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Abstract

Our aim in this paper is to determine the lower central and derived
series for the braid groups of the sphere and of the finitely-punctured
sphere. We are motivated in part by the study of the generalised Fadell-
Neuwirth short exact sequence [GG2, GG4], but the problem is of
interest in its own right.

The braid groups of the 2-sphere S2 were studied by Fadell, Van
Buskirk and Gillette during the 1960’s, and are of particular interest
due to the fact that they have torsion elements (which were charac-
terised by Murasugi). We first prove that for all n ∈ N, the lower cen-
tral series of the n-string braid group Bn(S2) is constant from the com-
mutator subgroup onwards. We obtain a presentation of Γ2(Bn(S2)),
from which we observe that Γ2(B4(S2)) is a semi-direct product of the
quaternion group of order 8 by a free group of rank 2. As for the derived
series of Bn(S2), we show that for all n ≥ 5, it is constant from the
derived subgroup onwards. The group Bn(S2) being finite and soluble
for n ≤ 3, the critical case is n = 4 for which the derived subgroup is
the semi-direct product obtained above. By proving a general result
concerning the structure of the derived subgroup of a semi-direct prod-
uct, we are able to determine completely the derived series of B4(S2)
which from (B4(S2))(4) onwards coincides with that of the free group
of rank 2, as well as its successive derived series quotients.

For n ≥ 1, the class of m-string braid groups Bm(S2 \ {x1, . . . , xn})
of the n-punctured sphere includes the usual Artin braid groups Bm

(for n = 1), those of the annulus, which are Artin groups of type B

(for n = 2), and affine Artin groups of type C̃ (for n = 3). Motivated
by the study of almost periodic solutions of algebraic equations with
almost periodic coefficients, Gorin and Lin determined the commutator
subgroup of the Artin braid groups. We extend their results, and show
that the lower central series of Bm is completely determined for all

2000 Mathematics Subject Classification. Primary: 20F36, 20F14. Secondary:
20F05, 55R80, 20E26.

Key words and phrases. surface braid group, sphere braid group, lower central
series, derived series, configuration space, exact sequence, Artin group.
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ABSTRACT v

m ∈ N, and that the derived series is determined for all m 6= 4. In
the exceptional case m = 4, we determine some higher elements of the
derived series and its quotients.

When n ≥ 2, we prove that the lower central series (respectively
derived series) of Bm(S2 \ {x1, . . . , xn}) is constant from the commu-
tator subgroup onwards for all m ≥ 3 (respectively m ≥ 5). The case
m = 1 is that of the free group of rank n − 1. The case n = 2 is of
particular interest notably when m = 2 also. In this case, the commu-
tator subgroup is a free group of infinite rank. We then go on to show
that B2(S2 \{x1, x2}) admits various interpretations, as the Baumslag-
Solitar group BS(2, 2), or as a one relator group with non-trivial centre
for example. We conclude from this latter fact that B2(S2 \ {x1, x2}) is
residually nilpotent, and that from the commutator subgroup onwards,
its lower central series coincides with that of the free product Z2 ∗ Z.
Further, its lower central series quotients Γi/Γi+1 are direct sums of
copies of Z2, the number of summands being determined explicitly. In
the case m ≥ 3 and n = 2, we obtain a presentation of the derived
subgroup, from which we deduce its Abelianisation. Finally, in the
case n = 3, we obtain partial results for the derived series, and we
prove that the lower central series quotients Γi/Γi+1 are 2-elementary
finitely-generated groups.



Preface

1. Generalities and definitions

Let n ∈ N. The braid groups of the plane E2, denoted by Bn, and
known as Artin braid groups, were introduced by E. Artin in 1925 [A1],
and further studied in [A2, A3, Ch]. Artin showed that Bn admits
the following well-known presentation: Bn is generated by elements
σ1, . . . , σn−1, subject to the classical Artin relations:

σiσj = σjσi if |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 1

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2.

}
(1)

A natural generalisation to braid groups of arbitrary topological spaces
was made at the beginning of the 1960’s by Fox (using the notion of
configuration space) [FoN]. In that paper, Fox and Neuwirth proved
some basic results about the braid groups of arbitrary manifolds. In
particular, if M r is a connected manifold of dimension r ≥ 3 then there
is no braid theory (as formulated in this paper). The braid groups of
compact, connected surfaces have been widely studied; (finite) presen-
tations were obtained in [Z1, Z2, Bi1, Sc]. As well as being inter-
esting in their own right, braid groups have played an important rôle
in many branches of mathematics, for example in topology, geometry,
algebra and dynamical systems, and notably in the study of knots and
links [BZ], of the mapping class groups [Bi2, Bi3], and of configura-
tion spaces [CG, FH]. The reader may consult [Bi2, Han, MK, R]
for some general references on the theory of braid groups.

Let M be a connected manifold of dimension 2 (or surface), perhaps
with boundary. Further, we shall suppose that M is homeomorphic to
a compact 2-manifold with a finite (possibly zero) number of points
removed from its interior. We recall two (equivalent) definitions of
surface braid groups. The first is that due to Fox. Let Fn(M) denote
the nth configuration space of M , namely the set of all ordered n-tuples
of distinct points of M :

Fn(M) = {(x1, . . . , xn) | xi ∈M and xi 6= xj if i 6= j} .
vi



2. THE FADELL-NEUWIRTH SHORT EXACT SEQUENCE vii

Since Fn(M) is a subspace of the n-fold Cartesian product of M with
itself, the topology onM induces a topology on Fn(M). Then we define
the n-string pure (or unpermuted) braid group Pn(M) of M to be:

Pn(M) = π1(Fn(M)).

There is a natural action of the symmetric group Sn on Fn(M) by
permutation of coordinates, and the resulting orbit space Fn(M)/Sn
shall be denoted by Dn(M). The fundamental group π1(Dn(M)) is
called the n-string (full) braid group of M , and shall be denoted by
Bn(M). Notice that the projection Fn(M) → Dn(M) is a regular n!-
fold covering map. It is well known that Bn is isomorphic to Bn(D2)
and Pn ∼= Pn(D2), where D2 is the closed 2-disc.

The second definition of surface braid groups is geometric. Let
P = {p1, . . . , pn} be a set of n distinct points of M . A geometric
braid of M with basepoint P is a collection β = (β1, . . . , βn) of n paths
β : [0, 1] →M such that:

(a) for all i = 1, . . . , n, βi(0) = pi and βi(1) ∈ P.
(b) for all i, j = 1, . . . , n and i 6= j, and for all t ∈ [0, 1], βi(t) 6= βj(t).

Two geometric braids are said to be equivalent if there exists a homo-
topy between them through geometric braids. The usual concatenation
of paths induces a group operation on the set of equivalence classes of
geometric braids. This group is isomorphic to Bn(M), and does not
depend on the choice of P. The subgroup of pure braids, satisfying ad-
ditionally βi(1) = pi for all i = 1, . . . , n, is isomorphic to Pn(M). There
is a natural surjective homomorphism Bn(M) → Sn which to a geo-
metric braid β associates the permutation π defined by βi(1) = pπ(i).
The kernel is precisely Pn(M), and we thus obtain the following short
exact sequence:

1 → Pn(M) → Bn(M) → Sn → 1.

2. The Fadell-Neuwirth short exact sequence

Let m,n ∈ N be positive integers such that m > n, and consider
the projection

p : Fm(M) → Fn(M)

(x1, . . . , xn, . . . , xm) 7→ (x1, . . . , xn).

In [FaN], Fadell and Neuwirth studied the map p, and showed that it
is a locally-trivial fibration. The fibre over a point (x1, . . . , xn) of the
base space is Fm−n(M \ {x1, . . . , xn}) which may be considered to be a
subspace of the total space via the map

i : Fm−n(M \ {x1, . . . , xn}) → Fm(M)
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defined by

i((y1, . . . , ym−n)) = (x1, . . . , xn, y1, . . . , ym−n).

Then p induces a group homomorphism p∗ : Pm(M) → Pn(M), which
representing Pm(M) geometrically as a collection of m strings, corre-
sponds to forgetting the last (m − n) strings. We adopt the con-

vention throughout this paper, that unless explicitly stated

otherwise, all homomorphisms Pm(M) → Pn(M) in the text

will be this one.
The fibration p : Fm(M) → Fn(M) gives rise to a long exact se-

quence of homotopy groups of configuration spaces, from which we
obtain the Fadell-Neuwirth pure braid group short exact sequence:

1 → Pm−n(M \ {x1, . . . , xn}) i∗→ Pm(M)
p∗→ Pn(M) → 1, (2)

where i∗ is the group homomorphism induced by i, and n ≥ 3 if M
is the 2-sphere S2 [Fa, FVB], n ≥ 2 if M is the real projective plane
RP 2 [VB], and n ≥ 1 otherwise [FaN] (in each case, the condition on n
implies that Fn(M) is an Eilenberg-MacLane space). This short exact
sequence plays a central rôle in the study of surface braid groups. It was
used by [PR] to study mapping class groups, in the work of [GMP] on
Vassiliev invariants for braid groups, as well as to obtain presentations
for surface pure braid groups [Bi1, Sc, GG1, GG4].

An interesting question is that of whether the Fadell-Neuwirth short
exact sequence (2) splits. If the above conditions on n are satisfied
then the existence of a section for p∗ is equivalent to that of a geo-
metric section for p (cf. [GG3, GG4]). In [A2], Artin showed that
if M is the plane then (2) splits for all n ∈ N. This implies that Pn
may be expressed as a repeated semi-direct product of free groups,
which enables one to solve the word problem in the pure and full Artin
braid groups. The splitting problem has been studied for other sur-
faces besides the plane. Fadell and Neuwirth gave various sufficient
conditions for the existence of a geometric section for p in the general
case [FaN]. For the sphere, it was known that there exists a section on
the geometric level [FVB]. If M is the 2-torus then Birman exhibited
an explicit algebraic section for (2) for m = n + 1 and n ≥ 2 [Bi1].
However, for compact orientable surfaces without boundary of genus
g ≥ 2, she posed the question of whether the short exact sequence (2)
splits. In [GG1], we provided a complete answer to this question:

Theorem 1 ([GG1]). If M is a compact orientable surface without
boundary of genus g ≥ 2, the short exact sequence (2) splits if and only
if n = 1.
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3. A generalisation of the Fadell-Neuwirth short exact

sequence

As we mentioned above, the Fadell-Neuwirth short exact sequence
is a very important tool in the study of pure surface braid groups, but
unfortunately it does not generalise directly to the corresponding full
braid groups. However, by considering intermediate coverings between
Fn(M) and Dn(M), it is possible to extend it to certain subgroups of
Bn(M) [GG2]. A special case of this construction may be formulated
as follows. Let m,n ∈ N, and let Dm,n(M) denote the quotient space
of Fm+n(M) by the action of the subgroup Sm × Sn of Sm+n. Then we
obtain a fibration Dm,n(M) → Dm(M), defined by forgetting the last
n coordinates. We set Bm,n(M) = π1(Dm,n(M)), sometimes termed
a ‘mixed’ braid group. As in the pure braid group case, we obtain a
generalisation of the short exact sequence of Fadell and Neuwirth:

1 → Bn(M \ {x1, . . . , xm}) → Bm,n(M)
p∗→ Bm(M) → 1, (3)

where again we take m ≥ 3 if M = S2, m ≥ 2 if M = RP 2 and m ≥ 1
otherwise. Once more, unless explicitly stated, all homomorphisms
Bm,n(M) → Bm(M) in the text will be this one.

4. The braid groups of the sphere

The braid groups of the sphere and the real projective plane are of
particular interest, notably because they have non-trivial centre (which
is also the case for the Artin braid groups), and torsion elements. The
braid groups of the sphere were studied during the 1960’s [Fa, FVB,

VB, GVB]: let us recall briefly some of their properties.
If D2 ⊆ S2 is a topological disc, there is a group homomorphism

ι : Bn(D2) → Bn(S2) induced by the inclusion. If β ∈ Bn(D2) then we
shall denote its image ι(β) simply by β. It is well known that Bn(S2) is
generated by σ1, . . . , σn−1 which are subject to the following relations:

σiσj = σjσi if |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 1

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2, and

σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 = 1.





(4)

In what follows, the third relation will be referred to as the surface
relation of Bn(S2). It follows from this presentation and equation (1)
that Bn(S2) is a quotient of Bn. The first three sphere braid groups
are finite: B1(S2) is trivial, B2(S2) is cyclic of order 2, and B3(S2) is
a ZS-metacyclic group (a group whose Sylow subgroups, commutator
subgroup and commutator quotient group are all cyclic) of order 12.
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If n ≥ 3, the so-called ‘full twist’ ∆n braid of Bn(S2), defined by

∆n = (σ1 · · ·σn−1)
n,

generates the centre Z(Bn(S2)) of Bn(S2), and is a torsion element
of order 2. Using Seifert fibre space theory, Murasugi characterised
the torsion elements of Bn(S2): they are all conjugates of powers of
the three elements σ1 · · ·σn−2σn−1, σ1 · · ·σn−2σ

2
n−1 and σ1 · · ·σn−3σ

2
n−2

which are respectively nth, (n− 1)th and (n− 2)th roots of ∆n [Mu].
In [GG4], we studied the short exact sequence (3) in the case M =

S2 of the sphere:

1 → Bn(S2 \ {x1, . . . , xm}) → Bm,n(S2)
p∗→ Bm(S2) → 1, (5)

and proved the following results:

Theorem 2 ([GG4]).

(a) The short exact sequence

1 → Bn(S2 \ {x1, x2, x3}) → B3,n(S2)
p∗→ B3(S2) → 1

splits if and only if n ≡ 0, 2 mod 3.
(b) Let m ≥ 4. If the homomorphism p∗ : Bm,n(S2) → Bm(S2) admits

a section then there exist ε1, ε2 ∈ {0, 1} such that:

n ≡ ε1(m− 1)(m− 2) − ε2m(m− 2) mod m(m− 1)(m− 2).

An open question is whether the necessary condition in part (b) is
also sufficient. If n ≥ 4 then Bn(S2) is infinite, and it follows from the
proof of part (a) that Bn(S2) contains an isomorphic copy of the finite
group B3(S2) of order 12 if and only if n 6≡ 1 mod 3. We have recently
shown that Bn(S2) contains an isomorphic copy of the quaternion group
Q8 of order 8 if and only if n is even [GG5]. The realisation of finite
subgroups in Bn(S2) and Bn(RP 2) seems an interesting problem which
we are pursuing.

5. Braid group series and motivation for their study

IfG is a group, then we recall that its lower central series {Γi(G)}i∈N

is defined inductively by Γ1(G) = G, and Γi+1(G) = [G,Γi(G)] for all
i ∈ N, and its derived series

{
G(i)

}
i∈N∪{0} is defined inductively by

G(0) = G, and G(i) = [G(i−1), G(i−1)] for all i ∈ N. One may check
easily that Γi(G) ⊇ Γi+1(G) and G(i−1) ⊇ G(i) for all i ∈ N, and for
all j ∈ N, j > i, Γj(G) (resp. G(j)) is a normal subgroup of Γi(G)
(resp. G(i)). Notice that Γ2(G) = G(1) is the commutator subgroup of
G. The Abelianisation of the group G, denoted by GAb is the quotient
G/Γ2(G); the Abelianisation of an element g ∈ G is its Γ2(G)-coset in
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GAb. The group G is said to be perfect if G = G(1), or equivalently
if GAb = {1}. Following P. Hall, for any group-theoretic property P,
a group G is said to be residually P if for any (non-trivial) element
x ∈ G, there exists a group H with the property P and a surjective
homomorphism ϕ : G→ H such that ϕ(x) 6= 1. It is well known that
a group G is residually nilpotent (respectively residually soluble) if and
only if

⋂
i≥1 Γi(G) = {1} (respectively

⋂
i≥0 G

(i) = {1}). If g, h ∈ G

then [g, h] = ghg−1h−1 will denote their commutator, and we shall use
the symbol g ⇋ h to mean that g and h commute.

Our main aim in this monograph is to study the lower central and
derived series of the braid groups of the sphere and the punctured
sphere. This was motivated in part by the study of the problem of
the existence of a section for the short exact sequences (2) and (3).
To obtain a positive answer, it suffices of course to exhibit an explicit
section (although this may be easier said than done!). However, and in
spite of the fact that we possess presentations of surface braid groups,
in general it is very difficult to prove directly that such an extension
does not split. One of the main methods that we used to prove the
non-splitting of (2) for n ≥ 2 and of (5) for m ≥ 4 was based on
the following observation: let 1 → K → G → Q → 1 be a split
extension of groups, where K is a normal subgroup of G, and let H
be a normal subgroup of G contained in K. Then the extension 1 →
K/H → G/H → Q → 1 is also split. The condition on H is satisfied
for example if H is an element of either the lower central series or
the derived series of K. In [GG1], considering the extension (2) with
n ≥ 3, we showed that it was sufficient to take H = Γ2(K) to prove
the non-splitting of the quotiented extension, and hence that of the full
extension. In this case, the kernel K/Γ2(K) is Abelian, which simplifies
somewhat the calculations in G/H . This was also the case in [GG4]
for the extension (5) with m ≥ 4. However, for the extension (2) with
n = 2, it was necessary to go a stage further in the lower central series,
and take H = Γ3(K). From the point of view of the splitting problem,
it is thus helpful to know the lower central and derived series of the
braid groups occurring in these group extensions. But these series are
of course interesting in their own right, and help us to understand
better the structure of surface braid groups.

Let us remark that braid groups of the punctured disc were studied
in [Lam] in relation with the study of knots in handlebodies, and were
used by Bigelow to understand the Lawrence-Krammer representation
in his proof of the linearity of the Artin braid groups [Big]. Further-
more, during our study of the braid groups of the 2- and 3-punctured
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sphere, we will also come across some of the Artin and affine Artin
groups (also known as generalised braid groups), notably those of types

B and C̃ [Bri, T].
The lower central series of groups and their successive quotients

Γi/Γi+1 are isomorphism invariants, and have been widely studied using
commutator calculus, in particular for free groups of finite rank [Hal,

MKS]. Falk and Randell, and independently Kohno investigated the
lower central series of the pure braid group Pn, and were able to con-
clude that Pn is residually nilpotent [FR1, Ko]. Falk and Randell also
studied the lower central series of generalised pure braid groups [FR2,

FR3].
Using the Reidemeister-Schreier rewriting process, Gorin and Lin

obtained a presentation of the commutator subgroup of Bn for n ≥
3 [GL] (see Theorem 36). For n ≥ 5, they were able to infer that
(Bn)

(1) = (Bn)
(2), and so (Bn)

(1) is perfect. From this it follows that
Γ2(Bn) = Γ3(Bn), hence Bn is not residually nilpotent. If n = 3 then
they showed that (B3)

(1) is a free group of rank 2, while if n = 4,
they proved that (B4)

(1) is a semi-direct product of two free groups of
rank 2. By considering the action, one may see that (B4)

(1) % (B4)
(2).

The work of Gorin and Lin on these series was motivated by the study
of almost periodic solutions of algebraic equations with almost periodic
coefficients.

6. Statement of the main results

Chapter 1 is devoted to determining the lower central series of the
braid groups of the sphere. In Theorem 3, we show that for all n ≥
2, the lower central series is constant from the commutator subgroup
onwards. As in the case of the disc, the case n = 4 is particularly
interesting: Γ2(B4(S2)) is a semi-direct product of the quaternion group
of order 8 by the free group of rank 2. Here is the main theorem of
Chapter 1:

Theorem 3. For all n ≥ 2, the lower central series of Bn(S2)
is constant from the commutator subgroup onwards: Γm(Bn(S2)) =
Γ2(Bn(S2)) for all m ≥ 2. The subgroup Γ2(Bn(S2)) is as follows:

(a) If n = 1, 2 then Γ2(Bn(S2)) = {1}.
(b) If n = 3 then Γ2(Bn(S2)) ∼= Z3. Thus B3(S2) ∼= Z3 ⋊Z4, the action

being the non-trivial one.
(c) If n = 4 then Γ2(B4(S2)) admits a presentation of the following

form:
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generators: g1, g2, g3, where in terms of the usual generators of

B4(S2), g1 = σ2
1σ2σ

−3
1 , g2 = σ3

1σ2σ
−4
1 and g3 = σ3σ

−1
1 .

relations:

g4
3 = 1

[g2
3, gi] = 1 for i = 1, 2

[g3, g2g1] = 1

g−1
1 g−1

3 g1 = g2g3g
−1
2

g−1
1 g−1

3 g1 = g1g3g
−1
1 g3.

Furthermore,
Γ2(B4(S2)) ∼= Q8 ⋊ F2(a, b),

where Q8 = 〈x, y | x2 = y2, xyx−1 = y−1〉 is the quaternion group
of order 8, and F2(a, b) is the free group of rank 2 on two generators
a and b. The action is given by:

ϕ(a)(x) = y ϕ(a)(y) = xy

ϕ(b)(x) = yx ϕ(b)(y) = x.

(d) In the cases n = 5 and n ≥ 6, a presentation for Γ2(Bn(S2)) is
given in Chapter 4, by Propositions 64 and 67 respectively.

The lower central series of Bn(S2) is thus completely determined.
In particular, if n ≥ 3 then Bn(S2) is not residually nilpotent.

In Chapter 2, we study the derived series ofBn(S2). As in the case of
the disc, (Bn(S2))(1) is perfect if n ≥ 5, in other words, the derived series
of Bn(S2) is constant from (Bn(S2))(1) onwards. The cases n = 1, 2, 3
are straightforward, and the groups Bn(S2) are finite and soluble. In
the case n = 4, we make use of the semi-direct product decomposition
of (B4(S2))(1) obtained in Theorem 3. Proposition 29 describes the
structure of the commutator subgroup of a general semi-direct product,
and shall be applied frequently throughout this monograph. This will
enable us to show that from (B4(S2))(4) onwards, the derived series
of B4(S2) coincides with that of the free group of rank 2. We also
determine some of the derived series quotients of B4(S2):

Theorem 4. The derived series of Bn(S2) is as follows.

(a) If n = 1, 2 then (Bn(S2))(1) = {1}.
(b) If n = 3 then (B3(S2))(1) ∼= Z3 and (B3(S2))(2) = {1}.
(c) Suppose that n = 4. Then:

(i) (B4(S2))(1) = Γ2(B4(S2)) is given by part (c) of Theorem 3;
it is isomorphic to the semi-direct product Q8 ⋊ F2. Further,
B4(S2)/(B4(S2))(1) is isomorphic to Z6.
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(ii) (B4(S2))(2) is isomorphic to the semi-direct product Q8 ⋊ F(1)
2 ,

where (F2)
(1) is the commutator subgroup of the free group F2 =

F2(a, b) of rank 2 on two generators a, b. The action of (F2)
(1)

on Q8 is the restriction of the action of F2(a, b) given in part (c)
of Theorem 3. Further,

(B4(S2))(1)/(B4(S2))(2) ∼= Z2, and B4(S2)/(B4(S2))(2) ∼= Z2 ⋊ Z6,

where the action of the generator σ of Z6 on Z2 is given by left
multiplication by the matrix ( 0 1

−1 1 ).
(iii) (B4(S2))(3) is a subgroup of P4(S2) isomorphic to the direct

product Z2 × (F2)
(2). Further,

(B4(S2))(2)/(B4(S2))(3) ∼= (Z2 × Z2) × (F2)
(1)/(F2)

(2).

(iv) (B4(S2))(m) ∼= (F2)
(m−1) for all m ≥ 4. Further,

(B4(S2))(3)/(B4(S2))(4) ∼= Z2 × (F2)
(2)/(F2)

(3),

and for m ≥ 4,

(B4(S2))(m)/(B4(S2))(m+1) ∼= (F2)
(m−1)/(F2)

(m).

(d) If n ≥ 5 then (Bn(S2))(2) = (Bn(S2))(1), so (Bn(S2))(1) is perfect.
A presentation of (Bn(S2))(1) is given in Propositions 64 and 67.

In particular, the derived series of Bn(S2) is thus completely deter-
mined (up to knowing the derived series of the free group F2 of rank 2,
see Remark 27).

Chapter 3 deals with the lower central and derived series of braid
groups of the punctured sphere Bm(S2 \ {x1, . . . , xn}), n ≥ 1, and is
divided into eight sections, according to the respective values of m and
n. In Proposition 31 (Section 1), we recall a presentation of these
groups obtained in [GG4]. In Section 2, we consider the case n = 1,
and show that Bm(S2 \{x1}) is isomorphic to Bn(D2) (Proposition 34).
In Proposition 5, we study the series of Bn(D2) in further detail, thus
extending the results of Gorin and Lin:

Proposition 5. Let m ≥ 1. Then:

(a) For all s ≥ 3, Γs(Bm(D2)) = Γ2(Bm(D2)).
(b) If m = 1, 2 then (Bm(D2))(s) = {1} for all s ≥ 1.
(c) If m = 3 then the derived series of (B3(D2))(1) is that of the free

group F2(u, v) on two generators u and v, where u = σ2σ
−1
1 and

v = σ1uσ
−1
1 = σ1σ2σ

−2
1 . Further,

B3(D2)
/
(B3(D2))(2) ∼= Z2 ⋊ Z,
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where Z2 is the free Abelian group generated by the respective Abelian-
isations u and v of u and v, and the action is given by σ ·u = v and
σ · v = −u+ v, where σ is a generator of Z.

(d) If m = 4 then

(B4(D2))(1)
/
(B4(D2))(2) ∼= Z2, and

(B4(D2))(2) ∼= F2(a, b) ⋊ Γ2(F2(u, v)),

where a = σ3σ
−1
1 and b = uau−1 = σ2σ3σ

−1
1 σ−1

2 .

Hence the lower central series (respectively derived series) ofBm(D2)
is completely determined for all m ≥ 1 (respectively for all m 6= 4; for
the case m = 3, this is again up to knowing the derived series of F2).

In the difficult case of the derived series of B4(D2), we then go on
to describe some of the higher order terms and the successive derived
series quotients:

Proposition 6.
(
B4(D2)

)(2)/(
B4(D2)

)(3) ∼= Z2 × Z2 × (Γ2(F2(u, v)))
Ab.

Proposition 7. (B4(D2))(3) ∼= F5(z1, . . . , z5) ⋊ (F2(u, v))
(2).

The action for this semi-direct product will be described by equa-
tions (20) and (21). From this, we may obtain the Abelianisation of
(B4(D2))(3):

Proposition 8.
(
(B4(D2))(3)

)
Ab = (B4(D2))(3)

/
(B4(D2))(4)

∼= Z3 × Z18 × Z18 × (F2(u, v))
(2)
/
(F2(u, v))

(3).

This result suggests that the derived series of B4(D2) is highly
non trivial. In principle, using the semi-direct product structure of
(B4(D2))(3) and Proposition 29, it is possible to discover further terms
of the derived series, but in practice, the calculations become very hard.
The main results of Section 2 are summed up in Table 1.

In Section 3, we comment briefly on the case m = 1 which is that
of a free group of rank n − 1. From Section 4 of Chapter 3 onwards,
we suppose that n ≥ 2. If m ≥ 3 (resp. m ≥ 5) the lower central
series (resp. the derived series) of Bm(S2 \ {x1, . . . , xn}) is constant
from the commutator subgroup onwards. Once more, for the derived
series, m = 4 represents a challenging case. Nevertheless, we are able
to determine some of the derived series quotients. The main theorem
of Section 4 is as follows:
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values

of m
series/group result reference

∀m ≥ 1 lower central Γ3(G) = Γ2(G)

∀m ≥ 5 derived G(2) = G(1)

derived G(i) = (F2)
(i−1), ∀i ≥ 1

[GL] (see

Γ2(G) F2
Theorem 36)

m = 3
G(1)/G(2) Z2

G/G(2) Z2 ⋊ Z Proposition 5

Γ2(G) F2 ⋊ F2 [GL] (see

G(1)/G(2) Z2 Theorem 36)

G(2) F2 ⋊ (F2)
(1) Proposition 5

m = 4
G(2)/G(3) Z2 × Z2 × ((F2)

(1))Ab Proposition 6

G(3) F5 ⋊ (F2)
(2) Proposition 7

G(3)/G(4) Z3 × Z18 × Z18 × ((F2)
(2))Ab Proposition 8

Table 1. Summary of results of Section 2, Chapter 3
concerning the lower central and derived series of G =
Bm(D2). For the semi-direct product actions, one should
consult the corresponding reference.

Theorem 9. Let n ≥ 2. Then:

(a) If m ≥ 3 then

Γ3(Bm(S2 \ {x1, . . . , xn})) = Γ2(Bm(S2 \ {x1, . . . , xn})).
(b) If m ≥ 5 then

(Bm(S2 \ {x1, . . . , xn}))(2) = (Bm(S2 \ {x1, . . . , xn}))(1).

(c) If m = 4 then

B4(S2 \ {x1, . . . , xn})
/
(B4(S2 \ {x1, . . . , xn}))(2) ∼=

(
Z2 ⋊ Z

)
× Zn−1

where the semi-direct product structure is that of part (c) of Propo-
sition 5, and

(B4(S2 \ {x1, . . . , xn}))(1)
/
(B4(S2 \ {x1, . . . , xn}))(2) ∼= Z2.

Alternatively,

B4(S2 \ {x1, . . . , xn})/(B4(S2 \ {x1, . . . , xn}))(2) ∼= Z2 ⋊ Zn,

where Z2 ∼= (B4(S2\{x1, . . . , xn}))(1)/(B4(S2\{x1, . . . , xn}))(2) is the
free Abelian group with basis {u, v}, Zn ∼= B4(S2 \ {x1, . . . , xn})Ab
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values

of m
series/group result reference

∀m ≥ 3 lower central Γ3 = Γ2

∀m ≥ 5 derived G(2) = G(1)

(Z2 ⋊ Z) × Zn−1 Theorem 9

m = 4
G/G(2)

Z2 ⋊ Zn

G(1)/G(2) Z2

Table 2. Summary of results of Section 4, Chapter 3
concerning the lower central and derived series of G =
Bm(S2 \ {x1, . . . , xn}), m ≥ 3, n ≥ 2.

has basis {σ, ρ1, . . . , ρn−1}, and the action is given by

σ · u = v σ · v = −u+ v

ρi · u = u ρi · v = v

for all 1 ≤ i ≤ n− 1.

