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ABSTRACT

Aims. The propagation of magnetohydrodynamic (MHD) waves in a finite, compressible magnetic flux tube with an elliptical cross-
section embedded in a magnetic environment is investigated.
Methods. We present the derivation of the general dispersion relation of linear magneto-acoustic wave propagation for a compressible
magnetic flux tube with elliptical cross-section in a plasma with finite beta. The wave modes of propagation for the n = 0 (symmetric)
sausage and n = 1 (anti-symmetric) kink oscillations are then examined within the limit of the thin flux tube approximation.
Results. It is shown that a compressible magnetic tube with elliptical cross-section supports slow and fast magneto-acoustic waves.
In the thin tube approximation, the slow sausage mode and the slow and fast kink modes are found in analogue to a circular cross-
section. However, the kink modes propagate with different phase speeds depending on whether the axial displacement takes place
along the major or minor axis of the ellipse. This feature is present in both the slow and the fast bands, providing two infinite sets
of slow kink modes and two infinite sets of fast kink modes, i.e. each corresponding cylindrical mode splits into two sets of modes
due to the ellipticity. The difference between the phase speeds along the different axis is dependent on the ratio of the lengths of the
two axes. Analytical expressions for the phase speeds are found. We show that the sausage modes do not split due to the introduced
ellipticity and only the phase speed is modified when compared to the appropriate cylindrical counterpart. The percentage difference
between the periods of the circular and elliptical cross-sections is also calculated, which reaches up to 21% for oscillations along the
major axis. The level of difference in period could be very important in magneto-seismological applications, when observed periods
are inverted into diagnostic properties (e.g. magnetic field strength, gravitational scale height, tube expansion parameter). Also shown
is the perturbation of focal points of the elliptical cross-section for different modes. It is found that the focal points are unperturbed
for the sausage mode, but are perturbed for all higher modes.
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1. Introduction

High resolution imaging and spectroscopic data from the
Transitional Region and Coronal Explorer (TRACE) and Solar
and Heliospheric Observatory (SOHO) have made it possible to
study the plasma fine structure of the solar atmosphere for the
first time by observing magnetohydrodynamic (MHD) waves
within a variety of open and closed magnetic structures (see
Banerjee et al. 2007, for the latest review of observational re-
sults with detailed further references therein). The theory of
MHD wave propagation in such structures has been developed
by first modeling the magnetic structures as homogenous cylin-
drical magnetic tubes embedded within a magnetic environment
(see Edwin & Roberts 1983). The theory was applied to closed
structures (e.g. a dense coronal loop with its footpoints anchored
in the photosphere) that are able to support standing waves
(Roberts et al. 1984).

It was found that the cylindrical flux tube supports an in-
finite countable set of eigenmodes of slow and fast magneto-
acoustic waves which can be split into body and surface waves
depending on the spatial behavior of the modes inside the
flux tube. There are two characteristic speeds relevant for the

propagation of magneto-acoustic waves that have been identi-
fied within cylindrical magnetic tubes:

cT =
civAi

(

c2
i
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)1/2
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ρiv
2
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⎟

⎟

⎠

1/2

where ci is the sound speed, vAi is the Alfvén speed and ρi is
the density of the magnetic tube, whereas vAe and ρe are of the
magnetic environment. The first speed, which is sub-sonic and
sub-Alfvénic, is the tube speed cT of the less dispersive, e.g.
sausage, slow mode in the long wavelength approximation un-
der solar conditions. The other characteristic speed is the kink
speed ck of the dispersive, e.g. kink, fast mode.

However, actual loops are far more complex than the
homogenous cylindrical tube. They are subject to a variety of ge-
ometric and physical (often second-order) effects, e.g. stratifica-
tion, structuring, magnetic twist, curvature, wave leakage, vari-
able background on the time scale of oscillations, etc. to name a
few.

Stratification can occur vertically and/or horizontally within
the loop. The cause of stratification can be attributed to grav-
ity (e.g. Roberts & Webb 1978; Mendoza-Briceño et al. 2004;
Andries et al. 2005a; McEwan et al. 2006; Donnelly et al. 2006;
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Fig. 1. Sketch showing the equilibrium (bold solid and dashed lines) and perturbed states (thin dashed lines) of a magnetic flux tube with plasma
density ρi, magnetic field of strength Bi embedded in plasma with density ρe of strength Be. The left hand sketch shows the sausage perturbation,
the middle sketch shows the kink perturbation polarised along the x-axis and the right one shows the kink perturbation polarised along the y-axis.
The plane in which the kink modes are polarised is shown.

Díaz & Roberts 2006; Díaz et al. 2007) and density inhomo-
geneities in the plasma (see, for radial inhomogeneities e.g.
Ruderman & Roberts 2002; for longitudinal inhomogeneities
e.g. Andries et al. 2005b; Dymova & Ruderman 2006; Erdélyi
& Verth 2007; Verth et al. 2007).

Erdélyi & Fedun (2006), Erdélyi & Carter (2006) examined
the effect of radial inhomogeneities in the form of structuring
by analysing a uniformly twisted magnetic annulus surrounding
a straight magnetic core (for a uniformly twisted tube without
radial inhomogeneities see Bennett et al. 1999; for weak twist
with longitudinal density inhomogeneities see Ruderman 2007).
It was found that as the strength of the magnetic twist increased
so did the period of the loop, with a greater increase in period
for photospheric conditions than coronal conditions. The size of
the annulus compared to the magnetic core also affected the size
of the period.

The effect of curvature has been examined by
Van Doorsselaere et al. (2004) where it was found that the
kink mode deviation from the cylindrical frequencies was small.

Damping that will cause complex eigenmodes (or periods)
of oscillations is also a factor, however the effect is assumed
to be small in the first order approximations of theoretical ap-
proaches. Damping can arise from viscous, Ohmic and radia-
tive dissipation (see, e.g. Karami et al. 2002, for viscous and
Ohmic dissipation). Further damping mechanisms are resonant
absorption and phase mixing, both with their own extensive lit-
erature (for list of references see e.g. Aschwanden 2005), which
are efficient but in their details still debated. Wave leakage has
similar effects to damping and occurs in magnetic tubes when
external, laterally non-evanescent magneto-acoustic waves carry
away energy from the tube modes. The effects of leaky waves,
also referred to as acoustic damping, is first discussed by Cally
(1986). The amount of leakage is further aided by the curva-
ture of a loop, with a high degree of curvature causing an in-
crease in the wave leakage. Another possible cause of wave leak-
age is when photospheric footpoints are not considered a perfect
line-tied boundary condition and waves can leak through these

boundaries (De Pontieu et al. 2001). For a full discussion on
modes of damping see e.g. Roberts (2000); Ruderman (2005).

There is also the theoretical possibility that the geometry of
the loop’s cross-section is non-circular. In the solar atmosphere,
there will be gravitational force acting on the magnetic loops. If
the radius of the flux tube is comparable or even just partially
comparable to the scale height of gravity, there will then be a
vertical distortion of the cross-section for an appropriately tilted
flux tube. The distorted flux tube will not then have the rota-
tional symmetry along its axis present otherwise in the cylin-
drical case. Ellipticity could also be due to the curvature of the
tube. At the photospheric level, the flux tubes are mainly ver-
tical and gravity would effect the shape of the cross-section to
a lesser extent. However, intense flux tubes located at the su-
pergranule boundaries could still have a non-circular, strongly
elongated cross-section due to horizontal motions of the convec-
tive cells distorting the tube cross-section. Observations from the
Swedish Solar Telescope show evidence of distortion at pho-
tospheric level. The study of magnetic bright points believed
to occur at the footpoints of coronal loops, highlight the tube
cross-section. The cross-sections observed have highly distorted
shape. To the best of our knowledge, currently there is no ob-
servational study that investigates the shape of cross-sections
of magnetic flux tubes present in the photosphere and corona.
The lack of such studies is most probably due to limited spa-
tial resolution. With this work here, we wish to contribute to the
theoretical foundation of MHD wave studies in flux tubes with
non-cylindrical cross-sections.

