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Vote and aggregation in combinatorial domains
with structured preferences

Jérôme Lang

Abstract

In many real-world collective decision problems, the set of alternatives is a Carte-
sian product of finite value domains for each of a given set of variables. The pro-
hibitive size of such combinatorial domains makes it practically impossible to rep-
resent preference relations explicitly. Now, the AI community has been developing
languages for representing preferences on such domains in a succinct way, exploiting
structural properties such as conditional preferential independence. In this paper we
reconsider voting and aggregation rules in the case where voters’ preferences have a
common preferential independence structure, and address the issue of decomposing
a voting rule or an aggregation function following a linear order over variables.

Key words : vote, combinatorial domains, compact preference representation

1 Introduction

Researchers in social choice have extensively studied the properties of voting rules and
aggregation functions, up to an important detail: candidates are supposed to be listed
explicitly (typically, they are individuals or lists of individuals), which assumes that they
are not too numerous. In this paper, we consider the case where the set of candidates has
a combinatorial structure, i.e., is a Cartesian product of finite value domains for each of
a finite set of variables.

Since the number of possible alternatives is then exponential in the number of vari-
ables, it is not reasonable to ask voters to rank all alternatives explicitly. Consider for
example that voters have to agree on a common menu to be composed of a first course,
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Vote and aggregation in combinatorial domains with structured preferences

a main course, a dessert and a wine, with a choice of 6 items for each. This makes64

candidates. This would not be a problem if each of the four items to be chosen were inde-
pendent from the other ones: in this case, this vote over a set of64 candidates would come
down to four independent votes over sets of6 candidates each, and any standard voting
rule could be applied without difficulty. Things become more complicated if voters ex-
press dependencies between items, such as “if the main course is meat then I prefer red
wine, otherwise I prefer white wine”. Indeed, as soon as variables are not preferentially
independent, it is generally a bad idea to decompose a vote problem withp variables into
a set ofp smaller problems, each one bearing on a single variable: “multiple election para-
doxes” [5] show that such a decomposition leads to suboptimal choices, and give real-life
examples of such paradoxes, including simultaneous referenda on related issues. They ar-
gue that the only way of avoiding the paradox would consist in “voting for combinations
[of values]”, but they stress its practical difficulty without giving any hint for a practical
solution.

Because the preference structure of each voter in such a case cannot reasonably be
expressed by listing all candidates, what is needed is a compactpreference representation
language. Such preference representation languages have been developed within the Ar-
tificial Intelligence community so as to escape the combinatorial blow up of the explicit
representation. Such languages allow a much moresuccinctrepresentation than explicit
representations. Many of these languages (including CP-nets and their extensions) are
graphical: preferences are expressed locally (on small subsets of variables). The common
feature of these languages is that they allow for a concise representation of the preference
structure, while preserving a good readability (and hence a proximity with the way agents
express their preferences in natural language).

Thus, AI gives a first answer to the problem pointed in [5]. However, another problem
then arises:once preferences have been elicited, and represented in some compact rep-
resentation language, how is the voting or aggregation rule computed?The prohibitive
number of candidates makes it practically impossible to compute these rules in a straight-
forward way.

When domains are not too large, it may still be reasonable to first generate the whole
preference relations from their compact representations and then compute the outcome by
a direct implementation of the voting rule. However, when domains become bigger, this
naive method becomes too greedy and then we need to find a more sophisticated way of
computing the outcome of the vote. Two methods come to mind: either (1) give up opti-
mality and compute anapproximationof the voting or aggregation rule, or (2) assume that
the voters’ preferences enjoy specific structural properties that can be exploited so asde-
composethe problem into smaller, local subproblems. Here we address (2), and we focus
on a specific restriction of preference profiles where all voters have a preference rela-
tion enjoying conditional preferential independencies compatible with a common acyclic
graphG. After giving some background on preference relations over combinatorial do-
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mains and vote in Section 2, we introduce and study sequential voting rules in Section 3.
Section 4 then considers preference aggregation over combinatorial domains, and Section
5 concludes.