So if n ≥ 2, the lower central and derived series of the braid group
Bm(S2 \{x1, . . . , xn}) are completely determined, with the exception of
a small number of values of m: for the lower central series, they consist
of just m = 2, and for the derived series, m = 2, 3 and 4.

The case m ≥ 2 and n = 2 is considered in Sections 5, 6 and 7. Ap-
plying the results of Proposition 34, one may see that Bm(S2\{x1, x2})
is isomorphic to the m-string braid group Bm(A) of the annulus A =
[0, 1] × S1, and is thus an Artin group of type Bm. In Proposition 10,
Section 5, we prove the following general result concerning the structure
of Γ2(Bm(S2 \ {x1, x2})):

Proposition 10. Let m ≥ 2. Then:

(a) Bm(S2 \ {x1, x2}) ∼= Fm ⋊ Bm(D2), where the action ϕ is given by
the Artin representation of Bm(D2) as a subgroup of Aut(Fm) (see
equation (27)).

(b) Γ2(Bm(S2 \ {x1, x2})) ∼= Ker (ρ) ⋊ Γ2(Bm(D2)), where

ρ : Fm(A2,3, . . . , A2,m+2) → Z

is the augmentation homomorphism, and the action is that induced
by ϕ (the generators Ai,j are described in Proposition 31).

The semi-direct product structure allows us to determine some de-
rived series quotients:
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Proposition 11.
(
B3

(
S2 \ {x1, x2}

))(1)/(
B3

(
S2 \ {x1, x2}

))(2) ∼= Z4.

Proposition 12.

B3

(
S2 \ {x1, x2}

)/(
B3

(
S2 \ {x1, x2}

))(2) ∼= Z4 ⋊ Z2,

where Z4 has a basis
{
α̃0, β̃0, ũ, ṽ

}
, Z2 has a basis {σ, ρ1}, and the

action is given by:

σ · ũ = ṽ σ · ṽ = −ũ+ ṽ

σ · α̃0 = β̃0 σ · β̃0 = β̃0 − α̃0

ρ1 · α̃0 = α̃0 ρ1 · β̃0 = β̃0

ρ1 · ũ = −α̃0 − ũ+ ṽ ρ1 · ṽ = −β̃0 − ũ.

We then give an alternative proof of Proposition 11, showing along
the way that the commutator subgroup of B3(S2 \{x1, x2}) is the semi-
direct product of a given infinite rank subgroup of a free group of rank 5
by a free group of rank 2 (see Proposition 42).

In Section 6, we study the lower central series of B2(S2 \ {x1, x2})
(which is one of the outstanding cases not covered by Theorem 9).
Using an exact sequence due to Stallings (see equation (8)), we prove
the following:

Corollary 13. Γ2(B2(S2 \ {x1, x2})) ∼= Γ2(F2(a, b)) ⋊ Z, where
the action of Z on Γ2(F2(a, b)) is given by conjugation by b−1a.

The group B2(S2 \{x1, x2}) is particularly fascinating, not least be-
cause it may be interpreted in many different ways: as the 2-string braid
group B2(A) of the annulus (and so as the Artin group of type B2), and
as the Baumslag-Solitar group BS(2, 2), for example (see Remarks 49).
It is also a one-relator group with non-trivial (infinite cyclic) centre,
which applying results of Kim and McCarron [KMc, McCa] implies
that:

Proposition 14. B2(S2\{x1, x2}) is residually nilpotent and resid-
ually a finite 2-group.

Further, using the fact that the quotient of B2(S2 \ {x1, x2}) by its
centre is isomorphic to the free product Z2 ∗ Z, we prove that apart
from the first term, the lower central series of these two groups coincide,
and applying results of Gaglione and Labute [Ga, Lab] which describe
the lower central series of certain free products of cyclic groups, we are
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able to determine completely the lower central series (in terms of that
of Z2 ∗ Z), as well as the successive lower central series quotients of
B2(S2 \ {x1, x2}) in an explicit manner:

Theorem 15. For all i ≥ 2, Γi(B2(S2 \ {x1, x2})) ∼= Γi(Z2 ∗ Z),
and:

Γi(B2(S2 \{x1, x2}))/Γi+1(B2(S2 \{x1, x2})) ∼= Γi(Z2 ∗ Z)/Γi+1(Z2 ∗ Z)
∼= Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸

Ri times

,

where

Ri =
i−2∑

j=0



∑

k|i−j
k>1

µ

(
i− j

k

)
kαk
i− j


 ,

µ is the Möbius function, and

αk =
1

k

(
Tr

(
0 −1
−1 1

)k
− 1

)
.

From this, we may see (Corollary 53) that apart from the first
term, the derived series of B2(S2 \ {x1, x2}) is that of π(F2), where
π : F2 = Z ∗ Z → Z2 ∗ Z is the homomorphism obtained by taking the
first factor modulo 2.

In Section 7, we consider the more general case of them-string braid
group Bm(S2\{x1, x2})), m ≥ 3, which we know to be isomorphic to the
m-string braid group Bm(A) of the annulus. With this interpretation,
Kent and Peifer gave a nice presentation of this group (Proposition 56)
from which they were able to conclude that Bm(A) is a semi-direct

product of the affine Artin group Ãm−1 by Z (Corollary 57) [KP].
Applying Proposition 29 once more, we obtain in Proposition 58 a pre-
sentation of Γ2(Bm(S2 \ {x1, x2})) (which as we shall see, is isomorphic

to Γ2(Ãm−1)), from which we may deduce:

Corollary 16. Let m ≥ 3. Then

(
Bm

(
S2 \ {x1, x2}

))(1)/(
Bm

(
S2 \ {x1, x2}

))(2) ∼=





Z4 if m = 3

Z2 if m = 4

Z if m ≥ 5.

The main results of Sections 5, 6 and 7 of Chapter 3 are summed
up in Table 3.
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values

of m
series/group result reference

∀m ≥ 2 Γ2(G) (Fm)(1) ⋊ Γ2(Bm(D2)) Proposition 10

lower central Γi = Γi(Z2 ∗ Z), i ≥ 2

lower central Γi(Z2 ∗ Z)/Γi+1(Z2 ∗ Z)

quotients
Theorem 15

Γi(G)/Γi+1(G)
⊕Ri

j=1 Z2

m = 2
Γ2(G) (F2)

(1) ⋊ Z Corollary 13

Γ2(G) F∞ Corollary 47

Γ2(G)/Γ3(G) Z2

Γ3(G) F∞
Proposition 54

Γ2(G) F∞ ⋊ F2 Proposition 42

m = 3 G(1)/G(2) Z4 Proposition 11

G/G(2) Z4 ⋊ Z2 Proposition 12

m = 4 G(1)/G(2) Z2

m ≥ 5 G(1)/G(2) Z
Corollary 16

Table 3. Summary of results of Sections 5, 6 and 7 of
Chapter 3 concerning the lower central and derived series
of G = Bm(S2 \ {x1, x2}), m ≥ 2. In each case, F∞ is a
given free group of countable infinite rank.

In Section 8 of Chapter 3, we consider Bm(S2 \{x1, x2, x3}), m ≥ 2,
which is also one of the outstanding cases for the derived series not
covered by Theorem 9. This group is isomorphic to the affine Artin

group of type C̃m for which little seems to be known [All]. Despite the
existence of nice presentations for this group [BG], we were not able to
describe satisfactorily the commutator subgroup even for m = 2. We
obtain however some partial results, notably in Proposition 60 the fact
that the successive lower central series quotients of B2(S2 \{x1, x2, x3})
are finite direct sums of Z2, which generalises part of Theorem 15, as
well as for all i ≥ 1 and m ≥ 2, (Bm(S2\{x1, x2, x3}))(i) is a semi-direct
product of some group Ki by (Bm(D2))(i) (Proposition 61).

Finally in Chapter 4, we give presentations of the commutator sub-
groups Γ2(Bn(S2)) of the sphere braid groups for n ≥ 4, and in the
case n = 4, in Proposition 63 we derive the presentation of Γ2(B4(S2))
given in Theorem 3(c).
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7. Extension to surfaces of higher genus

Since work on this paper started, one of the authors, in collabo-
ration with P. Bellingeri and S. Gervais has undertaken the study of
the lower central series of braid groups of orientable surfaces, with and
without boundary, of genus g ≥ 1 [BGG]. We remark that some of
the techniques appearing in this monograph were used subsequently
in that paper. It is worth stating the corresponding results of [BGG]
which contrast somewhat with those obtained here for the sphere and
punctured sphere.

Theorem 17 ([BGG]). Let M be a compact, connected orientable
surface without boundary, of genus g ≥ 1, and let m ≥ 3. Then:

(a) Γ1(Bm(M))/Γ2(Bm(M)) ∼= Z2g ⊕ Z2.
(b) Γ2(Bm(M))/Γ3(Bm(M)) ∼= Zn−1+g.
(c) Γ3(Bm(M)) = Γ4(Bm(M)). Moreover, Γ3(Bm(M)) is perfect for

m ≥ 5.

This implies that braid groups of compact, connected orientable
surfaces without boundary may be distinguished by their lower central
series (indeed by the first two lower central quotients).

Theorem 18 ([BGG]). Let g ≥ 1, q ≥ 1 and m ≥ 3. Let M
be a compact, connected orientable surface of genus g with q boundary
components. Then:

(a) Γ1(Bm(M))/Γ2(Bm(M)) ∼= Z2g+q−1 ⊕ Z2.
(b) Γ2(Bm(M))/Γ3(Bm(M)) ∼= Z.
(c) Γ3(Bm(M)) = Γ4(Bm(M)). Moreover, Γ3(Bm(M)) is perfect for

m ≥ 5.

Thus if m ≥ 3 and if M a compact surface (with or without bound-
ary) of genus g ≥ 1, since Γ3(Bm(M)) 6= {1}, Bm(M) is not residually
nilpotent. Moreover, we observe similar phenomena to those seen in
Theorem 9 for the punctured sphere (stability of the lower central series
for m ≥ 3, perfectness of the Γi(Bm(M)) for m ≥ 5). However, they
occur one stage further, not from the commutator subgroup onwards,
but from Γ3 onwards.

Just as for B2(S2 \ {x1, x2}), the 2-string braid groups represent a
very difficult and interesting case. In the case of the 2-torus T2, we
prove that its 2-string braid group is residually nilpotent. Further,
arguing as in the proof of Theorem 15, we show that apart from the
first term, the lower central series of B2(T2) and Z2 ∗ Z2 ∗ Z2 coincide,
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and by applying Gaglione’s results, we may also determine explicitly
all of their successive lower central series quotients. More precisely:

Theorem 19 ([BGG]).

(a) B2(T2) is residually nilpotent.
(b) For all i ≥ 2:

(i) Γi(B2(T2)) ∼= Γi(Z2 ∗ Z2 ∗ Z2).
(ii) Γi(B2(T2))/Γi+1(B2(T2)) is isomorphic to the direct sum of Ri

copies of Z2, where:

Ri =

i−2∑

j=1



∑

k|i−j
k>1

µ

(
i− j

k

)
kαk
i− j


 and kαk = 2k + 2(−1)k.

As in the case of the 2-string braid group of the n-punctured sphere,
n ≥ 3, it seems to be very difficult even to describe the commutator
subgroup of the 2-string braid groups of orientable surfaces of higher
genus.
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CHAPTER 1

The lower central series of Bn(S2)

The main aim of this chapter is to prove Theorem 3, which de-
scribes the lower central series of Bn(S2). This will be carried out in
Section 2. Before doing so, in Section 1, we state and prove some
general results concerning the splitting of the short exact sequence (6)
(Proposition 20), as well as homological conditions for the stabilisation
of the lower central series of a group (Lemma 23).

1. Generalities

Let n ∈ N. Let Bn(S2) denote the braid group of S2 on n strings, let
(Bn(S2)) Ab = Bn(S2)/Γ2(Bn(S2)) denote the Abelianisation of Bn(S2),
and let α : Bn(S2) → (Bn(S2)) Ab be the canonical projection. Then we
have the following short exact sequence:

1 // Γ2(Bn(S2)) // Bn(S2)
α // (Bn(S2)) Ab // 1. (6)

We first prove the following result which deals with the splitting of
this short exact sequence.

Proposition 20. Let n ∈ N.

(a) (Bn(S2)) Ab = Bn(S2)/Γ2(Bn(S2)) ∼= Z2(n−1).
(b) The short exact sequence (6) splits if and only if n is odd, where

the action on Γ2(Bn(S2)) by a generator of Z2(n−1) is given by con-
jugation by σ1 . . . σn−2σ

2
n−1.

(c) If n is even then Bn(S2) is not isomorphic to the semi-direct product
of a subgroup K by Z2(n−1).

Proof.

(a) This follows easily from the presentation (4) of the group Bn(S2).
The generators σi of Bn(S2) are all identified by α to a single gen-
erator σ̃ = α(σi) of Z2(n−1).

(b) In order to construct a section, we consider the elements of Bn(S2)
of order 2(n − 1). According to Murasugi’s classification of the
torsion elements of Bn(S2) [Mu], these elements are precisely the
conjugates of the elements of the form (σ1 · · ·σn−2σ

2
n−1)

r, where r

1
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and 2(n − 1) are coprime. Such an element projects to σ̃rn whose
order is 2(n− 1)/ gcd(rn, 2(n− 1)). Since

gcd(rn, 2(n− 1)) = gcd(n, 2(n− 1)) = gcd(n, 2),

the result follows from equation (6) and part (a).
(c) Let n ∈ N be even. We first prove the following lemma:

Lemma 21. Let G be a group whose Abelianisation GAb is Hop-
fian i.e. GAb is not isomorphic to any of its proper quotients. Sup-
pose that there exists a group H isomorphic to GAb, a normal sub-
group K of G, and a split short exact sequence 1 → K → G →
H → 1. Then G ∼= Γ2(G) ⋊GAb.

Proof of Lemma 21. Let α : G→ GAb denote Abelianisation,
let ξ : G→ H denote the homomorphism in the given short exact
sequence, and let s : H → G be a section for ξ. Since H ∼= G/K is
Abelian, it follows from standard properties of the commutator sub-
group that Γ2(G) ⊆ K. Hence we have the following commutative
diagram:

1 // Γ2(G) � � //
� _

��

G
α // GAb // 1

1 // K
� � // G

ξ //
H //

s
oo_ _ _ 1,

This extends to a commutative diagram of short exact sequences by
taking ρ : GAb → H defined by ρ(y) = ξ(x) for all y ∈ GAb, where
x ∈ G is any element satisfying α(x) = y. This homomorphism
is well defined, and is surjective since ξ and α are. But GAb ∼= H
is Hopfian by hypothesis, which implies that ρ is an isomorphism.
Hence α = ρ−1 ◦ ξ, and s ◦ ρ is a section for α, which proves the
lemma. �

By taking G = Bn(S2) and K = Z2(n−1) in the statement of
Lemma 21, if Bn(S2) were a semi-direct product of K with H then
this would contradict part (b). This completes the proof of Propo-
sition 20. �

Remark 22. If n is even, let us consider the natural projection
p : Z2(n−1) → Zn−1. Then we have a short exact sequence:

1 // Γ∗
2(Bn(S2)) // Bn(S2)

α∗
// Z(n−1)

// 1.

where α∗ = p◦α, and Γ∗
2(Bn(S2)) is the kernel of α∗. It is not difficult to

see that this short exact sequence splits: a section is given by sending
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the generator of Z(n−1) to (σ1 . . . σn−2σ
2
n−1)

2r

, where 2r is the greatest
power of 2 dividing n.

Let G be a group which acts on a group H . Following [HMR,
p. 67], we may define the commutator subgroup with respect to this
action by

ΓG(H) = 〈(g ⋆ h) kh−1k−1 | g ∈ G, h, k ∈ H〉, (7)

where g ⋆ h denotes the action of g on h. We say that the action is
perfect if ΓG(H) = H . Note that if H is a normal subgroup of G then
H ⊇ ΓG(H) = [G,H ] ⊇ [H,H ] for the action of conjugation of G on
H . In particular, if G = H then ΓG(H) = Γ2(G) for the action of
conjugation of G on itself. If this action is perfect then the group G is
perfect.

Lemma 23. Let G be a group, and let GAb be its Abelianisation. Let
δ : H2(G,Z) → H2(G

Ab,Z) be the homomorphism induced by Abeliani-
sation. Then

Γ2(G)/Γ3(G) ∼= Coker (δ) ∼= H0

(
GAb, H1 (Γ2(G),Z)

)
.

In particular:

(a) Γ2(G) = Γ3(G) if and only if δ is surjective.
(b) If H2(G

Ab,Z) is trivial then Γn(G) = Γ2(G) for all n ≥ 2.
(c) If either the action (by conjugation) of G on Γ2(G) or the action (by

conjugation) of GAb on H1 (Γ2(G),Z) is perfect then Γn(G) = Γ2(G)
for all n ≥ 2.

Proof. Recall that if 1 → K → G → Q → 1 is an extension of
groups then we have a 6-term exact sequence

H2(G) → H2(Q) → K/[G,K] → H1(G) → H1(Q) → 1 (8)

due to Stallings [Bro, McCl, St]. Applying this to the short exact
sequence:

1 → Γ2(G) → G→ GAb → 1, (9)

we obtain:

H2(G,Z)
δ→ H2(G

Ab,Z) → Γ2(G)/Γ3(G) → H1(G,Z) → GAb → 1.

But H1(G,Z) → GAb is an isomorphism, so this becomes

H2(G,Z)
δ→ H2(G

Ab,Z) → Γ2(G)/Γ3(G) → 1.

Hence Γ2(G)/Γ3(G) ∼= Coker (δ) which yields the first isomorphism.
To obtain the second, we consider the Lyndon-Hochschild-Serre spec-
tral sequence [Bro, McCl] applied to the short exact sequence (9),
for which the relevant terms are E2

(2,0) = H2(G
Ab,Z) and E2

(0,1) =
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H0

(
GAb, H1 (Γ2(G),Z)

)
. Since H1(G) = H1(G

Ab), the differential
d2 : E2

(2,0) → E2
(0,1) is surjective, with kernel E∞

(2,0). From the general

definition of the filtration of H2(G) given by the spectral sequence,
we have a surjection H2(G) → E∞

(2,0), and hence the following exact
sequence:

H2(G) → E∞
(2,0) →֒ E2

(2,0) → E2
(0,1) → 1.

Hence Im (δ) = E∞
(2,0), and

Coker (δ) = E2
(2,0)/ Im (δ) ∼= E2

(0,1) = H0

(
GAb, H1 (Γ2(G),Z)

)

as required. From the first isomorphism, one may check that part (a)
is satisfied. Part (b) then follows easily.

To prove part (c), if the action by conjugation of G on Γ2(G) is
perfect then ΓG(Γ2(G)) = [G,Γ2(G)] = Γ3(G) = Γ2(G) and the result
is clear. Now let us consider the action of G on H1(Γ2(G)) = (Γ2(G))Ab

given by conjugation, defined by g · h̃ = g̃hg−1, where g, h ∈ G, and ˜
denotes Abelianisation in Γ2(G). If g ∈ Γ2(G) then the induced action
on (Γ2(G))Ab is trivial, so the original action factors through GAb, and

we obtain an action of GAb on (Γ2(G))Ab given by g̃ · h̃ = g̃hg−1 (g̃
denotes the Abelianisation of g in G). Suppose that this action is
perfect, so that ΓGAb((Γ2(G))Ab) = (Γ2(G))Ab. Now

ΓGAb((Γ2(G))Ab) = [G,Γ2(G)]/[Γ2(G),Γ2(G)] = Γ3(G)/[Γ2(G),Γ2(G)],

and since Γ3(G) ⊆ Γ2(G), it follows that Γ3(G) = Γ2(G), which implies
the result. �

Remark 24. The hypothesis of part (b) of the lemma holds for
example if GAb is cyclic. Recall that if GAb is finitely-generated then
this condition is also necessary: if H is a finitely-generated Abelian
group satisfying H2(H,Z) = {0} then H is cyclic.

2. The lower central series of Bn(S2)

Now we come to the main result of this chapter.

Theorem 3. For all n ≥ 2, the lower central series of Bn(S2)
is constant from the commutator subgroup onwards: Γm(Bn(S2)) =
Γ2(Bn(S2)) for all m ≥ 2. The subgroup Γ2(Bn(S2)) is as follows:

(a) If n = 1, 2 then Γ2(Bn(S2)) = {1}.
(b) If n = 3 then Γ2(Bn(S2)) ∼= Z3. Thus B3(S2) ∼= Z3 ⋊Z4, the action

being the non-trivial one.
(c) If n = 4 then Γ2(B4(S2)) admits a presentation of the following

form:
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generators: g1, g2, g3, where in terms of the usual generators of

B4(S2), g1 = σ2
1σ2σ

−3
1 , g2 = σ3

1σ2σ
−4
1 and g3 = σ3σ

−1
1 .

relations:

g4
3 = 1 (10)

[g2
3, g1] = 1 (11)

[g2
3, g2] = 1 (12)

[g3, g2g1] = 1 (13)

g−1
1 g−1

3 g1 = g2g3g
−1
2 (14)

g−1
1 g−1

3 g1 = g1g3g
−1
1 g3. (15)

Furthermore,
Γ2(B4(S2)) ∼= Q8 ⋊ F2(a, b),

where Q8 = 〈x, y | x2 = y2, xyx−1 = y−1〉 is the quaternion group
of order 8, and F2(a, b) is the free group of rank 2 on two generators
a and b. The action is given by:

ϕ(a)(x) = y ϕ(a)(y) = xy

ϕ(b)(x) = yx ϕ(b)(y) = x.

(d) In the cases n = 5 and n ≥ 6, a presentation for Γ2(Bn(S2)) is
given in Chapter 4, by Propositions 64 and 67 respectively.

Proof. The first part of the theorem, Γm(Bn(S2)) = Γ2(Bn(S2))
for m ≥ 2, follows from Lemma 23(b) and Remark 24.

Now let us consider the rest of the theorem.

(a) If n = 1, 2 then Bn(S2) ∼= Zn, and the result follows easily.
(b) Let n = 3. Then B3(S2) is a ZS-metacyclic group (a group whose

Sylow subgroups, commutator subgroup and commutator quotient
group are all cyclic) of order 12 [FVB]. It follows from Proposi-
tion 20(a) that (B3(S2)) Ab ∼= Z4, and hence Γ2(B3(S2)) ∼= Z3.

From Proposition 20(b), the short exact sequence (6) splits, so
B3(S2) ∼= Z3 ⋊ Z4, and the action of the generator σ̃ of (B3(S2)) Ab

on the generator ρ of Z3 is given by σ̃ · ρ = ρ−1 i.e. the non-trivial
action.

(c) Let n = 4. To obtain the given presentation of Γ2(B4(S2)), one ap-
plies the Reidemeister-Schreier rewriting process to the short exact
sequence (6). The calculations are deferred to Proposition 63, see
Section 2 of Chapter 4.

Using this presentation, let us prove the second part of (c) of
Theorem 3, that Γ2(B4(S2)) ∼= Q8 ⋊ F2(a, b). This will be achieved
by the following two propositions.
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Proposition 25. The normal subgroup of Γ2(B4(S2)) generated
by g3 is isomorphic to a quotient of the quaternion group Q8.

Proof. Let N be the normal subgroup of Γ2(B4(S2)) generated
by g3, and let H be the subgroup of Γ2(B4(S2)) generated by g3

and g1g3g
−1
1 . Clearly H ⊆ N . To prove the converse, it suffices to

show that if we conjugate g3 and g1g3g
−1
1 by g±1

1 and g±1
2 , we obtain

elements of H . This is a consequence of the following equalities:

g2g3g
−1
2 = g−1

1 g−1
3 g1 by equation (14)

= g1g3g
−1
1 · g3 by equation (15)

g2
1g3g

−2
1 = g−1

3 · g1g
−1
3 g−1

1 by equation (15)

g2g1g3g
−1
1 g−1

2 = g3 by equation (13)

g−1
2 g3g2 = g1g3g

−1
1 by equation (13)

g−1
2 g1g3g

−1
1 g2 = g−1

2 g−1
1 g−1

3 g1g
−1
3 g2 by equation (15)

= g3 · g−1
2 g−1

3 g2 by equation (14).

Hence H = N is normal in Γ2(B4(S2)). Now g2
3 = (g1g3g

−1
1 )2 by

equation (11), and (g1g3g
−1
1 g3)

2 = (g−1
1 g−1

3 g1)
2 = g−2

3 = g2
3 by equa-

tions (15) and (10). By equations (10) and (11) it thus follows that
[g1g3g

−1
1 , g3] = g2

3, and hence g1g3g
−1
1 · g3g1g

−1
3 g−1

1 = g3
3 = g−1

3 . So
g1g3g

−1
1 and g3 satisfy a set of defining relations of Q8, and thus H

is a quotient of Q8. �

Proposition 26. With H as defined as in the proof of Propo-
sition 25, H ∼= Q8, and Γ2(B4(S2)) ∼= Q8 ⋊ F2(a, b), the action
being given by ϕ(a)(x) = axa−1 = y, ϕ(a)(y) = aya−1 = xy,
ϕ(b)(x) = bxb−1 = yx and ϕ(b)(y) = byb−1 = x.

Proof. Let Q8 be generated by x and y, subject to the relations
x2 = y2 and xyx−1 = y−1. We remark that if z ∈ Q8 and w ∈
F2(a, b) then wzw−1 = ϕ(w)(z), and [z, w] = z·ϕ(w)(z−1). Consider
the map

ψ : {g1, g2, g3} → Q8 ⋊ F2(a, b)

defined as follows: ψ(g1) = a, ψ(g2) = b and ψ(g3) = x. It is
straightforward to check that the images under ψ of relations (10)–
(13) hold in Q8 ⋊ F2(a, b). As for relation (14), the right-hand
side yields bxb−1 = ϕ(b)(x) = yx from the definition of the ac-
tion, while the left-hand side yields a−1x−1a = ϕ(a−1)(x−1). Now
ϕ(a)(xy−1) = x−1, so ϕ(a−1)(x−1) = xy−1 = yx in Q8. So re-
lation (14) is preserved under ψ. Finally, consider relation (15).
From the previous relation, the left-hand side yields yx. As for the
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right-hand side, we obtain ϕ(a)(x) · x = yx also. So ψ extends
to a homomorphism, which we also call ψ, from Γ2(B4(S2)) into
Q8⋊F2(a, b). Since ψ(g1g3g

−1
1 ) = y, this homomorphism is certainly

surjective. Further, since the normal subgroup H of Proposition 25
is generated by g3 and g1g3g

−1
1 , it follows that H is mapped surjec-

tively onto Q8. But H is a quotient of Q8, and since Q8 is finite, H
is isomorphic to Q8. This proves the first part of the proposition.
The induced map from the quotient Γ2(B4(S2)) by H (which is the
normal subgroup generated by g3) into the quotient of Q8 ⋊F2(a, b)
by Q8 is a surjective homomorphism from a free group on two gen-
erators into a free group on two generators, so is an isomorphism
by the Hopfian property of free groups of finite rank. This com-
pletes the proof of the proposition, as well as that of part (c) of
Theorem 3. �

(d) Now suppose that n ≥ 5. The presentations are given in Chapter 4,
Propositions 64 and 67 respectively. This completes the proof of
Theorem 3. �



CHAPTER 2

The derived series of Bn(S2)

In this chapter, we study the derived series of Bn(S2). The aim is to
prove the following result, which shows that for all n 6= 3, 4, (Bn(S2))(1)

is perfect. The difficult case is n = 4, but using the semi-direct product
structure of (B4(S2))(1) obtained in Theorem 3, we shall be able to prove
that the derived series of B4(S2) coincides from a certain point with
that of the free group of rank 2. Before doing so, we state and prove
Proposition 29 which describes the commutator subgroup of a general
semi-direct product.

Theorem 4. The derived series of Bn(S2) is as follows.

(a) If n = 1, 2 then (Bn(S2))(1) = {1}.
(b) If n = 3 then (B3(S2))(1) ∼= Z3 and (B3(S2))(2) = {1}.
(c) Suppose that n = 4. Then:

(i) (B4(S2))(1) = Γ2(B4(S2)) is given by part (c) of Theorem 3;
it is isomorphic to the semi-direct product Q8 ⋊ F2. Further,
B4(S2)/(B4(S2))(1) is isomorphic to Z6.

(ii) (B4(S2))(2) is isomorphic to the semi-direct product Q8 ⋊(F2)
(1),

where (F2)
(1) is the commutator subgroup of the free group F2(a, b)

of rank 2 on two generators a, b. The action of (F2)
(1) on Q8 is

the restriction of the action of F2(a, b) given in part (c) of The-
orem 3. Further,

(B4(S2))(1)/(B4(S2))(2) ∼= Z2, and B4(S2)/(B4(S2))(2) ∼= Z2 ⋊ Z6,

where the action of the generator σ of Z6 on Z2 is given by left
multiplication by the matrix ( 0 1

−1 1 ).
(iii) (B4(S2))(3) is a subgroup of P4(S2) isomorphic to the direct

product Z2 × (F2)
(2). Further,

(B4(S2))(2)/(B4(S2))(3) ∼= (Z2 × Z2) × (F2)
(1)/(F2)

(2).

(iv) (B4(S2))(m) ∼= (F2)
(m−1) for all m ≥ 4. Further,

(B4(S2))(3)/(B4(S2))(4) ∼= Z2 × (F2)
(2)/(F2)

(3),

and for m ≥ 4,

(B4(S2))(m)/(B4(S2))(m+1) ∼= (F2)
(m−1)/(F2)

(m).

8
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(d) If n ≥ 5 then (Bn(S2))(2) = (Bn(S2))(1), so (Bn(S2))(1) is perfect.
A presentation of (Bn(S2))(1) is given in Propositions 64 and 67.

Remark 27. In part (c) of Theorem 4 and also in what follows, we
shall often refer to the derived series of F2(a, b) as well as its quotients.
We were not able to track down an explicit reference for them, but one
may observe that for i ≥ 1, (F2(a, b))

(i) is a free group of infinite rank,
and hence (F2(a, b))

(i)/(F2(a, b))
(i+1) is a free Abelian group of infinite

rank. A basis of (F2(a, b))
(1) = Γ2(F2(a, b)) may be obtained as follows:

considering the short exact sequence (9) with G = F2(a, b), (F2(a, b))
(1)

may be identified with the fundamental group of the Cayley graph of
F2(a, b). Let T be a maximal tree in this graph. For each g ∈ F2(a, b),
let wg be the word corresponding to the path in T between e and g.
Then a basis is given by the set of elements of the form wg[a, b]w

−1
g ,

where g runs over F2(a, b). For example, the set {apbq[a, b]b−qa−p}p,q∈Z

is a basis of (F2(a, b))
(1). Since F2(a, b) is residually nilpotent and

(F2(a, b))
(i−1) ⊆ Γi(F2(a, b)), it follows that

⋂
i≥0 (F2(a, b))

(i) = {1}
and F2(a, b) is residually soluble.

