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Abstract 

Vibration absorbers have been widely used to suppress undesirable vibrations in machining 

operations, with a particular emphasis on avoiding chatter. However, it is well known that for 

vibration absorbers to function effectively their stiffness and damping must be accurately tuned 

based upon the natural frequency of the vibrating structure. For general vibration problems, suitable 

tuning strategies were developed by Den Hartog and Brock over 50 years ago. However, the special 

nature of the chatter stability problem means that this classical tuning methodology is no longer 

optimal. Consequently vibration absorbers for chatter mitigation have generally been tuned using 

ad-hoc methods, or numerical or graphical approaches. The present article introduces a new 

analytical solution to this problem, and demonstrates its performance using time domain milling 

simulations. A 40-50% improvement in the critical limiting depth of cut is observed, compared to 

the classically tuned vibration absorber. 
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Nomenclature 

b m Depth of cut during machining 

blim m Limiting depth of cut due to chatter stability boundary 

f - Frequency ratio of absorber to main structure 

F0 N Static load 

fopt - Optimal frequency ratio 

g - Dimensionless frequency 

Ks N/m2 Cutting coefficient 

G m/N Frequency response function 

h m Chip thickness during machining 

ka N/m Absorber stiffness 

km N/m Main structure stiffness 

ma kg Absorber mass  

mm kg Main structure mass 

N  Number of complete vibration cycles between successive 
tooth passes 

u - Orientation coefficient 

x m Displacement of cutting tool 

δst m Static deflection of main structure 

ε rad Relative phase of vibration between successive tooth passes 

µ - Mass ratio of absorber to main structure 

τ s Delay due to spindle rotation 

ω rad s-1 Vibration frequency 

ωa rad s-1 Absorber natural frequency 

ωc rad s-1 Chatter frequency 

ωm rad s-1 Main structure natural frequency 

ζ  - Absorber damping ratio 

ζm - Main structure damping ratio 

ζopt - Optimal absorber damping ratio 

Subscripts: 

a,b,p,n  Invariant or locked points 
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Introduction 

The productivity of many machining operations is fundamentally limited by the onset of 

regenerative chatter, which occurs when vibration between the cutting tool and workpiece modulate 

the cutting force, leading to a self-excited vibration. This form of instability causes an unacceptable 

surface finish, along with excessive tool wear or breakage, thereby limiting the metal removal rate 

that can be achieved. 

It is widely known that the chatter stability of machining processes can be improved by the addition 

of tuned vibration absorbers to the structure. For example, Tobias [1] illustrated a number of 

practical approaches that could be employed, with the vibration absorber fitted to various elements 

of the machine tool structure. More recently, practical and optimised designs for tooling with 

embedded absorbers have been developed [2], and non-traditional absorber designs have been 

proposed, such as those based upon impact dampers [3] and particle dampers [4]. Active vibration 

absorbers [5, 6] have also been proposed, since they can be more easily tuned than passive systems 

and can enable higher levels of energy dissipation. This approach is a special case of active 

vibration control, which has been applied to various machining chatter problems [7-9]. Despite the 

potential advantages of fully-active methods, passive tuned vibration absorbers remain a useful 

device for improving the chatter stability of machining systems, due to their lower complexity and 

cost. 

For passive, and also active, vibration absorbers the performance is dependant upon correct tuning 

of the physical parameters or control gains, respectively. In the general field of vibration control it 

is normally desirable to suppress the response magnitude in the frequency domain, and this can be 

achieved using Ormondroyd and Den Hartog’s classical ‘equal peaks’ method [10, 11]. A 

corresponding approach for active absorbers was proposed by Nishimura [12]. This method has 
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been widely employed for a variety of problems in applications as diverse as civil engineering and 

space structures. 