2 Background

2.1 Preferences on combinatorial domains

Let V = {x1, . . . ,xp} be a set ofvariables. For eachxi ∈ V , Di is thevalue domain
of xi. A variablevi is binary if Di = {xi, xi}. Note the difference between the variable
xi and the valuexi. If X = {xi1 , . . . ,xim} ⊆ V , with i1 < . . . < ip, thenDX denotes
Dxi1

× . . . × Dxim
.

X = D1 × ... × Dp is the set of allalternatives, orcandidates. Elements ofX
are denoted by~x, ~x′ etc. and represented by concatenating the values of the variables:
for instance, ifV = {x1,x2,x3}, x1x2x3 assignsx1 to x1, x2 to x2 andx3 to x3. We
allow concatenations of vectors of values: for instance, letV = {x1,x2,x3,x4,x5},
Y = {x1, x2}, Z = {x3, x4}, ~y = x1x2, ~z = x3x4, then~y.~z.x5 denotes the alternative
x1x2x3x4x5.

A (strict) preference relationon X is a strict order (an irreflexive, asymmetric and
transitive binary relation). Alinear preference relation is acompletestrict order, i.e., for
any~x and~y 6= ~x, either~x ≻ ~y or ~y ≻ ~x holds. IfR is a preference relation, we generally
note~x ≻R ~x′ instead ofR(~x, ~x′).

Let {X,Y, Z} be a partition of the setV of variables and≻ a preference relation over
DV . X is (conditionally) preferentially independentof Y givenZ (w.r.t. ≻) if and only if
for all ~x1, ~x2 ∈ DX , ~y1, ~y2 ∈ DY , ~z ∈ DZ ,

~x1.~y1.~z ≻ ~x2.~y1.~z iff ~x1.~y2.~z ≻ ~x2.~y2.~z

Unlike probabilistic independence, preferential independence is a directed notion:X
may be independent ofY givenZ withoutY being independent ofX givenZ.

A CP-netN [2] over V is a pair consisting of a directed graphG over V and a
collection of conditional preference tablesCPT (xi) for eachxi ∈ V . Each conditional
preference tableCPT (xi) associates a total order0 ≻i

~u with each instanciation~u of xi’s
parentsPa(xi) = U . For instance, letV = {x,y, z}, all three being binary, and assume
that preference of a given agent over2V can be defined by a CP-net whose structural
part is the directed acyclic graphG = {(x, y), (y, z), (x, z)}; this means that the agent’s

0More generally, the entries of conditional preference tables may contain partial orders over the domains
of the variables (see [2]), but we don’t need this here.
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preference over the values ofx is unconditional, preference over the values ofy (resp.z)
is fully determined given the value ofx (resp. the values ofx andy).

The conditional preference statements contained in these tables are written with the
usual notation, that is,x1x2 : x3 ≻ x3 means that whenx1 is true andx2 is false then
x3 = x3 is preferred tox3 = x3. In this paper we make the classical assumption thatG is
acyclic. A CP-netN induces a preference ranking onX : ~x ≻N ~y iff there is a sequence
of improving flips from~y to ~x, where an improving flip is the flip of a single variable~xi

“respecting” the preference tableCPT (xi) (see [2]). Note that the preference relation
induced from a CP-net is generally not complete.

Let G be a directed graph overV , and≻ a linear preference relation.≻ is said to
becompatible withG iff for eachx ∈ V , x is preferentially independent ofV \ ({x} ∪
Par(x)) givenPar(x). The following fact is obvious, but important:

Observation 1 A linear preference relation≻ is compatible withG if and only if there
exists a CP-netN whose associated graph isG and such that≻ extends≻N .

Let G be an acyclic graph overV and letO = x1 > ... > xp be a linear order onV . G
is said tofollowO iff for every edge(xi,xj) in G we havei < j. A preference relation≻
is said to followO iff it is compatible with some acyclic graphG following O. Clearly,≻
follows O = x1 > ... > xp if and only if for all i < p, xi is preferentially independent of
{xi+1, ...,xp} given{x1, ...,xi−1} with respect to≻. If ≻ followsO then theprojectionof
≻ onxi given(x1, . . . , xi−1) ∈ D1 × . . . × Di−1, denoted by≻xi|x1=x1,...,xi−1=xi−1, is the
preference relation onDi defined by: for allxi, x

′
i ∈ Di, xi ≻xi|x1=x1,...,xi−1=xi−1 x′

i iff
x1...xi−1xixi+1...xp ≻ x1...xi−1x

′
ixi+1..xp holds for all(xi+1, . . . , xp) ∈ Di+1× . . .×Dp.