We obtain easily the following corollary of Theorem 4:

Corollary 28. Let n ∈ N. Then Bn(S2) is residually soluble if
and only if n ≤ 4.

Proof of Corollary 28. Recall that a group G is residually
soluble if and only if

⋂
i≥0 G(i) = {1}. If n = 1, 2, 3, this is obvious,

and if n = 4, the residual solubility of B4(S2) follows from that of
F2(a, b). For n ≥ 5, the result also follows easily, since (Bn(S2))(1) is
non trivial. �

Before proving Theorem 4, let us state and prove the following
proposition which describes the commutator subgroup of a semi-direct
product. This result will be used frequently throughout the rest of this
paper.

Proposition 29. Let G,H be groups, and let ϕ : G→ Aut(H) be

an action of G on H. Let Ĥ be the subgroup of H generated by the
elements of the form ϕ(g)(h)·h−1, where g ∈ G, h ∈ H, and let L be the

subgroup of H generated by Γ2(H) and Ĥ. Then ϕ induces an action
(also denoted by ϕ) of Γ2(G) on L, and L⋊ϕ Γ2(G) = Γ2(H ⋊ϕG). In
particular, Γ2(H ⋊ϕ G) is the subgroup generated by Γ2(H),Γ2(G) and

Ĥ.

Remark 30. We claim that L is none other than the commuta-
tor subgroup ΓG(H) defined by equation (7) with respect to the given
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action. To see this, recall that ΓG(H) is the subgroup of H gener-
ated by the elements of the form ϕ(g)(h) · kh−1k−1, where g ∈ G and
h, k ∈ H . Taking g = e (respectively k = e), it follows that ΓG(H) ⊇
Γ2(H) (respectively ΓG(H) ⊇ Ĥ), and hence L ⊆ ΓG(H). Conversely,
ϕ(g)(h)·kh−1k−1 = ϕ(g)(h)h−1 ·hkh−1k−1 ∈ L, so ΓG(H) ⊆ L, and the
claim is proved. Note further that if h′ ∈ H then there exists h′′ ∈ H
such that ϕ(g)(h′′) = h′, so

h′
(
ϕ(g)(h) · h−1

)
h′−1 = ϕ(g)(h′′h)(h′′h)−1 · (ϕ(g)(h′′)h′′−1)−1.

It follows that Ĥ and L are normal in H . In particular, ΓG(H) is
normal in H .

Proof of Proposition 29. From now on, we shall identify each
subgroup H1 of H (respectively each subgroup G1 of G) with the cor-
responding subgroup {(h, 1) | h ∈ H1} (respectively {(1, g) | g ∈ G1})
of H ⋊ϕ G without further comment. The group operation in H ⋊ϕ G
shall be written as:

(h, g) ⋆ (h′, g′) = (h. ϕ(g)(h), gg′), where (h, g), (h′, g′) ∈ H ⋊ϕ G.

The subgroup L is normal in H by Remark 30. Let us show that ϕ
induces an action (also denoted by ϕ) of G on L. Let g ∈ G. Since
ϕ(g)([h1, h2]) = [ϕ(g)(h1), ϕ(g)(h2)] ∈ Γ2(H) for all h1, h2 ∈ H , and

ϕ(g)(ϕ(g′)(h)h−1) = ϕ(gg′)(h)h−1. (ϕ(g)(h)h−1)−1 ∈ Ĥ

for all h ∈ H and g′ ∈ G, it follows that ϕ(g)(L) ⊆ L. Clearly ϕ(g)
is injective. The surjectivity of ϕ(g) (restricted to L) may be deduced
from the following observations:

(a) if i = 1, 2 and h′i ∈ H then there exists hi ∈ H such that ϕ(g)(hi) =
h′i, and hence ϕ(g)([h1, h2]) = [h′1, h

′
2].

(b) If g′ ∈ G and h, h′ ∈ H then

ϕ(g)
(
ϕ(g−1g′)(h)h−1. h

(
ϕ(g−1)(h−1)h

)
h−1
)

= ϕ(g′)(h)h−1.

Thus ϕ induces an action (also denoted by ϕ) of Γ2(G) on L, and
L⋊ϕ Γ2(G) is a subgroup of H ⋊ϕ G.

Clearly any element of Γ2(H) (respectively Γ2(G)) may be written
as an element of Γ2(H ⋊ϕ G). Further, if g ∈ G and h ∈ H then

[(1, g), (h, 1)] = (ϕ(g)(h), 1) ⋆ (h−1, 1) = (ϕ(g)(h)h−1, 1),

and thus every element of Ĥ may be written as an element of Γ2(H⋊ϕ

G). This proves that L⋊ϕ Γ2(G) ⊆ Γ2(H ⋊ϕ G).
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To see the converse, notice that the commutator of two elements
(h1, g1), (h2, g2) ∈ H ⋊ϕ G may be written as:

[(h1, g1), (h2, g2)] =
(
h1. ϕ(g1)(h2). ϕ(g1g2g

−1
1 )(h−1

1 ).

ϕ([g1, g2])(h
−1
2 ), [g1, g2]

)
.

The second factor belongs clearly to Γ2(G). The first factor is of the
form:

[h1, h2]. h2h1h
−1
2

(
ϕ(g1)(h2)h

−1
2

)
h2h

−1
1 h−1

2 .

h2h1

(
ϕ(g1g2g

−1
1 )(h−1

1 )h1

)
h−1

1 h−1
2 . h2

(
ϕ([g1, g2])(h

−1
2 )h2

)
h−1

2 ,

which is a product of elements of L. Hence Γ2(H ⋊ϕG) ⊆ L⋊ϕ Γ2(G),
and the proposition follows. �

We now prove the main result of this chapter.

Proof of Theorem 4. Cases (a) and (b) follow directly from
Theorem 3.

Now consider case (d), i.e. n ≥ 5. Let H ⊆ (Bn(S2))(1) be a normal
subgroup of Bn(S2) such that A = (Bn(S2))(1)/H is Abelian (notice
that this condition is satisfied if H = (Bn(S2))(2)). Let

{
π : Bn(S2) → Bn(S2)/H

β 7→ β

denote the canonical projection. So the Abelianisation homomorphism
α : Bn(S2) → (Bn(S2)) Ab of Chapter 1 factors through Bn(S2)/H i.e.
there exists a (surjective) homomorphism α̂ : Bn(S2)/H → (Bn(S2)) Ab

satisfying α = α̂ ◦ π. So we have the following short exact sequence:

1 // A // Bn(S2)/H
α̂ // (Bn(S2)) Ab // 1.

Now σ1, . . . , σn−1 generate Bn(S2)/H , but since α(σi) = α(σ1) for 1 ≤
i ≤ n−1, it follows that α̂(σi) = α̂(σ1), and so there exists ti ∈ A such
that σi = tiσ1.

We now apply π to each of the relations of equation (4) of Bn(S2).
First suppose that 3 ≤ i ≤ n− 1. Since σi commutes with σ1, we have
that

σ1 · tiσ1 = tiσ1 · σ1,

and hence ti commutes with σ1.
Now let 4 ≤ i ≤ n− 1. Since σi commutes with σ2, we obtain

tiσ1 · t2σ1 = t2σ1 · tiσ1.
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Since A is Abelian, it follows from the previous paragraph that t2 com-
mutes with σ1. Applying this to the image of the relation σ1σ2σ1 =
σ2σ1σ2, under π, we see that t2 = t22, and hence t2 = 1.

Next, if i ≥ 2 then the relation σiσi+1σi = σi+1σiσi+1 implies that
ti = ti+1, and so t2 = . . . = tn−1 = 1. Hence σ1 = σ2 = . . . = σn−1.
Thus Bn(S2)/H is cyclic, generated by σ1, and finite of order not greater
than 2(n−1), because the surface relation σ1 . . . σn−2σ

2
n−1σn−2 . . . σ1 =

1 projects to σ1
2(n−1) = 1. Since α̂ is surjective and (Bn(S2)) Ab ∼=

Z2(n−1), we conclude that α̂ is an isomorphism, so Bn(S2)/H ∼= Z2(n−1),

and A = (Bn(S2))(1)/H is trivial. In particular

(Bn(S2))(2) =
[
(Bn(S2))(1), (Bn(S2))(1)

]
= (Bn(S2))(1),

in other words, (Bn(S2))(1) is perfect.
Now consider case (c), so n = 4. Recall that part (i) was proved

in Theorem 3 and Proposition 20. To obtain (B4(S2))(2), it suffices to

observe that for the action of F2(a, b) on Q8, the subgroup Q̂8 defined
in Proposition 29 is Q8 (which is the case, since by Theorem 3(c),
ϕ(b)(x)x−1 = y and ϕ(a)(y)y−1 = x). So (B4(S2))(2) is generated by Q8

and (F2)
(1), (B4(S2))(2) ∼= Q8 ⋊ (F2)

(1), and the action is the restriction
of that of F2(a, b) on Q8, which proves the first part of (c)(ii).

To determine (B4(S2))(3), we first have to describe the subgroup

Q̂8 for the action of (F2)
(1) on Q8. By Theorem 3(c), if B = [a, b] ∈

(F2(a, b))
(1) then the automorphism ϕ(B) satisifies ϕ(B)(z) = x2 · z for

z ∈ {x, y} (recall that x2 = y2). Since (F2(a, b))
(1) is the subgroup of

F2(a, b) normally generated by B, and the centre 〈x2〉 of Q8 is invariant

under Aut(Q8), it follows that Q̂8 = 〈x2〉. So (B4(S2))(3) is isomorphic
to the semi-direct product of Z2 by (F2)

(2). But the action is trivial,
and so the product is direct. This proves the first part of (c)(iii).

For m ≥ 4, the subgroup (B4(S2))(m) is clear from the description
of (B4(S2))(3), and hence we obtain the first part of (c)(iv).

We now analyse various quotients of the form B4(S2)/(B4(S2))(m)

and (B4(S2))(m−1)/(B4(S2))(m) for several values of m. For the quo-
tient B4(S2)/(B4(S2))(m), we shall consider the case m = 2 (the case
m = 1 is given by Proposition 20(a)). For (B4(S2))(m−1)/(B4(S2))(m),
we consider the cases m ≥ 2 (the case m = 1 was considered in Propo-
sition 20(a)). If m > 4, the problem reduces to the corresponding
problem for the free group on two generators.

We adopt the notation used above in the case n ≥ 5, and again
we suppose that H ⊆ (Bn(S2))(1) is a normal subgroup of Bn(S2) such
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that A = (Bn(S2))(1)/H is Abelian. So we have a short exact sequence:

1 // A // B4(S2)/H
α̂ //
(
B4(S2)

)
Ab

︸ ︷︷ ︸
Z6

// 1.

Now σ1, σ2, σ3 generate B4(S2)/H . As above, for i = 2, 3 we set σi =
tiσ1, where ti ∈ A, and we apply π to the relations of B4(S2). The
fact that σ1 commutes with σ3 implies that t3 commutes with σ1. The
relation σ1σ2σ1 = σ2σ1σ2 implies that:

σ1t2σ1
−1 = t2 · σ1

2t2σ1
−2. (16)

Now consider the relation σ2σ3σ2 = σ3σ2σ3. We have that:

t2σ1 · t3σ1 · t2σ1 = t3σ1 · t2σ1 · t3σ1,

and so
t2σ1

2t2 = t3σ1t2σ1,

since A is Abelian and t3 commutes with σ1. Thus:

t2σ1
2t2 = t3t2σ1

2t2

from equation (16), and so t3 = 1. We conclude that B4(S2)/H is
generated by σ1 and t2σ1.

Finally, we consider the image of the surface relation under π. Using
equation (16), note first that:

σ1
3t2σ1

−3 = σ1(t
−1
2 · σ1t2σ1

−1)σ1
−1 = σ1t

−1
2 σ1

−1 · σ1
2t2σ1

−2

= σ1t
−1
2 σ1

−1 · t−1
2 σ1t2σ1

−1 = t−1
2 , (17)

since A is normal and Abelian. Thus σ1σ2σ
2
3σ2σ1 = 1 implies that:

1 = σ1 · t2σ1 · σ1
2 · t2σ1 · σ1 = σ1t2σ1

−1 · σ1(σ1
3t2σ1

−3)σ1
−1 · σ1

6

= σ1t2σ1
−1 · σ1t

−1
2 σ1

−1 · σ1
6 = σ1

6

from equation (17).
Recall that Γ2(B4(S2)) is the normal subgroup of B4(S2) generated

by the commutators of the generators of B4(S2). Hence A is the normal
subgroup of B4(S2)/H generated by [σ1, t2σ1] = σ1t2σ1

−1 · t−1
2 . Since A

is Abelian and t2 ∈ A, the action of conjugation on A by t2 is trivial.
From equation (17), the action of σ1

3 on t2 yields t−1
2 . Further,

σ1(σ1t2σ1
−1t−1

2 )σ1
−1 = σ1

2t2σ1
−2 · σ1t

−1
2 σ1

−1 = t−1
2

from equation (16), and since

σ1
2(σ1t2σ1

−1t−1
2 )σ1

−2 = σ1t
−1
2 σ1

−1,

it follows that A is the Abelian group generated by σ1t2σ1
−1t−1

2 , t2 and
σ1t2σ1

−1, and thus by t2 and σ1t2σ1
−1.
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Let σ̃ = α(σ1) denote the generator of (B4(S2)) Ab. Let M =(
0 1
−1 1

)
; notice that M is of order 6. We now let (B4(S2)) Ab ∼= Z6

act on Z2 as follows:

σ̃ ·
(
X1

X2

)
= M

(
X1

X2

)
=

(
X2

X2 −X1

)
,

and so we may form the associated semi-direct product Z2 ⋊ Z6. We
now consider the following homomorphism:

ψ : B4(S2) → Z2 ⋊ Z6

σ1, σ3 7→
((

0
0

)
, σ̃

)

σ2 7→
((

1
0

)
, σ̃

)
.

We then check that ψ is well defined: clearly ψ(σ1σ3) = ψ(σ3σ1). To
see that ψ(σ1σ2σ1) = ψ(σ2σ1σ2) (and that ψ(σ3σ2σ3) = ψ(σ2σ3σ2)),

ψ(σ1) · ψ(σ2) · ψ(σ1) =

((
0
0

)
, σ̃

)
·
((

1
0

)
, σ̃

)
·
((

0
0

)
, σ̃

)

=

((
0
0

)
, σ̃

)
·
((

1
0

)
, σ̃2

)
=

((
0
−1

)
, σ̃3

)
.

Similarly,

ψ(σ2) · ψ(σ1) · ψ(σ2) =

((
1
0

)
, σ̃

)
·
((

0
0

)
, σ̃

)
·
((

1
0

)
, σ̃

)

=

((
1
0

)
, σ̃

)
·
((

0
−1

)
, σ̃2

)
=

((
0
−1

)
, σ̃3

)
.

As for the surface relation,

ψ(σ1σ2σ
2
3σ2σ1) =

((
0
−1

)
, σ̃2

)
·
((

0
0

)
, σ̃2

)
·
((

1
0

)
, σ̃2

)

=

((
0
−1

)
, σ̃2

)
·
((

−1
−1

)
, σ̃4

)

=

((
0
0

)
, σ̃6

)
=

((
0
0

)
, 1

)

as required. Since ψ(σ1) =

((
0
0

)
, σ̃

)
, ψ(σ2σ

−1
1 ) =

((
1
0

)
, 1

)
and

ψ([σ−1
1 , σ2]) =

((
0
1

)
, 1

)
, we see that ψ is surjective.
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Now let H = (B4(S2))(2), and let δ : Z2 ⋊ Z6 → Z6 denote the pro-
jection onto the second factor. Since Z6 is Abelian, it follows that
δ(ψ(x)) is trivial for all x ∈ (B4(S2))(1), so ψ(x) belongs to the Z2-
factor. Hence H =

[
(B4(S2))(1), (B4(S2))(1)

]
⊆ Ker (ψ), and thus ψ

factors through A = B4(S2)/H , inducing a (surjective) homomorphism

ψ̂ : B4(S2)/H → Z2 ⋊ Z6. From the following commutative diagram of
short exact sequences,

1 // A = Γ2(B4(S2))/H //

ψ̂

∣∣
A

��

B4(S2)/H
α̂ //

ψ̂
��

(B4(S2)) Ab // 1

1 // Z2 // Z2 ⋊ Z6
δ // Z6

// 1,

the surjectivity of ψ̂ implies that of ψ̂
∣∣
A

: A→ Z2. But A is an Abelian

group generated by {t2, σt2σ−1}, so ψ̂
∣∣
A

is an isomorphism, and by the

5-Lemma, ψ̂ is too. Hence:

(B4(S2))(1)
/
(B4(S2))(2) ∼= Z2 and B4(S2)

/
(B4(S2))(2) ∼= Z2 ⋊ Z6.

In fact the first of these two equations may be obtained directly since
we know that (B4(S2))(1) ∼= Q8 ⋊ F2, and (B4(S2))(2) is isomorphic
to the subgroup Q8 ⋊ (F2)

(1) of Q8 ⋊ F2, so (B4(S2))(1)/(B4(S2))(2) ∼=
F2/(F2)

(1) ∼= Z2. Similarly, (B4(S2))(2)/(B4(S2))(3) ∼= (Z2 × Z2) ×
(F2)

(1)/(F2)
(2), (B4(S2))(3)/(B4(S2))(4) ∼= Z2 × (F2)

(2)/(F2)
(3), and for

m ≥ 4,

(B4(S2))(m)
/
(B4(S2))(m+1) ∼= (F2)

(m−1)
/
(F2)

(m).

This proves the remaining parts of (c), and thus completes the proof
of Theorem 4. �



CHAPTER 3

The lower central and derived series of

Bm(S2 \ {x1, . . . , xn})

In this chapter, the aim is to determine the lower central and de-
rived series of the m-string braid group of the n-punctured sphere
Bm(S2 \ {x1, . . . , xn}), n ≥ 1 according to the values of m and n.
In Section 1, we begin by giving a presentation of this group. In Sec-
tion 2, we deal with the case n = 1 which corresponds to the Artin
braid groups, and extend the results of Gorin and Lin. The case m = 1
which is that of the fundamental group of the n-punctured sphere is
dealt with in Section 3. From Section 4 onwards, we suppose that
n ≥ 2. In Section 4, we prove Theorem 9, which if m ≥ 3 (respectively
m ≥ 5) shows that the lower central series (respectively the derived
series) of Bm(S2 \ {x1, . . . , xn}) is constant from the commutator sub-
group onwards. In Sections 5, 6 and 7, we study the case n = 2 which
corresponds to that of the braid groups of the annulus (which are iso-
morphic to the Artin groups of type B). The main results of these three
sections are Proposition 10, Corollary 13, Proposition 14, Theorem 15
and Corollary 16. In Section 8, we study Bm(S2 \ {x1, x2, x3}), m ≥ 2,

which is isomorphic to the affine Artin group of type C̃m, and we prove
Propositions 60 and 61.

1. A presentation of Bm(S2 \ {x1, . . . , xn}), n ≥ 1

Let q ∈ N. If 1 ≤ i < j ≤ q, let Ai,j = σj−1 · · ·σi+1σ
2
i σ

−1
i+1 · · ·σ−1

j−1 ∈
Pq(S2) which geometrically corresponds to a twist of the jth string
about the ith string, with all other strings remaining vertical. It is well
known that the Ai,j generate Pq(S2).

The following presentation of Bm(S2 \ {x1, . . . , xn}) was derived
in [GG4] using standard results concerning presentations of group ex-
tensions [J] (see also [Lam, Ma] for other presentations).

Proposition 31 ([GG4]). Let m ≥ 1 and n ≥ 1. The following
constitutes a presentation of the group Bm(S2 \ {x1, . . . , xn}):
generators: Ai,j, where 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + m, and σk,

1 ≤ k ≤ m− 1.

16
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relations: for 1 ≤ i, k ≤ n, n+ 1 ≤ j < l ≤ n+m but j ≤ n+m if l
is absent, and 1 ≤ r, s ≤ m− 1,

Ai,jAk,lA
−1
i,j = Ak,l if k < i

Ai,jAi,lA
−1
i,j = A−1

j,l Ai,lAj,l

A−1
i,jAi,lAi,j = Ai,lAj,lAi,lA

−1
j,l A

−1
i,l

Ai,jAk,lA
−1
i,j = A−1

j,l A
−1
i,l Aj,lAi,lAk,lA

−1
i,l A

−1
j,l Ai,lAj,l if i < k

A−1
i,jAk,lAi,j = Ai,lAj,lA

−1
i,l A

−1
j,l Ak,lAj,lAi,lA

−1
j,l A

−1
i,l if i < k

A1,n+m · · ·An,n+mσm−1 · · ·σ2σ
2
1σ2 · · ·σm−1 = 1

σrσs = σsσr if |r − s| ≥ 2

σrσr+1σr = σr+1σrσr+1

σrAi,jσ
−1
r = Ai,j if r 6= j − n− 1, j − n

σj−nAi,jσ
−1
j−n = Ai,j+1 if n+ 1 ≤ j ≤ n+m− 1.

In the above relations, if n + 1 ≤ j < l ≤ n + m then Aj,l (which
does not appear in the list of generators) should be rewritten as:

Aj,l = σl−n−1 . . . σj−n+1σ
2
j−nσ

−1
j−n+1 . . . σ

−1
l−n−1. �

Remarks 32.

(a) Geometrically, we think of the n punctures labelled as points from
1 to n, and the basepoints of the m strings as points labelled from
n + 1 to n +m. The generator Ai,j corresponds geometrically to a
twist of the (j − n)th string about the ith puncture, with all other
strings remaining vertical.

(b) This presentation was derived in [GG4] for m ≥ 1 and n ≥ 3 (see
Proposition 9 of that paper). But it is also correct for n = 1, 2.
Indeed, to obtain the result, a presentation of Pm(S2 \ {x1, . . . , xn})
was derived (Proposition 7 of [GG4]) using the fact that there is a
split short exact sequence

1 → P1(S2 \ {x1, . . . , xn, xn+1}) → P2(S2 \ {x1, . . . , xn}) →
P1(S2 \ {x1, . . . , xn}) → 1,

which is the case for all n ≥ 1 (as π2(S2 \ {x1, . . . , xn}) = {1}). To
prove Proposition 9 of [GG4], we then apply standard techniques
to the short exact sequence

1 → Pm(S2 \ {x1, . . . , xn}) → Bm(S2 \ {x1, . . . , xn}) → Sm → 1.

From this presentation, we may obtain easily the Abelianisation of
Bm(S2 \ {x1, . . . , xn}):



18 3. LOWER CENTRAL AND DERIVED SERIES OF Bm(S2 \ {x1, . . . , xn})

Proposition 33 ([GG4], Proposition 11). The Abelianisation of
Bm(S2 \ {x1, . . . , xn}) is a free Abelian group of rank n. �

2. The case n = 1: lower central and derived series of Artin’s

braid groups Bm(D2)

As we shall see below, the case n = 1 corresponds to that of Artin’s
braid groups. In Theorem 36, we recall Gorin and Lin’s results, which
we extend in Proposition 5, notably obtaining descriptions of some
of the derived series elements and quotients of Bm(D2) for m = 3, 4.
We begin by proving the following proposition which will allow us to
identify certain types of braid groups.

Proposition 34.

(a) Let z0 ∈ Int(D2) and m ≥ 2. Then Pm(D2) ∼= Pm−1(D2 \ {z0}).
(b) Let m ∈ N, let x0 ∈ S2, and let Y ⊆ S2 \ {x0} be a finite set. Then

the inclusion S2 \ {x0} ⊆ D2 induces an isomorphism

Bm

(
S2 \ (Y ∪ {x0})

) ∼= Bm(D2 \ Y ).

(c) Let z0 ∈ Int(D2) and m ≥ 1. Then Bm,1(D2) ∼= Bm(D2 \ {z0}).
(d) Let m ∈ N and (x1, . . . , xm) ∈ Fm(Int(D2)). Then

Bm,1(D2) ∼= π1(D2 \ {x1, . . . , xm}) ⋊ Bm(D2).

Remarks 35.

(a) Part (a) of Proposition 34 is a manifestation of the Artin combing
operation [A2, Bi2, Han]: any geometric pure braid of the disc is
equivalent to a pure braid whose first string is vertical.

(b) Taking Y = ∅ in part (b), and noting that homeomorphic spaces
have isomorphic braid groups leads to the well-known isomorphism
Bm

∼= Bm (S2 \ {x0}) ∼= Bm(D2).
(c) Part (a), and parts (c) and (d) describe respectively the pure braid

groups and full braid groups of the annulus. Since the latter are
isomorphic to the Artin groups of type B [Cr], we recover part (2)
of Proposition 2.1 of [CrP].

(d) In part (d), the action is given by the well-known Artin represen-
tation of the Artin braid group as a subgroup of Aut(Fn) [A1, Bi2,

Han], and may be described as follows: let σ1, . . . , σm−1 denote the
standard generators of Bm(D2), and let A1, . . . , Am denote those of
π1(D2 \ {x1, . . . , xm} , xm+1). Then:

σiAjσ
−1
i =





Ai+1 if j = i

A−1
i+1AiAi+1 if j = i+ 1

Aj otherwise.
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This was used by Chow [Ch, Han] to obtain a presentation of
Artin’s pure braid group, and may be applied to the study of the
Nielsen equivalence problem for fixed points of surface homeomor-
phisms [Gu].

Proof of Proposition 34.

(a) Consider the following Fadell-Neuwirth short exact sequence for
the disc:

1 // Pm−1(D2 \ {z0}) // Pm(D2) // P1(D2) // 1.

Since P1(D2) is trivial, it follows that the kernel is equal to Pm(D2),
and the result follows.

(b) Let m ∈ N and (x1, . . . , xm) ∈ Fm(S2 \ (Y ∪ {x0})). Set X =
{x1, . . . , xm} and Y ′ = Y ∪ {x0}. The inclusion S2 \ {x0} ⊆ D2

induces an isomorphism of the free groups π1(S2 \ (X ∪ Y ∪ {x0}))
and π1(D2 \ (X ∪Y )). Consider the following commutative diagram
of short exact sequences:

1 // π1(S2 \ (X ∪ Y ′)) //

∼=
��

Pm+1(S2 \ Y ′) //

��

Pm(S2 \ Y ′) //

��

1

1 // π1(D2 \ (X ∪ Y )) // Pm+1(D2 \ Y ) // Pm(D2 \ Y ) // 1.

Applying induction on m and the 5-Lemma, it follows that Pm(S2 \
Y ′) ∼= Pm+1(D2 \Y ). By commutativity of the following diagram of
short exact sequences

1 // Pm(S2 \ Y ′) � � //

∼=
��

Bm(S2 \ Y ′) //

��

Sm // 1

1 // Pm(D2 \ Y ) � � // Bm(D2 \ Y ) // Sm // 1,

and the 5-Lemma, we see that Bm(S2 \ Y ′) ∼= Bm(D2 \ Y ), which
proves part (b).

(c) From the generalised Fadell-Neuwirth short exact sequence, we
have that:

1 // Bm(D2 \ {z0}) // Bm,1(D2) // B1(D2) // 1.

The result then follows easily.
(d) Consider the following generalised Fadell-Neuwirth short exact se-

quence:

1 // π1(D2 \ {x1, . . . , xm}) // Bm,1(D2)
p∗ // Bm(D2) // 1.
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Since p∗ admits a section given by the obvious inclusion Bm(D2) →
Bm,1(D2), the result again follows easily. �

So by Remark 35(b), Bm(S2 \ {x1}) and Bm(D2) may be identified
with Artin’s braid group Bm. The series of such groups were previ-
ously studied by Gorin and Lin [GL]. For all m ≥ 1, they determined
presentations for Γ2(Bm(D2)), from which they were able to deduce
that:

Theorem 36 ([GL]).

(a) The commutator subgroups Γ2(Bm(D2)) are finitely presented.
(b) Γ2(B3(D2)) is a free group F2(u, v) on two generators u and v.
(c) Γ2(B4(D2)) is a semi-direct product of the free group F2(a, b) by

F2(u, v), the action (denoted by ϕ) being given by:

ϕ(u)(a) = uau−1 = b ϕ(u)(b) = ubu−1 = b2a−1b

ϕ(v)(a) = vav−1 = a−1b ϕ(v)(b) = vbv−1 = (a−1b)3a−2b.

}
(18)

(d) For all m ≥ 5, the derived subgroup (Bm(D2))(1) is perfect, i.e.
(Bm(D2))(s) = (Bm(D2))(1) for all s ≥ 2.

We now go on to extend their results.

Proposition 5. Let m ≥ 1. Then:

(a) For all s ≥ 3, Γs(Bm(D2)) = Γ2(Bm(D2)).
(b) If m = 1, 2 then (Bm(D2))(s) = {1} for all s ≥ 1.
(c) If m = 3 then the derived series of (B3(D2))(1) is that of the free

group F2(u, v) on two generators u and v, where u = σ2σ
−1
1 and

v = σ1uσ
−1
1 = σ1σ2σ

−2
1 . Further,

B3(D2)/(B3(D2))(2) ∼= Z2 ⋊ Z,

where Z2 is the free Abelian group generated by the respective Abelian-
isations u and v of u and v, and the action is given by σ ·u = v and
σ · v = −u+ v, where σ is a generator of Z.

(d) If m = 4 then

(B4(D2))(1)/(B4(D2))(2) ∼= Z2, and

(B4(D2))(2) ∼= F2(a, b) ⋊ Γ2(F2(u, v)),

where a = σ3σ
−1
1 and b = uau−1 = σ2σ3σ

−1
1 σ−1

2 .

Proof of Proposition 5.

(a) The result follows from Lemma 23, since (Bm(D2))Ab ∼= Z, and
H2(Z) = {1}.

