions which are derived in the following section.

3.2 New Finite Volume

In this section, we present a new approximation method based on Finite Volume to numeri-

cally approximate the non-stiff part with the transition layer correctors derived in the previous

section. We consider two cases: a single interior transition layer with compatible and noncom-

patible data.

3.2.1 Compatible Case

Using step functions, we discretize the non-stiff smooth part us with finite volumes. From the

decomposition (2.3.1) we approximate u by a new trial function ũh,
ũh = uh + λθ0,

uh =

N∑
j=1

ujχ(x
j− 1

2
, x

j+1
2
)(x).

(3.2.1)

Notice that ũh ≈ u and uh ≈ us. As in (2.3.13), boundary conditions for uh are as follows:

{
ũh(x 1

2
) = uh(x 1

2
) + λθ0(−1) = 0,

ũh(xN+ 1
2
) = uh(xN+ 1

2
) + λθ0(1) = 0,

(3.2.2)

where x 1
2
= −1, xN+ 1

2
= 1.

Here the mesh data are adopted from the classical Finite Volume in section 2.1.

The function ũh ≈ u thus belongs to the finite dimensional space

Ṽh = Vh ⊕ Rθ0(.), (3.2.3)

where Vh is defined in (3.1.4).

We now discretize Eq. (2.3.12) with (2.3.13). Since θ0 is asymptotically close to θ, the term

θ0 − θ is small and absorbed in other entries in the discrete system (3.2.13)–(3.2.14). Hence,

we may drop λ(θ0 − θ). If necessary, to achieve higher accuracy, we can introduce a higher

asymptotic expansion which replaces θ0. Since us is slow, as we did in the classical scheme,
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3.2 New Finite Volume

using a central difference method at faces including the boundaries, from (3.2.2) we write that

us(−1) = us(x 1
2
) ≈ uh(x 1

2
) =

u0 + u1
2

= −λθ0(−1), (3.2.4)

us(1) = us(xN+ 1
2
) ≈ uh(xN+ 1

2
) =

uN + uN+1

2
= −λθ0(1), (3.2.5)

us(xj+ 1
2
) ≈ uh(xj+ 1

2
) =

uj + uj+1

2
, j = 1, . . . , N − 1. (3.2.6)

In the same way, we write a new approximation for ux as follows, for h = hj = xj+1 − xj ,
∇hũh = ∇huh + λθ0x,

∇huh =

N∑
j=0

uj+1 − uj
h

χ(xj , xj+1)(x).
(3.2.7)

Notice that ∇hũh ∼ ux and ∇huh ∼ usx. Using the boundary conditions (3.2.4) and (3.2.5),

the numerical derivative ∇huh can be rewritten as:

∇huh =
2u1 + 2λθ0(−1)

h
χ[x 1

2
, x1)(x)

+
−2λθ0(1)− 2uN

h
χ(xN , x

N+1
2
](x) +

N−1∑
j=1

uj+1 − uj
h

χ(xj , xj+1)(x).

(3.2.8)

With respect to the unknown λ, we first multiply (2.3.12) by the test function θ0 and

integrate over Ω. However, as a test function, θ0 is expected to make the stiffness matrix highly

ill-conditioned because θ0 is almost constant except at a small neighborhood of the turning point

x = 0, and the constants are easily approximated by other test functions, i.e., step functions.

Hence, we modify θ0 to be much distinguished from the linear combination of other test step

functions and we thus define the test function ϕ which satisfies zero boundary conditions:

ϕ = θ0 − θ0(1)x. (3.2.9)

Multiplying (2.3.12) by ϕ and integrating over the domain Ω, after dropping the term λ(θ0−
θ), we obtain that

∫ 1

−1
usx(ϵϕx − b(x)ϕ) =

∫ 1

−1
f(x)ϕ, (3.2.10)
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3.2 New Finite Volume

and using the approximations (3.2.7)–(3.2.8), we find that

2u1 + 2λθ0(−1)

h
I(−1,−1 +

1

2
h) +

−2λθ0(1)− 2uN
h

I(1− 1

2
h, 1)

+

N−1∑
j=1

uj+1 − uj
h

I(xj , xj+1) =

∫ 1

−1
f(x)ϕ,

(3.2.11)

where I(a, b) =
∫ b
a (ϵϕx − b(x)ϕ).