Due to the fact that≻ follows O and that≻ is a linear order,≻xi|x1=x1,...,xi−1=xi−1 is
a well-defined linear order as well. Note also that if≻ follows bothO = x1 > ... > xp

andO′ = xσ(1) > ... > xσ(k−1) > xi(= xσ(k)) > ... > xσ(p), then≻xi|x1=x1,...,xi−1=xi−1

and≻xi|xσ(1)=xσ(1),...,xσ(k−1)=xσ(k−1) coincide. In other words, the local preference relation
on xi depends only on the values of the parents ofxi in G: ≻xi|x1=x1,...,xi−1=xi−1 and
≻xi|xσ(1)=xσ(1),...,xσ(k−1)=xσ(k−1) both coincide with≻xi|par(xi)=y, whereY = par(xi).

Lastly, for any acyclic graphG over V , we say that two linear preference relations
R1 and R2 are G-equivalent, denoted byR1 ∼G R2, if and only if R1 and R2 are
both compatible withG and for anyx ∈ V , for any ~y, ~y′ ∈ Dom(par(x)) we have
R

x|par(x)=~y
1 = R

x|par(x)=~y′

2 .

Observation 2 For any linear preference relationsR and R′, R ∼G R′ if and only if
there exists a CP-netN whose associated graph isG and such thatR andR′ both extend
≻N .
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Example 1 LetV = {x,y, z}, all three being binary. and letR andR′ be the following
linear preference relations:

R : xyz ≻ xyz̄ ≻ xȳz̄ ≻ xȳz ≻ x̄yz̄ ≻ x̄ȳz̄ ≻ x̄yz ≻ x̄ȳz
R′ : xyz ≻ xyz̄ ≻ x̄yz̄ ≻ xȳz̄ ≻ x̄yz ≻ x̄ȳz̄ ≻ xȳz ≻ x̄ȳz

LetG the graph overV whose set of edges is{(x,y), (x, z)}. R andR′ are both compat-
ible with G. Moreover,R ∼G R′, since all local preference relations coincide:x ≻x

R x̄

andx ≻x

R′ x̄; z ≻
z|x=x,y=y
R z̄ andz ≻

z|x=x,y=y
R′ z̄; etc. The CP-netN such thatR andR′

both extend≻N is defined by the following local conditional preferences:x ≻ x̄; y ≻ ȳ;
xy : z ≻ z̄; xȳ : z̄ ≻ z; x̄y : z̄ ≻ z; x̄ȳ : z̄ ≻ z.

2.2 Voting rules and correspondences

LetA = {1, ..., N} be a finite set ofvotersandX a finite set ofcandidates. A(collective)
preference profilew.r.t. A andX is a collection ofN individual preference relations over
X : P = (≻1, ...,≻N ) = (P1, ..., PN ). LetPA,X set of all preference profiles forA andX .

A voting correspondenceC : PA,X → 2X \ {∅} maps each preference profileP
of PA,X into a nonempty subsetC(P ) of X . A voting ruler : PA,X → X maps each
preference profileP of PA,X into a single candidater(P ). A rule can be obtained from a
correspondence by prioritization over candidates (for more details see [4]).

To give an example, consider the well-known family ofpositional scoring rules and
correspondences. A positional scoring correspondence is defined from ascoring vector,
that is, a vector~s = (s1, . . . , sm) of integers such thats1 ≥ s2 ≥ . . . ≥ sm ands1 > sm.
Let ranki(x) be the rank ofx in ≻i (1 if it is the favorite candidate for voteri, 2 if it is the
second favorite etc.). The score ofx is defined byS(x) =

∑N
i=1 sranki(x). The candidates

chosen by the correspondence defined from~s is the set of all candidates maximizingS. A
positional voting rule is defined as a positional scoring correspondence plus a tie-breaking
mechanism, for the case where more than one candidate have a maximum score. Well-
known examples are theBorda rule, given bysk = m − k for all k = 1, . . . ,m; the
plurality rule, bys1 = 1, andsk = 0 for all k > 1; and thevetorule, bysk = 1 for all
k < m, andsm = 0.