(b) Clear.
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(c) The first part is a direct consequence of Theorem 36(b). For the
second part, the short exact sequence

1 → (B3(D2))(1) → B3(D2) → Z → 1

splits, where (B3(D2))(1) ∼= F2(u, v) and Z ∼= 〈σ〉 = (B3(D2))Ab, and
a section is given by sending σ onto σ1. So

B3(D2) ∼= (B3(D2))(1) ⋊ Z,

where the action is given by σ · u = σ1 · σ2σ
−1
1 · σ−1

1 = v and σ · v =
σ1 ·σ1σ2σ

−2
1 ·σ−1

1 = σ1σ
−1
2 ·σ1σ2σ

−2
1 = u−1v. Then

(
(B3(D2))(1)

)
Ab =

(B3(D2))(1)/(B3(D2))(2) ∼= Z2 is a free Abelian group with basis
{ũ, ṽ}, and so it follows that

B3(D2)/(B3(D2))(2) ∼= (B3(D2))(1)/(B3(D2))(2) ⋊ Z ∼= Z2 ⋊ Z,

with action given by σ · u = v and σ · v = −u+ v as required.
(d) From Theorem 36(c), we know that (B4(D2))(1) is a semi-direct

product of the free group F2(a, b) by F2(u, v), where a, b, u and v
are as defined in the statement of the proposition, and the action is
given by equation (18). Under Abelianisation of (B4(D2))(1), we see
that a and b are sent to the trivial element, and there are no other
relations between u and v other than the fact that they commute.
So

(B4(D2))(1)/(B4(D2))(2) ∼= Z2.

To see that (B4(D2))(2) ∼= F2(a, b)⋊Γ2(F2(u, v)), we apply Propo-
sition 29. Since (uau−1)a−1 = ba−1 and (ubu−1)b−1 = b2a−1, it fol-
lows that a, b ∈ L, where L is the subgroup generated by Γ2(F2(a, b))
and the normal subgroup [F2(u, v),F2(a, b)] of F2(a, b) generated
by all elements of the form (ghg−1)h−1, where g ∈ F2(u, v) and
h ∈ F2(a, b). So L = F2(a, b), and the result follows. �

Hence the lower central series of Bm(D2) is determined for all m ∈
N, in particular, if m ≥ 3 then Bm(D2) is not residually nilpotent;
and the derived series of Bm(D2) is determined for all m 6= 4. In this
case, it remains to determine the higher derived subgroups and their
quotients. For the next step, by Proposition 29,

(B4(D2))(3) = [(B4(D2))(2), (B4(D2))(2)] ∼= K ⋊ (F2(u, v))
(2),

where K is the subgroup of F2(a, b) generated by Γ2(F2(a, b)) and the
normal subgroup of F2(a, b) generated by the elements of the form
ϕ(g)(h)h−1, where g ∈ (F2(u, v))

(1) and h ∈ F2(a, b).
Let N be the normal subgroup of F2(a, b) generated by [a, b], a2

and b2. It may be interpreted as the kernel of the homomorphism
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ψ : F2(a, b) → Z2 × Z2 which to a word w = w(a, b) associates the ex-
ponent sums modulo 2 of w relative to a and b respectively.

In order to determine K we need to investigate the action of [u, v]
and its conjugates on F2(a, b). One can check that ϕ(u−1)(a) = ab−1a2,
ϕ(u−1)(b) = a, ϕ(v−1)(a) = ab−1a3 and ϕ(v−1)(b) = ab−1a4, then that:

ϕ([u, v])(a)a−1 = ab−2(ab−1)4a−1

ϕ(u[u, v]u−1)(a)a−1 = (ab−3(ab−2)4)2ab−2a−1

ϕ([u, v])(b)b−1 = ab−2(ab−1)5b−1

ϕ(u[u, v]u−1)(b)b−1 = ab−3(ab−2)5b−1.





(19)

Clearly K contains [a, b]. Further, a calculation shows that the element

(ϕ([u, v])(a)a−1)−3(ϕ([u, v])(b)b−1)2b−2

belongs to Γ2(F2(a, b)), and so to K. Hence b2 belongs to K too.
Considering the element

(ϕ([u, v])(a)a−1)−4(ϕ([u, v])(b)b−1)3,

we infer similarly that a2 ∈ K. Now K is normal in F2(a, b) and
contains [a, b], a2 and b2, so it contains N . We claim that N = K.
Since ψ factors through Abelianisation, we see that Γ2(F2(a, b)) ⊆ N .
Let w ∈ F2(u, v). If η ∈ {a, b} then

ψ(ϕ(w)(η2)) = ψ(wη2w−1) = 2ψ(ϕ(w)(η)) = (0, 0).

Also,
ψ(ϕ(w)([a, b])) = ψ([waw−1, wbw−1]) = (0, 0).

This implies that ψ(w)(N) ⊆ N , so ψ(w) induces an endomorphism

ϕ̃(w) of Z2 × Z2 satisfying ψ ◦ ϕ(w) = ϕ̃(w) ◦ ψ. The surjectivity

of ψ and ϕ(w) imply that ϕ̃(w) is an automorphism. Furthermore,

ϕ̃(w1) ◦ ϕ̃(w2) = ˜ϕ(w1w2) for all w1, w2 ∈ F2(u, v). Using the above

relations for ϕ([u, v]), we see that ˜ϕ([u, v]) = Id. Hence for all w ∈
Γ2(F2(u, v)), ϕ̃(w) = Id, so ψ(ϕ(w)(h)h−1) = (0, 0) for all h ∈ F2(a, b).
This implies that K ⊆ N , which proves the claim.

Finally, we Abelianise (B4(D2))(2) ∼= F2(a, b) ⋊ (F2(u, v))
(1). To

the commutativity relations between a, b, u and v, one needs to add
the relators the Abelianisation of the relators ϕ(w)(h)h−1 where w ∈
(F2(u, v))

(1) and h ∈ F2(a, b), and in particular of relations (19), from
which we obtain a2 = b2 = 1. But these are the only extra relations:
since ϕ(w)(h)h−1 ∈ Ker (ψ), it follows from that form of N that the
Abelianised relations are products of powers of a2 and b2. We thus
obtain:
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uz1u
−1 = (uau−1)2 = z2

uz2u
−1 = (ubu−1)2 = b2a−2ab2a−1[a, b]b2

= z2z
−1
1 z5z3z

−1
2 z−1

4 z2

uz3u
−1 = (uabu−1)2 = b4b−1a−1b−1a−1ab4a−1[a, b]b2

= z2
2z

−1
3 z2

5z3z
−1
2 z−1

4 z2

uz4u
−1 = b2a−2ab2a−1a2b−2 = z2z

−1
1 z5z1z

−1
2

uz5u
−1 = b4b−1a−1b−1a−1ab4a−1 = z2

2z
−1
3 z2

5





(20)

Table 4. The action of u on the basis z1, . . . , z5 of N

Proposition 6.
(
B4(D2)

)(2)/(
B4(D2)

)(3) ∼= (Z2 × Z2) × (Γ2(F2(u, v)))
Ab. �

Using the Reidemeister-Schreier rewriting process [MKS], we may
obtain a presentation of N . Let X = {a, b} be a generating set of
F2(a, b) and U = {1, a, ab, aba−1} be a Schreier transversal. If g ∈
F2(a, b), let g ∈ U denote its coset representative. A basis of N is given
by the set of elements of the form ux(ux)−1 where u ∈ U and x ∈ X
(we remove all occurrences of the trivial element). A simple calculation
shows that N is a free group of rank 5 with basis whose elements
are given by a2, aba2b−1a−1, bab−1a−1, ab2a−1 and b2. This may be
transformed into the following basis: z1 = a2, z2 = b2, z3 = (ab)2,
z4 = ba2b−1 and z5 = ab2a−1. The action of F2(u, v) on N is given by
equations (20) and (21), see Tables 4 and 5 (we have used the relations
[a, b] = ababb−1a−2b−1 = z3z

−1
2 z−1

4 , and (ba−1)2 = z2z
−1
3 z5). Hence:

Proposition 7. (B4(D2))(3) ∼= F5(z1, . . . , z5)⋊ (F2(u, v))
(2), where

the action is that induced by the action of F2(u, v) on F5(x1, . . . , x5)
given by equations (20) and (21). �

From this, we may determine the Abelianisation ((B4(D2))(3))Ab of
(B4(D2))(3):

Proposition 8.
(
(B4(D2))(3)

)
Ab = (B4(D2))(3)

/
(B4(D2))(4)

∼= Z3 × Z18 × Z18 × (F2(u, v))
(2)
/
(F2(u, v))

(3).

Proof. The action of F2(u, v) on F5(z1, . . . , z5) is by conjugation
which leaves Γ2(F5(z1, . . . , z5)) invariant. It thus induces an action
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vz1v
−1 =(vav−1)2 = (a−1b)2 = a−2(ab)2b−2ba−2b−1b2

=z−1
1 z3z

−1
2 z−1

4 z2

vz2v
−1 =a−2(ab)2b−2ba−2b−1b2a−2(ab)2b−2ba−2b−1b2·

(b−1a−1)2ab2a−1b2(b−1a−1)2ab2a−1ba−2b−1b2

=z−1
1 z3z

−1
2 z−1

4 z2z
−1
1 z3z

−1
2 z−1

4 z2z
−1
3 z5z2z

−1
3 z5z

−1
4 z2

=(vz1v
−1)2z−1

3 z5z2z
−1
3 z5z

−1
4 z2

vz3v
−1 =(vabv−1)2 = (a−1b)4a−2ba−1ba−1ba−1ba−1ba−2b

=(vz1v
−1)2z−1

1 (z2z
−1
3 z5)

2z−1
4 z2

=(vz1v
−1)2z−1

1 z2vz
−2
1 z2v

−1

vz4v
−1 =(a−1b)4b−1a−1b−1a−1ab2a−1b2(a−1b)−4

=(vz1v
−1)2z−1

3 z5z2(vz1v
−1)−2

vz5v
−1 =(a−1b)4a−2ba−1ba−1ba−1ba−1

=(vz1v
−1)2z−1

1 (z2z
−1
3 z5)

2





(21)

Table 5. The action of v on the basis z1, . . . , z5 of N

of F2(u, v) on F5(z1, . . . , z5)
Ab = Z5 = Z5[Z1, . . . , Z5], where for i =

1, . . . , 5, Zi is the image of zi under Abelianisation. For w ∈ F2(u, v),
let Mw denote the matrix of this action with respect to the basis
(Z1, . . . , Z5) of Z5, and let

Λw = Im (Mw − I5) .

By equations (20) and (21),

U = Mu =

(
0 −1 0 0 0
1 1 2 0 2
0 1 0 0 −1
0 −1 −1 0 0
0 1 2 1 2

)
, U−1 = Mu−1 =

(
1 1 2 2 0
−1 0 0 0 0
1 0 0 −1 0
1 0 2 2 1
−1 0 −1 0 0

)
,

and

V = Mv =

(−1 −2 −3 0 −3
0 2 3 1 2
1 0 0 −1 0
−1 −3 −3 0 −2
0 2 2 1 2

)
, V −1 = Mv−1 =

(
2 2 5 2 3
0 −1 −1 −1 0
0 1 0 0 −1
2 2 4 2 3
−1 −1 −1 0 0

)
.

Then

C = M[u,v] =

(
3 3 5 2 3
−3 −3 −7 −3 −4
0 0 1 0 0
2 3 5 3 3
−3 −4 −7 −3 −3

)
, C−1 = M[u,v]−1 =

(−3 −3 −7 −4 −3
3 3 5 3 2
0 0 1 0 0
−4 −3 −7 −3 −3
3 2 5 3 3

)
.

Let L be the subgroup of Z5 generated by the Λw, where w ∈
(F2(u, v))

(2). The action of F2(u, v) on Z5 restricts to an action of
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(F2(u, v))
(2) on Z5. Since L is generated by the relators Mw(Z) − Z,

where Z ∈ Z5 and w ∈ (F2(u, v))
(2), it follows that

(
(B4(D2))(3)

)
Ab ∼= Z5

/
L× (F2(u, v))

(2) / (F2(u, v))
(3) . (22)

Let c = [u, v] and a = u[u, v]u−1. Consider first the special case w =
[a, c], and set Σ = Λ[a,c]. We claim that:

(i) Z5/Σ ∼= Z3 × Z18 × Z18, and
(ii) L = Σ.

From this, it is obvious that Z5/L ∼= Z3 × Z18 × Z18, and so the result
follows from equation (22).

To prove claim (i), one may check that

M[a,c] =

( −701 −612 −1314 −702 −612
1548 1351 2898 1548 1350

0 0 1 0 0
−702 −612 −1314 −701 −612
1548 1350 2898 1548 1351

)
.

So Σ is the free Abelian group of rank 2 freely generated by A1 =( −702
1548

0
−702
1548

)
and A2 =

( −612
1350

0
−612
1350

)
, and Z5/Σ has a finite presentation

0 → Σ
T−→ Z5 → Z5/Σ → 0,

where T is the Z-module homomorphism represented by the matrix

A =

( −702 −612
1548 1350

0 0
−702 −612
1548 1350

)
relative to the bases (A1, A2) and (Z1, . . . , Z5). Ap-

plying elementary row and column operations to A, and taking P =(
2 1 0 0 0

−11 −5 0 0 0
0 0 1 0 0
−1 0 0 1 0
0 −1 0 0 1

)
and Q = ( 1 7

−1 −8 ), we see that PAQ =

(
18 0
0 18
0 0
0 0
0 0

)
, which

gives the invariant factors of the Smith normal form of A [AW]. A new

basis W1, . . . ,W5 of Z5 is obtained by taking Wj =
∑5

i=1 (P−1)i,jZi, so
W1 = −5Z1+11Z2−5Z4+11Z5, W2 = −Z1+2Z2−Z4+2Z5, W3 = Z3,
W4 = Z4 and W5 = Z5, and from the form of PAQ, it follows that in
Z5/Σ, 18W1 = 18W2 = 0, and that W3,W4 and W5 are free generators.
Thus Z5/Σ ∼= Z3 × Z18 × Z18, which proves claim (i).

We now set about proving claim (ii). Since [a, c] ∈ (F2(u, v))
(2), it

is clear that Σ ⊆ L. For the converse, it suffices to check that for all
w ∈ (F2(u, v))

(2), Λw = Im (Mw − I5) ⊆ 〈A1, A2〉.
First note that u and v induce automorphisms of Σ; indeed, one may

check that relative to the basis (A1, A2), the matrix of u is ( −996 −869
1145 999 ),

and that of v is ( 18955 16531
−21731 −18952 ). So Mw(Σ) = Σ for all w ∈ F2(u, v).

Further, since for all w ∈ F2(u, v), Mw is an automorphism of Z5

which leaves Σ invariant, if y ∈ F2(u, v) satisfies Λy = Im (My − I5) ⊆
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Σ then it follows that

Λwyw−1 = Im (Mwyw−1 − I5) = Im (Mw(My − I5)Mw−1)

= Im (Mw(My − I5)) ⊆Mw(Σ) = Σ.

So for our purposes, it will suffice to consider elements of (F2(u, v))
(2)

modulo conjugation by elements of F2(u, v). Moreover, if w1, w2 ∈
F2(u, v) satisfy Im (Mwi

− I5) ⊆ Σ for i = 1, 2, then Im (Mw1w2 − I5) ⊆
Σ. This follows from the fact that for all x ∈ Z5,

(Mw1w2 − I5)(x) = Mw1(Mw2 − I5)(x) + (Mw1 − I5)(x),

and the invariance of Σ under Mw.
We now give a generating set for (F2(u, v))

(2). A generating set
of (F2(u, v))

(1) is given by the set of conjugates wc±1w−1, where w ∈
F2(u, v) (cf. Remark 27), and so (F2(u, v))

(2) is generated, up to conju-
gacy, by the set of commutators of the wc±1w−1. So up to conjugacy,
(F2(u, v))

(2) is generated by the set of elements of the form [cε1, tcε2t−1],
where ε1, ε2 ∈ {1,−1}. By conjugating by c−1tcε2t−1 if necessary, we
may suppose that ε1 = 1. By the remarks of the previous paragraph,
it thus suffices to show that Im (My − I5) ⊆ 〈A1, A2〉 for elements y of
the form [c, tcε2t−1], where ε2 ∈ {1,−1}. In order to do this, we shall
now calculate My − I5 explicitly.

Lemma 37. For all t ∈ F2(u, v), Mtc±1t−1 is of the form:

A =

(
3m 3n 3m+3n−1 3m−1 3n
−3p −3m −3m−3p−1 −3p −3m−1
0 0 1 0 0

3m−1 3n 3m+3n−1 3m 3n
−3p −3m−1 −3m−3p−1 −3p −3m

)
,

where m,n, p ∈ Z and np = m2.

Remark 38. One may check easily that the inverse of this matrix
is:

A−1 =

( −3m −3n −3m−3n−1 −3m−1 −3n
3p 3m 3m+3p−1 3p 3m−1
0 0 1 0 0

−3m−1 −3n −3m−3n−1 −3m −3n
3p 3m−1 3m+3p−1 3p 3m

)
.

So if A satisfies the conditions of Lemma 37 then it is inversible, and
A−1 also satisfies the conditions. Notice that A may be obtained simply
from A−1 via the symmetry (m,n, p) 7→ (−m,−n,−p).

Proof of Lemma 37. We proceed by induction on the length ℓ(t)
of the word t. If ℓ(t) = 0 then t is the trivial element, and clearly
C = Mc and C−1 = Mc−1 have the given structure. So suppose that
t has word length ℓ(t) ≥ 0, and that Mtc±1t−1 has the given structure.
By Remark 38, it suffices to prove the result for Mtct−1 . Setting A =
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Mtct−1 , a long but straightforward calculation shows that the respective
conjugates of Mtct−1 by Mu, Mu−1 , Mv and Mv−1 are:

( 9p−3m 3p 12p−1−3m 9p−1−3m 3p
18m−27p−3n 3m−9p 21m−36p−1−3n 18m−27p−3n 3m−1−9p

0 0 1 0 0
9p−1−3m 3p 12p−1−3m 9p−3m 3p

18m−27p−3n 3m−1−9p 21m−36p−1−3n 18m−27p−3n 3m−9p

)
,

( 9n−3m −18m+3p+27n −1+36n−21m+3p 9n−3m−1 −18m+3p+27n
−3n 3m−9n −1−12n+3m −3n −1−9n+3m

0 0 1 0 0
9n−3m−1 −18m+3p+27n −1+36n−21m+3p 9n−3m −18m+3p+27n

−3n −1−9n+3m −1−12n+3m −3n 3m−9n

)
,

( γ1 −30m+75p+3n −57m+135p+6n−1 γ1−1 −30m+75p+3n
−48p+24m−3n −γ1 −1−108p+51m−6n −48p+24m−3n −1−γ1

0 0 1 0 0
γ1−1 −30m+75p+3n −57m+135p+6n−1 γ1 −30m+75p+3n

−48p+24m−3n −1−γ1 −1−108p+51m−6n −48p+24m−3n −γ1

)
,

where γ1 = −27m+ 60p+ 3n, and

( γ2 −120m+75p+48n −147m+90p−1+60n −1+γ2 −120m+75p+48n
−3p+6m−3n −γ2 −1−18p+33m−15n −3p+6m−3n −1−γ2

0 0 1 0 0
−1+γ2 −120m+75p+48n −147m+90p−1+60n γ2 −120m+75p+48n

−3p+6m−3n −1−γ2 −1−18p+33m−15n −3p+6m−3n −γ2

)
,

where γ2 = −27m+15p+12n. One may then check that each of these
matrices has the form of the statement of the lemma. �

We first consider the case ε2 = 1, so y = [c, tct−1]. With the matrix
Mtct−1 = A given by Lemma 37, a long but straightforward calculation
shows once more that M[c,tct−1] − I5 is of the form

( α1 α2 α1+α2 α1 α2
β1 β2 β1+β2 β1 β2
0 0 0 0 0
α1 α2 α1+α2 α1 α2
β1 β2 β1+β2 β1 β2

)
,

where

α1 =1278m2 + 216m− 1836pm− 126p− 540nm

− 90n+ 648p2 + 450pn

α2 =1728nm− 756pn− 540n2 − 1080m2

+ 648pm− 72n+ 180m− 108p

β1 = − 1512m2 − 252m+ 2160pm+ 144p

+ 648nm+ 108n− 756p2 − 540pn

β2 = − 2052nm+ 882pn+ 648n2 + 1278m2

− 756pm− 216m+ 126p+ 90n.

So Im
(
M[c,tct−1] − I5

)
is generated by the first two columns C1, C2 of

M[c,tct−1] − I5. It is necessary to show that each belongs to 〈A1, A2〉, in
other words, that for i = 1, 2, there exist τi, µi ∈ Z such that τiA1 +
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µiA2 = Ci; these equations are equivalent to τi (
−702
1548 ) + µi (

−612
1350 ) =( αi

βi

)
, and admit solutions (a priori rational) of the form

(
τi
µi

)
= − 1

324

(
1350 612
−1548 −702

)(
αi
βi

)
.

Substituting for αi, βi, we obtain

τ1 = − 2469m2 − 424m+ 3570pm+ 253p+ 1026nm+ 171n

− 1272p2 − 855pn

µ1 =2830m2 + 486m− 4092pm− 290p− 1176nm− 196n

+ 1458p2 + 980pn

τ2 = − 3324nm+ 1484pn+ 1026n2 + 2086m2 − 1272pm+ 130n

− 342m+ 212p

µ2 =3810nm− 1701pn− 1176n2 − 2391m2 + 1458pm− 149n

+ 392m− 243p,

and these solutions are clearly integers. Hence C1, C2 ∈ 〈A1, A2〉 as
required.

To deal with the case ε2 = −1, it suffices to invoke the observation
of Remark 38 concerning the symmetry between A and A−1. The above
analysis holds, and we obtain the same solutions as above, but replacing
everywhere m,n and p by −m,−n and −p respectively. This proves
claim (ii), and completes the proof of Proposition 8. �

We would now like to go a stage further, and determine (B4(D2))(4)

and/or its Abelianisation. By applying Proposition 29 to Proposition 7,

(B4(D2))(4) is isomorphic to M ⋊ (F2(u, v))
(3), where M is the sub-

group of F5(zi) = F5(z1, . . . , z5) generated by Γ2 (F5(zi)) and the nor-
mal subgroup generated by the elements of the form ϕ(g)(h)h−1, where

g ∈ (F2(u, v))
(2) and h ∈ F5(zi). However, the complexity of finding a

basis of (F2(u, v))
(2) and calculating the action on F5(zi) makes it ex-

tremely difficult to obtain a description of M . In order to get some idea
of the situation, we shall turn our attention to studying the semi-direct
product F5(zi)⋊F2(u, v). In any case, the calculations that follow shall
be used later in Section 5 in order to study Γ2(B3(S2 \ {x1, x2})).

From relations (20) and (21), we have an action of F2(u, v) on
F5(z1, . . . , z5), and thus a semi-direct product F5(z1, . . . , z5) ⋊ F2(u, v).
Let

ε : F5(z1, . . . , z5) ⋊ F2(u, v) → (F5(z1, . . . , z5) ⋊ F2(u, v))
Ab (23)
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be Abelianisation. From relations (20) and (21), it follows that

(F5(z1, . . . , z5) ⋊ F2(u, v))
Ab ∼= Z ⊕ Z2,

where ε(u) = (0, 1, 0), ε(v) = (0, 0, 1), ε(zi) = (1, 0, 0) if i = 1, 2, 3 and
ε(zi) = (−1, 0, 0) if i = 4, 5.

Let (Z1, . . . , Z5), (W1, . . . ,W5) be the bases of Z5 given in the proof
of Proposition 8. Let

ε̃ : F5(z1, . . . , z5) ⋊ (F2(u, v))
(2) →

(
F5(z1, . . . , z5) ⋊ F2(u, v)

(2)
)
Ab

be the restriction of ε to F5(z1, . . . , z5) ⋊ (F2(u, v))
(2). We identify

this latter group with Z18 × Z18 × Z3 × (F2(u, v))
(2)/(F2(u, v))

(3) via
Proposition 8. Since Z1 = 2W1 − 11W2 −W4, Z2 = W1 − 5W2 −W5

and Wi = Zi for i = 3, 4, 5, as an element of Z18 × Z18 × Z3, we have
ε̃(z1) = (2,−11, 0,−1, 0), ε̃(z2) = (1,−5, 0, 0,−1), ε̃(z3) = (0, 0, 1, 0, 0),
ε̃(z4) = (0, 0, 0, 1, 0) and ε̃(z5) = (0, 0, 0, 0, 1). We thus obtain the
following commutative diagram of short exact sequences:

1 // (B4(D2))(4) //

��

G
ε̃ //

��

(
(B4(D2))(3)

)
Ab //

ξ

��

1

1 // Ker (ε) // H
ε // Z ⊕ Z2 // 1,

(24)

where we set

G = F5(z1, . . . , z5) ⋊ (F2(u, v))
(2) and H = F5(z1, . . . , z5) ⋊ F2(u, v).

The first two vertical arrows are inclusions. Identifying
(
(B4(D2))(3)

)
Ab

with Z18 × Z18 × Z3 × (F2(u, v))
(2)/(F2(u, v))

(3) as above, the induced
homomorphism ξ of the Abelianisations sends (F2(u, v))

(2)/(F2(u, v))
(3)

and the Σ-cosets of W1 and W2 onto the trivial element, and

ξ(W3) = −ξ(W4) = −ξ(W5) = (1, 0, 0).

Let us determine Ker (ε). Since ε is Abelianisation, it follows from
Proposition 29 that

Ker (ε) = Γ2

(
F5(xi) ⋊ F2(u, v)

)
= L⋊ Γ2 (F2(u, v)) ,

where L is the subgroup of F5(zi) generated by Γ2 (F5(zi)) and the
normal subgroup generated by the elements of the form ϕ(g)(h)h−1,
where g ∈ F2(u, v) and h ∈ F5(zi). Let ρ : F5(zi) → Z be the restriction
of ε to the first factor, in other words,

ρ(zi) =

{
1 if i = 1, 2, 3

−1 if i = 4, 5.
(25)

Proposition 39. L = Ker (ρ).
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· · · z−3
1 z−2

1 z−1
1 1 z1 z2

1 · · ·
1 1 1 z1 1 1 1

z−3
1 z2z

2
1 z−2

1 z2z1 z−1
1 z2 z2 z2z

−1
1 z1z2z

−2
1 z2

1z2z
−3
1

z−3
1 z3z

2
1 z−2

1 z3z1 z−1
1 z3 z3 z3z

−1
1 z1z3z

−2
1 z2

1z3z
−3
1

z−3
1 z4z

4
1 z−2

1 z4z
3
1 z−1

1 z4z
2
1 z4 z4z1 z1z4 z2

1z4z
−1
1

z−3
1 z5z

4
1 z−2

1 z5z
3
1 z−1

1 z5z
2
1 z5 z5z1 z1z5 z2

1z5z
−1
1

Table 6. Determination of a basis of Ker (ρ)

Proof. We first apply the Reidemeister-Schreier rewriting process
in order to obtain a basis of Ker (ρ). Taking X = {z1, . . . , z5} as a
basis of F5(zi), and U = {zi1}i∈Z

as a Schreier transversal, one may
check that a basis of Ker (ρ) is given by

{
z−i1 zjz

i−1
1

}
i∈Z, j∈{2,3}

⋃{
z−i1 zjz

i+1
1

}
i∈Z, j∈{4,5} .

These calculations are presented in Table 6.
We may now show that Ker (ρ) ⊆ L. Indeed, since L is normal

in F5(zi), and all basis elements of Ker (ρ) are conjugates of z2z
−1
1 ,

z3z
−1
1 , z4z1 and z5z1 by powers of z1, it suffices to show that these four

elements belong to L. This can be done by studying equation (20).
First, z2z

−1
1 = ϕ(u)(z1)z

−1
1 , so z2z

−1
1 ∈ L. Next,

ϕ(u)(z2)z
−1
2 = z2z

−1
1 · z5z3z−1

2 z−1
4 ∈ L,

so z5z3z
−1
2 z−1

4 ∈ L, and ϕ(u)(z5)z
−1
5 = z2

2z
−1
3 z5 ∈ L. Thus

ϕ(u)(z3)z
−1
3 = z2

2z
−1
3 z5 · z5z3z−1

2 z−1
4 · z2z−1

3 ∈ L,

so z2z
−1
3 = z2z

−1
1 (z3z

−1
1 )−1 ∈ L, and hence z3z

−1
1 ∈ L. Since

ϕ(u)(z5)z
−1
5 = z2 · z2z−1

3 · z5z1 · z−1
1 (z2z

−1
1 )z1 · z−1

2 ∈ L,

and L is normal in F5(zi), it follows that z5z1 ∈ L. Finally, since
z5z3z

−1
2 z−1

4 ∈ L, and

z5z3z
−1
2 z−1

4 = z5z1 · z−1
1 (z3z

−1
1 )z1 · z−1

1 (z2z
−1
1 )−1z1 · (z4z1)−1,

we have z4z1 ∈ L. This proves that Ker (ρ) ⊆ L.
We now prove that L ⊆ Ker (ρ). Clearly Γ2(F5(zi)) ⊂ Ker (ρ), and

since Ker (ρ) is normal in F5(zi), it suffices to prove that all elements
of the form ϕ(g)(h)h−1, where g ∈ F2(u, v) and h ∈ F5(zi), belong
to Ker (ρ), which we do by double induction. Let ℓ denote the length
function defined on elements of free groups. If ℓ(g) = 0 or ℓ(h) = 0 then
the result is clearly true. If ℓ(g) = ℓ(h) = 1 then one may check directly
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using equations (20) and (21) that ϕ(g)(h)h−1 ∈ Ker (ρ) for g ∈ {u, v}.
Suppose that g ∈ {u−1, v−1}. In order to show that ϕ(g)(h)h−1 belongs
to Ker (ρ), it suffices to show that its inverse h(ϕ(g)(h))−1 belongs to
it. Since ϕ(g−1) is an automorphism, there exists h1 ∈ F5(zi) such that
ϕ(g−1)(h1) = h. Thus

h(ϕ(g)(h))−1 = ϕ(g−1)(h1)(ϕ(g) ◦ ϕ(g−1)(h))−1 = ϕ(g−1)(h1)h
−1
1 ,

and the result follows from the case g ∈ {u, v}.
First suppose that ℓ(g) = 1, and that the result is true for all h

of length less than or equal to n ≥ 1. Let h′ ∈ F5(zi) be such that
ℓ(h′) = n+ 1. Set h′ = hz, where h, z ∈ F5(zi), ℓ(h) = n and ℓ(z) = 1.
Then

ϕ(g)(h′)h′
−1

= ϕ(g)(h)h−1 · h(ϕ(g)(z)z−1)h−1.