However, the tuning requirements for improving chatter stability differ from those for other 

vibration problems. To overcome this, Hahn [13, 14] proposed a basic tuning strategy for boring 

bars, but this was based upon Lanchester dampers rather than vibration absorbers. Tarng et al [15] 

manually tuned a vibration absorber to achieve the desired behaviour, and Liu et al used numerical 

optimisation routines based upon time domain machining simulations [16]. To the author’s 

knowledge, the only published work that describes absorber design using analytical methods is that 

of Rivin and Kang [2], who went on to perform a detailed and comprehensive experimental study 

that demonstrated significant performance improvements using their design procedure. The present 

contribution will focus on an alternative analytical solution, and in a later section this will be 

compared to Rivin and Kang’s method. 

Analytical solutions for milling and turning chatter (e.g. [17-19]) have demonstrated that the critical 

limiting depth of cut is inversely proportional to the most negative real value of the orientated 

transfer function. Consequently, an optimally tuned vibration absorber will seek to replace this 

‘trough’ in the real part of the orientated transfer function with two troughs of equal depth. The 

question that arises, then, is whether the optimal absorber for chatter can be tuned using analytical 

approaches, rather than trial and error or numerical methods. Furthermore, it is of interest to 

compare the analytical result with the classical method developed by Den Hartog [11] and the work 

of Rivin and Kang [2]. These issues will be tackled by the present article. 

The new analytical method is relevant to a wide range of machining chatter problems. For turning 

and boring operations, passive vibration absorbers (as used in references [2, 15, 16]) could be tuned 

using this technique. Alternatively, the controller gains in an active absorber (such as that used by 

Pratt and Nayfeh [6]) could be chosen using the analytical method. For milling operations, there are 

a number of possible positions where an absorber could be added, such as the spindle housing [20] 
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or machine tool column [7]. In some special cases, the workpiece itself could cause chatter, and so 

it may be advantageous to attach an absorber to the workpiece during the machining process [4]. 

The present article will consider this workpiece chatter scenario in a numerical example, but it 

should be pointed out that this is just one possible application of the analytical method. 

The manuscript is organised as follows. First, the relevant machine-tool chatter theory is briefly 

summarised. A vibration absorber tuning solution for the case of chatter is then developed and the 

results compared to the Den Hartog solution. These results are then compared to the 

analytical/numerical solution of Rivin and Kang [2]. The main assumptions of the analytical result 

are then explored by performing a numerical optimisation, and then by simulating the performance 

of the absorber in a milling scenario. Following a discussion of the results, some conclusions are 

drawn. 

It should be noted that the aim here is not to implement vibration absorbers during machining, since 

this has been widely reported elsewhere (e.g. [2]). Furthermore, the contribution does not claim to 

be the first to provide a solution to the optimisation problem. It does however provide a new 

analytical solution, which is considerably more elegant (and easy to apply) than other numerical or 

graphical approaches, and can be compared directly to the classical Den-Hartog approach.  

Theory 

To begin, it is worthwhile summarising the theory of regenerative chatter, which motivates the need 

for an alternative tuning procedure. Regenerative chatter is most commonly explained (e.g. [21, 

22]) with reference to the simplified scenario of turning, depicted in Figure 1. Here, a flexible 

cutting tool is removing material from the workpiece, with a chip thickness h and depth of cut 

(normal to the plane of the diagram) b. The motion of the tool means that the chip thickness h is a 

function of the present displacement, x, and the displacement during its previous pass over the 

workpiece, x(t-τ) where τ is the time delay due to the spindle rotation. Assuming that the cutting 
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force is proportional to the cross-sectional area of the chip, then the system can be represented by 

the block diagram in Figure 1b. The orientation coefficient u  maps the cutting force F to the 

direction of the tool transfer function G(jω) and the subsequent motion x. Instability of the feedback 

loop causes the self-excited vibration known as chatter. The stability can be found using the Nyquist 

criterion: 

 ( )( ) 11lim −=− − ωτω j
s ejuGbK  (1) 

Here, blim is the limiting depth of cut, i.e. the value of b beyond which the system becomes unstable. 