We also recall the definition of aCondorcet winner(CW). Given a profileP = (≻1,
...,≻N ), x ∈ X is aCondorcet winneriff it is preferred to any other candidate by a strict
majority of voters, that is, for ally 6= x, #{i, x ≻i y} > N

2
. It is well-known that there

are some profiles for which no CW exists. Obviously, when a CW exists then it is unique.
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3 Sequential voting

Given a combinatorial set of alternatives and a compact representation (in some prefer-
ence representation languageR) of the voters’ preferences, how can we compute the (set
of) winner(s)? The naive way consisting in “unfolding” the compactly expressed prefer-
ence relations (that is, generating the whole preference relations onD1 × . . . × Dp from
the input), and then applying a given voting rule, is obviously unfeasible, except if the
number of variables is really small. We can try to do better and design an algorithm for
applying a given voting ruler on a succinctly described profileP without generating the
preferences relations explicitly. However, we can’t be too optimistic, because it is known
that the latter problem is computationally hard, even for simple succinct representation
languages and simple rules (see [6]).

A way of escaping this problem consists inrestricting the set of admissible prefer-
ence profilesin such a way that computationally simple voting rules can be applied1.
A very natural restriction (that we investigate in the next Section) consists in assuming
that preferences enjoy some specific structural properties such as conditional preferential
independencies.

3.1 Sequential voting rules and correspondences

Now comes the central assumption to the sequential approach:there exists an acyclic
graphG such that the preference relation of every voter is compatible withG. This as-
sumption is not as restrictive as it may appear at first look: suppose indeed that preference
relations(≻1, . . . ,≻N) are compatible with the acyclic graphsG1, . . . , GN , whose sets
of edges areE1, . . . , EN . Then they are a fortiori compatible with the graphG∗ whose
set of edges isE1 ∪ . . . ∪ EN . Therefore,if G∗ is acyclic, then sequential voting will
be applicable to(≻1, . . . ,≻N) (of course, this is no longer true ifG∗ has cycles). More-
over, in many real-life domains it may be deemed reasonable to assume that preferential
dependencies between variables coincide for all agents.

Sequential votingconsists then in applying “local” voting rules or correspondances on
single variables, one after the other, in such an order that the local vote on a given variable
can be performed only when the local votes on all its parents in the graphG have been
performed.

We defineCompG as the set of all collective profilesP = (≻1, . . . ,≻N) such that
each≻i is compatible withG.

1Such an assumption is called a “domain restriction” in social choice theory – here, the “domain” has to
be understood as the set of admissible preferences, not the set of alternatives.
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Definition 1 LetG be an acyclic graph onV ; let P = (P1, ..., PN ) in CompG,O = x1 >
... > xp a linear order onV following G, and(r1, . . . , rp) a collection of deterministic
voting rules (one for each variablexi). Thesequential voting ruleSeq(r1, . . . , rp) is
defined as follows:

• x∗
1 = r1(P

x1

1 , . . . , P x1

N );

• x∗
2 = r2(P

x2|x1=x∗

1

1 , . . . , P
x2|x1=x∗

1

N );

• . . .

• x∗
p = rp(P

xp|x1=x∗

1
,..,xp−1=x∗

p−1

1 , .., P
xp|x1=x∗

1
,..,xp−1=x∗

p−1

N )

ThenSeq(r1, . . . , rp)(P ) = (x∗
1, . . . , x

∗
p).

Example 2 Let N = 12, V = {x,y} with Dom(x) = {x, x̄} andDom(y) = {y, ȳ},
andP = 〈P1, . . . , P12〉 the following 12-voter profile:

P1, P2, P3, P4 : xy ≻ x̄y ≻ xȳ ≻ x̄ȳ
P5, P6, P7: xȳ ≻ xy ≻ x̄y ≻ x̄ȳ
P8, P9, P10: x̄y ≻ x̄ȳ ≻ xy ≻ xȳ
P10, P11: x̄y ≻ x̄ȳ ≻ xȳ ≻ xy