By induction, both terms on the right-hand side belong to Ker (ρ), and
using the fact that Ker (ρ) is normal in F5(zi), we see that the result
holds for all g of length one, and all h.

Now suppose that the result is true for all g of length less than or
equal to n ≥ 1, and all h. Let g′ ∈ F2(u, v) be such that ℓ(g′) = n+ 1.
Set g′ = gy, where g, y ∈ F2(u, v), ℓ(g) = n and ℓ(y) = 1. Then

ϕ(g′)(h)h−1 = ϕ(g)(ϕ(y)(h))(ϕ(y)(h))−1 · ϕ(y)(h)h−1.

Since ϕ(y)(h) ∈ F5(zi), the result follows by induction. This completes
the proof of the inclusion L ⊆ Ker (ρ), and thus that of the proposition.

�

3. The lower central and derived series of B1(S2 \ {x1, . . . , xn})
Let m = 1 and n ≥ 1. The group B1(S2 \ {x1, . . . , xn}) is the

fundamental group of S2 \ {x1, . . . , xn}, and so is a free group on n− 1
generators. So its lower central and derived series are those of free
groups of finite rank. Further details about the lower central series of
such groups may be found in [Hal, MKS].

4. The lower central and derived series of Bm(S2 \ {x1, . . . , xn})
for m ≥ 3 and n ≥ 2

In this section, we prove Theorem 9, which tells us that if n ≥ 2 then
for most values of m, the lower central and derived series of Bm(S2 \
{x1, . . . , xn}) are constant from the commutator subgroup onwards.

Theorem 9. Let n ≥ 2. Then:

(a) If m ≥ 3 then

Γ3(Bm(S2 \ {x1, . . . , xn})) = Γ2(Bm(S2 \ {x1, . . . , xn})).
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(b) If m ≥ 5 then

(Bm(S2 \ {x1, . . . , xn}))(2) = (Bm(S2 \ {x1, . . . , xn}))(1).

(c) If m = 4 then

B4(S2 \ {x1, . . . , xn})
/
(B4(S2 \ {x1, . . . , xn}))(2) ∼=

(
Z2 ⋊ Z

)
× Zn−1

where the semi-direct product structure is that of part (c) of Propo-
sition 5, and

(B4(S2 \ {x1, . . . , xn}))(1)
/
(B4(S2 \ {x1, . . . , xn}))(2) ∼= Z2.

Alternatively,

B4(S2 \ {x1, . . . , xn})
/
(B4(S2 \ {x1, . . . , xn}))(2) ∼= Z2 ⋊ Zn,

where Z2 ∼= (B4(S2\{x1, . . . , xn}))(1)
/
(B4(S2\{x1, . . . , xn}))(2) is the

free Abelian group with basis {u, v}, Zn ∼= B4(S2 \ {x1, . . . , xn})Ab

has basis σ, ρ1, . . . , ρn−1, and the action is given by

σ · u = v σ · v = −u+ v

ρi · u = u ρi · v = v

for all 1 ≤ i ≤ n− 1.

Remarks 40.

(a) For the lower central series of Bm(S2 \ {x1, . . . , xn}), the only case
not covered by Theorem 9 is m = 2 and n ≥ 2; it will be discussed
in Sections 5 and 6.

(b) For the derived series of Bm(S2 \ {x1, . . . , xn}), the outstanding
cases are n ≥ 2 and m = 2, m = 3 and m = 4 (see Sections 5, 6, 7
and 8).

Proof of Theorem 9. The idea of much of the proof is similar
to that of Theorem 4. Let m,n ≥ 2. Set Bm,n = Bm(S2 \{x1, . . . , xn}).
Then we have a short exact sequence

1 → Γ2(Bm,n) → Bm,n
α→ (Bm,n)

Ab → 1.

From Proposition 33, (Bm,n)
Ab is a free Abelian group of rank n, gener-

ated by ρ1, . . . , ρn, σ, and subject to a single relation ρ1 · · · ρnσ2(m−1) =
1. Taking the generators of Bm,n given by Proposition 31, all of the
σi are identified to σ by α, and for each 1 ≤ i ≤ n, all of the Ai,j,
n+ 1 ≤ j ≤ n +m, are identified to ρi.

Let H ⊆ Γ2(Bm,n) be a normal subgroup of Bm,n, and let
{
π : Bm,n → Bm,n/H

β 7→ β
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denote the canonical projection. Then α factors through Bm,n/H , and
we have a short exact sequence of the form:

1 // K // Bm,n/H
α̂ // (Bm,n)

Ab // 1,

where α = α̂ ◦ π and K = Γ2(Bm,n)/H .
In what follows, we shall impose one of the following two hypothe-

ses:

(i) K is Abelian.
(ii) K is central in Bm,n/H .

Remarks 41.

(a) If H = Γ3(Bm,n) then condition (ii) is satisfied.
(b) If H = (Bm,n)

(2) then condition (i) is satisfied.
(c) Clearly condition (ii) implies condition (i).

From Proposition 31, we conclude that σ1, . . . , σm−1 and the Ai,j,
1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+m, generate Bm,n/H . Since α identifies the
σk to σ, we see that α̂ identifies the σk to σ. So for 2 ≤ k ≤ m − 1,
there exists tk ∈ K such that σk = tkσ1.

Suppose first that condition (ii) is satisfied. Then tk commutes
with σ1. For 1 ≤ l ≤ m − 2, we deduce from applying π to Artin’s
relations σl σl+1 σl = σl+1 σl σl+1 that t2 = 1 and tl = tl+1 if l ≥ 2. Thus
σ1 = · · · = σm−1. This argument holds for all m ≥ 2.

Now suppose instead that condition (i) is satisfied. Let m ≥ 5. If
3 ≤ k ≤ m− 1, then since σk commutes with σ1, we have that

σ1 · tkσ1 = tkσ1 · σ1, (26)

and hence tk commutes with σ1. Now let 4 ≤ l ≤ m − 1 (such an l
exists). Since σl commutes with σ2, we obtain

tlσ1 · t2σ1 = t2σ1 · tlσ1.

But K is Abelian, and thus it follows that t2 commutes with σ1. Ap-
plying this to the image under π of the relation σ1σ2σ1 = σ2σ1σ2, we
see that t2 = t22, and hence t2 = 1. Finally, if l ≥ 2 then the relation
σlσl+1σl = σl+1σlσl+1 implies that tl = tl+1, and so t2 = · · · = tm−1.
Hence σ1 = σ2 = · · · = σm−1.

Let us now consider the Ai,j. In what follows, we suppose that
m ≥ 3 and σ1 = σ2 = · · · = σm−1 (which as we have just observed,
is the case if either condition (ii) holds, or if condition (i) holds and
additionally m ≥ 5). By Proposition 31, σj−nAi,jσ

−1
j−n = Ai,j+1 where

n+1 ≤ j ≤ n+m−1, and if r 6= j−n−1, j−n then σrAi,jσ
−1
r = Ai,j.
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Since for all n+ 1 ≤ j ≤ n+m,

Ai,j = σj−n−1 · · ·σ1 ·Ai,n+1σ
−1
1 · · ·σ−1

j−n−1,

we see by projecting into Bm,n/H , and using the condition m ≥ 3 that

Ai,j = σm−1
j−n−1Ai,n+1 σm−1

−(j−n−1) = Ai,n+1 = αi,

where αi = Ai,n+1. Taking j = n+ 2, it follows that αi commutes with
σ1. Applying this to the first relation of the presentation of Bm,n given
in Proposition 31, it follows that the αi commute pairwise. Projecting
the remaining relations for Bm,n into Bm,n/H give nothing new, ex-
cept for the surface relation which yields α1 · · ·αn σ1

2(m−1) = 1. Hence
Bm,n/H is an Abelian group generated by α1, . . . , αn and σ1, in which
the relation α1 · · ·αn σ1

2(m−1) = 1 is satisfied. Since α̂ is surjective, we
conclude by the Hopfian property of free Abelian groups of finite rank
that α̂ is an isomorphism, so Bm,n/H ∼= Zn, and H = Γ2(Bm,n).

Taking m ≥ 3 and H = Γ3(Bm,n), condition (ii) is satisfied, and we
conclude from the above arguments that Γ3(Bm,n) = Γ2(Bm,n). This
proves part (a) of the proposition.

Taking m ≥ 5 and H = (Bm,n)
(2), condition (i) is satisfied, and we

conclude similarly that (Bm,n)
(2) = Γ2(Bm,n) = (Bm,n)

(1), which proves
part (b) of the proposition.

Now let us prove part (c) of the proposition. Let m = 4 and
n ≥ 2, and making use of the previous notation, set H = (B4,n)

(2).
Then condition (i) holds, and indeed (B4,n)

(1)/H is Abelian. As in
the case m ≥ 5 (cf. equation (26)), we see that t3 commutes with σ1.
From the remaining two Artin relations, we see that σ1t2σ1 = t2σ1

2t2
and t3σ1t2σ1t3 = t2σ1t3σ1t2. But t3 commutes with both t2 and σ1,
hence the second equation reduces to t3σ1t2σ1 = t2σ1

2t2. From the first
equation, we see that t3 = 1, in other words, σ1 and σ3 are identified
under π to σ say, and there is just one Artin relation of the form
σ σ2 σ = σ2 σ σ2. Further, for i = 1, . . . , n,

Ai,n+2 = σ1Ai,n+1 σ1
−1 = σ3 Ai,n+1 σ3

−1 = Ai,n+1,

Ai,n+3 = σ2Ai,n+2 σ2
−1 = σ2 Ai,n+1 σ2

−1 = Ai,n+1, and

Ai,n+4 = σ3Ai,n+3 σ3
−1 = σ3 Ai,n+1 σ3

−1 = Ai,n+1.

So for each i = 1, . . . , n, the Ai,j are identified by π to a single element
αi which commutes with both σ and σ2. So B4,n/(B4,n)

(2) is generated
by σ, σ2, α1, . . . , αn−1, subject to the relations

σ σ2 σ = σ2 σ σ2, σ, σ2 ⇋ αi, αi,⇋ αj, for all 1 ≤ i, j ≤ n− 1.
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So there exist homomorphisms

f : B4,n → B3(D2) × Zn−1

given by

f(σ1) = f(σ3) = σ1

f(σ2) = σ2

f(Ai,j) = Ai if 1 ≤ i ≤ n− 1

f(An,j) = A−1
n−1 · · ·A−1

1 σ−1
1 σ−1

2 σ−2
1 σ−1

2 σ−1
1 ,

where (A1, . . . , An−1) is a basis of Zn−1, and

π̃ : B3(D2) × Zn−1 → B4,n/(B4,n)
(2)

defined by

π̃(σ1) = σ

π̃(σ2) = σ2

π̃(Ai) = αi,

and satisfying π = π̃ ◦ f . Since f is surjective, to prove the first
part of (c), by Proposition 5(c), it suffices to show that Ker (π̃) =
(B3(D2))(2).

First let us show that (B3(D2))(2) ⊆ Ker (π̃). Let y ∈ (B3(D2))(2).
In particular, y may be written as a word w(σ1, σ2). Considering this
word to be an element x of B4,n, since y ∈ (B3(D2))(2), we have that
x ∈ (B4,n)

(2) and f(x) = y. Since π(x) = e, it follows that y ∈ Ker (π̃).
Conversely, let y ∈ Ker (π̃). Since f is surjective, there exists x ∈

B4,n such that f(x) = y, and so x ∈ (B4,n)
(2). But since (B4,n)

(1) is
the normal subgroup of B4,n generated by the commutators [σk, σl],
[σk, Ai,j] and [Ai,j, Ai′,j′], where 1 ≤ k, l ≤ 3, 1 ≤ i, i′ ≤ n and 1 ≤
j, j′ ≤ 4, f is surjective and Zn−1 is a direct factor of B3(D2) × Zn−1,
it follows that f

(
(B4,n)

(1)
)

= (B3(D2))(1), and thus f
(
(B4,n)

(2)
)

=

(B3(D2))(2). In particular, y ∈ (B3(D2))(2). We thus conclude that
B3(D2)/(B3(D2))(2)×Zn−1 ∼= B4,n/(B4,n)

(2), which proves the first part
of (c).

We now move on to the second part of (c). Consider the homo-
morphism B3(D2) → B4,n given by σi 7→ σi. Since g

(
(B3(D2))(i)

)
⊆

(B4,n)
(i) for all i ∈ N, there is an induced homomorphism

g : B3(D2)/(B3(D2))(2) → B4,n/(B4,n)
(2),

which sends the coset of σi onto σi, as well as its restriction

g1 : (B3(D2))(1)/(B3(D2))(2) → (B4,n)
(1)/(B4,n)

(2).
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Similarly, since B4(S2\{x1}) ∼= B4(D2) by Proposition 34, the surjective
homomorphism B4(S2 \ {x1, . . . , xn}) → B4(S2 \ {x1}) given by closing
up the n− 1 punctures x2, . . . , xn induces a surjective homomorphism

h : B4,n/(B4,n)
(2) → B4(D2)/(B4(D2))(2),

which sends σi onto the coset of σi, as well as its restriction

h1 : (B4,n)
(1)/(B4,n)

(2) → B4(D2)(1)/(B4(D2))(2).

Hence we obtain the following commutative diagram:

(B3(D2))(1)/(B3(D2))(2) //

g1
��

B3(D2)/(B3(D2))(2) //

g

��

(B3(D2))Ab

��

(B4,n)
(1)/(B4,n)

(2) //

h1

��

B4,n/(B4,n)
(2) //

h
��

(B4,n)
Ab

��

(B4(D2))(1)/(B4(D2))(2) // B4(D2)/(B4(D2))(2) // (B4(D2))Ab.

Note that the rows are all short exact sequences.
Now consider the first column. From [GL] and Proposition 5,

we know that (B3(D2))(1)/(B3(D2))(2) and (B4(D2))(1)/(B4(D2))(2) are
both free Abelian groups of rank 2, generated by their respective cosets
of u = σ2σ

−1
1 and v = σ1σ2σ

−2
1 . By definition of g and h, it follows that

h1 ◦ g1 is an isomorphism, sending the (B3(D2))(2)-coset of u (respec-
tively v) onto the (B4(D2))(2)-coset of u (respectively v). Thus to prove
that (B4,n)

(1)/(B4,n)
(2) ∼= Z2, it suffices to show that g1 is surjective. To

see this, let x ∈ (B4,n)
(1)/(B4,n)

(2). Since x ∈ B4,n/(B4,n)
(2), it follows

from above that

x = w(σ, σ2) α1
m1 · · ·αn−1

mn−1 ,

where mi ∈ Z for 1 ≤ i ≤ n − 1 and w(σ, σ2) is a word in σ and
σ2. Projecting into (B4,n)

Ab, since σ and σ2 map onto σ, and αi
maps onto ρi, and furthermore, σ, ρ1, . . . ρn−1 generate freely (B4,n)

Ab,
we see by exactness that the mi are all zero, in other words, x =
w(σ, σ2). Now take z = w(σ1, σ2) ∈ B3(D2)/(B3(D2))(2), so that
g(z) = x. Projecting z into (B3(D2))Ab yields zero by commutativity
of the diagram (the homomorphism (B3(D2))Ab → (B4,n)

Ab is injec-
tive), hence z ∈ (B3(D2))(1)/(B3(D2))(2), and thus g1 is surjective. So
(B4(S2 \ {x1, . . . , xn}))(1)/(B4(S2 \ {x1, . . . , xn}))(2) ∼= Z2, which proves
the second part of part (c).
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Finally, we prove the last part of part (c). Consider the short exact
sequence

1 → (B4,n)
(1)/(B4,n)

(2) → B4,n/(B4,n)
(2) α̂→ (B4,n)

Ab → 1.

Recall that (B4,n)
Ab is a free Abelian group with basis {σ, ρ1, . . . , ρn−1},

and that up to isomorphism, we may identifyB3(D2)/(B3(D2))(2)×Zn−1

with B4,n/(B4,n)
(2), where the Zn−1-factor has a basis {α1, . . . , αn−1}

for which α̂(αi) = ρi. It follows that α̂ admits a section given by σ 7→ σ
and ρi 7→ αi, and hence

B4,n/(B4,n)
(2) ∼= (B4,n)

(1)/(B4,n)
(2) ⋊ (B4,n)

Ab.

Taking the basis {u, v} of (B4,n)
(1)/(B4,n)

(2) ∼= Z2, the action is given by
ρi ·u = αi uαi

−1 = u and ρi · v = αi v αi
−1 = v since αi commutes with

σ and σ2, and σ · u and σ · v are obtained as in the proof of the second
part of Proposition 5(c). This completes the proof of Theorem 9. �

5. The commutator subgroup of Bm(S2 \ {x1, x2}), m ≥ 2

Let m ≥ 2. As we saw in Theorem 9, the lower central series
of Bm(S2 \ {x1, . . . , xn})), n ≥ 2, is constant from the commutator
subgroup onwards if m ≥ 3. In this section, we study the case n = 2
in more detail. The special case m = n = 2 will also be analysed later
in Section 6, and the case m ≥ 3 and n = 2 will also be discussed in
Section 7.

From Remarks 35, we know that Bm(S2 \ {x1, x2})) is the m-string
braid group of the annulus, and so is isomorphic to the Artin group
of type Bm. Presentations of these groups were obtained in [Lam,

Ma], as well as in [KP] (we will come back to this presentation in
Proposition 56). Annulus braid groups were also studied in [Cr, PR].

Let m ≥ 2. From Proposition 34, it follows from part (b) that
Bm(S2 \ {x1, x2}) ∼= Bm(D2 \ {x2}), and from part (c) that

Bm(D2 \ {x2} , {x3, . . . , xm+1, xm+2}) ∼= Bm,1(D2).

Hence Bm(S2 \ {x1, x2}) ∼= Bm,1(D2). But from part (d),

Bm,1(D2) ∼= π1(D2 \ {x3, x4, . . . , xm+2} , x2) ⋊ Bm(D2)

∼= Fm(A2,3, . . . , A2,m+2) ⋊ Bm(D2),

where Bm(D2) is taken to be generated by σ3, . . . , σm+1, and the action
ϕ of the σi, 3 ≤ i ≤ m+ 1, on the A2,j, 3 ≤ j ≤ m+ 2 is that given by
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the Artin representation:

σiA2,jσ
−1
i =





A2,j+1 if j = i

A−1
2,jA2,j−1A2,j if j = i+ 1

A2,j otherwise.

(27)

From this, we may deduce that:

σ−1
i A2,jσi =





A2,j−1 if j = i+ 1

A2,jA2,j+1A
−1
2,j if j = i

A2,j otherwise.

(28)

Proposition 10. Let m ≥ 2. Then:

(a) Bm(S2 \ {x1, x2}) ∼= Fm ⋊ Bm(D2), where the action ϕ is as given
in equation (27).

(b) Γ2(Bm(S2 \ {x1, x2})) ∼= Ker (ρ) ⋊ Γ2(Bm(D2)), where

ρ : Fm(A2,3, . . . , A2,m+2) → Z

is the augmentation homomorphism, and the action is that induced
by ϕ.

Proof. Part (a) was proved above, and in any case is a restatement
of the results of Proposition 34. So let us prove part (b). Set Fm =
Fm(A2,3, . . . , A2,m+2), and let L be the subgroup of Fm generated by
Γ2(Fm) and the normal subgroup generated by the elements of the form
ϕ(g)(h) · h−1, where g ∈ Bm(D2) and h ∈ Fm. By Proposition 29, it
suffices to prove that L = Ker (ρ).

First we show that L ⊆ Ker (ρ). Since ρ factors through Abeliani-
sation, we have clearly that Γ2(Fm) ⊆ Ker (ρ). Further, since Ker (ρ)
is normal in Fm, it suffices to prove that ϕ(g)(h) · h−1 ∈ Ker (ρ),
where g ∈ Bm(D2) and h ∈ Fm. This is equivalent to showing that
ρ(h) = ρ(ϕ(g)(h)) = ρ(ghg−1) and may be achieved by double induc-
tion as follows. If g and h are both of length 1, in other words if they
are generators or inverses of generators of their respective groups then
the result holds using equations (27) and (28). Secondly, if g is of
length 1 then the result follows for all h by applying induction on the
word length of h (relative to the given basis of Fm) and the fact that

gh1h2g
−1 = gh1g

−1 · gh2g
−1

for all h1, h2 ∈ Fm. Finally the result holds for all g and all h by apply-
ing induction on the word length of g (relative to the given generators
of Bm(D2)) and the relation

g1g2h(g1g2)
−1 = g1h

′g−1
1 ,
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where g1, g2 ∈ Bm(D2) and h′ = g2hg
−1
2 ∈ Fm. This proves that L ⊆

Ker (ρ).
To see that Ker (ρ) ⊆ L, we determine a basis of Ker (ρ) with

the help of the Reidemeister-Schreier rewriting process. Taking X =
{A2,3, . . . , A2,m+2} as a basis of Fm and U =

{
Ai2,3

}
i∈Z

to be a Schreier

transversal, we see that a basis of Ker (ρ) is given by the elements

of the form
{
Ai2,3A2,jA

−(i+1)
2,3

}
i∈Z, j∈{4,...,m+2}

, or in other words, the

conjugates of the A2,jA
−1
2,3 by Ai2,3. Since L is normal in Fm, it suffices

to prove that the A2,jA
−1
2,3 belong to L. This is the case, since for all

3 ≤ j ≤ m+ 1,

ϕ(σj)(A2,j)A
−1
2,j = A2,j+1A

−1
2,j ∈ L, and

A2,j+1A
−1
2,3 = A2,j+1A

−1
2,j · A2,jA

−1
2,j−1 · · ·A2,4A

−1
2,3 ∈ L.

Thus Ker (ρ) ⊆ L, which completes the proof of part (b) of the propo-
sition. �

We now investigate further the case m = 3. By Theorem 36,
Γ2(B3(D2)) is a free group F2(u, v) of rank 2, where u = σ4σ

−1
3 and

v = σ3σ4σ
−2
3 . For i ∈ Z, we set

αi = Ai2,3A2,4A
−(i+1)
2,3 = Ai2,3α0A

−i
2,3 and

βi = Ai2,3A2,5A
−(i+1)
2,3 = Ai2,3β0A

−i
2,3.

Using relations (27) and (28), one may check that

uA2,3u
−1 = A2,3A2,5A

−1
2,3 vA2,3v

−1 = A2,4A2,5A2,4A
−1
2,5A

−1
2,4

uA2,4u
−1 = A2,3 vA2,4v

−1 = A2,4A2,5A
−1
2,4

uA2,5u
−1 = A−1

2,5A2,4A2,5 vA2,5v
−1 = A−1

2,5A
−1
2,4A2,3A2,4A2,5,

then that

uα0u
−1 =uA2,4A

−1
2,3u

−1 = (A2,3A2,5A
−2
2,3)

−1 = β−1
1

uβ0u
−1 =uA2,5A

−1
2,3u

−1 = (A−1
2,3A2,5)

−1(A−1
2,3A2,4)(A2,5A

−1
2,3)·

(A2,3A2,5A
−2
2,3)

−1 = β−1
−1α−1β0β

−1
1

uAi2,3u
−1 =ri ·Ai2,3,





(29)
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where ri = A2,3A
i
2,5A

−(i+1)
2,3 ∈ Ker (ρ), and finally that

vα0v
−1 =vA2,4A

−1
2,3v

−1 = (A2,4A
−1
2,3)(A2,3A2,5A

−2
2,3)·

(A2
2,3A2,5A

−3
2,3)(A

2
2,3A2,4A

−3
2,3)

−1(A2,3A2,5A
−2
2,3)

−1·
(A2,4A

−1
2,3)

−1 = α0β1β2α
−1
2 β−1

1 α−1
0

vβ0v
−1 =vA2,5A

−1
2,3v

−1 = (A−1
2,3A2,5)

−1(A−2
2,3A2,4A2,3)

−1·
(A−1

2,3A2,4)(A2,5A
−1
2,3)(A2,3A2,4A

−2
2,3)(A

2
2,3A2,5A

−3
2,3)·

(A2
2,3A2,4A

−3
2,3)

−1(A2,3A2,5A
−2
2,3)

−1(A2,4A
−1
2,3)

−1

= β−1
−1α

−1
−2α−1β0α1β2α

−1
2 β−1

1 α−1
0

vAi2,3v
−1 =siA

−i
2,3,





(30)

where si = A2,4A2,5A
i
2,4A

−1
2,5A

−1
2,4A

−i
2,3 ∈ Ker (ρ). Up to expressing the

ri and si in terms of the αi and βi, we thus obtain a complete set of
relations for Ker (ρ) ⋊ F2(u, v):

uαiu
−1 = riβ

−1
i+1r

−1
i

uβiu
−1 = riβ

−1
i−1αi−1βiβ

−1
i+1r

−1
i

vαiv
−1 = siαiβi+1βi+2α

−1
i+2β

−1
i+1α

−1
i s−1

i

vβiv
−1 = siβ

−1
i−1α

−1
i−2αi−1βiαi+1βi+2α

−1
i+2β

−1
i+1α

−1
i s−1

i





(31)

for all i ∈ Z.
Setting α̃i (resp. β̃i) to be the Abelianisation of αi (resp. βi), and

Abelianising equations (31), we obtain:

α̃i = −β̃i+1

α̃i = α̃i+3

α̃i + α̃i+1 + α̃i+2 = 0





(32)

for all i ∈ Z. By Proposition 10(b), (B3(S2 \ {x1, x2}))(1)
/

(B3(S2 \
{x1, x2}))(2) is Abelian, generated by the α̃i and β̃i, i ∈ Z, and the
Abelianisations of u and v, subject to these relations, and so is a free
Abelian group with basis α̃0, α̃1 and the Abelianisations of u and v.
Hence:

Proposition 11.
(
B3

(
S2 \ {x1, x2}

))(1)/(
B3

(
S2 \ {x1, x2}

))(2) ∼= Z4. �

With the help of Proposition 11, we may obtain the following:

Proposition 12.

B3

(
S2 \ {x1, x2}

)/(
B3

(
S2 \ {x1, x2}

))(2) ∼= Z4 ⋊ Z2,
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where Z4 has a basis
{
α̃0, β̃0, ũ, ṽ

}
, Z2 has a basis {σ, ρ1}, and the

action is given by:

σ · ũ = ṽ σ · ṽ = −ũ + ṽ

σ · α̃0 = β̃0 σ · β̃0 = β̃0 − α̃0

ρ1 · α̃0 = α̃0 ρ1 · β̃0 = β̃0

ρ1 · ũ = −α̃0 − ũ+ ṽ ρ1 · ṽ = −β̃0 − ũ.

Proof. Consider the following short exact sequence:

1 → (B3,2)
(1)/(B3,2)

(2) → B3,2/(B3,2)
(2) α̂→ B3

Ab → 1,

where B3,2 = B3(S2 \{x1, x2}). From Proposition 11, (B3,2)
(1)/(B3,2)

(2)

is a free Abelian group of rank 4 with basis α̃0, β̃0, ũ and ṽ, where α0 =
A2,4A

−1
2,3, β0 = A2,5A

−1
2,3 and ũ, ṽ are the respective Abelianisations of

u = σ4σ
−1
3 and v = σ3σ4σ

−2
3 . Further, (B3,2)

Ab is a free Abelian group
of rank 2, with basis σ, ρ1, where α̂(σ3) = α̂(σ4) = σ, and α̂(A1,j) = ρ1

for j = 1, 2, 3. Then σ 7→ σ3 and ρ1 7→ A1,5 defines a section for α̂. Let
us now determine the associated action. We have already seen that
σ · u = v, and σ · v = u−1v, so σ · ũ = ṽ, and σ · ṽ = −ũ + ṽ. Further,
from equation (27), we have σ · α0 = σ3α0σ

−1
3 = A−1

2,4A2,3 = α−1
−1, and

σ · β0 = σ3α0σ
−1
3 = A2,5A

−1
2,4 = β0α

−1
0 , so by equation (32), σ · α̃0 = β̃0

and σ · β̃0 = β̃0 − α̃0. As for the action of ρ1, we have ρ1 · α0 = α0, so
ρ1 ·α̃0 = α̃0, and ρ1·β0 = A1,5 ·A2,5A

−1
2,3·A−1

1,5. But A1,5 = σ−1
4 σ−2

3 σ−1
4 A−1

2,5,
hence

ρ1 · β0 = σ−1
4 σ−2

3 σ−1
3 A2,5σ4σ

2
3σ4A

−1
2,3

= A2,3A2,4A2,5A
−1
2,4A

−2
2,3 = α1β2α

−1
2 ,

and thus ρ1 · β̃0 = β̃0. Also,

ρ1 · u = σ−1
4 σ−2

3 σ−1
3 A−1

2,5uA2,5σ4σ
2
3σ4

= A2,3A2,4A
−1
2,5A

−1
2,4A

−1
2,3A2,4σ

−1
4 σ−3

3 σ4σ
2
3σ4.

But
σ−1

4 σ−3
3 σ4σ

2
3σ4 = σ−1

3 σ4 · σ3σ4σ
−2
3 = u−1v,

so ρ1 · u = α1β
−1
1 α−1

0 α−1u
−1v, and ρ1 · ũ = −α̃0 − ũ+ ṽ. Finally,

ρ1 · v = A1,5σ3A
−1
1,5 · ρ1 · u · A1,5σ

−1
3 A−1

1,5 = σ3 · α1β
−1
1 α−1

0 α−1u
−1v · σ−1

3

= A2,3A2,4A
−1
2,5A

−1
2,4A

−1
2,3A

−1
2,4A2,3A2,4v

−1u−1v

= α1β
−1
1 α−1

0 α−1
−2α−1v

−1u−1v,

and so ρ1 · ṽ = −β̃0 − ũ, which proves the proposition. �
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We now give an alternative proof of Proposition 11. Although it is
long, we believe the method to be of interest. We will also make use of
some results proved in Section 2 to prove (Proposition 42) that (B3(S2\
{x1, x2}))(1) is a semi-direct product of an infinite-rank subgroup of
F5(z1, . . . , z5) by F2(u, v).