In this paper the propagation of magneto-acoustic waves
within a straight magnetic tube with an elliptical cross-section is
considered. The elliptical cross-section is the simplest distortion
from rotational symmetry. The tube is embedded within a mag-
netic environment and both internal and external plasmas have
a finite plasma beta, i.e. the magnetised plasma is compress-
ible with non-zero temperature. The analysis follows on from
Ruderman (2003) who investigated a magnetic tube with an el-
liptical cross-section in a zero beta plasma, however, the effects
of damping will not be addressed here. For the sake of simplicity
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Fig. 2. A sketch of elliptical coordinates in the xy plane. The elliptical
coordinates are (s, ϕ). The curves of s = constant are the confocal el-
lipses and curves of ϕ = constant are the orthogonal hyperbolae. The
thick confocal ellipse represents the boundary of the tube, s = s0. σ is
the distance between the center of the ellipse and the focal points.

the explicit effects of e.g. gravity or granular shear, on the shap-
ing of the cross-section is ignored and we concentrate on the
elliptical structure outlined by the magnetic field within a uni-
form medium. In particular, we will search for solutions of the
linear governing equations that provide a model for wave propa-
gation for typical photospheric and coronal conditions. However,
as discussed previously (Edwin & Roberts 1983), we acknowl-
edge that gravitational effects are important in the photosphere
and caution should be exercised when applying the results for the
flux tube oscillations in the lower part of the solar atmosphere.

The cylindrical geometry is a special case of the elliptical
problem, so it is expected to recover many of the modes that are
found in Edwin & Roberts (1983) with some new features aris-
ing from the difference in length of the major and minor axis of
the ellipse. This expectation is already confirmed to some extent
for zero beta plasma by Ruderman (2003).

We present the derivation of a more general dispersion re-
lation allowing full compressibility for an elliptical magnetic
flux tube, followed by analysis of the approximate behavior in
the case of the thin tube approximation, i.e. when the width of
the flux tube is small compared to the wavelengths and length
of the loop. Here it is shown, that (i) in spite of the elliptical
structure, there is only change to the phase speed of the sausage
mode and its higher harmonics in the slow and fast bands com-
pared to the cylindrical analogues; (ii) that there are two infi-
nite sequences of magneto-acoustic tube eigenmodes, ωnM and
ωnm (n = 1, 2, ...). The eigenfrequencies ω1M,m correspond to
two kink modes, where ω1M is polarised along the major axis
and ω1m is polarised along the minor axis of the elliptical cross-
section. A comparison between the frequencies of the elliptical
and cylindrical geometries is then performed for different val-
ues of ellipticity, where we analyse the effect of ellipticity on the
period of the magnetic flux tube in order to serve impetus for
magneto-seismological applications.

2. General dispersion relation

Consider a magnetic flux tube with an elliptical cross-section
embedded vertically in a homogenous, ideal plasma. The mag-
netic field inside is uniform and of the form Bi = Bi ẑ, with the
external magnetic field Be = Be ẑ. Here, ẑ is the unit vector in

the z-direction. Linear perturbations about the equilibrium are
described by the linear, ideal MHD equations

∂ρ1

∂t
= −∇.(ρu), ρ

∂u

∂t
= −∇p1 +

1

µ0

(∇ × b) × B, (1)

∂b

∂t
= ∇ × (u × B),

∂p1

∂t
= c2

s

(

∂ρ1

∂t
+ (u.∇)ρ

)

− (u.∇)p.

Here ρ is the equilibrium density, p is the equilibrium pressure,
u is the velocity perturbation, b is the perturbation of the mag-
netic field, p1 is the pressure perturbation, ρ1 is the density per-
turbation, cs is the sound speed and µ0 is the magnetic perme-
ability of free space.

The equations in (1) can be combined to obtain (see, for
example Lighthill 1960)

∂2

∂t2

(

∂2

∂t2
−

(

c2
s + v

2
A

)

∇2

)

(∇.u) + c2
s v

2
A

∂2

∂z2
∇2(∇.u) = 0, (2)

where vA is the Alfvén speed.
Let us introduce elliptical coordinates which are related to

the Cartesian coordinates via

x = σ cosh s cosϕ, y = σ sinh s sin ϕ, (3)

where s and ϕ are the elliptical coordinates, σ is the characteris-
tic value of length and is also the x-coordinate of the focal points,
i.e. the focal points are situated at (x, y) = (±σ, 0). Let the flux
tube boundary with elliptical cross-section be at s = s0, so the
tube cross-section has a major axis a and a minor axis b given by

a = σ cosh(s0), b = σ sinh(s0). (4)

The eccentricity of the tube cross-section is

ǫ =

(

1 − b2

a2

)1/2

=
1

cosh(s0)
·

As eccentricity tends to zero the cross-section can be approxi-
mated by a circle. The Laplacian operator in elliptical coordi-
nates (Korn & Korn 1961) is given by

∇2 = H−2

(

∂2

∂s2
+
∂2

∂ϕ2

)

+
∂2

∂z2
,

where H2 = σ2(sinh2 s + sin2 ϕ).
The condition of pressure balance implies

pi + Pi = pe + Pe, (5)

where

P =
B2

2µ0

is the magnetic pressure. Since the equilibrium quantities depend
only on s and ϕ, the perturbed quantities can be Fourier-analysed
with respect to t and z. We can then write

∆ = ∇.u ∝ S (s)Φ(ϕ) exp(i(kz − ωt)), (6)

where S (s) and Φ(ϕ) are functions to be determined and k is the
wavenumber in the z direction. Substituting (6) into (2) and after
some simple algebra one obtains for the internal region

H−2

(

1

S

∂2S

∂s2
+

1

Φ

∂2Φ

∂ϕ2

)

+
4

σ2
m2

i = 0, (7)
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where

m2
i =
σ2

4

(

ω2 − ω2
i

) (

ω2 − ω2
Ai

)

(

c2
i
+ v2

Ai

) (

ω2 − ω2
T

) , ωT =
ciωAi

(

c2
i
+ v2

Ai

)1/2
,

ωi = kci, ωA = kvAi.

Here m2
i

may be positive or negative, where m2
i
> 0 corresponds

to spatially oscillating body waves and m2
i
< 0 corresponds to

evanescent surface waves. Let us now write (7) in the form

1

S

∂2S

∂s2
+ 4m2

i sinh2 s = −
(

1

Φ

∂2Φ

∂ϕ2
+ 4m2

i sin2 ϕ

)

. (8)

It can be seen that the left hand side depends only upon s and
the right only upon ϕ. Each side is therefore equal to a constant,
hence there are two separate equations given by

∂2Φ

∂ϕ2
+

(

h − 2m2
i cos 2ϕ

)

Φ = 0, (9)

and

∂2S

∂s2
−

(

h − 2m2
i cosh 2s

)

S = 0, (10)

where h is the constant to be determined. Equation (9) is known
as the Mathieu equation and (10) is the modified Mathieu
equation (see Abramowitz & Stegun 1964; Arscott 1964). The

Mathieu equation has even solutions of the formΦ = cen

(

ϕ,m2
i

)

,

where cen

(

ϕ,m2
i

)

is an even function with n zeros in the inter-

val 0 ≤ ϕ ≤ π. The odd solutions are given by Φ = sen

(

ϕ,m2
i

)

,

where sen

(

ϕ,m2
i

)

is an odd function with n zeros in the inter-

val 0 ≤ ϕ ≤ π. The functions cen

(

ϕ,m2
i

)

and sen

(

ϕ,m2
i

)

are

the Mathieu functions, also referred to as the angular Mathieu
functions in applications involving elliptical coordinates. The
solution can either be even or odd but not both. The modified
Mathieu equation solutions are given by the modified Mathieu
functions S = Cen(s,m2

i
) (even) and S = Sen(s,m2

i
) (odd), also

referred to as the radial Mathieu functions in applications in-
volving elliptical coordinates. For a visual introduction into the
properties of both the Mathieu and modified Mathieu functions
see, e.g. Gutiérrez-Vega et al. (2003).