Following some algebra (see, for example, [21, 22]), the stability condition can be written as: 

 )])(Re[2/(1lim cs uGKb ω−=  (2) 

where ωc is the frequency of vibration at the boundary of stability, and is referred to as the chatter 

frequency. The integer number N of oscillations between each tooth pass, and the phase ε of the 

oscillations, are given by: 

 τωπε cN =+ )2/(  (3) 

which can be used to determine the relation between spindle speed 1/τ and chatter frequency ωc. 

Plotting the spindle speed against blim for different values of N gives the so-called stability lobe 

diagram. To demonstrate why special optimal absorber tuning is required for this problem, a 

simplified arbitrary single-degree-of-freedom (DOF) problem can be considered. If a vibration 

absorber is added to the structure then the resulting 2DOF system can be tuned with Den Hartog’s 

method to give two peaks of equal magnitude in the magnitude-frequency response function (FRF). 

This is shown schematically in Figure 2a. However, from (2) it is the real part of the response 

(Figure 2b) that dictates the chatter stability (Figure 2c). To maximise the depth of cut at which the 

system becomes unstable requires the real part of the FRF to have two troughs of equal magnitude, 

as demonstrated in Figure 2.  



6 

The aim of this contribution is to provide an analytical solution to this problem in a form similar to 

Den Hartog’s classical solution. 

Chatter stability optimisation 

To develop an analytical solution Den Hartog’s method of derivation will be adapted for use on the 

real part of the FRF rather than the magnitude part. As with Den Hartog, the main structure is 

assumed to have single undamped mode of vibration. From (1), it is noted that for the chatter 

problem the relevant transfer function is scaled by a factor u which may be positive or negative. If u 

is positive, then the chatter stability is dictated by the negative real part of the FRF and so it is  

desirable to increase this value. If u is negative, then chatter stability is dictated by the most positive 

real part, and so it is desirable to reduce this value. In what follows, both scenarios will be 

investigated. 

To begin, the absorber and host structure are defined by the following non-dimensional terms: 

 

m

ma

mmm

aaa

mst

ma

g

f

mk

mk

kF

mm

ωω

ωω

ω

ω

δ

µ

=

=

=

=

=

=

0

       

freqeuency excitation ldimensiona-non

ratiofrequency 

frequency natural structuremain 

frequency naturalabsorber 

deflection static

ratio mass

 (4) 

The main structure’s mass, stiffness, and natural frequency are denoted mm, km, and ωm, 

respectively, whilst the equivalent terms for the absorber are assigned the subscript a. The excitation 

frequency is ω, and F0 is the static load on the main structure. The non-dimensional response as a 

function of non-dimensional frequency, R(g), can then be presented as [23]: 

 ( ) ( )
( )( ) ( )2222222

22
1

121
2

gggigfgfg
gigfX

gR
st µζµ

ζ
δ −−+−−−

+−
==  (5) 

where ζ is the absorber damping ratio. The real part of (5) is given by: 
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In Figure 3 this is plotted for three levels of absorber damping: ζ=0, ζ=∞, and ζ=0.03, for f=1 and 

µ=0.01. It can be seen that there are three invariant, or ‘locked points’ [24] on the response. Closer 

inspection reveals that at these locked points the ζ=0 or ζ=∞ curves have an infinite gradient and 

pass through zero. Consequently, the non-dimensional frequencies of the locked points can be 

determined by evaluating the roots of (6) when ζ =0 or ζ=∞. These will be considered in turn. 

The roots of (6) when ζ=0 are given by the solution of: 

 ( ) ( )( )( ) 01 2222222 =−−−− gfgfggf µ  (7) 

Defining the three roots as gi, gp, and gn, and solving (7) gives: 
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Of the three roots, gi is inadmissible as a locked frequency because it does not correspond to a 

location on the response with an infinite gradient. Meanwhile, gp is the locked frequency where the 

real part of the response is positive, and gn  is a locked frequency where the real part of the response 

is negative.  

Next, this analysis is repeated for the case when ζ=∞. Dividing the numerator and denominator of 

(6) by ζ2 indicates that the zero is given by the solution of: 

 ( ) 014 222 =−− ggg µ  (9) 

In this case the solution g=0 is inadmissible as it requires an infinite natural frequency for the main 

structure. This leaves the solution defined as ga: 

 
µ+

=
1

1
ag  (10) 
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which is shown on  Figure 3 along with gp and gn. 