We then obtain the equation as follows:

a00λ+ a01u1 + a0NuN +

N−1∑
j=2

a0juj = f0, (3.2.12)

which corresponds to the first row and column of the system (3.2.13) − (3.2.14) below.

From Eq. (2.3.12), dropping the term λ(θ0 − θ), we then derive the same discretized equa-

tion as (3.1.13) with uh, ∇uh of the conventional scheme replaced by the new approximations

ũh, ∇hũh as in Eqs. (3.2.1) and (3.2.7). Then using the boundary conditions (3.2.4)–(3.2.6),

we can similarly obtain the same system as Eq. (3.1.14). Combining with the additional Eq.

(3.2.12), we obtain a discrete system which incorporates the corrector θ0:

Au = f , (3.2.13)

where A = Aϵ = (aϵij),u = (λ, u1, . . . , uN )T , f = (f0, f1, . . . , fN )T , and for i, j = 0, . . . , N, l =

2, . . . , N − 1, m = 1, . . . , N .
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a00 =
2

h

[
θ0(−1)I(−1,−1 +

1

2
h)− θ0(1)I(1− 1

2
h, 1)

]
,

a01 =
1

h

[
2I(−1,−1 +

1

2
h)− I(−1 +

1

2
h,−1 +

3

2
h)

]
,

a0l =
1

h

[
I(−1 + (l − 3

2
)h,−1 + (l − 1

2
)h)− I(−1 + (l − 1

2
)h,−1 + (l +

1

2
)h)

]
,

a0N =
1

h

[
−2I(1− 1

2
h, 1) + I(1− 3

2
h, 1− 1

2
h)

]
,

a10 =

[
2ϵ

h
− b(−1)

]
θ0(−1),

a11 =
3ϵ

h
+

1

2
b(x 3

2
)− b(−1),

a12 = − ϵ

h
− 1

2
b(x 3

2
),

al,l−1 = − ϵ

h
+

1

2
b(xl− 1

2
),

al,l =
2ϵ

h
+

1

2

[
b(xl+ 1

2
)− b(xl− 1

2
)
]
,

al,l+1 = − ϵ

h
− 1

2
b(xl+ 1

2
),

aN0 =

[
2ϵ

h
+ b(1)

]
θ0(1),

aN,N−1 = − ϵ

h
+

1

2
b(xN− 1

2
),

aN,N =
3ϵ

h
− 1

2
b(xN− 1

2
) + b(1),

f0 =
∫ 1
−1 f(x)ϕ,

fm =
∫ x

m+1
2

x
m− 1

2

f(x),

(3.2.14)

and all other entries vanish. Here, we recall I(a, b) =
∫ b
a (ϵϕx − b(x)ϕ). Notice that the system

(3.2.13)–(3.2.14) is tridiagonal, except for the first row, and can be solved easily by using the

sparsity of A.

3.2.2 Noncompatible Case

In this section, we present a numerical approximation scheme for the solution of Eq. (3.1.1)

where b(x) and f(x) are noncompatible, i.e., when f(0) ̸= 0 = b(0).