The solutions to Eqs. (9) and (10) also have to satisfy the
regularity conditions:

PT,1(s, ϕ) = PT,1(s,−ϕ), vs(s, ϕ) = −vs(s,−ϕ) (11)

at s = 0. Here, PT,1 = p1 + P1 is the total pressure perturbation
inside the tube and vs is the velocity in the s direction. These
conditions arise because the points (s = 0, ϕ0) and (s = 0,−ϕ0)
are the same point in the xy plane.

Equations (1) can be written in terms of∇.u, then substituting
in (6) gives

v̂s(s, ϕ) = −

(

ω2 − ω2
i

)

Hω2m2
i

∂S (s)

∂s
Φ(ϕ),

v̂ϕ(s, ϕ) = −

(

ω2 − ω2
i

)

Hω2m2
i

S (s)
∂Φ(ϕ)

∂ϕ
,

v̂z(s, ϕ) = −
ikc2

i

ω2
S (s)Φ(ϕ),

b̂z(s, ϕ) = −iBi

ω2 − ω2
i

ω3
S (s)Φ(ϕ),

p̂1(s, ϕ) = −iρi

c2
i

ω
S (s)Φ(ϕ),

P̂T,1(s, ϕ) = −
i

ω3

[

B2
i

(

ω2 − ω2
i

)

+ ω2c2
i ρi

]

S (s)Φ(ϕ), (12)

inside the tube, where the hat notation denotes the (s, ϕ) depen-
dent parts of the perturbations. It can be seen from (12), when

Φ = cen

(

ϕ,m2
i

)

the first condition of (11) is satisfied. The sec-

ond condition gives S ′(0)Φ(ϕ) = −S ′(0)Φ(ϕ), i.e S ′(0) = 0,
where the prime indicates the derivative with respect to s. The
only solution of (10) is then Cen(s,m2

i
) multiplied by some con-

stant. When Φ = sen

(

ϕ,m2
i

)

, the second condition (11) is sat-

isfied and the first condition gives S (0) = 0. This time the only
solution of (10) is Sen(s,m2

i
), again multiplied by some constant.

Note that the Mathieu functions can be related to the modified
Mathieu functions via

Cen

(

s,m2
i

)

= cen

(

is,m2
i

)

, Sen

(

s,m2
i

)

= −isen

(

is,m2
i

)

. (13)

2.1. Body waves (m2

i
> 0 )

The general solution to (8), valid for body waves is then

∆̂i = S (s)Φ(ϕ) = αi
0Ce0(s,m2

i )ce0

(

ϕ,m2
i

)

+

∞
∑

n=1

[

αi
nCen

(

s,m2
i

)

cen

(

ϕ,m2
i

)

+ βi
nSen

(

s,m2
i

)

sen

(

ϕ,m2
i

)]

(14)

where αi
n and βi

n are arbitrary constants. The general solution can
be obtained for the external region in the same way, substituting
m2

e for m2
i
, where

m2
e =
σ2

4

(ω2 − ω2
e)

(

ω2 − ω2
Ae

)

(

c2
e + v

2
Ae

)

(ω2 − ω2
Te

)
,

ωTe =
ceωAe

(

c2
e + v

2
Ae

)1/2
, ωe = kce, ωAe = kvAe.

However, we require that the perturbations are laterally evanes-
cent in the external plasma, i.e. vanish far away from the bound-
ary of the ellipse. We assume m2

e < 0 as this corresponds to the
evanescent waves. If m2

e > 0, then the tube may act as a radiator
of waves (see Roberts & Webb 1979; Cally 1986; Ruderman
& Roberts 2005 for discussion in cylindrical geometry). The
general solution to (8) which satisfies the condition of evanes-
cence is

∆̂e = α
e
0Fek0(s, n2

e)ce0

(

ϕ, n2
e

)

+

∞
∑

n=1

[

αe
nFekn

(

s, n2
e

)

cen

(

ϕ, n2
e

)

+ βe
nGekn

(

s, n2
e

)

sen

(

ϕ, n2
e

)]

(15)

where m2
e = −n2

e > 0. We have also introduced the modified
Mathieu functions of the third kind Fek(s, n2

e) and Gek(s, n2
e)

(Arscott 1964) and arbitrary constants αe
n and βe

n.
Relating the obtained internal and external solutions by re-

quiring that v̂s and P̂T,1 are continuous across s = s0 (see
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Appendix A), substituting in Eqs. (A.3) and (A.4) and separat-
ing the odd and even solutions gives the infinite system of linear

homogeneous algebraic equations with respect to α
i,e
n and β

i,e
n :

(

ω2 − ω2
i

)

2m2
i

∞
∑

q=0

αi
2q+ jCe′2q+ j
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s0,m
2
i

)

A
2q+ j

2r+ j

(
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i

)

=

(

ω2 − ω2
e

)

2n2
e

∞
∑

q=0

αe
2q+ jFek′2q+ j

(
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2
e

)

A
2q+ j
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(
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e

)

, (16)
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2
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)
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ρe

(
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2
Ae
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2
)

∞
∑

q=0

αe
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2
e

)

A
2q+ j

2r+ j
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n2
e

)

(17)

and
(

ω2 − ω2
i

)

2m2
i

∞
∑

q=0

βi
2q+1+ jSe′2q+1+ j

(

s0,m
2
i

)

B
2q+1+ j

2r+1+ j

(

m2
i

)

=

(

ω2 − ω2
e

)

2n2
e

∞
∑

q=0

βe
2q+1+ jGek′2q+1+ j
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2
e

)

B
2q+1+ j
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n2
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)

, (18)

ρi
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Ai

)(

ω2
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2
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2
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i
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2
Ae
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ω2
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2
)

∞
∑

q=0

βe
2q+1+ j

×Gek2q+1+ j

(

s0, n
2
e

)

B
2q+1+ j

2r+1+ j

(

n2
e

)

(19)

where r = 0, 1, 2... Each pair of Eqs. (16), (17) and (18), (19)
consists of four equations, two for j = 0 and two for j = 1. The
condition of existence of non-trivial solutions is that the corre-
sponding infinite determinant of each system is equal to zero.
This condition then gives dispersion relations.

Taking the cold plasma case (ci = ce = 0), we recover the
equations (see Appendix A) found by Ruderman (2003).

2.2. Surface waves (m2

i
= −n2

i
< 0 )

A similar set of equations to (16)−(19) can be derived for sur-
face waves. The expansion of the Mathieu functions in terms
of Bessel functions for n2

i
(surface waves) are, from McLachlan

(1947),

Ce2m(s,m2
i ) = (−1)m

∞
∑

r=0

(−1)rA2m
2r (n2

i ) cosh(2ms), (20)

Ce2m+1(s,m2
i ) = (−1)m

∞
∑

r=0

(−1)rB2m+1
2r+1 (n2

i ) cosh(2m + 1)s, (21)

Se2m+1(s,m2
i ) = (−1)m

∞
∑

r=0

(−1)rA2m+1
2r+1 (n2

i ) sinh(2m + 1)s, (22)

Se2m+2(s,m2
i ) = (−1)m

∞
∑

r=0

(−1)rB2m+2
2r+2 (n2

i ) sinh(2m + 2)s, (23)

where m2
i
= −n2

i
< 0. The coefficients A2m

2r
(n2

i
), A2m+1

2r+1
(n2

i
),

B2m+2
2r+2

(n2
i
) and B2m+1

2r+1
(n2

i
) are related by recurrence relations

which can be found in Abramowitz & Stegun (1964). These
equations can be substituted in to (16)−(19) to find dispersion
relations for surface waves.