To recap, the three locked frequencies on Figure 3 have been determined analytically. To obtain the 

optimal response for chatter stability, it is desirable to ensure that the response at ga matches that at 

either gp or gn, depending on whether the direction factor u  is negative or positive, respectively. 

These two alternatives are shown in Figure 4.  

The next step, then, is to equate (6) at g=ga to (6) at g=gp  or g=gn, and solve to find f. Unfortunately, 

the mathematics become immensely protracted, and so symbolic algebra computer software is 

required. It transpires that despite the lengthy intermediate equations, the optimal value for f can be 

expressed relatively concisely: 
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Here, the optimum frequency so that the response at ga matches that at gp is denoted fopt,p, and the 

optimum frequency so that the response at ga matches that at gn is denoted fopt,n. The symbolic 

computations were performed using Maple [25]. The solutions are compared to Den Hartog’s 

classical solution in Figure 5a. 

Having determined the optimum frequency ratio, it is now desirable to adjust the damping ratio ζ  

until the real response at the locked points is flat. As Den Hartog pointed out [11] this can be 

achieved by evaluating d(Re(R))/dg at the locked points, equating to zero, and solving to find the 

damping ratio. For the locked frequency ga, this problem can be solved analytically (again with the 

help of symbolic computations), giving: 
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where the subscript n or p denotes which frequency ratio is used from equation (11). Unfortunately, 

obtaining a flat response at gn or gp means substituting (8) into d(Re(R))/dg , and the resulting closed 

form solution could not be simplified to a useful form by the symbolic computation software. 

However, the solutions are shown graphically in Figure 5b, along with those from equation (12). It 

transpires that within the limits of machine precision the solutions are numerically equivalent to: 
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The mean of the optimum tuning at ga and that at gp or gn is therefore the mean of (12): 

 ( )µ
µζ
+

=
18
3

opt  (14) 

which is also shown in Figure 5b. Remarkably the result is the same as the optimum damping ratio 

for a classically tuned vibration absorber. 

To summarise, the analytical formulations for optimal stiffness and damping have been derived for 

the case of chatter mitigation. However, this analytical result is based upon two key assumptions: 

the main structure has zero damping, and the main structure is a single-degree-of freedom system. 

Furthermore, it is useful to compare the result to the work of Rivin and Kang. These issues will now 

be addressed. 

Comparison with Rivin and Kang’s method [2] 

Rivin and Kang considered the behaviour of the system during metal cutting and represented the 

self-excitation (chatter) mechanism as an effective cutting stiffness and effective cutting damping 

rate. They derived the equations of motion in non-dimensional form by dividing the absorber 
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natural frequency ωa by the ‘chatter frequency’ ωc (denoted ω in reference [2]) which was a 

function of the effective cutting stiffness (an empirical measurement). They showed that frequency 

ratio ωa/ωc and absorber damping ratio ζ influenced the value of a performance index ζ0 which was 

determined using the Routh-Hurwitz stability criterion. An example of their results is given in 

Figure 6, for two different ratios of the absorber mass to main structure mass. A more negative 

value of ζ0 indicates that a greater depth of cut could be achieved without chatter. It can be seen that 

higher mass ratios increase the effectiveness of the absorber (as expected), and that for each mass 

ratio there exists an optimum combination of frequency ratio and absorber damping ratio. Finding 

this optimum absorber design requires a graphical (as in Figure 6) or numerical optimisation 

approach. Furthermore, transforming this non-dimensional result into an absorber design (i.e. 

stiffness and damping) requires knowledge of the chatter frequency ωc. This can only be determined 

by first identifying the effective cutting stiffness from a series of experiments. 