All these preference relations are compatible with the graphG over {x,y} whose
single edge is(x,y); equivalently, they follow the orderx > y. Hence,P ∈ CompG.
The corresponding conditional preference tables to are:

voters 1,2,3,4 voters 5,6,7 voters 8,9,10 voters 11,12

x ≻ x̄
x : y ≻ ȳ
x̄ : y ≻ ȳ

x ≻ x̄
x : ȳ ≻ y
x̄ : y ≻ ȳ

x̄ ≻ x
x : y ≻ ȳ
x̄ : y ≻ ȳ

x̄ ≻ x
x : ȳ ≻ y
x̄ : y ≻ ȳ

Takerx andry both equal to the majority rule, together with a tie-breaking mechanism
which, in case of a tie betweenx and x̄ (resp. betweeny and ȳ), electsx (resp. y). The
projection ofP onx is composed of 7 votes forx and 5 forx̄, that is,P x

i is equal tox ≻ x̄
for 1 ≤ i ≤ 7 and tox̄ ≻ x for 8 ≤ i ≤ 12. Thereforex∗ = rx(P

x

1 , . . . , P x

12) = x: the
x-winner isx∗ = x. Now, the projection ofP ony givenx = x is composed of 7 votes for
y and 5 forȳ, thereforey∗ = y, and the sequential winner is now obtained by combining
thex–winner and the conditionaly-winner givenx = x∗ = x, namelySeqrx,ry(P ) = xy.

In addition to sequential voting rules, we also definesequential voting correspon-
dencesin a similar way: if for eachi, Ci is a correspondence onDi, thenSeq(C1, . . . , Cp)(P )
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is the set of all outcomes(x1, . . . , xp) such thatx1 ∈ C1(P
x1

1 , . . . , P x1

N ), and for alli ≥ 2,
xi ∈ Ci(P

xi|x1=x1,..,xi−1=xi−1

i , .., P
xi|x1=x1,..,xi−1=xi−1

N ). Due to the lack of space, we give
results for voting rules only.

An important property of such sequential voting rules and correspondences is that
the outcome does not depend onO, provided thatG follows O. This can be expressed
formally:

Observation 3 LetO = (x1 > . . . > xp) andO′ = (xσ(1) > . . . > xσ(p)) be two linear
orders onV such thatG follows bothO andO′. Then

Seq(r1, . . . , rp)(P ) = Seq(rσ(1), . . . , rσ(p))(P )
and similarly for voting correspondences.

Note thatwhen all variables are binary, all “reasonable” neutral voting rules (we have
no space to comment on what “reasonable” means – and this has been debated extensively
in the social choice literature) coincide with the majority rule when the number of candi-
dates is 2 (plus a tie-breaking mechanism). Therefore, if all variables are binary and the
number of voters is odd (in which case the tie-breaking mechanism is irrelevant), then the
only “reasonable” sequential voting rule isSeq(r1, . . . , rn) where eachri is the majority
rule.

It is important to remark that, in order to computeSeq(r1, . . . , rp)(P ), we do not
need to know the preference relationsP1, . . . ,PN entirely: everything we need is the local
preference relations: for instance, ifV = {x,y} andG contains the only edge(x,y), then
we need first the unconditional preference relations onx and then the preference relations
ony conditioned by the value ofx. In other words, if we know the conditional preference
tables (for all voters) associated with the graphG, then we have enough information
to determine the sequential winner for this profile, even though some of the preference
relations induced from these tables are incomplete. This is expressed more formally by
the following fact (a similar result holds for correspondences):

Observation 4 LetV = {x1, . . . ,xp}, G an acyclic graph overV , andP = (P1, . . . , PN),
P ′ = (P ′

1, . . . , P
′
N) two complete preference profiles such that for alli = 1, . . . , N we

havePi ∼G P ′
i . Then, for any collection of local voting rules(r1, . . . , rp), we have

Seq(r1, . . . , rp)(P ) = Seq(r1, . . . , rp)(P
′).

This, together with Observation 2, means that applying sequential voting to two col-
lections of linear preference relations corresponding to the same collection of CP-nets
gives the same result. This is illustrated on the following example.