3. Thin magnetic tube

In the thin magnetic tube approximation, the length of the
tube is much greater than the major axis, i.e. a = σ cosh(s0),
b = σ sinh(s0) ≪ L (or wavelengths are much greater than the
major axis). This approximation can be used to simplify the dis-
persion Eqs. (16)−(19). This means |m2

i
| ∼ |n2

e | ∼ (a/L)2 ≪ 1.

Now using the expansions for A
q
r

(

m2
i

)

, B
q
r

(

m2
i

)

for |m2
i
|, |n2

e | ≪ 1

(Abramowitz & Stegun 1964)

A0
0

(

m2
i

)

∼ 2−1/2, Ar
r

(

m2
i

)

= Br
r

(

m2
i

)

∼ 1,

Ar
r+2q

(

m2
i

)

= Br
r+2q

(

m2
i

)

∼ O(mn
i ),

Ar
r−2 f

(

m2
i

)

= Br
r−2 f

(

m2
i

)

∼ O(mn
i ), (24)

where r, q = 0, 1, 2, ... and f = 1, ..., [r/2] and [r/2] is the integer
part of r/2.

Substituting the expansions for Fek0, Fekn, Gekn found in
Appendix C into (16)−(19) and using (13), (24), (A.3) and (A.4),
we obtain the systems of equations

21/2ρi(ω
2
Aic

2
i −

(

c2
i + v

2
Ai

)

ω2)αi
0 =

(ln |ne| + 2s0 + 2γ − 2 ln 2)ρe

(

ω2
Aec2

e −
(

c2
e + v

2
Ae

)

ω2
)

E0,

(

ω2 − ω2
e

)

2n2
e

E0 = 0, (25)

for n = 0 representing magneto-acoustic sausage oscillations
in a compressible waveguide with an elliptical cross-section,
whereas

ρi

(

ω2
Aic

2
i −

(

c2
i + v

2
Ai

)

ω2
)

cosh(ns0)αi
n =

ρe

(

ω2
Aec2

e −
(

c2
e + v

2
Ae

)

ω2
)

e−ns0 En,

(

ω2 − ω2
i

)

2m2
i

sinh(ns0)αi
n = −

(

ω2 − ω2
e

)

2n2
e

e−ns0 En, (26)

and

ρi

(

ω2
Aic

2
i −

(

c2
i + v

2
Ai

)

ω2
)

sinh(ns0)βi
n =

ρe

(

ω2
Aec2

e −
(

c2
e + v

2
Ae

)

ω2
)

e−ns0 Fn,

(

ω2 − ω2
i

)

2m2
i

cosh(ns0)βi
n =

(

ω2 − ω2
e

)

2n2
e

e−ns0 Fn, (27)



300 R. Erdélyi and R. J. Morton: Magnetic flux tubes with elliptical cross-sections

describe magneto-acoustic MHD body waves (m2
i
> 0) for the

kink mode (n = 1) and fluting (n = 2, 3, 4...) modes in a com-
pressible waveguide with an elliptical cross-section. The new
variables

E0 =
u0

π
αe

0, E2m−1 =
(−1)mu2m−1

π|ne|
A2m−1

1 αe
2m−1,

E2m =
(−1)mu2m

2πmA2m
0

αe
2m

F2m−1 =
(−1)mq2m−1

π|ne|B2m−1
1

βe
2m−1, F2m =

2m(−1)mq2m

π|ne|B2m
2

βe
2m,

have been introduced. Also the variables

A2m
0 u2m = ce2m(0)ce2m+1(π/2),

|mi|A2m+1
1 u2m+1 = ice2m+1(0)ce′2m+1(π/2),

|mi|B2m+1
1 q2m+1 = −ise′2m+1(0)se2m+1(π/2),

m2
i B2m+2

1 q2m+2 = se′2m+2(0)se′2m+2(π/2),

have been introduced.

From an observational point of view, most interest is focused
on sausage (i.e. longitudinal, acoustic) and kink (i.e. transverse)
modes. Next we will determine how ellipticity may affect the
properties (e.g. period, phase speed) of these particular modes.

3.1. Sausage mode (n = 0)

Setting the determinants of each system equal to zero, Eq. (25)
gives the dispersion relation for the sausage body modes

21/2ρi

n2
e

(

ω2 − ω2
e

) (

ω2 − ω2
T

)

= 0. (28)

It is clear that there is a mode propagating with phase speed ap-
proximately equal to the tube speed cT. This mode is the slow
body mode which is subsonic but has phase speed greater than
the tube speed. Using (20), it can be shown that Eq. (28) also de-
scribes the surface waves. Under photospheric conditions (e.g.
vAi > ce > c0 ≫ vAe) a fast surface wave propagating with phase
speed ce is allowed as the internal plasma is cooler than the ex-
ternal plasma. Also allowed is a slow surface mode with phase
speed equal to cT, as Bi ≫ Be. This slow surface mode is sub-
sonic and has phase speed sub tube speed. An explanation of the
conditions needed for surface waves to occur can be found in
(Roberts 1981).

3.1.1. Slow sausage mode

To investigate how the ellipticity effects the sausage modes, a
higher order approximation of the solutions to Eqs. (16) and (17)
is required. For the slow body mode with ω2 ≈ ω2

T
, a dispersive

correction can be found by using (B.1) and (B.10), then mak-
ing the approximation for Bessel functions valid for small argu-
ment z (Abramowitz & Stegun 1964)

Jn(z) ∼
( 1

2
z)n

n!
, z≪ 1,

yielding, after substitution in (16) and (17),

21/2ρi

(

c2
i + v

2
Ai

) (

ω2
T − ω

2
)

αi
0 =

K0(|ne|es0)ρe

(

c2
e + v

2
Ae

) (

ω2
Te − ω

2
)

E0,

sinh(2s0)
(

ω2 − ω2
i

)

αi
0 = −

(

1 + n2
ee−2s0 K0(|ne|es0)

)

×

(

ω2 − ω2
e

)

2n2
e

E0.

The dispersive correction for ω2 ≈ ω2
T

can then be written as

ω2 = ω2
T

{

1 +
k2a3b

4(a2 + b2)

ρe

ρi

×K0

(

|ne|e(2/ǫ−2)1/2
) (c2

T
− c2

i
)
(

c2
T
− v2

Ae

)

(

c2
i
+ v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (29)

where s0 ≈ (2/ǫ − 2)1/2 valid for small s0 and from Eq. (4) it can
be found that σ2 ∼ a4/(a2 + b2). The phase speed of the slow
body sausage mode is shown for various values of ellipticity in
Figs. 3−5. The dispersive correction for the slow surface sausage
mode, also with ω2 ≈ ω2

T
, is given by

ω2 = ω2
T

{

1 − k2a3b

4(a2 + b2)

ρe

ρi

×K0

(

|ne|e(2/ǫ−2)1/2
) (c2

T
− c2

i
)
(

v2
Ae
− c2

T

)

(

c2
i
+ v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

· (30)

For both the body (29) and surface (30) waves the ellipticity
has a small but clear effect. Increasing ellipticity increases (de-
creases) the frequencies and phase speeds of the slow body (sur-
face) waves.

3.1.2. Fast sausage mode

Consider the fast surface sausage mode with phase speed close
to ce. An expression can be developed from Eqs. (16) and (17),
using the approximation of the Mathieu functions with Bessel
functions found in Appendix B, for the ellipticity correction of
the mode with ω2 ≈ ω2

e :

ω2 = ω2
e

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − k2 ρe

ρi

e2(2/ǫ−2)1/2

(

c2
e − c2

i

)

c2
e

(

c2
i
+ v2

Ai

) (

c2
e − c2

T

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

· (31)

It is clear from (31) that there is no dependence on wavenum-
ber k for the frequency and phase speed of this mode. Figures 3a
and 4 reflect this for phase speed in the limit ka ≪ 1.