Figure 7 shows the optimum values for frequency ratio (fopt=ωa/ωc) and damping ratio ζ , using 

Rivin and Kang’s method [2]. The new analytical solution is also shown and it should be noted that 

the frequency ratio for this case is fopt=ωa/ωm. Despite the different definition of the frequency ratio, 

it is clear that the analytical result proposed in the present contribution is fundamentally different to 

that of Rivin and Kang. Consequently, the solution of Rivin and Kang does not minimise the peaks 

or troughs in the frequency response function, even though it has been shown [2] to offer superior 

performance than Den Hartog’s method for machining problems. 

Effects of main structure damping 

One advantage of Rivin and Kang’s solution, compared to the new analytical approach, is that it did 

not assume that the main structure was undamped. To investigate the role of main structure 

damping on the analytical approach, equation (5) can be readily modified to include damping, ζm of 

the main structure. However, optimum values for the design parameters can no longer be found in 
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closed form, and so numerical optimisation must be used instead. Standard optimisation routines 

such as the Matlab fminsearch function [26] were found to be appropriate for this task. Three 

different optimisations were performed: minimise the magnitude of the FRF; minimise the positive 

real part of the FRF; and maximise the negative real part of the FRF. In each case optimal values of 

the variables ζ  (absorber damping) and f (absorber frequency ratio) were sought. 

The optimisation can be repeated for a range of values of mass ratio µ and main structure damping 

ratio ζm. The results are shown in Figure 7. It can be seen that with no main structure damping the 

analytical solutions are correct (as expected), and that as damping is added to the main structure 

there is only a small change in the optimum absorber damping. However, for chatter optimisation 

the optimum frequency ratio is slightly more sensitive to the damping ratio of the main structure. 

This suggests that in practice it might be more difficult to accurately tune the damper, especially 

when the main structure is heavily damped or if its damping changes significantly under different 

conditions. 

Milling simulations 

The final issue that must be tackled is how the analytical solution performs for multiple degree of 

freedom structures. To investigate this issue, and to provide more insight as to how the absorber can 

increase chatter stability, a time-domain simulation of a milling scenario was performed. 

Time domain models of milling have been widely reported as providing an accurate reflection of 

the stability of the process [27]. Furthermore, the experimental and commercial application of 

vibration absorbers to milling and machining problems has been previously reported, and the aim of 

this contribution is not to repeat these efforts. Consequently a time domain numerical study will 

serve the purpose of investigating the assumptions in the new analytical approach. 

The numerical simulation used a time-domain formulation based upon the method of Campomanes 

and Altintas [27], along with a recently described signal conditioning method [28] to analyse the 
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chatter stability. For comparison purposes, an analytical solution was developed using the approach 

described by Tlusty [17] and implemented in commercially available software [29].  

The milling scenario that was considered was based on the very flexible cantilever workpiece that is 

shown schematically in Figure 8. It is worth reiterating that this is just one possible application 

where optimally tuned vibration absorbers could be used – others include boring bars, milling 

machine columns, and milling spindle housings. For the example problem of the workpiece shown 

in Figure 8, chatter is likely to be caused by the bending vibrations of the workpiece. This vibration 

could be suppressed by an appropriately tuned vibration absorber mounted on the uncut side of the 

workpiece as shown in Figure 8. To specify the vibration absorber parameters and predict the 

chatter stability, it is therefore desirable to measure and model the frequency response function at 

this location. The workpiece exhibited three main modes of vibration: a bending mode at 410Hz, a 

torsional mode at 1556Hz, and then a second bending mode at 3255Hz. The first two modes were 

modelled using modal analysis techniques [30], and a corresponding state-space representation 

extracted: 
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The state-space system has two outputs (displacement and velocity at the absorber location) and one 

input (applied force F). To control the first bending mode at 410Hz, a vibration absorber with mass 

ratio µ=0.05 can be specified. The effective mass of the main structure at this location is 0.223 kg, 

giving a required absorber effective mass of 0.011kg. Three different tuning strategies can be used 

for the absorber: classical Den Hartog tuning, equal real peaks, or equal real troughs (equations (11) 

and (14)). These lead to absorber stiffnesses of 67.3N/mm, 58.2N/mm and 79.9N/mm respectively. 