We, therefore, introduce a new decomposition for the approximation of the solution of (3.1.1)

as follows:

u = us + λθ0 + f(0)φ0. (3.2.15)
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3.2 New Finite Volume

Table 3-1: Comparison on L2 and L∞ errors of the classical FVM (cFVM) and the new FVM
(nFVM) using the corrector θ0 with the exact solution (4.1.2) of Eq. (4.1.1) with different values of
ϵ and numbers of control volumes N .

cFVM nFVM
ϵ N L2 error L∞ error L2 error L∞ error

10−1 40 1.200E-03 1.800E-03 9.429E-04 1.700E-03
10−1 80 3.029E-04 4.695E-04 2.362E-04 4.413E-04
10−1 160 7.573E-05 1.189E-04 5.904E-05 1.123E-04
10−1 320 1.893E-05 2.990E-05 1.477E-05 2.828E-05

10−2 40 1.600E-03 2.300E-03 1.800E-03 2.600E-03
10−2 80 3.820E-04 5.617E-04 4.543E-04 6.555E-04
10−2 160 9.476E-05 1.372E-04 1.135E-04 1.633E-04
10−2 320 2.365E-05 3.439E-05 2.838E-05 4.883E-05

10−3 40 1.650E-02 4.240E-02 2.600E-03 6.700E-03
10−3 80 2.400E-03 8.800E-03 5.637E-04 1.400E-03
10−3 160 5.560E-04 2.000E-03 1.392E-04 3.310E-04
10−3 320 1.366E-04 4.982E-04 4.470E-05 8.400E-05

10−4 40 3.150E-02 8.630E-02 2.200E-03 4.200E-03
10−4 80 2.390E-02 6.940E-02 1.100E-03 3.400E-03
10−4 160 4.500E-03 2.280E-02 1.907E-04 8.462E-04
10−4 320 8.474E-04 5.300E-03 4.192E-05 1.961E-04

10−5 40 4.900E-03 1.330E-02 1.800E-03 2.400E-03
10−5 80 1.100E-02 4.240E-02 4.817E-04 9.954E-04
10−5 160 1.840E-02 9.540E-02 2.975E-04 1.300E-03
10−5 320 9.200E-03 6.300E-02 1.063E-04 7.367E-04

Substituting (3.2.15) into Eq. (3.1.1) and using (2.3.5), (2.3.10), we obtain that

Lϵ(us + λ(θ0 − θ) + f(0)(φ0 − φ)) = f(x)− f(0), in Ω. (3.2.16)

Since θ0, φ0 are asymptotically close to θ, φ, respectively, similarly we may drop the terms

λ(θ0 − θ), f(0)(φ0 − φ). Higher order asymptotic terms which replace θ0, φ0 can be adapted

for higher accurate schemes, if necessary.

The right-hand side f(x) − f(0) is compatible with b(x) at x = 0, and the logarithmic

singularity is analytically resolved.

Eq. (3.2.16) is supplemented with boundary conditions:

{
us(−1) + λθ0(−1) + f(0)φ0(−1) = u(−1) = 0,
us(1) + λθ0(1) + f(0)φ0(1) = u(1) = 0.

(3.2.17)

Applying the new method to (3.2.16) and dropping the terms λ(θ0 − θ), f(0)(φ0 − φ), we

obtain the system (3.2.13)–(3.2.14) with the following modification in f , due to the boundary
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3.2 New Finite Volume

Table 3-2: Comparison on L2 and L∞ errors of the cFVM and the nFVM with the exact solution
(4.1.2) of Eq. (4.1.1), N = 160.

ϵ cFVM nFVM
L2 error L∞ error L2 error L∞ error

10−1 7.573E-05 1.189E-04 5.904E-05 1.123E-04
10−2 9.476E-05 1.372E-04 1.135E-04 1.633E-04
10−3 5.560E-04 2.000E-03 1.392E-04 3.310E-04
10−4 4.500E-03 2 .280E-02 1.907E-04 8.462E-04
10−5 1.840E-02 9 .540E-02 2.975E-04 1.300E-03
10−6 3.300E-03 1 .750E-02 1.158E-04 2.332E-04

conditions (3.2.17):



f0 = −2

h

[
I(−1,−1 +

1

2
h)f(0)φ0(−1)− I(1− 1

2
h, 1)f(0)φ0(1)

]
+
∫ 1
−1(f(x)− f(0))ϕ,

f1 = −
(
2ϵ

h
− b(−1)

)
f(0)φ0(−1) +

∫ x 3
2

x 1
2

(f(x)− f(0)),

fN = −
(
2ϵ

h
+ b(1)

)
f(0)φ0(1) +

∫ x
N+1

2
x
N− 1

2

(f(x)− f(0)),

fm =
∫ x

m+1
2

x
m− 1

2

(f(x)− f(0)), m = 2, . . . , N − 1.