By considering Eq. (28) and Fig. 3b, it is clear that in the thin
tube approximation (ka ≪ 1) there is no fast sausage mode for
coronal conditions. However, the fast sausage mode does exist
for large wavenumbers that are greater than a propagation cutoff
value. The wavenumber of the propagation cutoffs are given by

k = kc ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

c2
i
+ v2

Ai

) (

v2
Ae
− c2

T

)

(

v2
Ae
− c2

i

) (

v2
Ae
− v2

Ai

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1/2

2

σ
e−(2/ǫ−2)1/2

j0,s, (32)

where s = 1, 2, 3, ... and j0,s = (2.40, 5.52, ...) are the zeros of

the Bessel function J0 found in the function Cen

(

s0,m
2
i

)

(see

Eq. (B.1), the expansion in terms of Bessel functions). It can be
seen from Eq. (32) that the cutoff value increases with increasing
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(a) (b)

Fig. 3. a) The left column shows the phase speeds of modes under photospheric conditions (i.e. vAi > ce > ci > vAe) for ǫ = 0.65 (s0 = 1.0). The
bottom left panel shows a magnification of the section showing the slow body and surface waves. The various speeds where taken to be vAi = 2ci,
ce = 1.5ci and vAe = 0.5ci with Bi = 9Be. Hatching denotes regions where free modes are excluded. b) The right column shows the phase speeds
of modes under coronal conditions (i.e. vAe > vAi > ci > ce) with ǫ = 0.65 (s0 = 1.0) are shown. The bottom right panel shows a magnification of
the section showing the slow body waves. The various speeds where taken to be vAe = 5ci, ce = 0.5ci and vAi = 2ci and Bi = Be. Both dispersion
diagrams are calculated under the assumptions mi and me are small.

ellipticity. As the ellipticity tends to zero, we obtain the cutoff
value found for the circular cross-section (Roberts et al. 1984).
For large ellipticity (small s0) we obtain the approximation

k = kc ≡ kc(cylinder) +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

c2
i
+ v2

Ai

) (

v2
Ae
− c2

T

)

(

v2
Ae
− c2

i

) (

v2
Ae
− v2

Ai

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1/2

×
j0,s

a

(

1 − 2(2/ǫ − 2)1/2
)

, (33)

which is written in terms of the cylindrical cutoff plus the leading
order term from the ellipticity.

Consider now the focal points of the elliptical cross-section.
It is known that sausage oscillations do not perturb the axis of
the cylindrical magnetic flux tube. In elliptical geometry there
is, of course, no rotational symmetry for perturbations. Instead,
the magnetic field lines passing through the focal points may be
considered as the elliptical counterparts of the field lines rep-
resenting the axis of the cylinder in a flux tube with a circular
cross-section. The x and y components of velocity are obtained,
for the sausage mode (n = 0):

v̂x(s, ϕ) = 0, v̂y(s, ϕ) = 0;

and the higher modes (n > 0):

v̂x(0, 0) = n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

, v̂y(0, 0) = 0,

v̂x(0, π) = n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

2σω2m2
i

(1 − cos nπ), (34)

v̂y(0, π) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

2σω2m2
i

(1 + cos nπ),

for the perturbations associated with ∆̂ = Cen(s,m2
i
)cen

(

ϕ,m2
i

)

and

v̂x(0, 0) = 0, v̂y(0, 0) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

,

v̂x(0, π) = −n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

2σω2m2
i

(1 + cos nπ), (35)

v̂y(0, π) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

2σω2m2
i

(1 − cos nπ).

for the perturbations associated with ∆̂ = S en(s,m2
i
)sen

(

ϕ,m2
i

)

.

So, for the higher modes there is movement of the focal points in
both the s and ϕ directions. One could generalise the definition
of the sausage mode: wave propagation or oscillation that does
not perturb the focal points; and the higher (fluting) modes: wave

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810318&pdf_id=3
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(a) (b)

Fig. 4. The phase speeds of modes under photospheric conditions for a) ǫ = 0.84 (s0 = 0.6) and b) ǫ = 0.27 (s0 = 2.0). Both dispersion diagrams
are calculated under the assumptions mi and me are small.

propagation or oscillation that perturbs the focal points. For n =
1 (kink) in particular, Eqs. (34) show perturbations polarised in
the x-directions and Eqs. (35) show perturbations polarised in
the y-direction.

3.2. Kink mode

Setting the determinants of Eqs. (26) and (27) equal to zero, two
equations can be obtained that describe the kink body modes,

ρe

tanh(s0)
(

ω2 − ω2
Ai

) − ρi

1
(

ω2 − ω2
Ae

) = 0, (36)

and

ρe

coth(s0)
(

ω2 − ω2
Ai

) − ρi

1
(

ω2 − ω2
Ae

) = 0. (37)

Ruderman (2003) found these expressions for a cold plasma and
determined that (36) describes the kink mode polarised along the
major axis, while (37) describes the kink mode polarised along
the minor axis. By considering Eqs. (21) and (22), the equations
that describe the kink surface waves can also be found. From
now on, the kink modes linearly polarised in the direction of
the major axis will be labeled ω1M and the kink modes linearly
polarised in the direction of the minor axis ω1m. However, it is
not immediately obvious what the solutions to Eqs. (36) and (37)
are. Keeping in mind the kink modes found for cylindrical case
(Edwin & Roberts 1983), we investigate the nature of the kink
modes present in a flux tube with elliptical cross-section.

3.2.1. Slow kink mode

Under the supposition there is a solution ω ≈ ωT, consider two
sets of dispersion relations (16)−(19) for n = 1. There is the
possibility that m2

i
remains finite as πa/L → 0. Substituting

Eqs. (B.2) and (B.3), (B.11) and (B.12) into (16)−(19), we obtain

miX1,2 = −
ρi

ρe

(

ω2
T
− ω2

Ai

)

(

ω2
T
− ω2

Ae

) , (38)

where

miX1 =
Ce′1
Ce1

, miX2 =
Se′1
Se1

·

After squaring and rearranging, Eq. (38) can be recast as

ω2
1M = ω

2
T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 +
a4k2ρ2

e

4ρ2
i
(a2 + b2)

(

c2
T
− v2

Ae

)2 (

c2
T
− c2

i

)

X2
1

(

c2
i
+ v2

Ai

) (

c2
T
− v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (39)

ω2
1m = ω

2
T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 +
a4k2ρ2

e

4ρ2
i
(a2 + b2)

(

c2
T
− v2

Ae

)2 (

c2
T
− c2

i

)

X2
2

(

c2
i
+ v2

Ai

) (

c2
T
− v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (40)

These equations determine the slow kink body modes for pho-
tospheric and coronal conditions. It can be seen from Eqs. (39)
and (40) that the slow kink modes are weakly dependent on ellip-
ticity and both equations tend to cT as ka → 0, regardless of the
value of ellipticity (see the bottom panels in Figs. 3−5). This is

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810318&pdf_id=4
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(a) (b)

Fig. 5. The phase speeds of modes under coronal conditions for a) ǫ = 0.89 (s0 = 0.5) and b) ǫ = 0.27 (s0 = 2.0). Both dispersion diagrams are
calculated under the assumptions mi and me are small.

because the slow magneto-acoustic waves are polarised mainly
longitudinally, along the field lines, and are less affected by the
change in shape of the cross-section in the first order approxi-
mation. For the slow kink surface wave the ellipticity correction
is given by:

ω2
1M = ω

2
T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
a4k2ρ2

e

4ρ2
i
(a2 + b2)

(

c2
T
− v2

Ae

)2 (

c2
T
− c2

i

)

X2
1

(

c2
i
+ v2

Ai

) (

c2
T
− v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (41)

ω2
1m = ω

2
T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
a4k2ρ2

e

4ρ2
i
(a2 + b2)

(

c2
T
− v2

Ae

)2 (

c2
T
− c2

i

)

X2
2

(

c2
i
+ v2

Ai

) (

c2
T
− v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (42)

In the limit a/b → 1 corresponding to the circular-cross section
we obtain from Eqs. (39) and (40)

ω2
1M = ω

2
1m = ω

2
T

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 +
a2k2ρ2

e

2ρ2
i

(

c2
T
− v2

Ae

)2 (

c2
T
− c2

i

)

X2
1

(

c2
i
+ v2

Ai

) (

c2
T
− v2

Ai

)

c2
T

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

where X2
1
≈ X2

2
. Again, in this limit the result for the slow kink

mode in a cylinder (Edwin & Roberts 1983) is recovered, with
X2

1
≈ mi(I0(mia)/I1(mia) − 1).