Given B3(S2 \{x1, x2}), from the generalised Fadell-Neuwirth short
exact sequence (equation (5)), we obtain

1 → B3(S2 \ {x1, x2}) ι→ B3,1(S2 \ {x1}) → B1(S2 \ {x1}) → 1.

Clearly ι is an isomorphism, and composing by the inclusion B3,1(S2 \
{x1}) →֒ B4(S2 \ {x1}), we obtain an injective homomorphism

f : B3(S2 \ {x1, x2}) → B4(S2 \ {x1}).
Further, we have the following commutative diagram of short exact
sequences:

1 // P3(S2 \ {x1, x2}) //

∼=ϕ

∣∣
P3(S2\{x1,x2}) ��

B3(S2 \ {x1, x2}) π //

ϕ

��

S3
//

��

1

1 // P4(D2) // B4(D2)
π // S4

// 1,

(33)

where π is the homomorphism which to a braid associates its permuta-
tion, and ϕ is the composition of f and the isomorphism B4(S2\{x1}) ∼=
B4(D2) given by Proposition 34(b). The right-hand vertical homomor-
phism is the natural inclusion of S3 in S4. So ϕ is also injective, and
ϕ(σi) = σi for i = 1, 2. The fact that the left-hand homomorphism
ϕ
∣∣
P3(S2\{x1,x2}) is an isomorphism follows from Proposition 34(a). From

this, we obtain the following commutative diagram:

(B3(S2 \ {x1, x2}))(1) π //

ϕ

��

A3

��
(B4(D2))(1) π // A4,

An being the alternating subgroup of Sn. By abuse of notation, we
use the same symbols for the restriction homomorphisms. If H =
(B4(D2))(1) ∩ π−1(A3) then ϕ(B3(S2 \ {x1, x2}))(1) ⊆ H by commuta-
tivity of the diagram. Since π

∣∣
(B4(D2))(1)

is surjective onto A4, it follows

that [(B4(D2))(1) : H ] = 4 (indeed, if g : G1 → G2 is a surjective group
homomorphism, and H2 is a subgroup of G2 then H1 = g−1(H2) is
a subgroup of G1, and G1/H1 → G2/H2, xH1 7→ g(x1)H2 defines a
bijection, so [G1 : H1] = [G2 : H2]).
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Recall from Theorem 36(c) that (B4(D2))(1) ∼= F2(a, b) ⋊ F2(u, v),
where a = σ3σ

−1
1 , b = σ2σ3σ

−1
1 σ−1

2 , u = σ2σ
−1
1 , v = σ1σ2σ

−2
1 , and

the action is given by equation (18). The corresponding elements u =
σ2σ

−1
1 , v = σ1σ2σ

−2
1 of B3(S2 \ {x1, x2}) (we use the same symbols to

denote these elements) in fact belong to (B3(S2 \{x1, x2}))(1), generate
a free group of rank 2 (by injectivity of ϕ), and we have

F2(u, v) ⊆ ϕ((B3(S2 \ {x1, x2}))(1)) ⊆ H. (34)

Further, writing the elements of (B4(D2))(1) in the form F2(a, b) ⋊
F2(u, v), if (w, z) ∈ H then for all z′ ∈ F2(u, v), z

−1z′ ∈ H by equa-
tion (34), so (w, z)(e, z−1z′) = (w, z′) ∈ H , and thus {w} × F2(u, v) ⊆
H . Hence H is of the form H1 ⋊ F2(u, v), where H1 is an index 4
subgroup of F2(a, b). Together with the identity, the elements π(a) =
(12)(34), π(b) = (13)(24) and π(ab) = (14)(23) form a set of coset
representatives for A4/A3, so e, a, b and ab form a set of coset rep-
resentatives for F2(a, b)/H1. If w = w(a, b) ∈ F2(a, b) then π(w) =
w(π(a), π(b)), and since π(a) and π(b) generate a group isomorphic to
Z2×Z2, we see that π(w) ∈ A3 if and only if the exponent sums in w of
a and b are both even. In other words, H1 = Ker (F2(a, b) → Z2 × Z2),
where a 7→ (1, 0) and b 7→ (0, 1), is nothing other than the free subgroup
N of F2(a, b) of rank 5 described on page 21 of Section 2, possessing
a basis z1 = a2, z2 = b2, z3 = (ab)2, z4 = ba2b−1 and z5 = ab2a−1.
Thus H ∼= F5(z1, . . . , z5) ⋊ F2(u, v), where the action is given by equa-
tions (20) and (21).

Hence we have a commutative diagram of the form:

Z

ψ

��
A3� _

��

(B3,2)
(1)πoo

ϕ

||xxx
xx

xx
xxx

x

� � //

ϕ

∣∣
(B3,2)(1)

��

B3,2
//

� _

ϕ

��

(B3,2)
Ab

︸ ︷︷ ︸
∼=Z×Z

ϕ̃

��

H

π

∣∣
H

\\:
:
:
:
:
:
:
:
:

� q

""FF
FF

FF
FF

FF
FF

A4 (B4(D2))(1)πoo � � // B4(D2) // B4(D2)Ab

︸ ︷︷ ︸
∼=Z

,

(35)

where B3,2 = B3(S2 \ {x1, x2}), and

ϕ̃ : B3(S2 \ {x1, x2})Ab → B4(D2)Ab
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is the homomorphism induced on the Abelianisations. Since B4(D2)Ab

is infinite cyclic, generated by an element σ, say, B3(S2 \ {x1, x2})Ab is
a free Abelian group of rank 2 with basis comprised of σ and A, we
have that ϕ̃(σ) = σ, and ϕ̃(A) = σ2. So Ker (ϕ̃) ∼= Z is the subgroup
generated by (−2, 1) relative to the basis (σ,A). Let

ψ : Z → B3(S2 \ {x1, x2})Ab

be defined by ψ(k) = k(−2, 1). Then the final column of the diagram
is exact.

Now the idea is the following: given x ∈ H , we may associate an
element of Z using diagram (35). We shall show that this is a homo-
morphism, ε′ say, which satisfies ε′(zi) = 1 if i = 1, 2, 3, ε′(zi) = −1
if i = 4, 5, and ε′(u) = ε′(v) = 0. From this, in particular, we obtain
ε′ = η ◦ ε, where ε : F5(z1, . . . , z5) ⋊ F2(u, v) → Z ⊕ Z2 is the homo-
morphism defined by equation (23), and η : Z ⊕ Z2 → Z is defined by
η((1, 0, 0)) = 1 and η((0, 1, 0)) = η((0, 0, 1)) = 0.

To define ε′, we first choose the following correspondence between
B3(S2 \ {x1, x2}) and B4(D2): the three strings correspond of B3(S2 \
{x1, x2}) to the first three strings of B4(D2); the puncture x1 to the
fourth (vertical) string; and the puncture x2 to the boundary of D2. In
this representation, if 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2 then Ci,j+3 will denote
the element of B3(S2 \ {x1, x2}) represented by a loop based at point
i which encircles the jth puncture. Suppose that z ∈ B4(D2) is such
that π(z) ∈ S3. Then we claim that there exists yz ∈ B3(S2 \ {x1, x2})
such that ϕ(yz) = z; by injectivity of ϕ, such a yz is unique. To
prove the claim, notice there exists y′ ∈ B3(S2 \ {x1, x2}) such that
π(z) = π(y′) = π ◦ ϕ(y′) by commutativity of diagram (33). Hence
ϕ(y′)−1z ∈ Ker (π). But since the first vertical arrow of that diagram is
bijective, there exists y′′ ∈ P3(S2\{x1, x2}) such that ϕ(y′′) = ϕ(y′)−1z.
Hence z = ϕ(yz), where yz = y′y′′, and the claim is proved.

So let x ∈ H . Since H ⊆ (B4(D2))(1), x is sent to 0 in B4(D2)Ab.
By the claim, there exists a unique yx ∈ B3(S2 \ {x1, x2}) such that
ϕ(yx) = x, so by commutativity of diagram (35), ỹx ∈ Ker (ϕ̃), where
ỹx denotes the Abelianisation of yx. Thus ỹx = k(−2, 1) relative to
the basis (σ,A), where k ∈ Z, and so x 7→ k defines a map ε′ from
H to Z, well defined since yx is unique, and a homomorphism because
ϕ is. Further, ψ ◦ ε′(x) = ỹx. Let us now calculate ε′ on the given
generating set {z1, · · · , z5, u, v} ofH . Now yu = u and yv = v, and since
F2(u, v) ⊆ ϕ(B3(S2 \ {x1, x2}))(1) by (34), it follows that ỹu = ỹv = 0,
and so ε′(u) = ε′(v) = 0. Now consider

x1 = a2 = (σ3σ
−1
1 )2 = σ2

3σ
−2
1 .
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From the given correspondence between B3(S2 \ {x1, x2}) and B4(D2),
z1 may be written as C34σ

−2
1 , and so under Abelianisation is sent to

(−2, 1). Hence ε′(z1) = 1. Since z2 is conjugation of z1 by σ2, we obtain
similarly that ε′(z2) = 1. As for z3,

z3 = (ab)2 = (σ3σ
−1
1 · σ2σ3σ

−1
1 σ−1

2 )2

= σ−1
1 σ2σ3σ2σ

−1
1 σ−1

2 σ−1
1 σ3σ2σ3σ

−1
1 σ−1

2

= σ−1
1 σ2σ

−1
1 σ2

3σ2σ
−1
1 σ−1

2 = σ−1
1 σ2σ

−1
1 C34σ2σ

−1
1 σ−1

2 ,

so ε′(z3) = 1,

z4 = ba2b−1 = σ2σ3σ
−1
1 σ−1

2 σ−2
1 σ2

3σ2σ1σ
−1
3 σ−1

2

= σ2σ3σ
−2
2 σ−1

1 σ−1
2 σ2

3σ2σ1σ
−1
3 σ−1

2

= σ−2
3 σ2σ3σ

−1
1 σ3σ

2
2σ

−1
3 σ1σ

−1
3 σ−1

2 = σ−2
3 σ2σ

−1
1 σ2

3σ
2
2σ1σ

−2
3 σ−1

2

= C−1
34 σ2σ

−1
1 C34σ

2
2σ1C

−1
34 σ

−1
2 ,

so ε′(z4) = −1, and

z5 = ab2a−1 = σ−1
1 σ3σ2σ

−2
1 σ2

3σ
−1
2 σ−1

3 σ1

= σ−1
1 σ3σ2σ

−2
1 σ−1

2 σ−1
3 σ2

2σ1

= σ−2
1 σ−1

2 σ−2
3 σ2σ1σ

2
2σ1 = σ−2

1 σ−1
2 C−1

34 σ2σ1σ
2
2σ1,

so ε′(z5) = −1, and thus ε′ = η ◦ ε as claimed.
Let y ∈ (B3(S2 \ {x1, x2}))(1), and let x = ϕ(y). We know that

x ∈ H , and yx = y. But ỹ = 0, hence ε′(x) = 0, and ϕ((B3(S2 \
{x1, x2}))(1)) ⊆ Ker (ε′). Conversely, let x ∈ Ker (ε′). Then ϕ(yx) = x,
and ỹx = ψ ◦ ε′(x) = 0, so yx ∈ (B3(S2 \ {x1, x2}))(1). Hence x ∈
ϕ((B3(S2 \ {x1, x2}))(1)), and so Ker (ε′) = ϕ((B3(S2 \ {x1, x2}))(1)).
But ϕ is injective, and thus Ker (ε′) ∼= (B3(S2 \ {x1, x2}))(1). To de-
termine Ker (ε′), we use the following short exact sequence and the
Reidemeister-Schreier rewriting process:

1 → (B3(S2 \ {x1, x2}))(1) ϕ→֒ F5(z1, . . . , z5) ⋊ F2(u, v)
ε′→ Z → 1.

The calculations are similar to those given in Section 2 for the kernel
of the homomorphism ρ defined by equation (25); the difference is that
here F2(u, v) ⊆ Ker (ε′). For all j ∈ Z, set

αi,j =

{
zj1ziz

−(j+1)
1 if i = 2, 3

zj1ziz
−(j−1)
1 if i = 4, 5.

These elements form a basis of Ker (ρ) (see Table 6 on page 30). To
obtain a generating set of Ker (ε′), we need to add the elements rj =

zj1uz
−j
1 and sj = zj1vz

−j
1 , where j ∈ Z. The relators of Ker (ε′) are of
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the form zj1Rz
−j
1 , where j ∈ Z and R runs over the set of relators given

by equations (20) and (21). For i = 1, . . . , 5, let us set ti = uziu
−1 and

wi = vziv
−1. First let i = 1. Then for all j ∈ Z, we have the relator:

zj1uz1u
−1t−1

1 z−j1 = rjr
−1
j+1(z

j
1t

−1
1 z

−(j+1)
1 )−1.

from which it follows that

rj+1 = (zj1t1z
−(j+1)
1 )−1rj. (36)

This allows us to delete all of the ri, i ∈ Z \ {0}, from the list of
generators. By induction, we obtain:

rj =

{
(zj−1

1 t1z
−j
1 )−1(zj−2

1 t1z
−j+1
1 )−1 · · · (t1z−1

1 )−1u if j > 0

(zj1t1z
−(j+1)
1 )(zj+1

1 t1z
−(j+2)
1 ) · · · (z−1

1 t1)u if j < 0.
(37)

In a similar way, we may delete all of the sj except s0 = v from the list
of generators, and we obtain:

sj =

{
(zj−1

1 w1z
−j
1 )−1(zj−2

1 w1z
−j+1
1 )−1 · · · (w1z

−1
1 )−1v if j > 0

(zj1w1z
−(j+1)
1 )(zj+1

1 w1z
−(j+2)
1 ) · · · (z−1

1 w1)v if j < 0.
(38)

Notice that in equations (37) and (38), each of the bracketed terms
belongs to Ker (ρ), and hence so do rju

−1 and sjv
−1. So they may be

expressed in terms of the αi,j. Now let i = 2, 3 and j ∈ Z. Then we
have a relator

zj1uziu
−1t−1

i z−j1 = rjαi,jr
−1
j+1z

j+1
1 t−1

i z−j1 ,

which yields a relation of the form rjαi,jr
−1
j = zj1tit

−1
1 z−j1 by equa-

tion (36). Using equation (37), we see that the elements uzj1ziz
−(j+1)
1 u−1

may be expressed solely in terms of the αi,j . Indeed,

uαi,ju
−1 = (rju

−1)−1zj1tit
−1
1 z−j1 (rju

−1). (39)

Similarly,
vαi,jv

−1 = (sjv
−1)−1zj1wiw

−1
1 z−j1 (sjv

−1). (40)

Finally, let i = 4, 5 and j ∈ Z. Then we obtain analogously:

uαi,ju
−1 = (rju

−1)−1zj1tit1z
−j
1 (rju

−1). (41)

Similarly,
vαi,jv

−1 = (sjv
−1)−1zj1wiw1z

−j
1 (sjv

−1). (42)

This gives a complete set of relations for Ker (ε′). We conclude that:

Proposition 42. (B3(S2 \ {x1, x2}))(1) ∼= L ⋊ F2(u, v), where L
is the subgroup of F5(z1, . . . , z5) of infinite rank freely generated by
{αi,j}i∈Z, j∈{2,3,4,5}, the action being given by equations (39), (40), (41),

and (42), taking into account equations (37) and (38). �
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From this, we may now determine (B3(S2 \ {x1, x2}))(1)/(B3(S2 \
{x1, x2}))(2) by Abelianising the presentation of (B3(S2 \ {x1, x2}))(1)

given by Proposition 42, and thus reprove Proposition 11. First notice
that for all 2 ≤ i ≤ 5 and all j, k ∈ Z, zk1αi,jz

−k
1 = αi,j+k. If w ∈

(B3(S2\{x1, x2}))(1), let w̃ ∈ (B3(S2\{x1, x2}))(1)/(B3(S2\{x1, x2}))(2)

denote its Abelianisation. A simple calculation shows that:

t̃2t
−1
1 = α̃2,0 + α̃5,0 + α̃3,−1 − α̃2,−1 − α̃4,0

t̃3t
−1
1 = α̃2,1 − α̃3,1 + α̃5,1 + t̃2t

−1
1

w̃2w
−1
1 = −α̃4,1 + α̃2,1 − α̃3,1 + α̃5,1 + α̃5,0 − α̃4,0 + α̃2,0

w̃3w
−1
1 = α̃2,1 + w̃2w

−1
1 .

Abelianising equations (39) and (40) for i = 2 then i = 3 yields:

α̃5,j − α̃4,j = α̃2,j−1 − α̃3,j−1

α̃3,j − α̃2,j = α̃2,j+1 − α̃3,j+1 + α̃5,j+1

0 =α̃5,j − α̃4,j + α̃5,j+1 − α̃4,j+1 + α̃2,j+1 − α̃3,j+1

α̃2,j+1 + α̃2,j = α̃3,j (43)

for all j ∈ Z. Substituting equation (43) into the three other equations,
we obtain:

α̃5,j − α̃4,j = −α̃2,j (44)

α̃3,j+1 = α̃5,j+1 (45)

α̃2,j+1 − α̃2,j = α̃4,j+1. (46)

Similarly, if i = 4, 5,

t̃4t1 =α̃2,0 + α̃5,0

t̃5t1 =α̃2,0 + α̃2,1 − α̃3,1 + α̃5,1 + α̃5,0 + α̃2,−1

w̃4w1 =α̃3,0 − α̃4,1 + α̃2,1 − α̃3,1 + α̃5,1

w̃5w1 =α̃3,−1 − α̃4,0 + α̃2,0 − α̃4,1 + 2α̃2,1 − α̃3,1 + α̃5,1+

α̃5,0 + α̃3,−2 − α̃2,−2 − α̃4,−1.
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Abelianising equations (41) and (42) for i = 4 then i = 5 and
applying the previous equations yields:

α̃4,j = α̃2,j + α̃5,j which is equivalent to (44)

0 = α̃2,j−1 + α̃2,j + α̃2,j+1 (47)

α̃4,j = α̃3,j + α̃2,j (48)

0 = α̃2,j−1 + α̃2,j + α̃2,j+1 which is the same as (47).

By equations (47), (43), (46) and (45) we obtain the solution

α̃2,3k = α̃2,0 = −α̃3,3k+1 = −α̃5,3k+1

α̃2,3k+1 = α̃2,1 = −α̃3,3k+2 = −α̃5,3k+2

α̃2,3k+2 = −(α̃2,0 + α̃2,1) = −α̃3,3k = −α̃5,3k

α̃4,3k = 2α̃2,0 + α̃2,1

α̃4,3k+1 = −α̃2,0 + α̃2,1

α̃4,3k+2 = −α̃2,0 − 2α̃2,1

for all k ∈ Z, which satisfies the two remaining equations (44) and (48).
We conclude that (B3(S2 \ {x1, x2}))(1)/(B3(S2 \ {x1, x2}))(2) is a free
Abelian group with basis {α̃2,0, α̃2,1, ũ, ṽ}, and this reproves Proposi-
tion 11.

We will come back to the special case m = n = 2 in the following
section.

6. The lower central and derived series of B2(S2 \ {x1, x2})
From Section 3 and Theorem 9, the only outstanding case for the

lower central series of the punctured sphere is the 2-string braid group.
As we shall see in this section, it is particularly challenging. We con-
centrate here on the case of the two-punctured sphere. The group
B2(S2 \ {x1, x2}) has many fascinating properties, and as a result, we
are able to describe its lower central and derived series in terms of
those of the free product Z2 ∗ Z. In particular, we prove Corollary 13,
Proposition 14 and Theorem 15. As we indicated in the Preface, the
techniques used in this section have since been applied in [BGG] to
study the 2-string braid group of the torus, and similar results were
obtained (cf. Theorem 19).

We start by determining Γ2(P2(S2 \ {x1, x2})). The map F2(S2 \
{x1, x2}) → F1(S2 \ {x1, x2}) is a fibration, and the fibre over a point
x3 of the base is of the form F1(S2 \ {x1, x2, x3}). As in equation (2),
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this gives rise to a short exact sequence of the form:

1 → π1(S2 \ {x1, x2, x3} , x4) → P2(S2 \ {x1, x2} , {x3, x4})
p∗→

π1(S2 \ {x1, x2} , x3) → 1.

We use the following notation for the generators γi,j, 1 ≤ i, j ≤ 2 of
P2(S2 \ {x1, x2} , {x3, x4}): the two punctures correspond to the points
x1, x2; and the two basepoints correspond to x3, x4. The generator γi,j
is equal to the generator Ai,j+2 of Proposition 31, and corresponds to
a loop based at xj+2 which encircles xi in the positive direction.

Let σ be the standard Artin generator of B2(S2 \ {x1, x2}) which
geometrically exchanges the points x3 and x4. Then a (non-minimal)
generating set of P2(S2 \ {x1, x2}) is given by the union of the γi,j and
σ2, and a generating set of B2(S2 \ {x1, x2}) is given by the union of
the γi,j and σ.

The kernel π1(S2 \ {x1, x2, x3} , x4) of p∗ is the free group F2(a, b)
of rank 2 on a and b, where a = γ1,2 and b = γ2,2. The image of p∗
is an infinite cyclic group; the homomorphism which sends (one of) its
generators to the element c = γ2,1 of P2(S2 \ {x1, x2}) defines a section
for p∗. Hence

P2(S2 \ {x1, x2}) ∼= F2(a, b) ⋊ϕ Z, (49)

where we identify the second factor Z with 〈c〉. The action ϕ on the
kernel is given as follows (this may be checked using the presentation
of Pm(S2 \ {x1, . . . , xn}) given in [GG4]):

{
ϕ(c)(a) = cac−1 = a

ϕ(c)(b) = cbc−1 = aba−1,

which in fact is just conjugation by a.
As well as containing Γ2(F2(a, b)), by Proposition 29, Γ2(P2(S2 \

{x1, x2})) will also contain elements of the form [cj , w], where w ∈
F2(a, b) and j ∈ Z. But from the form of the action ϕ, [cj , w] = [aj , w].
Hence

Γ2(P2(S2 \ {x1, x2})) = Γ2(F2(a, b)), (50)

and thus the derived series (with the exception of the first term) of
P2(S2 \ {x1, x2}) is that of F2(a, b).

By Proposition 31, B2(S2 \ {x1, x2}) is generated by the γi,j, 1 ≤
i, j ≤ 2, and σ, subject to the four relations:

γ1,2γ2,2σ
2 = 1

γ1,1γ2,1σ
2 = 1

σγi,1σ
−1 = γi,2 for i = 1, 2.





(51)
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Thus:

c = γ2,1 = γ−1
1,1σ

−2

b = γ2,2 = σγ−1
1,1σ

−3

a = γ1,2 = σγ1,1σ
−1.





(52)

In particular, B2(S2 \ {x1, x2}) is generated by σ and γ1,1.
In what follows, we shall sometimes write simply P2,2 for P2(S2 \

{x1, x2}), and B2,2 for B2(S2 \ {x1, x2}).

Proposition 43.

(a) The commutator subgroup [P2,2, P2,2] of P2,2 is a normal subgroup
of [P2,2, B2,2].

(b) The commutator subgroup [P2,2, B2,2] of P2,2 and B2,2 is a normal
subgroup of P2,2 and B2,2.

(c) The quotient group [P2,2, B2,2]
/
[P2,2, P2,2] is isomorphic to Z, and

is generated by the coset of the element [σ, b] = b−1c.

Proof.

(a) This is clear since P2,2 ⊳ B2,2.
(b) The fact that [P2,2, B2,2] is a subgroup of P2,2 follows from projec-

tion into the symmetric group S2. Since P2,2 ⊳ B2,2, we see that
[P2,2, B2,2] ⊳ B2,2, and so [P2,2, B2,2] ⊳ P2,2.

(c) Using equation (52), we see easily that σ−2 = ab, and thus:

[σ, a] = σ2σ−2c−1σ−2a−1 = c−1aba−1 = bc−1 = b(b−1c)−1b−1

[σ, b] = σ2γ−1
1,1σ

−4b−1 = b−1a−1ca = b−1c

[σ, c] = σγ−1
1,1σ

−1σ2γ1,1 = b(b−1c)−1b−1.





(53)

We know that [P2,2, B2,2] is the normal closure inB2,2 of the set of
elements of the form [ρ1, ρ2] and their inverses, where ρ1 ∈ {a, b, c}
is a generator of P2,2, and ρ2 ∈ {σ, a, b, c} is a generator of B2,2. If
ρ2 ∈ {a, b, c} then [ρ1, ρ2] ∈ [P2,2, P2,2]. So we just need to consider
the cosets of the conjugates of elements of the form [ρ1, σ]. Consider
the following relation:

ρ[ρ1, σ]ρ−1 =
[
ρ, [ρ1, σ]

][
ρ1, σ

]
. (54)

If ρ ∈ P2,2, then since [ρ1, σ] ∈ P2,2 by (b), it follows that

ρ[ρ1, σ]ρ−1 ≡ [ρ1, σ] modulo [P2,2, P2,2].
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So suppose that ρ ∈ B2,2 \ P2,2. Then w = ρσ−1 ∈ P2,2. By
equation (53), we see that

σ[σ, a]σ−1 = σbc−1σ−1 = b−1cb · b−1 = b−1[σ, a]−1b

σ[σ, b]σ−1 = σb−1cσ−1 = b−1c−1b · b = b−1[σ, b]−1b, and

σ[σ, c]σ−1 = σ[σ, a]σ−1 = b−1[σ, c]−1b.

In other words, for all ρ1 ∈ {a, b, c}, we have

σ[σ, ρ1]σ
−1 = b−1[σ, ρ1]

−1b.

Hence

[
ρ, [ρ1, σ]

]
= wσ[σ, ρ1]σ

−1w−1[ρ1, σ]−1

= wb−1[σ, ρ1]
−1bw−1[ρ1, σ]−1 =

[
wb−1, [σ, ρ1]

−1
][
ρ1, σ

]−2
.

Thus by equation (54), we obtain

ρ[ρ1, σ]ρ−1 =
[
wb−1, [σ, ρ1]

−1
][
ρ1, σ

]−1

≡ [ρ1, σ]−1 modulo [P2,2, P2,2], since [σ, ρ1] ∈ P2,2.

By equation (53),

[σ, a] ≡ [σ, c] ≡ [σ, b]−1 modulo [P2,2, P2,2],

and since [B2,2, P2,2] = [P2,2, B2,2], we conclude that the quotient
[P2,2, B2,2]

/
[P2,2, P2,2] is infinite cyclic, and generated by the coset

of the element [σ, b] = b−1c (using equations (49) and (50), one may
check that b−1c /∈ [P2,2, P2,2]). �

Remark 44. Let us give an alternative proof of Proposition 43
using Stallings’ exact sequence (8). Since [P2,2, P2,2], [P2,2, B2,2] E P2,2

and [P2,2, P2,2] ⊆ [P2,2, B2,2], we see that

[P2,2, B2,2]
/
[P2,2, P2,2] E P2,2

/
[P2,2, P2,2].
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We thus have the following diagram:

1

��

1 // [P2,2, B2,2]
/
[P2,2, P2,2] // P2,2

/
[P2,2, P2,2] // P2,2

/
[P2,2, B2,2]

��

// 1

B2,2

/
[B2,2, B2,2]

��
S2

��
1.

The vertical short exact sequence is that of Stallings applied to the
usual exact sequence 1 → P2,2 → B2,2 → S2 → 1. By Proposi-
tion 33, B2,2

/
[B2,2, B2,2] is a free Abelian group of rank 2, with basis

{σ, γ1,1} (notationally, here we do not distinguish an element of B2,2

and its Abelianisation). The kernel P2,2

/
[P2,2, B2,2] of the projection

B2,2

/
[B2,2, B2,2] → S2 certainly contains the free subgroup of rank 2

with basis {σ2, γ1,1}, and in fact is equal to this subgroup (for otherwise
it would contain an element of the form σpγq1,1, where p, q ∈ Z and p
is odd, and thus would contain σ, which is clearly not in the kernel).
Since P2,2

/
[P2,2, P2,2] is isomorphic to Z3 (by equation (49)), we see

that the kernel [P2,2, B2,2]
/
[P2,2, P2,2] of the horizontal exact sequence

is isomorphic to Z. Further, P2,2

/
[P2,2, P2,2] is freely generated by a, b

and c. From the relation σγ2,1σ
−1 = γ2,2, we see that b = [σ, c] · c, and

so b and c project to the same element in P2,2

/
[P2,2, B2,2]. Hence (the

coset of) bc−1 is a non-trivial element of [P2,2, B2,2]
/
[P2,2, P2,2], which

yields the result.

We thus obtain a short exact sequence of the form:

1 → [P2,2, P2,2] → [P2,2, B2,2] → Z → 1,

for which the homomorphism s : Z → [P2,2, B2,2] defined by s(1) = b−1c
defines a splitting. Since [P2,2, P2,2] is the normal closure in P2,2 of the
set of elements of the form [ρ1, ρ2] and their inverses, where ρ1, ρ2 ∈
{a, b, c}, and the action in F2(a, b) of conjugation by c is just conjuga-
tion by a, we see that [P2,2, P2,2] is the normal closure in F2(a, b) of the
element [a, b], and that:

(b−1c)w(b−1c)−1 = (b−1a)w(b−1a)−1 for all w ∈ F2(a, b).
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Hence the action of b−1c on [P2,2, P2,2] is that of conjugation by b−1a,
and so by the above short exact sequence,

[P2,2, B2,2] ∼= [P2,2, P2,2] ⋊ψ Z
∼= Γ2(F2(a, b)) ⋊ψ Z by equation (50),

where the action ψ of Z on Γ2(F2(a, b)) is given by conjugation by b−1a.

Proposition 45. [P2,2, B2,2] = [B2,2, B2,2].

From this, it follows immediately that:

Corollary 13. Γ2(B2(S2 \ {x1, x2})) ∼= Γ2(F2(a, b)) ⋊ψ Z. �

Proof of Proposition 45. Consider the following commutative
diagram of short exact sequences (obtained by taking the first two
vertical sequences, and the second and third horizontal sequences, and
then completing to the whole diagram):

1

��

1

��

1

��

1 // [P2,2, B2,2]

��

// [B2,2, B2,2]

��

// [B2,2, B2,2]
/
[P2,2, B2,2]

��

// 1

1 // P2,2
//

��

B2,2
//

��

Z2
// 1

1 // P2,2

/
[P2,2, B2,2] //

��

B2,2

/
[B2,2, B2,2] //

��

Z2
//

��

1.