Example 3 Everything is as in Example 2, except that we don’t know the voters’ complete
preference relations, but only their corresponding conditional preference tables. These
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conditional preferences contain strictly less information thanP , because some of the
preference relations they induce are not complete: for instance, the induced preference
relation for the first 4 voters isxy ≻ x̄y ≻ x̄ȳ, xy ≻ xȳ ≻ x̄ȳ, with xȳ and x̄y being
incomparable. However, we have enough information to determine the sequential winner
for this profile, even though some of the preference relations are incomplete. For instance,
taking again the majority rule forrx andry, the sequential winner isxy for any complete
profile P ′ = (P ′

1, . . . , P
′
12) extending the incomplete preference relations induced by the

12 conditional preference tables above.

3.2 Sequential decomposability

We now consider the following question: given a voting ruler, is there a way of comput-
ing r sequentially when the preference relations enjoy common preferential independen-
cies?

Definition 2 A voting ruler onX = D1 × . . .×Dp is decomposableif and only if there
existn voting rulesr1, . . . , rp on D1, . . . , Dp such that for any linear orderO = x1 >
... > xp on V and for any preference profileP = (P1, ..., PN ) such that eachPi follows
O, we haveSeq(r1, . . . , rp)(P ) = r(P ). The definition is similar for correspondences.

An interesting question is the following: for which voting rulesr does the sequential
winner (obtained by sequential applications ofr) and the “direct” winner (obtained by a
direct application ofr) coincide? The following result shows that this fails for the the
whole family of scoring rules (and similarly for correspondances).

Proposition 1 No positional scoring rule is decomposable.

Proof sketch: We give a proof sketch for the case of two binary variables (this generalizes eas-
ily to more variables, as well as to non-binary variables). Letr be a decomposable scoring rule
on 2{x,y}: there exist two local rulesrx andry such that wheneverP follow x > y, we have
Seq(rx, ry)(P ) = r(P ). Then we show thatrx andry are both the majority rule (this follows
easily from the fact that some properties ofr, including monotonicity, carry on torx andry.) Now,
consider the same preference profileP as in Example 3. P follows the orderx > y. Now, let
s1 ≥ s2 ≥ s3 ≥ s4 = 0 (with s1 > 0) the weights definingr. The score ofxy is 4s1 + 3s2 + 3s3;
the score of̄xy is 5s1 +4s2 +3s3, which is strictly larger than the score ofxy, thereforexy cannot
be the winner forr, whatever the values ofs1, s2, s3. ¥

Such counterexamples can be found for many usual voting rules outside the family
of scoring rules (we must omit the results due to the lack of space), including the whole
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family of voting rules based on the majority graph. Positive results, on the other hand,
seem very hard to get. Obviously, dictatorial rules (electing the preferred candidate of
some fixed voter) and constant rules (electing a fixed candidate whatever the voters’ pref-
erences)are decomposable. But the latter rules are of course not reasonable, and we
conjecture that the answer to the above question is negative as soon as a few reasonable
properties are required2.

A particular case of preferential independence is whenall variables are preferen-
tially independent from each other, which corresponds to a dependency graphG with no
edges. In this case, the preference profile follows any order on the set of variables, and
the sequential winner is better called aparallel winner, since the local votes on the single
variables can be performed in any order. We might then consider the following property
of separability:

Definition 3 A deterministic ruler is separableif and only if for any preference profileP
= (≻1, ...,≻N ) such that the variables are pairwise conditionally preferentially indepen-
dent, the parallel winner ofr w.r.t. P is equal tor(P ).

Obviously, any decomposable rule is separable. Are there any separable rules? Fo-
cusing on positional scoring rules, we find a rather intriguing result (the proof of which is
omitted):

Proposition 2 LetV = {x1, . . . ,xp} (with p ≥ 2).

• if p = 2 and both variables are binary, exactly one positional scoring rule is sepa-
rable: the rule associated with the weightss1 = 2s2 = 2s3 (ands4 = 0).

• in all other cases (p≥ 3 or at least one variable has more than 2 possible values),
then no positional scoring rule is separable.

3.3 Sequential Condorcet winners

We may now wonder whether a Condorcet winner (CW), when there exists one, can be
computed sequentially. Sequential Condorcet winners (SCW) are defined similarly as for
sequential winners for a given rule: the SCW is the sequential combination of “local”
Condorcet winners.