13 

The absorbers could be readily designed as small cantilever beams with appropriate damping 

treatments [24]. In practice the natural frequency of the workpiece will change if large amounts of 

material are removed during machining, but for problematic finish-machining operations the 

volume of material removed will be small enough that the de-tuning of the absorber can be 

neglected. 

The predicted frequency responses for the damped workpiece are compared to the un-damped 

workpiece model in Figure 9. Here it can be observed that the frequency response curves are not 

perfectly tuned, in that one peak is slightly greater than the other. For classical tuning the difference 

in peaks is very small. Since this tuning is not sensitive to the main structure damping (Figure 7a), 

the de-tuning effect can be attributed to the influence of the second mode of vibration. For the equal 

real peaks/troughs tuning, the main structure damping has a stronger influence (as shown by Figure 

7a), and the second mode of vibration will also have an effect. Nevertheless, the performance of the 

tuning methodology is good, in that the difference between the real peaks or troughs is small. 

To investigate the chatter stability of the workpiece, the same state space models (for damped and 

un-damped conditions and with different tuning methods) were implemented in the analytical and 

time domain milling simulations. The tool geometry and cutting conditions used in the simulations 

are given in Table 1. Both up-milling and down-milling scenarios were considered, since for the 

chosen cutting configurations up-milling will lead to a negative orientation coefficient whereas 

down-milling will lead to a positive orientation coefficient.  

The numerical and analytical results for the up-milling simulation are shown in Figure 10 for all 

three tuning conditions. The discrepancy between the analytical result and the time domain 

simulation can be attributed to the approximations used in determining the orientation coefficient 

for the analytical model. However, the trends observed in the time domain model are very similar to 

those in the analytical model. Whilst the classically tuned absorber is effective in increasing the 

chatter stability, it can be seen that a properly tuned absorber can provide a 40% improvement in the 
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critical limiting depth of cut. This serves to validate the tuning methodology presented in this 

article. However, Figure 10b illustrates how if the absorber is tuned to give equal real troughs, 

rather than equal real peaks, then the response is actually worse than the classically tuned case. 

Consequently care must be taken to ensure that the sign of the orientation coefficient is taken into 

consideration when tuning the absorber.  

For the down-milling simulation, the orientation coefficient is expected to be positive and so it is  

desirable to tune the absorber so as to achieve equal real troughs. The chatter predictions for this 

case are shown in Figure 11 along with the un-damped and classically tuned scenarios. The properly 

tuned vibration absorber provides a 50% performance improvement in the critical limiting depth of 

cut compared to the classically tuned absorber. The analytical prediction again suffers from an 

inaccurate estimation of the orientation factor which leads to a different stability prediction 

compared to the time domain model. 

Discussion 

The results presented have clearly demonstrated that the new analytical tuning approach is effective 

in optimising chatter stability. However, a number of issues are worthy of further comment: 

The new tuning procedure is applicable to vibration absorbers in a wide variety of machining 

applications, such as boring bars, milling tool spindles, machine tool columns, or the flexible 

workpiece scenario that was considered in the present study. At this stage, it is useful to briefly 

mention some of the issues associated with this flexible workpiece scenario. Since material is 

removed from the workpiece during machining, its natural frequency will constantly change. This 

may make it difficult to use a vibration absorber, unless it can be adaptively tuned e.g. by using an 

active vibration absorber. However, during the more problematical finishing cuts, very little 

material is removed and so the absorber parameters could be constant. As the tool moves around the 

workpiece, different modes of vibration could cause chatter which would again raise the need for an 
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adaptively tuned absorber. Different absorber designs would also be needed for different workpiece 

configurations, and the absorber location would have to be chosen such that it did not interfere with 

the cutting process. However, these shortfalls are all specific to the problem of absorbers mounted 

on the workpiece, and the contribution of this work is equally relevant to other machining 

applications which do not encounter such problems. 