1 1 1

As in Remark 44, the third row is Stallings’ exact sequence (8) applied
to the second row. By exactness of the third vertical sequence, it follows
that [B2,2, B2,2] = [P2,2, B2,2]. �

We may obtain an alternative description of Γ2(B2(S2 \ {x1, x2}))
as a free group of infinite rank. To see this, notice from part (b)
of Proposition 34 that Bm(S2 \ {x1, x2}) ∼= Bm(D2 \ {x2}), and from
part (c) that

Bm(D2 \ {x2} , {x1, x3, . . . , xm+1}) ∼= Bm,1(D2).

Hence B2(S2 \ {x1, x2}) ∼= B2,1(D2). But from part (d),

B2,1(D2) ∼= π1(D2 \ {x3, x4} , x2) ⋊ B2(D2)
∼= F2(γ2,1, γ2,2) ⋊ϕ 〈σ〉, (55)
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where the action, obtained from equations (51), (52) and (53), is given
by:

ϕ(σ)(γ2,1) = γ2,2

ϕ(σ)(γ2,2) = γ−1
2,2γ2,1γ2,2.

}
(56)

So if w = w(γ2,1, γ2,2) ∈ F2(γ2,1, γ2,2) then

ϕ(σ)(w) = γ−1
2,2w(γ2,2, γ2,1)γ2,2, (57)

in other words, the action consists of exchanging γ2,1 and γ2,2, then con-
jugating by γ−1

2,2 . Let N denote the normal closure in F2(γ2,1, γ2,2) of the

elements of the form ϕ(σj)(w) ·w−1, where j ∈ Z and w ∈ F2(γ2,1, γ2,2),
and let L be the subgroup of F2(γ2,1, γ2,2) generated by Γ2(F2(γ2,1, γ2,2))
and N . Then it follows from Proposition 29 and equation (55) that
Γ2(γ2,1(D2)) ∼= L.

Proposition 46.

(a) L is the kernel of the homomorphism ψ : F2(γ2,1, γ2,2) → Z, where
ψ is augmentation.

(b) L is a free group of infinite rank with basis {zi}i∈Z
, where zi =

γi2,1γ2,2γ
−(i+1)
2,1 for all i ∈ Z.

Since L ∼= Γ2(B2,1(D2)) ∼= B2(S2\{x1, x2}), we obtain immediately:

Corollary 47. Γ2(B2(S2 \ {x1, x2})) is a free group of infinite

rank with basis {zi}i∈Z
, where zi = γi2,1γ2,2γ

−(i+1)
2,1 for all i ∈ Z. �

Proof of Proposition 46. First observe that ψ factors through
the Abelianisation of F2(γ2,1, γ2,2), and so Γ2(F2(γ2,1, γ2,2)) ⊆ Ker (ψ).
Secondly, from equation (56), σ commutes with cb = γ2,1γ2,2, and it
follows from equation (57) that

σmw(γ2,1, γ2,2)σ
−m =

{
(γ2,1γ2,2)

−m/2w(γ2,1, γ2,2)(γ2,1γ2,2)
m/2 if m is even

(γ2,1γ2,2)
−(m−1)/2γ−1

2,2w(γ2,2, γ2,1)γ2,2(γ2,1γ2,2)
(m−1)/2 if m is odd.

So for all j ∈ Z, ψ(ϕ(σj)(w)w−1) = ψ([σj, w]) = 0. Since the same
is true for products and conjugates in F2(γ2,1, γ2,2), we see that N ⊆
Ker (ψ), and thus L ⊆ Ker (ψ). Now let us show that Ker (ψ) ⊆ L.
To see this, we first apply the Reidemeister-Schreier rewriting pro-
cess in order to obtain a basis of Ker (ψ) (which is a free group since
it is a subgroup of F2(γ2,1, γ2,2)). Taking {γ2,1, γ2,2} as the basis of
F2(γ2,1, γ2,2) and

{
γi2,1
}
i∈Z

as a Schreier transversal, the process yields
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{
γi2,1γ2,2γ

−(i+1)
2,1

}
i∈Z

as a basis. But for all i ∈ Z,

γi2,1γ2,2γ
−(i+1)
2,1 = γi2,1γ2,2γ

−1
2,1γ

−i
2,1 = γi2,1ϕ(σ)(γ2,1)γ

−1
2,1γ

−i
2,1,

which belongs to L by definition. This proves that Ker (ψ) = L, and
that L is a free group of infinite rank with the given basis as required.

�

Remark 48. Since Γ2(F2(γ2,1, γ2,2)) is the normal closure of the
commutator [γ2,1, γ2,2] in F2(γ2,1, γ2,2), and

[γ2,1, γ2,2] = (γ2,1 · γ2,2γ
−1
2,1 · γ−1

2,1)(γ2,2γ
−1
2,1)

−1

= (γ2,1 · ϕ(σ)(γ2,1)γ
−1
2,1 · γ−1

2,1)(ϕ(σ)(γ2,1)γ
−1
2,1)

−1,

it follows that Γ2(F2(γ2,1, γ2,2)) is contained in N , and so L = N =
Ker (ψ).

Remarks 49. In fact, the group B2(S2 \ {x1, x2}) is of particular
interest since it may be interpreted in several different ways.

(a) As well as being isomorphic to B2,1(D2), it is also isomorphic to
the 2-string braid group of the annulus.

(b) One may reduce the presentation given by equation (51) to the
following:

B2(S2 \ {x1, x2}) = 〈σ, γ2,2 | (σγ2,2)
2 = (γ2,2σ)2〉, (58)

which is nothing other than the Artin group of type B2 [Cr, T].
(c) The above presentation shows that B2(S2\{x1, x2}) is a one-relator

group. Interpreting it as the 2-string braid group of the annulus,
it follows from [PR] that it has infinite cyclic centre generated by
the full twist of B3(D2), which written in terms of our generators,
is of the form (σγ2,2)

2. Further, the relation may be written as
[σ, (σγ2,2)

2] = 1. In particular, B2(S2 \ {x1, x2}) is a one-relator
group with non-trivial centre.

(d) Setting D = σγ2,2, from above, we obtain the presentation

〈σ,D | [σ,D2] = 1〉. (59)

So B2(S2 \ {x1, x2}) is isomorphic to the Baumslag-Solitar group
BS(2, 2) [BS].

(e) Following [FG], using the presentation (59), consider the homo-
morphism of B2(S2 \ {x1, x2}) onto Z[D] = 〈D〉 given by taking
the exponent sum of D. It follows from the Reidemeister-Schreier
rewriting process that the kernel is a free group F2(σ,DσD

−1) of
rank two, and thus that

B2(S2 \ {x1, x2}) ∼= F2(σ,DσD
−1) ⋊ Z[D],
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where the action is given byD·(σ) = DσD−1, andD·(DσD−1) = σ.
In other words, the action exchanges the two basis elements of the
kernel (and not just up to conjugation as in equation (57)), and so
is an involution. From this, it follows that B2(S2 \ {x1, x2}) is an
HNN-extension of the free group F2(σ,DσD

−1) with stable letter
D.

(f) Still following [FG] and using the presentation (59), consider the
homomorphism of B2(S2 \{x1, x2}) onto Z[σ] = 〈σ〉 given by taking
the exponent sum of σ. Applying the Reidemeister-Schreier rewrit-
ing process, one sees that that the kernel is generated by an infinite
number of generators xi = σiDσ

−1
i , i ∈ Z, subject to the relations

x2
i = x2

0 = D2 for all i ∈ Z.

Applying [KMc, McCa] to Remarks 49(c) above, we see immedi-
ately that:

Proposition 14. B2(S2\{x1, x2}) is residually nilpotent and resid-
ually a finite 2-group. �

Using the algorithm given in [CFL], one may determine the quo-
tient groups of the lower central series of B2(S2 \ {x1, x2}). But these
quotients may also be obtained explicitly using the results of [Ga, Lab]:

Theorem 15. For all i ≥ 2, Γi(B2(S2 \ {x1, x2})) ∼= Γi(Z2 ∗ Z),
and:

Γi(B2(S2 \{x1, x2}))/Γi+1(B2(S2 \{x1, x2})) ∼= Γi(Z2 ∗ Z)/Γi+1(Z2 ∗ Z)
∼= Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸

Ri times

,

where

Ri =
i−2∑

j=0



∑

k|i−j
k>1

µ

(
i− j

k

)
kαk
i− j


 ,

µ is the Möbius function, and

αk =
1

k

(
Tr

(
0 −1
−1 1

)k
− 1

)
.

Remarks 50.
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(a) One may check that Ri+1 = Ri +
∑

k|i+1
k>1

µ

(
i+ 1

k

)
kαk
i+ 1

, and that

Tr

(
0 −1
−1 1

)k
=

(
1 −

√
5

2

)k

+

(
1 +

√
5

2

)k

.

(b) By induction, one obtains

(
0 −1
−1 1

)k
=

(
fk−1 −fk
−fk fk+1

)
, where

(fk)k≥0 is the classical Fibonacci sequence defined by f0 = 0, f1 = 1,
and fk+2 = fk+1 + fk for all k ≥ 0.

(c) A simple calculation shows that R2 = 1, R3 = 2, R4 = 3, R5 = 5
and R6 = 7.

The following lemma and corollary will be used in the proof of
Theorem 15.

Lemma 51. Let G be a finitely-generated group.

(a) Suppose that there exists i ≥ 2 such that Γi(G)/Γi+1(G) is a torsion
group. Then for all j ≥ i, Γj(G)/Γj+1(G) is a torsion group.

(b) Suppose that there exists i ≥ 2 and n ∈ N such that xn = 1 for
all x ∈ Γi(G)/Γi+1(G). Then for all j ≥ i, yn = 1 for all y ∈
Γj(G)/Γj+1(G).

Proof of Lemma 51. Let X be a finite set of generators of G.
From [MKS], we recall that for all i ≥ 2, Γi(G)/Γi+1(G) is a finitely-
generated Abelian group, generated by the cosets of the simple i-fold
commutators of elements of X. We prove part (a) by induction on j:
suppose that Γj(G)/Γj+1(G) is a torsion group for some j ≥ 2. Now
let y ∈ Γj+1(G)/Γj+2(G). Then there exist simple j-fold commutators
x1, . . . , xk ∈ Γj(G), z1, . . . , zk ∈ G and ε1, . . . , εk ∈ {±1} such that y
is equal to the Γj+2(G)-coset of [x1, z1]

ε1 · · · [xk, zk]εk . By hypothesis,
there exist m1, . . . , mk ∈ N such that xmi

i ∈ Γj+1(G) for i = 1, . . . , k.
Set m = lcm(m1, . . . , mk). Then modulo Γj+2(G),

ym ≡ ([x1, z1]
ε1 · · · [xk, zk]εk)m ≡ [xm1 , z1]

ε1 · · · [xmk , zk]εk ≡ 1,

since each of the commutators [xmi , zi]
εi belongs to Γj+2(G). This proves

part (a). Part (b) follows similarly, taking m1 = · · · = mk = n in the
above proof. �

Corollary 52. The lower central series quotients of Z2 ∗ Z are
isomorphic to the direct sum of a finite number of copies of Z2.

Proof of Corollary 52. Let x, y generate Z2 and Z respec-
tively. Then Γ2(Z2 ∗ Z)/Γ3(Z2 ∗ Z) is a cyclic group generated by



58 3. LOWER CENTRAL AND DERIVED SERIES OF Bm(S2 \ {x1, . . . , xn})

the coset of [x, y]. But modulo Γ3(Z2 ∗Z), [x, y]2 ≡ [x2, y] ≡ 1, and the
result follows from Lemma 51 and using the fact that the lower central
series quotients of Z2 ∗ Z are finitely-generated Abelian groups. �

Proof of Theorem 15. Consider the presentation (59) of the

group B2(S2 \ {x1, x2}). Let Z2 ∗ Z = 〈D, σ | D2
= 1〉. Since the

centre of B2(S2 \ {x1, x2}) is generated by D2, we obtain the following
central extension:

1 → 〈D2〉 → B2(S2 \ {x1, x2})
ψ→ Z2 ∗ Z → 1,

where ψ(D) = D and ψ(σ) = σ. Since ψ is surjective, for i ≥ 2, it
induces a surjection ψi : Γi(B2(S2 \ {x1, x2})) → Γi(Z2 ∗ Z). Using the
fact that (B2(S2 \ {x1, x2}))Ab = 〈D, σ〉 ∼= Z2, this gives rise to the
following commutative diagram of short exact sequences:

1 // Γ2(B2(S2 \ {x1, x2})) //

ψ2

��

B2(S2 \ {x1, x2}) Ab //

ψ

��

Z ⊕ Z //

��

1

1 // Γ2(Z2 ∗ Z) // Z2 ∗ Z Ab // Z2 ⊕ Z // 1,

where Ab denotes Abelianisation. Now ψ2 is injective, since if x ∈
Ker (ψ2) then x ∈ Ker (ψ), so there exists k ∈ Z such that x = D2k.
But since x ∈ Γ2(B2(S2 \ {x1, x2})), its Abelianisation is trivial, so
k = 0. Hence ψ2 is an isomorphism. But for i ≥ 2, since ψi+1 is the
restriction of ψ2 to Γi+1(B2(S2 \ {x1, x2})) onto Γi+1(Z2 ∗Z), it follows
that ψi is an isomorphism for all i ≥ 2, and that

Γi(B2(S2 \{x1, x2}))/Γi+1(B2(S2 \{x1, x2})) ∼= Γi(Z2 ∗Z)/Γi+1(Z2 ∗Z).

This proves the first part of the theorem.
We now calculate the successive lower central series quotients Γi(Z2∗

Z)/Γi+1(Z2∗Z). This may be done by applying the results of [Ga, Lab];
we follow those of [Ga]. From Corollary 52, for each i ≥ 2, Γi(Z2 ∗
Z)/Γi+1(Z2 ∗ Z) is the direct sum of a finite number, denoted by Ri

in [Ga], of copies of Z2.
To determine Ri, one may first check that in Theorem 2.2 of [Ga],

U∞(x) = 0 and R∞
k = 0 for all k ≥ 2 (R∞

k represents the rank of the
free abelian factor of Γk(Z2 ∗ Z)/Γk+1(Z2 ∗ Z)). Secondly, referring to
the notation of Section 3 of that paper, we see that y = x, z = x

1−x ,
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U(x) = x2

1−x , and

d

dx
(ln(1 − U(x))) =

x(x− 2)

(x− 1)(x2 + x− 1)

=
−1

x− 1
+

1

x− λ+

+
1

x− λ−
,

where λ± = −1±
√

5
2

are the roots of x2 + x− 1. So from equation (3.22)
of [Ga], we observe that for k ≥ 2,

αk =
1

k

(
TrMk − 1

)
,

where M =

(
0 −1
−1 1

)
, and TrMk = (−1)k

(
λk+ + λk−

)
. The second

part of the theorem then follows from Theorem 3.4 of [Ga]. �

We may thus describe the derived series of B2(S2\{x1, x2}) in terms
of that of the free group of rank 2:

Corollary 53. For all i ∈ N,

(B2(S2 \ {x1, x2}))(i) ∼= π((Z ∗ Z)(i)),

where π : Z ∗ Z → Z2 ∗ Z is the homomorphism obtained by taking the
first factor modulo 2.

Proof. Let G1, G2 be two groups. If π : G1 → G2 is a surjec-
tive homomorphism, then the restriction π|(G1)(1) : (G1)

(1) → (G2)
(1),

and by induction on i, so is the restriction π|(G1)(i) : (G1)
(n) → (G2)

(i).
Taking G1 = Z ∗ Z and G2 = Z2 ∗ Z, it follows that

(Z2 ∗ Z)(i) = π((Z ∗ Z)(i)).

But
(B2(S2 \ {x1, x2}))(i) ∼= (Z2 ∗ Z)(i)

by Theorem 15 which proves the corollary. �

We now determine explicitly Γ3(B2(S2 \ {x1, x2})).
Proposition 54. Let ρ2 : Γ2(B2(S2 \ {x1, x2})) → Z2 be the homo-

morphism defined by ρ2(zn) = 1 for all n ∈ Z, where {zn}n∈Z
is the

basis given by Corollary 47. Then Γ3(B2(S2 \ {x1, x2})) = Ker (ρ2). In
particular, Γ3(B2(S2 \ {x1, x2})) is a free group of infinite rank with a
basis given by

{
znz

−1
0

}
n∈Z\{0}

⋃ {z2
m}m∈Z

, and

Γ2(B2(S2 \ {x1, x2}))/Γ3(B2(S2 \ {x1, x2})) ∼= Z2.

Remark 55. Since R2 = 1, this agrees with the result of Theo-
rem 15 in the case i = 2.
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Proof. We start by calculating the action under conjugation of
the generators γ2,1, γ2,2 and σ of B2(S2 \ {x1, x2}) on the generators
zn of Γ2(B2(S2 \ {x1, x2})). Clearly γ2,1znγ

−1
2,1 = zn+1 and γ2,2znγ

−1
2,2 =

z0zn+1z
−1
0 . Further, it follows from equation (57) that

σznσ
−1 = γn−1

2,2 γ2,1γ
−n
2,2 ,

which rewriting in terms of the zi yields:

σznσ
−1 =

{
z0z1 · · · zn−2z

−1
n−1z

−1
n−2 · · · z−1

1 z−1
0 if n > 0

z−1
−1 · · · z−1

−|n|z
−1
−(|n|+1)z−|n| · · · z−1 if n ≤ 0.

Let us apply the Reidemeister-Schreier rewriting process to the basis
{zn}n∈Z

of Γ2(B2(S2 \{x1, x2})), taking the Schreier transversal {1, z0}
for ρ2. This yields a basis

{
znz

−1
0

}
n∈Z\{0}

⋃ {z0zm}m∈Z
of Ker (ρ2), or

equivalently a basis
{
znz

−1
0

}
n∈Z\{0}

⋃
{z2

m}m∈Z
. Since

znz
−1
0 =

{
(znz

−1
n−1)(zn−1z

−1
n−2) · · · (z1z−1

0 ) for all n > 0

(zn+1z
−1
n )−1(zn+2z

−1
n+1)

−1 · · · (z0z−1
−1)

−1 for all n < 0,

and zi+1z
−1
i = [a, zi] ∈ Γ3(B2(S2 \ {x1, x2})) for all i ∈ Z, we see that

znz
−1
0 ∈ Γ3(B2(S2 \ {x1, x2})) for all n 6= 0. Finally, if m ∈ Z then

zmz0 = (zmz
−1
0 )z2

0 . But [σ, z1] = z−1
0 z−1

1 , so z2
0 = (z1z

−1
0 )−1[σ, z0]

−1 ∈
Γ3(B2(S2 \ {x1, x2})). Thus Ker (ρ2) ⊆ Γ3(B2(S2 \ {x1, x2})).

To prove the converse, observe first that Γ3(B2(S2 \{x1, x2})) is the
normal closure in B2(S2\{x1, x2}) of the commutators [γ2,1, zn], [γ2,2, zn]
and [σ, zn], where n ∈ Z. It follows easily from the above expressions
that these elements belong to Ker (ρ2). Further, conjugation by each
of γ2,1, γ2,2 and σ induce automorphisms of Γ2(B2(S2 \ {x1, x2})), each
of which leaves Ker (ρ2) invariant, and so induces an automorphism of
Z2, which is in fact the identity in all three cases. Hence for all n ∈ Z,
all conjugates of [γ2,1, zn], [γ2,2, zn] and [σ, zn] by elements of B2(S2 \
{x1, x2}) belong to Ker (ρ2), and so Γ3(B2(S2 \ {x1, x2})) ⊆ Ker (ρ2).
We conclude that Γ3(B2(S2 \ {x1, x2})) ⊆ Ker (ρ2), and Γ2(B2(S2 \
{x1, x2}))/Γ3(B2(S2 \ {x1, x2})) ∼= Z2. �

7. The commutator subgroup of Bm(S2 \ {x1, x2}), m ≥ 3

As we already observed in Remarks 35, Bm(S2 \ {x1, x2}) may be
identified with the m-string braid group of the annulus. The case
m = 2 having already been studied in Section 6, let us now suppose
that m ≥ 3. In this case, we know from Theorem 9 that the lower
central series is constant from the commutator subgroup onwards. The
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following presentation of Bm(S2 \ {x1, x2}) was obtained by Kent and
Peifer:

Proposition 56 ([KP]). If m ≥ 3 then Bm(S2 \ {x1, x2}) admits
a presentation of the following form:

generators: σ0, σ1, . . . , σm−1 and τ .
relations:

σiσj = σjσi if |i− j| 6= 1, m− 1 and 0 ≤ i, j ≤ m− 1 (60)

σiσi+1σi = σi+1σiσi+1 for 0 ≤ i ≤ m− 1, and (61)

τ−1σiτ = σi+1 for 0 ≤ i ≤ m− 1. (62)

The indices should be taken modulo m.

The m points should be thought of as being arranged around the
centre of the annulus. The generator σ0 corresponds to a positive half-
twist between the mth and 1st point, while τ is represented geometri-
cally by a rigid rotation of the annulus about the centre by an angle
2π/n. It follows from this presentation that:

Corollary 57 ([KP]). If m ≥ 3 then Bm(S2\{x1, x2}) is isomor-

phic to the semi-direct product of the affine Artin group Ãm−1 (gener-
ated by σ0, σ1, . . . , σm−1, and subject to relations (60) and (61)) by the
infinite cyclic group generated by τ , the action being that of conjugation
given by relation (62).

Then we have the following result:

Proposition 58.

(a) If m ≥ 3 then Γ2(Bm(S2 \ {x1, x2})) is generated by the elements

pk = σk1σ2σ
−(k+1)
1 , rk = σk1σ0σ

−(k+1)
1 , for all k ∈ Z, and qi = σiσ

−1
1

for 3 ≤ i ≤ m− 1.
(b) If m = 3, then Γ2(B3(S2 \ {x1, x2})) is defined by the following

relations:

pk+1p
−1
k+2p

−1
k = 1 (63)

rk+1r
−1
k+2r

−1
k = 1 (64)

rkpk+1rk+2p
−1
k+2r

−1
k+1p

−1
k = 1, (65)

where k ∈ Z.
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(c) If m ≥ 4 then Γ2(Bm(S2 \ {x1, x2})) is defined by the following
relations:

pk+1p
−1
k+2p

−1
k = 1 (66)

rk+1r
−1
k+2r

−1
k = 1 (67)

pkq3pk+2q
−1
3 p−1

k+1q
−1
3 = 1 (68)

pkqip
−1
k+1q

−1
i = 1 for all 4 ≤ i ≤ m− 1 (69)

qiqjq
−1
i q−1

j = 1 for all 3 ≤ i < j − 1 ≤ m− 2 (70)

qiqi+1qi = qi+1qiqi+1 for 3 ≤ i ≤ m− 2 (71)

rkpk+1r
−1
k+1p

−1
k = 1 (72)

rkqir
−1
k+1q

−1
i = 1 for all 3 ≤ i ≤ m− 2 (73)

rkqm−1rk+2q
−1
m−1r

−1
k+1q

−1
m−1 = 1, (74)

where k ∈ Z.

We may thus deduce the first derived series quotient of the group
Γ2(Bm(S2 \ {x1, x2})):

Corollary 16. Let m ≥ 3. Then

(
Bm

(
S2 \ {x1, x2}

))(1)/(
Bm

(
S2 \ {x1, x2}

))(2) ∼=





Z4 if m = 3

Z2 if m = 4

Z if m ≥ 5.

Proof of Proposition 58. We start by applying Proposition 29
to the result of Corollary 57, namely that

Bm(S2 \ {x1, x2}) ∼= Ãm−1 ⋊ 〈τ〉.
If w = σ

εi1
i1

· · ·σεik

ik
∈ Ãm−1, it follows from the action, given by equa-

tion (62), that for all l ∈ Z,

τ−lwτ l · w−1 = σ
εi1
i1+l · · ·σ

εik

ik+l · σ
−εik

ik
· · ·σ−εi1

i1
,

where the indices should be taken modulo m. Hence τ−lwτ l · w−1 ∈
Γ2(Ãm−1), and it follows from Proposition 29 that

Γ2(Bm(S2 \ {x1, x2})) ∼= Γ2(Ãm−1).

A presentation of Γ2(Ãm−1) may be obtained by observing that

(Ãm−1)
Ab ∼= Z, and by applying the Reidemeister-Schreier rewrit-

ing process to the generating set {σ0, σ1, . . . , σm−1} of Ãm−1 and the
Schreier transversal

{
σk1
}
k∈Z

. The generators and relations not contain-

ing σ0 define a group isomorphic to Bm(D2), and using [GL], we obtain
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all of the generators and relations of Proposition 58 not containing rk.

The generator σ0 of Ãm−1 gives rise to generators rk = σk1σ0σ
−(k+1)
1 of

Γ2(Ãm−1), where k ∈ Z. The relation (61) with j = 0 and i = 1 yields

relations of the form rk+1r
−1
k+2r

−1
k = 1, k ∈ Z, in Γ2(Ãm−1). If m = 3

then we obtain relations (65) in Γ2(Ã2) from relation (61) with j = 0
and i = 2, and so we deduce the presentation given in part (b). If
m ≥ 4, taking j = 0 in relations (60) with i = 2 (resp. 3 ≤ i ≤ m− 2)

yields relations (72) (resp. (73)) in Γ2(Ãm−1). Finally we obtain rela-

tions (74) in Γ2(Ãm−1) by taking j = 0 and i = m− 1 in relation (61),
and this gives the presentation of part (c). �

Proof of Corollary 16. It suffices to Abelianise the presen-
tations of Proposition 58, in other words, we add the commutation
relations of all of the generators to the given presentations. First let
m = 3. Equation (65) becomes trivial using equations (63) and (64).
Further, it follows from equations (63) (resp. (64)) that all of the pk
(resp. rk) may be expressed uniquely in terms of p0 and p1 (resp. r0 and
r1), and hence (B3(S2 \ {x1, x2}))Ab is a free Abelian group of rank 4
with basis {p0, p1, r0, r1}

Let m = 4. By equation (66), it follows from equation (68) that q3
Abelianises to the trivial element, and then equation (67) implies that
equation (74) becomes trivial. By equation (72), pk = rk for all k ∈ Z.
As above, all of the pk (resp. rk) may be expressed uniquely in terms
of p0 and p1 (resp. r0 and r1), and thus (B4(S2 \ {x1, x2}))Ab is a free
Abelian group of rank 4 with basis {p0, p1}.

Finally, if m ≥ 5, by equation (71) we obtain additionally that all of
the qi Abelianise to the trivial element. By equation (69) (resp. (73)),
pk = pk+1 (resp. rk = rk+1). Thus (Bm(S2 \ {x1, x2}))Ab is a infinite
cyclic group generated by p0. �

8. The series of Bm(S2 \ {x1, x2, x3})
The situation seems to be more difficult in the case of the braid

group of the 3-punctured sphere. As we remark below, if m ≥ 2,
Bm(S2 \ {x1, x2, x3}) is isomorphic to the affine Artin group of type

C̃m for which little seems to be known [All, ChP]. We have not even
been able to describe the commutator subgroup. We may however
obtain some partial results, notably in Proposition 60 the fact that
the successive lower central series quotients of B2(S2 \ {x1, x2, x3}) are
direct sums of Z2, which generalises part of Theorem 15.

We begin by considering the case m = 2.
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Proposition 59 ([BG]). The following constitutes a presentation
of the group B2(S2 \ {x1, x2, x3}):
generators: σ, ρ1 and ρ2.
relations:

(σρ1)
2 = (ρ1σ)2 (75)

(σρ2)
2 = (ρ2σ)2 (76)

ρ1ρ2 = ρ2ρ1.

Geometrically, B2(S2 \ {x1, x2, x3}) may be considered as the 2-
string braid group of the twice-punctured disc, which in turn may be
considered as a subgroup of B4(D2) whose first and fourth strings are
vertical. Then with the usual notation, ρ1 = A1,2, ρ2 = A3,4, and σ is
the positive half-twist of the second and third strings.

Let G1 be the group generated by σ and ρ1 subject to the rela-
tion (75), and let G2 be the group generated by σ and ρ2 subject
to the relation (76). It follows from the above proposition and Re-
mark 49(d) that B2(S2 \{x1, x2, x3}) may be considered as the amalga-
mated product G1 ∗〈σ〉 G2 of two copies of the Baumslag-Solitar group
BS(2, 2), subject to the additional relation [ρ1, ρ2] = 1. We wonder if
it would be possible to obtain determine the commutator subgroup via
this amalgamated product.

The following gives a generalisation to B2(S2 \ {x1, x2, x3}) of part
of Theorem 15.

Proposition 60. For all i ≥ 2, the lower central series quotient
Γi(B2(S2 \ {x1, x2, x3})) /Γi+1(B2(S2 \ {x1, x2, x3})) is isomorphic to
the direct sum of a finite number of copies of Z2.

Proof. As in the proof of Lemma 51, since B2(S2 \ {x1, x2, x3})
is finitely generated, it follows that the lower central quotient Γi(B2(S2\
{x1, x2, x3})) /Γi+1(B2(S2 \ {x1, x2, x3})) is a finitely-generated Abelian
group. By part (b) of Lemma 51, it suffices to prove the result in the
case i = 2, which we do using the presentation of Proposition 59. We
know that Γ2(B2(S2 \ {x1, x2, x3})) /Γ3(B2(S2 \ {x1, x2, x3})) is gener-
ated by the Γ3-cosets of the commutators of the form [x, y], where
x, y ∈ {σ, ρ1, ρ2}, and thus of the commutators [σ, ρi] for i = 1, 2. But
[σ, ρi] = [ρ−1

i σ−1]−1 by relations (75) and (76). So modulo Γ3, [σ, ρi]
is congruent to [σ, ρi]

−1, in other words, [σ, ρi]
2 is trivial modulo Γ3,

which proves the result. �

As was pointed out in [All, BG], B2(S2 \{x1, x2, x3}) is isomorphic

to the affine Artin braid group C̃2. More generally, for m ≥ 2, Bm(S2 \



8. THE SERIES OF Bm(S2 \ {x1, x2, x3}) 65

{x1, x2, x3}) is isomorphic to C̃m and by [BG] has a presentation of the
form:

generators: ρ1, ρm and σi, 1 ≤ i ≤ m− 1.
relations:

σiσj = σjσi if |i− j| ≥ 2 and 1 ≤ i, j ≤ m− 1

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ m− 2

ρ1 ⇋ ρm

ρ1 ⇋ σi for all 2 ≤ i ≤ m− 1

ρm ⇋ σi for all 1 ≤ i ≤ m− 2

(σ1ρ1)
2 = (ρ1σ1)

2

(σm−1ρm)2 = (ρmσm−1)
2.