3.2.2. Fast kink mode

Observationally the fast kink mode is perhaps the best studied,
since their spectacular discoveries by TRACE. Consider now the
possiblilty m2

i
a → 0 as ka → 0. The Eqs. (36) and (37) then

determine the dispersion relation for the fast kink modes and
reduce to

ω2 = ω2
1M =

bρeω
2
Ae
+ aρiω

2
Ai

aρi + bρe

(43)

ω2 = ω2
1m =

bρiω
2
Ai
+ aρeω

2
Ae

aρe + bρi

(44)

where a and b are the large and small half axis, respectively, of
the elliptic cross-section. These equations describe the fast body
waves for coronal conditions (vAe, vAi ≫ ci, ce). Eq. (43) de-
scribes the kink mode polarised along the x-axis (major), while
Eq. (44) describes the kink mode polarised along the y-axis (mi-
nor). These solutions are the same in leading order as the disper-
sion relations for the kink modes in a cold plasma (Ruderman
2003), which is expected as the kink modes are highly incom-
pressible in linear MHD.

The different phase speeds for the kink modes perturbing the
two axis can be seen clearly in Fig. 3. The difference in phase
speeds increases as the ellipticity increases (compare Fig. 5b for
ǫ = 0.89 to Fig. 3b with ǫ = 0.65). Taking the limits of Eqs. (43)
and (44) when the ellipticity tends to one (i.e. b/a→ 0), we find

ω1M = ωAi, ω1m = ωAe.

This result also corresponds well to the counterpart found for the
kink mode for the magnetic slab (Edwin & Roberts 1982). For
discussion on the physical reason for this see Ruderman (2003).
For small values of ellipticity, the phase speeds for the two axis
tend to the same value (compare Fig. 5b for ǫ = 0.27 to Fig. 3b).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810318&pdf_id=5
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If we let ǫ → 0, (a/b→ 1) which corresponds to a flux tube with
a circular cross-section. In this limit Eqs. (43), (44) both tend to

ω2
1M = ω

2
1m =

ρiω
2
Ai
+ ρeω

2
Ae

ρe + ρi

which is the frequency of kink oscillations in a thin tube with a
circular cross-section (Spruit 1982; Edwin & Roberts 1983).

The Eqs. (43) and (44) also describe the fast surface waves
under photospheric conditions (can be seen by considering
Eqs. (B.4) and (B.5)). The phase speeds for a photospheric case
are shown for various values of ellipticity in Figs. 3a and 4.
The difference in phase speeds for the kink mode along the two
axis is also present for surface waves in the photosphere and
responds in a similar manner to an increase/decrease in elliptic-
ity. However, ckM > ckm for the surface waves whereas for for
body waves in the corona ckm > ckM. This is due to the rela-
tive strengths of the internal and external magnetic fields in the
corona and photosphere.

Equations (43) and (44) however do not show how the fast
kink modes vary with wavenumber. To investigate the relation-
ship we need to find a higher order equation. Consider now the
mode with phase speed c ≈ ck. A dispersive correction for the
body waves of this mode can be found by writing Eqs. (16)
and (17) as
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Here we have used the expansions (B.2), (B.3), (B.8) and (B.9).
The dispersive corrections are then given by
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and
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Here
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are the kink speeds modified by ellipticity. Also
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Equations (45) and (46) show the relationship between fre-
quency (hence phase speed) and ka = π/L, and shows that the
frequency decreases as ka increases. The dispersive correction
for surface waves can be found by following a similar procedure.

Taking the limit s0 → ∞, using exp(s0) = (a + b)/σ we see
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which is the dispersive correction obtained for a magnetic cylin-
der (Edwin & Roberts 1983).

3.2.3. Frequency ratio

With present observational technology, identification of fast kink
oscillations in the solar atmosphere provides the least problems
compared to the fast sausage or slow modes. One would also
expect the identification of a flux tube with an elliptical cross-
section to be more likely from the fast kink oscillations due to
there being two separately polarised oscillations. On comparison
between ω1M and ω1m the ratio is given by
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where
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and
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are the frequencies for the higher harmonics of the fast kink
waves. Here j = 1, 2, 3... corresponds to the mode number. For
typical coronal conditions and length scales i.e. L = 100 Mm,
a = 1 Mm, and with ǫ = 0.87, the ratio for the fundamental
mode ω1M,1/ω1m,1 ≈ 0.71. Observations of fast kink modes find
the period of loops to be around 276 s (Aschwanden et al. 1999).
Assuming this period is due to horizontal motion corresponding
ω1m,1, it would be expected that there is a period of 389 s corre-
sponding to ω1M,1 in the vertical direction. If this period is due
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to horizontal motion correspondingω1M,1, then a period of 196 s
corresponding to ω1m,1 is expected in the vertical direction. This
difference in period is detectable (in principle) with the current
cadences available on the TRACE satellite, so the detection of
two distinct frequencies, would indicate the possibility of an el-
liptical cross-section.

Multi-mode oscillations interpreted as harmonics of standing
kink modes have been detected in coronal loops (e.g. Verwichte
et al. 2004), where two loops were seen to oscillate in the fun-
damental and first harmonic. For uniform loops, the ratio of the
period of the fundamental to the period of the first harmonic is 2.
However, the ratios found, by e.g.Verwichte et al. (2004), are
1.64 and 1.81. This may be caused by the geometrical and/or
physical effects briefly outlined in the Introduction. Let us now
briefly investigate how ellipticity would influence the frequency
ratio. The ratio of the first harmonic ( j = 2) to the fundamental
mode ( j = 1) for the lowest order correction is given by

ω1M,2

ω1M,1

≈ 2(1 − αǫ2),
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16
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, (50)

for the kink major and

ω1m,2

ω1m,1

≈ 2(1 − βǫ2),
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16
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for the kink minor. For typical coronal conditions and length
scales i.e. L = 100 Mm, a = 1 Mm, and ǫ = 0.87, then it is
found α, β < 0 and clearly ω2/ω1 > 2. To the best of our knowl-
edge there is no observational data with a claim that ω2/ω1 > 2.

4. Elliptical vs. circular

It is possible to gain insight into the structure present within a
magnetic flux tube by measuring the period (or frequency) of
oscillations taking place in the tube. This methodology is called
magneto-seismology and applying it to coronal loops is called
coronal seismology. Inverting the measured periods may pro-
vide us with information about the structure of the loop because
certain features (i.e. cross-section, curvature, stratification, ex-
pansion, varying background, wave leakage, etc.) will cause the
period to differ from that of the period calculated for an ideal
magnetic cylinder (Edwin & Roberts 1983).

On comparison between the elliptical and the circular cross-
section for different values of ka, the phase speeds are found to
differ for all modes. So it is expected that there is a difference
between the periods of e.g. the well established standing oscil-
lations of the circular cross-sections and elliptical cross-section.
The period of the fundamental mode is given by

P =
2L

Cp

(52)

where L is the loop length and Cp is the phase speed of a given
mode. The percentage difference between the periods for differ-
ent values of ellipticity are plotted in Fig. 6a for photospheric

conditions (i.e. vAi > ce > ci > vAe with vAi = 2ci, ce = 1.5ci

and vAe = 0.5ci and Bi > Be) and in Fig. 6b for coronal condi-
tions (i.e. vAe > vAi > ci > ce with vAe = 5ci, ce = 0.5ci and
vAi = 2ci and Bi = Be). The periods for the elliptical cross sec-
tion are calculated under the assumptions mi and me are small. It
is expected that these values will not change significantly if cal-
culated without this assumption. The velocity relations that char-
acterise the cylinder were the same used by Edwin & Roberts
(1983). The figures show only the fast modes. This is because
the difference in phase speeds between the slow modes is too
small and it is unlikely that the small difference in phase speeds
could be detected with current time resolution and cadence of
observational instruments. The percentage difference was calcu-
lated using Pδ = Pǫ/Pc − 1 where Pδ is the difference in period,
Pǫ is the elliptical period, Pc is the period of the cylinder. In
Fig. 6a, the difference in period for the kink major ǫ = 0.27
starts at around ka = 1.9. This occurs as the kink major mode
has a propagation cutoff as the ellipticity increases (see Fig. 4a).