It is worth reiterating that the novelty of this contribution lies in the straightforward analytical 

solution to optimally tuning the vibration absorber for chatter stability. Similar results could 

obviously be obtained using graphical or numerical optimisation of the design parameters [16], or 

by manually adjusting the absorber to achieve the desired behaviour. The work presented here 

provides an attractive alternative that would substantially reduce the design, prototype, and testing 

effort required. Furthermore, the approach may be applicable to other vibration problems and the 

comparison that can be drawn with the classical Den Hartog method may be of interest to the wider 

vibration community. 

One of the consequences of optimally tuning the absorber is that the shape of the stability lobe 

changes substantially. Whilst the critical limiting depth of cut is raised, the stable ‘pockets’ within 

the lobe are lost. For example, in Figure 11 it can be seen that for the classically tuned absorber it 

would be possible to machine at up to 3mm depth under certain spindle speeds, whereas the 

optimally tuned absorber provides a maximum stable depth of only 1.5mm, throughout the spindle 

speed range. This is a direct consequence of the ‘flattening’ of the negative real part of the 

orientated transfer function. For turning operations this effect is inconsequential as the chatter 

stability is dominated by the critical limiting depth of cut [17]. In contrast, for milling operations it 

can be desirable to machine in the stable lobe, in which case optimally tuning the absorber will not 

be helpful. In practice, however, vibration absorbers are likely to be used in scenarios where one 

wishes to raise the critical depth of cut above the desired cutting depth, so that any spindle speed 
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can be selected. For this problem, the new analytical tuning strategy is well suited as it offers a 40-

50% improvement compared to classical tuning. 

The main complication that arises when optimally tuning the absorber is that the sign of the 

orientation factor for the damped mode dictates the absorber natural frequency. Consequently the 

absorber stiffness must be changed if the cutting conditions are such that the sign of the orientation 

factor changes. However, this same problem would arise if the damper tuning was optimised 

numerically or experimentally, rather that analytically, and the analytical solution that is now 

available means that retuning the damper would be more straightforward. 

Before drawing conclusions, it is worth emphasising again that although the present study has 

focussed purely on the analytical aspects of vibration absorber tuning, the practical implementation 

of the absorber is no different to that for devices tuned by other means. For example, application in 

boring could follow Pratt and Nayfeh [6], whilst application in turning could follow Tarng et al 

[15]. The only difference would be that the tuning algorithm of the absorber would be optimised 

from a chatter perspective, thus leading to improved chatter stability. 

Conclusions 

This article has described a new analytical solution to tuning vibration absorbers from a 

regenerative chatter perspective. The theoretical approach is identical to that originally proposed by 

Ormondroyd [10], Den Hartog [11], and Brock [31], except that the real part of the response 

function is considered rather than its magnitude. The specific conclusions are as follows: 

1. Closed form analytical expressions are derived for optimally tuning the absorber frequency 

and damping to achieve desirable behaviour in either the positive real part or the negative real part 

of the frequency response function. As with Den Hartog’s original approach, two optimal damping 

values emerge for each case and the average of these provides a useful damping value.  
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2. A non-dimensional numerical study has served to demonstrate that the optimum absorber 

natural frequency is slightly sensitive to the damping of the main structure, unlike Den Hartog’s 

classical method. 

3. The performance of the analytical approach has been demonstrated by analytical and time 

domain simulations of the milling of a flexible workpiece. A 40-50% performance improvement 

was observed compared to Den Hartog’s classical optimisation approach. It is noted that the 

approach is not specifically aimed at milling workpiece problems but is equally applicable to 

turning, boring, or milling machine structures. 

4. Compared to previous work on optimal absorber design, this contribution describes an 

analytical solution that does not require a numerical, iterative or graphical approach. 
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Tool diameter 16mm 

Number of teeth 4 

Flute helix 0° (axial flutes) 

Radial immersion 4mm 

Feed per tooth 0.05mm 

Tangential cutting stiffness 796.1 N/mm2  (Al7075-T6 [20]) 

Radial cutting stiffness 168.8 N/mm2  (Al7075-T6 [20]) 

 

Table 1: Milling simulation parameters 
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Figure 9: Simulated workpiece response. (a) magnitude, (b) real part. 
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