(3.2.18)

Remark 3.2.1. For both compatible and noncompatible cases, we use the same discretizations

uh and ∇huh to approximate us and usx, respectively. The former is the same for both cases

as well as for the classical scheme, but the latter is different due to the boundary conditions as

in (3.1.7), (3.1.8) for the classical scheme, (3.2.2) for the compatible case, and (3.2.17) for the

noncompatible case.
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IV

Results and Discussions

In this section, we present a number of examples to illustrate the accuracy and efficiency of our

new method.

4.1 Compatible Case

We first consider the compatible case where condition b(0) = 0 = f(0) is satisfied. We rewrite

Eq. (3.1.1) with the right-hand side f(x) specified as below:

−ϵuxx − xux = f(x) = 3erf

(
1√
2ϵ

)
(x3 + 2ϵx),

u(−1) = u(1) = 0.
(4.1.1)

An exact solution is available for Eq. (4.1.1), which is as follows:

ue = erf

(
x√
2ϵ

)
− erf

(
1√
2ϵ

)
x3. (4.1.2)

We approximate the solution of Eq. (4.1.1) with the classical and new FVM schemes (cFVM,

nFVM). For the nFVM, the corrector λθ0 with the zeroth term θ0 as in (2.3.7) is used in the

simulation. We notice that only the non-stiff part us as in (2.3.1) is approximated by solving

the system (3.2.13)–(3.2.14). The numerical solution ũh, is then constructed by using the

decomposition (3.2.1).

Results for both schemes are plotted, together with the exact solution (4.1.2), in Fig. 4-1

with ϵ = 10−4 and mesh size h = 2/N = 2/40. As indicated in the interpolation errors (3.1.3),

with such a coarse mesh, the cFVM exhibits oscillations near the turning point (see also Figs.

4-6 and 4-8); whereas the nFVM well captures the sharp transition layer. We recall that the

transition layer of the nFVM is an analytical solution, captured by the corrector λθ0 where θ0

is the zeroth term of the asymptotic expansion as in (2.3.6)–(2.3.5). Furthermore, meshes used
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4.2 Non-compatible Case

for the transition layer of the new method are uniform and independent of the small parameter

ϵ. We notice that in case of the cFVM scheme, exponentially refined meshes are required near

the transition layer. Hence, the former is much more efficient than the latter scheme.

Numerical errors, measured in L2 and L∞ norms, of the two schemes are estimated and

listed in Table 3-1, with a variety in values of ϵ and mesh sizes h, and in Table 3-2, with a

fixed mesh size h = 2/N = 2/160. It is shown that the nFVM shows much better accuracy

for small values of ϵ and both cFVM and nFVM schemes have the same order of accuracy

for ϵ ≥ 10−2. Furthermore, as indicated in Table 2, the nFVM is very robust with respect to

changes in ϵ, whereas the cFVM loses accuracies as ϵ tends to be small.

Since the cFVM cannot capture the singularity of the transition layer, the errors caused by

oscillations near them contaminate the accuracy of the whole computational domain Ω. Hence,

the nFVM is more stable and, in general, more accurate than cFVM. This conclusion is depicted

in Fig. 4-2 where numerical errors of both schemes are plotted with ϵ = 10−4 and different

mesh sizes h. For Figs. 4-2 and 4-3– 4-4 discussed below, we plot the errors in log scale vs. n

where N = 2n × 10 is the number of control volumes.