For increasing ellipticity, one can see that there is an increase
in the difference between periods for all modes. In the corona
the difference between the periods of the sausage and both kink
mode becomes smaller as ka increases. The same happens for
the kink modes in the photosphere. This is due to shorter wave-
lengths feeling the effect of the geometry of the cross-section
less then longer wavelengths. For the sausage mode in the pho-
tosphere, the period is seen to increase as ka increases. However,
it is expected that the difference in period decreases for greater
ka than shown. By considering the sausage mode in Fig. 4a, the
phase speed seems to tend to the same limit as the phase speed
of the kink modes as ka increases. From Fig. 6a, the difference
in period of the kink modes tends to zero as ka increases, i.e. it
tends to the period of the kink mode of the cylinder. The sausage
mode of a flux tube with elliptical cross-section then must also
tend to this limit and hence will be the same as the sausage mode
for the cylinder. It follows that the difference in period will then
tend to zero at greater ka.

As an example, consider a typical loop of length L =

100 Mm under coronal conditions with B = 20 G, electron den-
sity ne = 1 × 109 cm−3. The period for the fast kink mode of the
cylinder is given by Roberts et al. (1984),

P =
2L

ck

= C f

⎛

⎜

⎜
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LN
1/2

0
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⎟

⎟

⎟

⎠

,

where C f = 6.5 × 10−12 cgs units and we assume ρi ≫ ρe and
Bi ≈ Be. Using typical characteristic coronal values, we find
P = 103 s. However, if the loop had an elliptical cross-section
with ǫ = 0.89 corresponding to major axis a twice the length of
minor axis b, one would expect to see periods of P = 125 s from
the major axis and P = 91 s from the minor axis.

5. Concluding remarks

In this paper the vibrational modes of an elliptical magnetic flux
tubes embedded in a magnetic environment with a finite plasma
beta is discussed. It was found that a flux tube with ellipti-
cal cross-section has an even richer variety of magneto-acoustic
modes than those found in the magnetic cylinder.

The flux tube with an elliptical cross-section supports the
slow and fast body sausage mode and the slow and fast surface
sausage modes, which where not seen in the thin tube approx-
imation of the cold plasma case (Ruderman 2003). The phase
speed of all the sausage modes was found to vary with ellipticity.
Dispersive corrections for the slow waves and fast surface wave
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Fig. 6. Plotted is the percentage difference between the periods of the circular and elliptical cross sections against wavenumber for different values
of ellipticity. The periods are of the fast waves. a) Shows difference in periods under typical photospheric conditions. b) Shows periods under
coronal conditions.

in the thin tube approximation was also obtained. The propa-
gation cutoff, kc, for the fast sausage mode was also found in
analogue to the cylindrical sausage cutoff and the cutoff value
was found to increase with increasing ellipticity.

The tube was also found to support the slow and fast body
kink modes and the slow and fast surface kink modes, of which
only the fast mode was obtained by (Ruderman 2003). However,
two kink frequencies ω1M,m were found for each mode, i.e. each
corresponding cylindrical mode splits into two. The kink mode
with frequency ω1M is polarised along the major axis and the
kink mode with frequencyω1m is polarised along the minor axis.
The difference in the phase speeds between ω1M and ω1m is de-
pendent on the ellipticity. The most profound effect can be seen
when there is a large ellipticity (see Figs. 4b and 5b). However,
as ǫ → 0, the difference between ω1M and ω1m becomes small.
Figures 4a and 5a shows that for ǫ = 0.27 (i.e. s0 = 2.0) ω1M

and ω1m have similar phase speeds and the dispersion diagrams
look similar to the ones obtained by Edwin & Roberts (1983). In
the limit of small ellipticity, the elliptical cross-section can then
be approximated as a circle and the flux tube can be treated as a
magnetic cylinder.

In addition, it was shown that there is a difference between
the periods of the fast modes of an elliptical and a circular
cross-section, see Fig. 6. The greater the ellipticity, the larger the
difference between the periods of the two different geometries.

The periods of the slow waves also differ between the elliptical
and circular cross sections but was not shown explicitly.

However, the ellipticity is just one of many geometric and
physical second-order effects (e.g. stratification, structuring,
magnetic twist, curvature, wave leakage, variable background on
the time scale of oscillations etc) that effect the period of a loop
and whether the loop has an elliptical cross-section could not be
determined from period alone. The level of difference in period
could be very important in magneto-seismological applications,
when observed periods are inverted into diagnostic properties
(e.g. magnetic field strength, gravitational scale height, tube ex-
pansion parameter, ect.).

Furthermore, frequency ratios were calculated for the fast
kink modes. Firstly, the ratio of ω1M to ω1m was found.
Assuming that periods observed in coronal loops (Aschwanden
et al. 1999) were associated with a loop with an ellipticity of
0.87, then the periods from the modes along the major and mi-
nor axis would differ by 80−115 s depending on orientation of
the cross-section. The second ratio calculated was the ratio of
the fundamental frequency to the first harmonic of the fast kink
mode. Verwichte et al. (2004) observed multi-mode kink oscil-
lations with frequency ratios of 1.64 and 1.81. The effect of el-
lipticity on this ratio was found to be far too small (i.e. ≪1). It
can be concluded the effects of ellipticity would be difficult to
detect from observations of multi-modes.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810318&pdf_id=6
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With current spatial resolution, one would expect to observe
an oscillation of the magnetic flux tube that would be a super-
position of the oscillations polarised along the major axis and
the minor axis. To find evidence of elliptical cross-sections, loop
motions would need to resolved in the vertical and horizontal
directions to obtain the two different periods. This may be
possible with TRACE data (average cadence in EUV and UV
wavelengths of 74 s) if the oscillations could be resolved in the
horizontal and vertical directions or there could be a very high
temporal resolution data set of kink oscillations available. It may
be more likely that Solar Dynamic Observatory (SDO) observa-
tions will be the best candidate for the possible detection of el-
liptical cross-sections as the satellite will provide images with
comparable resolution to TRACE and cadences of 10 s in EUV
provided by the Atmospheric Imager Assembly.
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Appendix A:

In this Appendix we fill in some of the steps required to ob-
tain the general dispersion relations given by Eqs. (16)−(19).
Relating the internal, Eq. (14), and external solutions, Eq. (15),
by requiring that v̂s and PT,1 are continuous across the boundary
s0, gives
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where the prime indicates the derivative with respect to s.
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in Fourier series (Arscott 1964), we obtain
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where q = 0, 1, 2... and j = 0, 1. The coefficients A
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found in Abramowitz & Stegun (1964). These expansions can be
substituted into Eqs. (A.1) and (A.2) to give Eqs. (16)−(19).
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2q+ jCe2q+ j

(

s0,m
2
i

)

A
2q+ j

2r+ j

(

m2
i

)

=

ρev
2
Aeω

2

∞
∑

q=0

αe
2q+ jFek2q+ j

(

s0, n
2
e

)

A
2q+ j

2r+ j

(

n2
e

)

(A.6)

and

m−2
i

∞
∑

q=0

βi
2q+1+ jSe′2q+1+ j

(

s0,m
2
i

)

B
2q+1+ j

2r+1+ j

(

m2
i

)

=

−n−2
e

∞
∑

q=0

βe
2q+1+ jGek′2q+1+ j

(

s0, n
2
e

)

B
2q+1+ j

2r+1+ j

(

n2
e

)

(A.7)

ρiv
2
Aiω

2

∞
∑

q=0

βi
2q+1+ jSe2q+1+ j

(

s0,m
2
i

)

B
2q+1+ j

2r+1+ j

(

m2
i

)

=

ρev
2
Aeω

2

∞
∑

q=0

βe
2q+1+ jGek2q+1+ j

(

s0, n
2
e

)

B
2q+1+ j

2r+1+ j

(

n2
e

)

(A.8)

which are the equations found by Ruderman (2003).