The following result yields information about the derived series quo-
tients of Bm(S2 \ {x1, x2, x3}).

Proposition 61. Let m ≥ 2. Then Bm(S2\{x1, x2, x3}) is a semi-
direct product of a group K0 by Bm(D2). In particular, for all i ≥ 1
(Bm(S2 \ {x1, x2, x3}))(i) is a semi-direct of a group Ki by (Bm(D2))(i).

Proof. Consider the homomorphism of Bm(S2 \ {x1, x2, x3}) to
Bm(D2) which sends ρ1 and ρm onto the trivial element. From the above
presentation, it is clearly surjective, and it admits an obvious section.
So if K0 denotes the kernel then Bm(S2 \ {x1, x2, x3}) ∼= K0 ⋊Bm(D2).
The second part is obtained by induction on i, using Proposition 29. �



CHAPTER 4

Presentations for Γ2(Bn(S2)), n ≥ 4

In this chapter, we give various presentations of Γ2(Bn(S2)), n ≥ 4.
In Section 1, we begin by giving a general presentation obtained using
the Reidemeister-Schreier rewriting process. In Section 2, we consider
the case n = 4, and derive the presentation given in Theorem 3(c).
In Section 3, we restate the presentation given by Proposition 62 for
the case n = 5, and for n ≥ 6, we refine the presentation to obtain
Proposition 67.

1. A general presentation of Γ2(Bn(S2)) for n ≥ 4

Proposition 62. Let n ≥ 4. The following constitutes a presenta-
tion of the group Γ2(Bn(S2)):

generators:

w = σ2n−2
1

u1 = σ2σ
−1
1 , u2 = σ1σ2σ

−2
1 , . . . , u2n−2 = σ2n−3

1 σ2σ
−(2n−2)
1

v1 = σ3σ
−1
1 , . . . , vn−3 = σn−1σ

−1
1 .

66
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relations:

vivj = vjvi if |i− j| ≥ 2 and 1 ≤ i, j ≤ n− 3 (77)

vivi+1vi = vi+1vivi+1 for all 1 ≤ i ≤ n− 4 (78)

w ⇋ vi (79)

uivju
−1
i+1v

−1
j = 1 for j ≥ 2 and i = 1, . . . , 2n− 3 (80)

u2n−2vjwu
−1
1 w−1v−1

j = 1 for 2 ≤ j ≤ n− 3 (81)

uiv1ui+2v
−1
1 u−1

i+1v
−1
1 = 1 for i = 1, . . . , 2n− 4 (82)

u2n−3v1wu1w
−1v−1

1 u−1
2n−2v

−1
1 = 1 (83)

u2n−2v1wu2v
−1
1 u−1

1 w−1v−1
1 = 1 (84)

ui+1u
−1
i+2u

−1
i = 1 for all i = 1, . . . , 2n− 4 (85)

u2n−2wu
−1
1 w−1u−1

2n−3 = 1 (86)

wu1u
−1
2 w−1u−1

2n−2 = 1 (87)

u2(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−3w = 1 (88)

u3(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−2w = 1 (89)

ui(v1 · · · vn−4v
2
n−3vn−4 · · · v1)wui−3 = 1 for i = 4, . . . , 2n− 2 (90)

u1(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−4w = 1. (91)

In what follows, we shall denote by equation (mi) the equation (m)
of the above system for the parameter value i.

Proof. Taking the standard presentation (4) of Bn(S2), and the
set
{
1, σ1, σ

2
1, . . . , σ

2n−3
1

}
as a Schreier tranversal, we apply the Reide-

meister-Schreier rewriting process to the following short exact sequence:

1 // Γ2(Bn(S2)) // Bn(S2) // (Bn(S2)) Ab // 1.

As generators of Γ2(Bn(S2)), we obtain w = σ2n−2
1 , σj1σiσ

−(j+1)
1 and

σ2n−3
1 σi, where 2 ≤ i ≤ n−1 and 0 ≤ j ≤ 2n−4. We replace the latter

by σ2n−3
1 σi · w−1 = σ2n−3

1 σiσ
−(2n−2)
1 . Now turning to the relations, if

i ≥ 3 then for j = 0, . . . , 2n−4, the relator σ1σiσ
−1
1 σ−1

i of Bn(S2) gives
rise to relators

σj1σ1σiσ
−1
1 σ−1

i σ−j
1 = σj+1

1 σiσ
−(j+2)
1 · σj+1

1 σ−1
i σ−j

1

of Γ2(Bn(S2)), so

σj+1
1 σiσ

−(j+2)
1 = σj1σiσ

−(j+1)
1 = σiσ

−1
1 = vi−2.

If j = 2n− 3 then we have a relator of the form

σ2n−3
1 σ1σiσ

−1
1 σ−1

i σ
−(2n−3)
1 = σ2n−2

1 · σiσ−1
1 · σ2n−2

1 σ
−(2n−2)
1 σ−1

i σ
−(2n−3)
1 ,
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and thus vi−2 commutes with w, which gives relation (79). If 1 ≤
i, j ≤ n − 3 and |i − j| ≥ 2 then the relator σi+2σj+2σ

−1
i+2σ

−1
j+2 gives

rise to the single relator vivjv
−1
i v−1

j , while if 1 ≤ i ≤ n− 4, the relator

σi+2σi+3σi+2σ
−1
i+3σ

−1
i+2σ

−1
i+3 yields the single relator vivi+1vi = vi+1vivi+1,

thus we obtain equations (77) and (78).
Now for i = 1, . . . , u2n−2, let ui = σi−1

1 σ2σ
−i
1 . From the relator

σj−1
1 σ2σ1σ2σ

−1
1 σ−1

2 σ−1
1 σ

−(j−1)
1 , we obtain the relators ujuj+2u

−1
j+1 if j =

1, . . . , 2n− 4, u2n−3wu1w
−1u−1

2n−2 if j = 2n− 3, and u2n−2wu2u
−1
1 w−1 if

j = 2n− 2, which gives respectively equations (85), (86) and (87).

If 2 ≤ i ≤ n − 3 then the relator σj−1
1 σi+2σ2σ

−1
i+2σ

−1
2 σ

−(j−1)
1 yields

relators viuj+1v
−1
i u−1

j if j = 1, . . . , 2n − 3 and viwu1w
−1v−1

i u−1
2n−2 if

j = 2n− 2, and so we recover equations (80) and (81).

From the relator σj−1
1 σ3σ2σ3σ

−1
2 σ−1

3 σ−1
2 σ

−(j−1)
1 , we obtain the rela-

tors v1uj+1v1u
−1
j+2v

−1
1 u−1

j if j = 1, . . . , 2n−4, v1u2n−2v1wu
−1
1 w−1v−1

1 u−1
2n−3

if j = 2n − 3, and v1wu1v1u
−1
2 w−1v−1

1 u−1
2n−2 if j = 2n − 2, which gives

equations (82), (83) and (84).
Finally,

σ1σ2 · · ·σn−2σ
2
n−1σn−2 · · ·σ2σ1 = σ1σ2σ

−2
1 · σ2

1σ3σ
−3
1 · · ·

· · ·σn−3
1 σn−2σ

−(n−2)
1 · σn−2

1 σn−1σ
−(n−1)
1 · σn−1

1 σn−1σ
−n
1 ·

σn1σn−2σ
−(n+1)
1 · σ2n−4

1 σ2σ
−(2n−3)
1 · σ2n−2

1 ,

and conjugating by σj−1
1 , we obtain relators





u2(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−3w if j = 1

u3(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−2w if j = 2

uj+1(v1 · · · vn−4v
2
n−3vn−4 · · · v1)wuj−2 if j = 3, . . . , 2n− 3

wu1(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−4 if j = 2n− 2.

This yields the remaining equations (88), (89), (90) and (91). �

We now simplify somewhat the presentation of Γ2(Bn(S2)) given by
Proposition 62. From equations (80) and (85), for i = 1, 2 we obtain
the following equations:

u1vj = vju2 for all j ≥ 2 (801)

u2vj = vju
−1
1 u2 for all j ≥ 2. (802)
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This allows us to eliminate equation (81) as follows. For all j ≥ 2, we
have:

vjwu1w
−1v−1

j = wvju
−1
1 v−1

j w−1 by equation (79)

= wvju2v
−1
j u−1

2 w−1 by equation (802)

= wu1u
−1
2 w−1 by equation (801)

= u2n−2 by equation (87),

and this is equivalent to equation (81), which we thus delete from the
list of relations.

Suppose that for some 2 ≤ i ≤ 2n − 4, we have equations (80i− 1)
and (80i). We now show that they imply (80i+ 1). For all j ≥ 2, we
have:

ui+1vju
−1
i+2v

−1
j = u−1

i−1uivju
−1
i+1uiv

−1
j by equation (85)

= u−1
i−1vjuiv

−1
j by equation (80i)

= 1 by equation (80i− 1),

which yields equation (80i+ 1). So we may successively delete equa-
tions (802n− 3), (802n− 4), . . . , (803) from the list of relations.

We now show that we may delete all but one of the surface rela-
tions (88)–(91). First suppose that we have equation (88). Now

u2n−2wu3 = u2n−3wu1u3 by equation (86)

= u2n−3wu2 by equation (851).

This implies equation (89) which we delete from the list of relations.
Now suppose that we have equation (90i+ 1) for some 5 ≤ i ≤ 2n−2.

Let us write A = v1 · · · vn−4v
2
n−3vn−4 · · · v1. Then wui−2ui+1 = A−1. So

wui−3ui = wui−2ui+1 by equation (851)

= A−1 by above.

This yields equation (90i), and so we may delete successively equa-
tions (904), . . . , (902n− 3).

Now suppose that we have (91), so Au2n−4wu1 = 1. Then

Awu2n−5u2n−2 = Awu2n−4wu1w
−1 by equations (85) and (86)

= w(Au2n−4wu1)w
−1 by equation (79)

= 1 by above.

This implies equation (902n− 2) which we delete from the list of rela-
tions.
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Finally, suppose that we have equation (88). Then

Au2n−4wu1 = Au2n−3u
−1
2n−2wu1 by equation (852n− 4)

= Au2n−3wu2 by equation (87)

= 1 by above.

This yields equation (91) which we delete from the list. It thus follows
that we may delete all but one of the surface relations; let us keep
equation (88).

Summing up, we may thus delete relations (81), (80i) for i =
3, . . . , 2n− 3 and (89)–(91) from the presentation of Γ2(Bn(S2)) given
by Proposition 62.

2. The derived subgroup of B4(S2)

The aim of this section is to use Proposition 62 to derive the pre-
sentation of Γ2(B4(S2)) given in Theorem 3(c), from which we were
able to see that Γ2(B4(S2)) ∼= F2 ⋊ Q8.

We first remark that in this case, the relations (77), (78), (80)
and (81) do not exist. Further, from relations (85), we may obtain the
following:

u2 = u3u
−1
4 u1 = u3u

−1
4 u−1

3

u5 = u−1
3 u4 u6 = u−1

4 u−1
3 u4,

which we take to be definitions of u1, u2, u5 and u6, so we delete equa-
tion (85) from the list of relations. From equation (88), we see that

w = u−1
4 u3v

−2
1 u4u

−1
3 .

We conclude that Γ2(B4(S2)) is generated by u3, u4 and v1.
Let us return momentarily to the situation of the previous section.

Before deleting all but one of the surface relations, we shall derive some
other useful relations.

Consider the surface relations (88)–(91). From relations equa-
tion (88) and (905) (resp. (91) and (904)), it follows that u5 (resp.
u4) commutes with v2

1. But these two equations are equivalent to the
relations

u3 ⇋ v2
1, and (92)

u4 ⇋ v2
1. (93)

Further, equations (91) and (93) imply equation (904), and equa-
tions (88), (92) and (93) imply equation (905), so we replace equa-
tions (904) and (905) by equations (92) and (93).
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As in Section 1, we can then delete equations (906) and (91) from
the list of relations, which becomes: (79), (82), (83), (84), (86) and
(87). We now analyse these relations in further detail.

From equation (79) and the definition of w, we see that v1 ⇋

u−1
4 u3u4u

−1
3 . Up to conjugacy, equation (821) may be written as follows:

1 = u3v
−1
1 u−1

3 u3u4u
−1
3 v−1

1 u3u
−1
4 u−1

3 v1

= u3v
−1
1 u−1

3 u4u
−1
4 u3u4u

−1
3 v−1

1 u3u
−1
4 u−1

3 v1 = u3v
−1
1 u−1

3 u4v
−1
1 u−1

4 v1,

and hence we may replace equation (821) by:

u3v1u
−1
3 = u4v

−1
1 u−1

4 v1. (94)

Up to conjugacy, equation (822) may be written:

u−1
3 v1u3 = u−1

4 v1u4v
−1
1 . (95)

By equations (94) and (92), the left-hand side of equation (823) may
be written:

u3v1u
−1
3 u4v

−1
1 u−1

4 v−1
1 = u3v

2
1u

−1
3 v−2

1 = 1,

so relation (823) is automatically satisfied, and we thus delete it from
the list.

Using the fact that v1 ⇋ u−1
4 u3u4u

−1
3 , equation (824) may be writ-

ten:

1 = u4v1u
−1
4 u−1

3 u4v
−1
1 u−1

4 u3v
−1
1 = u4v1u

−1
3 u3u

−1
4 u−1

3 u4v
−1
1 u−1

4 u3v
−1
1

= u4v1u
−1
3 v−1

1 u3u
−1
4 v−1

1 ,

and from this, we obtain equation (95), using the fact that v2
1 commutes

with u4. So we delete equation (824) from the list.
We now consider equation (79). Using equations (94) and (95), we

obtain:

1 = u−1
4 u3u4u

−1
3 v1u3u

−1
4 u−1

3 u4v
−1
1 = u−1

4 u3v1u4v
−1
1 u−1

4 u−1
3 u4v

−1
1

= u−1
4 u3v1u4v

−1
1 u−1

4 v1u
−1
3 v−1

1 u4 = u−1
4 u3v1u3v1u

−2
3 v−1

1 u4,

which up to conjugacy, and using the fact that v2
1 commutes with u3

yields:

u−2
3 v−1

1 u3v
−1
1 u3v

−1
1 · v4

1 = 1. (96)

We replace equation (79) by this relation.
From equations (92) and (93), the left-hand side of equations (86)

and (87) collapse, and so we delete them from the list.
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After immediate cancellations, equation (84) becomes:

1 = u−1
4 u−1

3 u4v1u
−1
4 u3v

−1
1 u4v

−1
1

= u−1
4 u−1

3 u4v1u
−1
4 v−1

1 v1u3v
−1
1 u4v1u

−1
4 u4v

−2
1

= u−1
4 u−1

3 u3v1u
−1
3 v1u3u3v

−1
1 u−1

3 u4v
−2
1 ,

which up to conjugacy and inversion yields equation (96). So we delete
equation (84) from the list.

After immediate cancellations, the left-hand side of equation (83)
becomes:

u−1
3 u4v1u

−1
4 u3u

−1
4 u−1

3 u4v
−1
1 u−1

4 = u3u4v
−1
1 = u−1

3 u4v1u
−1
4 v−1

1 u3v
−1
1

= u−1
3 u3v1u

−1
3 u3v

−1
1 = 1,

using the fact that v1 ⇋ u−1
4 u3u4u

−1
3 , and applying equations (94)

and (93). So we delete equation (83) from the list.
We are thus left with relations (92), (93), (94), (95) and (96). We

now multiply together equations (94) and (95). The product of the
left-hand sides, by equation (96), is given by:

u3v1u
−2
3 v1u3 = v1,

while by equations (92), (93), (94), (95) and (96), the product of the
right-hand sides is given by:

u4v
−1
1 u−1

4 v1u
−1
4 v1u4v

−1
1 = u4v

−1
1 u−1

4 v1u
−1
4 v−1

1 u4v1

= v−1
1 v1u4v

−1
1 u−1

4 u−1
3 v−1

1 u3v1

= v−1
1 v−1

1 u4v1u
−1
4 u−1

3 v−1
1 u3v1

= v−1
1 u3v

−1
1 u−2

3 v−1
1 u3v1 = v−3

1 .

From these two equations, we conclude that:

v4
1 = 1, (97)

and so equation (96) becomes:

u−2
3 v−1

1 u3v
−1
1 u3v

−1
1 = 1. (98)

The list of relations now becomes: (92), (93), (97), (98), (94) and
(95). We may rewrite the corresponding presentation as follows:

Proposition 63. The following constitutes a presentation of the
group Γ2(B4(S2)):

generators: g1, g2, g3, where in terms of the usual generators of B4(S2),

g1 = u3 = σ2
1σ2σ

−3
1 , g2 = u4 = σ3

1σ2σ
−4
1 and g3 = v1 = σ3σ

−1
1 .
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relations:

g4
3 = 1

g2
3 ⇋ g1

g2
3 ⇋ g2

g3 ⇋ g2g1

g−1
2 g−1

1 g−1
3 g1g2g

−1
3 = 1

g−2
1 g−1

3 g1g
−1
3 g1g

−1
3 = 1.

Proof. Rewriting u3, u4 and v1 in terms of the gi, we obtain di-
rectly the first three and the last of the given relations. As for the
fourth and fifth relations, we obtain respectively:

g3g2g1g
−1
3 g−1

1 g−1
2 = v1u4u

−1
3 v−1

1 u−1
3 u−1

4

= u4(u
−1
4 v1u4v

−1
1 v1u

−1
3 v−1

1 u−1
3 )u−1

4

= u4u3(u
−2
3 v−1

1 u3v
−1
1 u3v

−1
1 v4

1)u
−1
3 u−1

4 = 1

by equations (95), (97) and (98), and

g−1
2 g−1

1 g−1
3 g1g2g

−1
3 = u−1

4 u−1
3 v−1

1 u3u4v
−1
1

= v1u
−1
4 (u4v

−1
1 u−1

4 v1v
−1
1 u−1

3 v−1
1 u3)u4v

−1
1

= v1u
−1
4 u3(v1u

−1
3 v−1

1 u−1
3 v−1

1 u2
3)u

−1
3 u4v

−1
1 = 1

by equations (94), (97) and (98). Thus the presentation we derived
with generators u3, u4 and v1 implies the system given by Proposi-
tion 63. Conversely, given this system, we have

u3v1u
−1
3 = u−1

3 v−1
1 u3v

−1
1 = u4v

−1
1 u−1

4 v1,

which is equation (94), and

u−1
3 v1u3 = u−1

3 v−1
1 u3v

2
1 = u3v1u

−1
3 v1v

2
1 = u−1

4 v1u4v
3
1 = u−1

4 v1u4v
−1
1 ,

which is equation (95). Hence the system given by Proposition 63 is
equivalent to our presentation with generators u3, u4 and v1, and so in
particular is a presentation of Γ2(B4(S2)). �

3. The derived subgroup of B5(S2)

For the case n = 5, we obtain the following presentation directly
from Proposition 62:

Proposition 64. The following constitutes a presentation of the
group Γ2(B5(S2)):
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generators:

w = σ8
1

u1 = σ2σ
−1
1 , u2 = σ1σ2σ

−2
1 , . . . , u8 = σ7

1σ2σ
−8
1

v1 = σ3σ
−1
1 , v2 = σ4σ

−1
1 .

relations:

v1v2v1 = v2v1v2

w ⇋ vi for i = 1, 2

u1v2 = v2u2

u2v2 = v2u
−1
1 u2

uiv1ui+2v
−1
1 u−1

i+1v
−1
1 = 1 for i = 1, . . . , 6

u7v1wu1w
−1v−1

1 u−1
8 v−1

1 = 1

u8v1wu2v
−1
1 u−1

1 w−1v−1
1 = 1

ui+1u
−1
i+2u

−1
i = 1 for i = 1, . . . , 6

u8wu
−1
1 w−1u−1

7 = 1

wu1u
−1
2 w−1u−1

8 = 1

u2(v1v
2
2v1)u7w = 1. �

4. The derived subgroup of Bn(S2) for n ≥ 6

We now suppose that n ≥ 6. Then the generator v3 exists.
Suppose that equation (82i) holds for some 1 ≤ i ≤ 2n − 5. Let

us take j ≥ 3. We eliminate equation (82i+ 1) as follows: applying
successively equations (80) and (77), we obtain:

ui+1v1ui+3v
−1
1 u−1

i+2v
−1
1 = v−1

j uivjv1v
−1
j ui+2vjv

−1
1 v−1

j u−1
i+1vjv

−1
1

= v−1
j (uiv1ui+2v

−1
1 u−1

i+1v
−1
1 )vj

= 1 by equation (82i).

It thus follows that we may delete successively equations (822n− 4), . . . ,
(822) from the list of relations.

Suppose that equation (83) holds. Applying the idea of the previous
paragraph, we eliminate equation (84):

u2n−2v1wu2v
−1
1 u−1

1 w−1v−1
1 =v−1

j u2n−3vjv1wv
−1
j u1vjv

−1
1 w−1v−1

j ·
u−1

2n−2vjv
−1
1

=v−1
j (u2n−3v1wu1v

−1
1 w−1u−1

2n−2v
−1
1 )vj = 1.
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Let us suppose that equation (821) holds. Then so does equa-
tion (822n− 4). We eliminate equation (83) as follows.

u2n−3v1wu1w
−1v−1

1 u−1
2n−2v

−1
1 =v−1

j u2n−4vjv1v
−1
j u2n−2vjv

−1
1 v−1

j ·
u−1

2n−3vjv
−1
1

=v−1
j (u2n−4v1u2n−2v

−1
1 u−1

2n−3v
−1
1 )vj = 1.

Proposition 65. Let n ≥ 6. The following constitutes a presenta-
tion of the group Γ2(Bn(S2)):

generators:

w = σ2n−2
1

u1 = σ2σ
−1
1 , u2 = σ1σ2σ

−2
1 , . . . , u2n−2 = σ2n−3

1 σ2σ
−(2n−2)
1

v1 = σ3σ
−1
1 , . . . , vn−3 = σn−1σ

−1
1 .

relations:

vivj = vjvi if |i− j| ≥ 2 (99)

vivi+1vi = vi+1vivi+1 for all 1 ≤ i < j ≤ n− 4 (100)

w ⇋ vi (101)

u1vj = vju2, where j ≥ 2 (102)

u2vj = vju
−1
1 u2, where j ≥ 2 (103)

u1v1u
−1
1 u2v

−1
1 u−1

2 v−1
1 = 1 (104)

ui+1u
−1
i+2u

−1
i = 1 for all i = 1, . . . , 2n− 4 (105)

u2n−2wu
−1
1 w−1u−1

2n−3 = 1 (106)

wu1u
−1
2 w−1u−1

2n−2 = 1 (107)

u2(v1 · · · vn−4v
2
n−3vn−4 · · · v1)u2n−3w = 1. (108)

�

This presentation may be refined further. Set

A = v1 · · · vn−4v
2
n−3vn−4 · · · v1 and y = u−1

2 u1u2u
−1
1 .

Applying equations (106) and (107) to equation (108), we have:

1 = u2Au2n−3w = u2Au2n−2wu
−1
1 = u2Awu1u

−1
2 u−1

1 ,

so

w = A−1y.
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Since A commutes with w by equation (101), we see that A commutes
with y. Equations (106) and (107) are then equivalent to:

u2n−3 = A−1u−1
2 y−1A (109)

u2n−2 = A−1u−1
2 u1y

−1A. (110)

Let i ≥ 2. One may check using relations (99) and (100) that A
commutes with vi. Relation (101) is then equivalent to vi commutes
with y. But this is implied by equations (102) and (103). Indeed, from
these two relations we see that viu2v

−1
i = u1 and viu1v

−1
i = u1u

−1
2 , and

then one may check directly that vi commutes with u−1
2 u1u2u

−1
1 . This

implies that we may delete equations (101i) for 2 ≤ i ≤ n− 3.
From equation (105), we may calculate u3, . . . u2n−4, u2n−3 and u2n−2

in terms of u1 and u2. Since all but the last two of these elements do
not appear anywhere in the rest of the presentation, we may delete
relations (105i) for i = 1, . . . , 2n− 4, provided that we keep (as defini-
tions) the expressions for u2n−3 and u2n−2 in terms of u1 and u2. Let
us calculate the general term ui in terms of u1 and u2.

For i ∈ N, we define vi as follows:

vi =





u1u
−1
2 if i ≡ 0 mod 6

u1 if i ≡ 1 mod 6

u2 if i ≡ 2 mod 6

u−1
1 u2 if i ≡ 3 mod 6

u−1
1 if i ≡ 4 mod 6

u−1
2 if i ≡ 5 mod 6.

Lemma 66. Let i ∈ N, and let k ≥ 0 and 0 ≤ l ≤ 5 be such that
i = 6k + l + 1. Then:

ui =

{
ykviy

−k if l = 0, 1, 2

yku−1
2 u1viu

−1
1 u2y

−k if l = 3, 4, 5.

Proof. The proof is by induction on i, one considers the six pos-
sible cases depending on the value of i mod 6. �

We can then determine equations (109) and (110) in the three pos-
sible cases. We let k ≥ 0 and 0 ≤ l ≤ 5 be such that 2n − 2 =
6k + l + 1.

(a) 2n− 2 ≡ 0 mod 6 (l = 5):

yku−1
2 y−k = A−1u−1

2 A

yku−1
2 u1y

−k = A−1u−1
2 u1A.
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Hence:
u1, u2 ⇋ Ayk.

(b) 2n− 2 ≡ 2 mod 6 (l = 1):

yku1y
−k = A−1u−1

2 y−1A

yku2y
−k = A−1u−1

2 u1y
−1A.

(c) 2n− 2 ≡ 4 mod 6 (l = 3):

yku−1
1 y−k = A−1u−1

1 u2A

yku2y
−k = A−1u−1

2 u−1
1 u2A.

Proposition 67. Let n ≥ 6. The following constitutes a presenta-
tion of the group Γ2(Bn(S2)):

generators:

u1 = σ2σ
−1
1 , u2 = σ1σ2σ

−2
1

v1 = σ3σ
−1
1 , . . . , vn−3 = σn−1σ

−1
1 .

relations:

vivj = vjvi if |i− j| ≥ 2

vivi+1vi = vi+1vivi+1 for all 1 ≤ i < j ≤ n− 4

y ⇋ v1

vju2v
−1
j = u1, where j ≥ 2

vju1v
−1
j = u1u

−1
2 , where j ≥ 2

u1v1u
−1
1 u2v

−1
1 u−1

2 v−1
1 = 1,

plus the two corresponding relations from (a), (b) and (c) of the
previous paragraph, where

y = u−1
2 u1u2u

−1
1 and A = v1 · · · vn−4v

2
n−3vn−4 · · · v1. �

Remark 68. From this presentation, one could also delete, for
example, the generator u2.



Bibliography

[AW] W. A. Adkins and S. Weintraub, Algebra, an approach via module
theory, Graduate Texts in Mathematics, 136, Springer-Verlag, New
York, 1992.

[All] D. Allcock, Braid pictures for Artin groups, Trans. Amer. Math.
Soc. 354 (2002), 3455–3474.
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Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lec-
ture Notes in Mathematics 317, Springer, Berlin, 1973, 21–44.

[Bro] K. S. Brown, Cohomology of groups, Graduate Texts in Mathemat-
ics, 87, Springer-Verlag, New York, 1982.

[BZ] G. Burde and H. Zieschang, Knots, Second edition, de Gruyter
Studies in Mathematics, 5. Walter de Gruyter & Co., Berlin, 2003.

[ChP] R. Charney and D. Peifer, The K(π, 1)-conjecture for the affine
braid groups, Comment. Math. Helv. 78 (2003), 584–600.

[CFL] K. T. Chen, R. H. Fox and R. C. Lyndon, Ann. Math. 68 (1958),
81–95.

78



BIBLIOGRAPHY 79

[Ch] W.-L. Chow, On the algebraical braid group. Ann. Math. 49 (1948)
654–658.

[CG] F. R. Cohen and S. Gitler, On loop spaces of configuration spaces,
Trans. Amer. Math. Soc. 354 (2002), 1705–1748.

[Cr] J. Crisp, Injective maps between Artin groups, in Geometric group
theory down under, 1996, 119–137, Eds. J. Cossey, C. F. Miller III,
W. D. Neumann, M. Shapiro, de Gruyter, 1999.

[CrP] J. Crisp and L. Paris, Artin groups of type B and D, Adv. Geom.
5 (2005), 607–636.

[Fa] E. Fadell, Homotopy groups of configuration spaces and the string
problem of Dirac, Duke Math. Journal 29 (1962), 231–242.

[FH] E. Fadell and S. Y. Husseini, Geometry and topology of configura-
tion spaces, Springer Monographs in Mathematics. Springer-Verlag,
Berlin, 2001.

[FaN] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scandinav-
ica 10 (1962), 111–118.

[FVB] E. Fadell and J. Van Buskirk, The braid groups of E2 and S2, Duke
Math. Journal 29 (1962), 243–257.

[FR1] M. Falk and R. Randell, The lower central series of a fiber-type
arrangement, Invent. Math. 82 (1985), 77–88.

[FR2] M. Falk and R. Randell, The lower central series of generalized
pure braid groups, in Geometry and topology (Athens, Ga., 1985),
103–108, Lecture Notes in Pure and Appl. Math. 105, Dekker, New
York, 1987.

[FR3] M. Falk and R. Randell, Pure braid groups and products of free
groups, Braids (Santa Cruz, CA, 1986), 217–228, Contemp. Math.
78, Amer. Math. Soc., Providence, RI, 1988.

[FG] A. Fel’shtyn and D. L. Gonçalves, Twisted conjugacy classes
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Notas de Matemática, No. 55, North-Holland Publishing Co., Am-
sterdam, 1975.

[J] D. L. Johnson, Presentation of groups, LMS Lecture Notes 22

(1976), Cambridge University Press.
[KP] R. P. Kent IV and D. Peifer, A geometric and algebraic description

of annular braid groups, Int. J. Algebra and Computation 12 (2002)
85–97

[KMc] G. Kim and J. McCarron, Some residually p-finite one-relator
groups, J. Algebra 169 (1994), 817–826.
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