In Figs. 4-3 and 4-4, L2 and L∞ errors of the new scheme are plotted with different

values of ϵ and mesh sizes h. From the figures, we draw two conclusions. Firstly, 2nd-ordered

convergence is achieved for the new method. Secondly, there are differences between the errors

of the outer and inner solutions, which are most clearly seen in L∞ errors (see Fig. 4-4) where

the plots depend on ϵ linearly in log scales. This is due to asymptotic errors because in the inner

expansion, only the zeroth term θ0 (see (2.3.6), (2.3.5), and (2.3.7)) is used as the corrector

in the decomposition (2.3.1). The asymptotically small term λ(θ0 − θ) in (2.3.12) is dropped

and considered absorbed by other entries in the system (3.2.13)–(3.2.14). It can be also seen in

Table 3-1. In case of ϵ = 10−5, there is an increase in the L∞ errors for the nFVM when the

mesh is refined from N = 160 to N = 320. From the observance in the remark 2.2.2, we assert

that this discrepancy can be reduced if more asymptotic terms are introduced in the corrector,

in case higher order of accuracy is required.

In Fig. 4-5, different right-hand side functions f(x) are simulated to illustrate the robustness

of the new method for the compatible case.

4.2 Non-compatible Case

In this section, examples for the noncompatible case are given. We first consider the following

problem:

{
−ϵuxx − xux = f(x) = cos

(π
2
x
)
+ x,

u(−1) = u(1) = 0.
(4.2.1)
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4.2 Non-compatible Case

Here, b(0) = 0 and f(0) = 1. Hence, b(x) and f(x) are noncompatible. We apply the

decomposition (3.2.15) with adding the zeroth corrector φ0, the boundary conditions as in

(3.2.17). The system (3.2.13)–(3.2.14) are then solved with f modified as in (3.2.18). Numerical

solutions from the cFVM and nFVM are shown in Fig. 4-6. As in the compatible case, the

nFVM scheme well resolves the asymptotic and logarithmic singularity and there are oscillations

in case of the cFVM scheme in both outer and inner regions. The oscillations are much stronger

than those in the compatible case. However, the nFVM scheme is very robust and captures the

large gradient near the transition layer for both compatible and noncompatible cases.

In Fig. 4-7, more examples are given to illustrate for the noncompatible case with b(x) = x

and different f(x)’s on the right-hand side of Eq. (4.2.1). It can be seen that logarithmic

singularity is very well resolved.

The last example is tested for the case when b(x) = sinx with f(x) = x and f(x) = 1 for a

compatible and noncompatible case, respectively. We notice that the same correctors, θ0 as in

(2.3.7) and φ0 as in (2.3.8), are applied in this simulation because only the zeroth terms, which

approximate (2.3.5) and (2.3.10), respectively, are used as the correctors. Results are plotted

in Fig. 4-8 for the compatible case, Fig. 4-9 for the noncompatible case.
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Figure 4-1: (a) Numerical solutions uN of Eq. (4.1.1) from the classical FVM (cFVM) vs. new
FVM (nFVM) using corrector θ0: ϵ = 10−4, N = 40; (b) Zooming near the transition layer.

36



4.2 Non-compatible Case
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Figure 4-2: Error plotting of numerical solutions of Eq. (4.1.1) from the cFVM vs. nFVM:
ϵ = 10−4, N = 2n × 10 is the number of control volumes.
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Figure 4-3: L2 error plotting of numerical solutions of Eq. (4.1.1) from the nFVM with different
values of ϵ, N = 2n × 10 is the number of control volumes.
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4.2 Non-compatible Case

1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

n

L∞
 E

rr
or

 

 

ε = 10−2

ε = 10−3

ε = 10−4

ε = 10−5

Figure 4-4: L∞ error plotting of numerical solutions of Eq. (4.1.1) from the nFVM with different
values of ϵ, N = 2n × 10 is the number of control volumes.
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Figure 4-5: (a) Numerical solutions uN from nFVM with b(x) = x and f(x) = fj(x) for the

compatible case: f1(x) = x, f2(x) = −π
2
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2
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, f3(x) = xex, ϵ =

10−4, N = 40; (b) Zooming near the transition layer.
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4.2 Non-compatible Case
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Figure 4-6: (a) Numerical solutions uN of Eq. (4.2.1) from the cFVM vs. nFVM using two
correctors θ0 and φ0: ϵ = 10−4, N = 40 for the noncompatible case; (b) Zooming near the
transition layer.
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Figure 4-7: (a) Numerical solutions uN from nFVM with b(x) = x and f(x) = fj(x) for the
noncompatible case: f1(x) = 1, f2(x) = x3 + 1, f3(x) = ex, ϵ = 10−4, N = 40; (b) Zooming near
the transition layer.