Appendix B:

In this appendix is a list of the modified Mathieu functions with
there expansions in terms of Bessel functions (Bateman 1955;
McLachlan 1947). The following expressions are valid for m2

i
<

0 (body waves):

Ce2m(s,m2
i ) =

u2m

A2m
0

∞
∑

r=0

(−1)rA2m
2r

[

Jr(|mi|es)Jr(|mi|e−s)
]

(B.1)

Ce2m+1(s,m2
i ) =

u2m+1

A2m+1
1

∞
∑

r=0

(−1)rA2m+1
2r+1

×
[

Jr(mie
−s)Jr+1(mie

s) + Jr+1(mie
−s)Jr(mie

s)
]

(B.2)

Se2m+1(s,m2
i ) = i

q2m+1

B2m+1
1

∞
∑

r=0

(−1)rB2m+1
2r+1

×[Jr(mie
−s)Jr+1(mie

s) − Jr+1(mie
−s)Jr(mie

s)]. (B.3)
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The expansion of the Mathieu functions in terms of Bessel func-
tions for n2

i
(surface waves) are, from McLachlan (1947),

Ce2m(s,m2
i ) =

u2m

A2m
0

∞
∑

r=0

A2m
2r [Ir(nie

s)Ir(nie
−s)], (B.4)

Ce2m+1(s,m2
i ) = i

u2m+1

A2m+1
1

∞
∑

r=0

A2m+1
2r+1

×
[

Ir(nie
−s)Jr+1(nie

s)+Ir+1(nie
−s)Ir(nie

s)
]

, (B.5)

Se2m+1(s,m2
i ) =

q2m+1

B2m+1
1

∞
∑

r=0

B2m+1
2r+1

×
[

Ir(nie
−s)Ir+1(nie

s) − Ir+1(nie
−s)Ir(nie

s)
]

, (B.6)

Se2m+2(s,m2
i ) =

q2m+2

B2m+2
1

∞
∑

r=0

B2m+2
2r+2

×
[

Ir(nie
−s)Ir+2(nie

s) − Ir+2(nie
−s)Ir(nie

s)
]

, (B.7)

where m2
i
= −n2

i
< 0.

Approximation of Mathieu functions of the third kind valid
for m2

e < 0:

Fek2m+1(s, n2
e) =

u2m+1

πA2m+1
1

∞
∑

r=0

(−1)rA2m+1
2r+1

×[Ir(nee
−s)Kr+1(nee

s) − Ir+1(nee
−s)Kr(nee

s)], (B.8)

Gek2m+1(s, n2
e) =

q2m+1

πB2m+1
1

∞
∑

r=0

(−1)rB2m+1
2r+1

×([Ir(nee
−s)Kr+1(nee

s) + Ir+1(nee−s)Kr(nee
s)]. (B.9)

The following equations are (B.1), (B.2), (B.3) differentiated
with respect to s for particular values of n and are also valid
for m2

i
< 0:

Ce′0(s,m2
i ) ∼ −mi

[

J0(|mi|e−s)esJ1(|mi|es)

−J0(|mi|es)e−sJ1(|mi|e−s)
]

. (B.10)

Ce′1(s,m2
i ) ∼ mi

{

[J1(|mi|e−s)J1(|mi|es)]e−s + [J0(|mi|es)

− e−s

|mi|
J1(|mi|es)]esJ0(|mi|e−s) − [J0(|mi|e−s)

− es

|mi|
J1(|mi|e−s)]e−sJ0(|mi|es) − esJ1(|mi|e−s)J1(|mi|es)

}

(B.11)

Se′1(s,m2
i ) ∼ |mi|

{

[J1(|mi|e−s)J1(|mi|es)]e−s + [J0(|mi|es)

− e−s

|mi|
J1(|m2

i |e
s)]esJ0(|mi|e−s) + [J0(|mi|e−s)

− es

|mi|
J1(|mi|e−s)]e−sJ0(|mi|es)

+esJ1(|mi|e−s)J1(|mi|es)
}

(B.12)

Appendix C:

The expansions of the Mathieu functions of the third kind valid
for |me|es ≪ 1 have been found by Ruderman (2003) and can be
written:

Fek0(s, n2
e) ∼ −u0(ln |ne| + 2s + 2γ − 2 ln 2),

Fek2r+1(s, n2
e) ∼ (−1)ru2r+1

π|ne|A2r+1
1

e−(2r+1)s,

Fek2r+2(s, n2
e) ∼

(−1)ru2r+2

π(2r + 2)A2r+2
1

e−(2r+2)s,

Gek2r+1(s, n2
e) ∼ (−1)rq2r+1

π|ne|B2r+1
1

e−(2r+1)s,

Gek2r+2(s, n2
e) ∼ (2r + 2)(−1)rq2r+2

πn2
e B2r+2

1

e−(2r)s.

Appendix D:

In this Appendix, we describe the method for finding the pertur-
bations of the focal points of the elliptical cross-section. From
the set of Eqs. (12), we have expressions for v̂s and v̂ϕ in terms

of ∆̂ = S (s)Φ(ϕ) which for ∆̂ = Cen(s,m2
i
)cen

(

ϕ,m2
i

)

gives

v̂s(s, ϕ) = n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

cos nϕ

× sinh(ns)

sinh(s)

(

1 +
sin2(ϕ)

sinh2(s)

)−1/2

, (D.1)

v̂ϕ(s, ϕ) = −n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

cosh (ns)

× sin(nϕ)

sin(ϕ)

(

1 +
sinh2(s)

sin2(ϕ)

)−1/2

, (D.2)

where n ≥ 0 (i.e. for even Mathieu functions) and for ∆̂ =

S en(s,m2
i
)sen

(

ϕ,m2
i

)

,

v̂s(s, ϕ) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

cosh (ns)

× sin(nϕ)

sin(ϕ)

(

1 +
sinh2(s)

sin2(ϕ)

)−1/2

, (D.3)

v̂ϕ(s, ϕ) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

σω2m2
i

cos nϕ

×
sinh(ns)

sinh(s)

(

1 +
sin2(ϕ)

sinh2(s)

)−1/2

, (D.4)

where n > 0 (i.e. for odd Mathieu functions). The focal points
have coordinates (s, ϕ) = (0, 0) and (0, π) and it is clear to see
from Eqs. (D.1) and (D.2) that for the sausage mode (n = 0)

v̂s = 0, v̂ϕ = 0
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for (0, 0) and (0, π), hence the focal points do not move for the
sausage mode. When n > 0, the perturbations at the focal points
for Eqs. (D.1) and (D.2) are

v̂s(0, 0) = n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

,

v̂ϕ(0, 0) = −n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

,

and

v̂s(0, π) = n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

cos nπ,

v̂ϕ(0, π) = −n
(

An
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

.

From Eqs. (D.3) and (D.4) the perturbations at the focal points
for n > 0 are

v̂s(0, 0) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

,

v̂ϕ(0, 0) =
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

,

and

v̂s(0, π) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

,

v̂ϕ(0, π) = n
(

Bn
n

(

m2
i

))2

(

ω2
i
− ω2

)

√
2σω2m2

i

cos nπ.

Using the relationships between unit vectors of the elliptic, es

and eϕ, and Cartesian coordinates, ex and ey,

ex = H−1(es sinh s cosϕ − eϕ cosh s sin ϕ),

ey = H−1(es cosh s sin ϕ + eϕ sinh s cosϕ),

the velocity perturbations vx and vy can be found.
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