39



4.2 Non-compatible Case
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Figure 4-8: (a) Numerical solutions uN from cFVM vs. nFVM with b(x) = sinx, f(x) = x,
ϵ = 10−4, N = 40 for the compatible case; (b) Zooming near the transition layer.
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Figure 4-9: (a) Numerical solutions uN from cFVM vs. nFVM with b(x) = sinx, f(x) = 1,
ϵ = 10−4, N = 40 for the noncompatible case; (b) Zooming near the transition layer.
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V

Conclusion

In this work, we have proposed a new numerical method based on finite volume approach

to approximate stiff problems having an interior transition layer near a turning point x =

x0. Firstly, the analytical solution θ for the transition layer is derived by employing singular

perturbation analysis. It turned out that only the zeroth term θ0 is enough for numerical

purposes. However, in higher order schemes, more asymptotic terms as in (2.3.2) will be needed.

This layer, incorporating with an unknown λ, is added to enrich the classical finite volume space.

The problem has been also studied in a more complicated case with the occurrence of

logarithmic singularity near the turning point due to the noncompatibility in the data of the

problem. One more corrector φ as in (2.3.10) is added into the solution decomposition as in

(3.2.15) so that the problem can be transformed into a compatible case analytically. Hence, the

new scheme can now be applied; new boundary conditions (3.2.17) are then imposed, and thus

the right-hand side f is modified as in (3.2.18).

A variety of examples are given to illustrate the accuracy, stability and efficiency of the new

method in section 3 with different coefficients b(x) and right-hand side functions f(x), both for

compatible and noncompatible cases.

The technique presented in this article can be further developed for more complex cases. If

we have multiple transition layers at x = xj , introducing a Lagrange interpolating polynomial,

we write:

Pj(x) =

n∏
k=1
k ̸=j

x− xk
xj − xk

, f(x) =

n∑
l=1

Pl(x)f(x). (5.0.1)

Here, we used the fact that Q(x) :=
∑n

l=1 Pl(x) = 1 because Q(xj) = 1, j = 1, 2, . . . , n and

Q(x) is of degree n − 1. Then Pj(x)f(x) = 0 at x = xl, l = 1, 2, . . . , n, l ̸= j, but Pj(x)f(x)

may not be compatible at x = xj , i.e., Pj(xj)f(xj) = f(xj) ̸= 0. For this single noncompatible

point xj , we have already treated in the text.
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Writing the solution of Eq. (1.1.1) u =
∑n

j=1 v
j where

Lϵ(v
j) = Pj(x)f(x), v

j = 0 at x = ±1, (5.0.2)

and applying the numerical techniques in the text to each equation (5.0.2), thanks to the

superposition of the solutions, we finally obtain the numerical solution uN for u. Parallel

computing in this case is well suited because Eq. (5.0.2) can be solved independently at each

processor j, j = 1, 2, . . . , n.

Combining with the previous results (see e.g. [15]), boundary layer correctors can be also

incorporated, and if the coefficient b(x) has zeros at x = xj with multiplicity, the form of the

correctors should be changed according to the singular perturbation analysis at x = xj . All

these changes can be adapted without difficulties. For instance, if b(x) = (x− 1/2)(x+ 1/2) in

the model (1.1.1), there are a boundary layer at the outflow x = −1 and a transition layer at

the turning point x = 1/2. Or in multi-dimensional problems, the derivative in the convective

term is replaced by the gradient of u(x). These issues will be discussed elsewhere.
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