2More precisely, itcouldbe the case that the only correspondence satisfying anonymity, neutrality and
decomposability is the correspondence such thatC(P ) = X for all P . We spent a lot of time trying to
prove such an impossibility theorem, without success.
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Definition 4 LetG be an acyclic graph andP = (≻1, ...,≻N ) a profile inCompG. LetO
= x1 > ... > xp be a linear order onV followingG. (x∗

1, . . . , x
∗
p) is asequential Condorcet

winnerfor P if and only if

• ∀x′
1 ∈ D1, #{i, x∗

1 ≻x1

i x′
1} > N

2
;

• for everyk > 1 and∀x′
k ∈ Dk,

#{i, x∗
k ≻

xk|x1=x∗

1
,...,xk−1=x∗

k−1

i x′
k} > N

2
.

This definition is well-founded because we obtain the same set of SCWs for anyO
following G. The question is now, do SCWs and CWs coincide? Clearly, the existence
of a SCW is no more guaranteed than that of a CW, and there cannot be more than one
SCW. We have the following positive result:

Proposition 3 LetG be an acyclic graph andP = (≻1, ...,≻N ) in CompG. If (x∗
1, x

∗
2, . . . , x

∗
n)

is a Condorcet winner forP , then it is a sequential Condorcet winner forP .

Proof sketch: Let > be an order onV following G. Assume there is a CW~x∗ for P : for any
~x′ 6= ~x∗, #{i, ~x∗ ≻i ~x′} > N

2 . Let x1 ∈ D1 s.t. x′
1 6= x∗

1. Sincex1 is preferentially independent
of x2, . . . ,xp, x∗

1 ≻x1

i x′
1 iff (x∗

1, x
∗
2, . . . x

∗
p) ≻i (x′

1, x
∗
2, . . . x

∗
p); hence,#{i, x∗

1 ≻x1

i x′
1} > N

2 :
x∗

1 is a “local” CW. Similarly, for allk, by comparing~x∗ to (x∗
1, . . . , x

∗
k−1, x

′
k, x

∗
k+1, . . . , x

∗
p), we

show thatx∗
k is a “local” CW for (≻

xk|x1=x∗

1
,...,xk−1=x∗

k−1

i )i=1,...,N . ¥

The following example shows that the converse fails: 2 voters have the preference
relationxȳ ≻ x̄ȳ ≻ xy ≻ x̄y, one voterxy ≻ xȳ ≻ x̄y ≻ x̄ȳ, and 2 voters̄xy ≻ x̄ȳ ≻
xy ≻ xȳ. x andy are mutually preferentially independent in all relations, therefore the
SCW is the combination of the locals CW for{x} and for{y}, provided they exist. Since
3 voters unconditionally preferx to x̄, x is the{x}-CW; similarly, 3 voters unconditionally
prefery to ȳ and is the{y}-CW. Therefore,xy is the SCW for the given profile;butxy is
not a CW for this profile, because 4 voters preferx̄ȳ to xy.

We now give a condition on the preference relations ensuring that SCWs and CWs
coincide. LetO = x1 ⊲ . . . ⊲ xp be a linear order onV . We say that a preference
relation≻ onDX is conditionally lexicographicw.r.t. O if there existp local conditional
preference relations≻xi|x1=x1,...,xi−1=xi−1 x′

i for i = 1, .., p, such that~x ≻ ~y if and only
if there is aj ≤ p such that (a) for everyk < j, xk = yk and (b)xj ≻

xj |x1=x1,...,xj−1=xj−1

yj. A profile P = (≻1, . . . ,≻N) is conditionally lexicographic w.r.t.O if each≻i is
conditionally lexicographic w.r.t.O. Such preference relations can be represented by
TCP-nets [3] or conditional preference theories [8].
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Proposition 4 LetO be a linear strict order overV . If P = (≻1, . . . ,≻N) is condition-
ally lexicographic w.r.t.O, then~x is a sequential Condorcet winner forP if and only if it
is a Condorcet winner forP .

Proof sketch: Let ~x∗ a SCW forP , and~x′ 6= ~x∗. Let k = min{i, x∗
i 6= x′

i} andIk ⊆ A be
the set of voters who preferx∗

k to x′
k givenx1 = x1, . . . ,xk−1 = xk−1. Because~x∗ is a SCW,

|Ik| > N
2 . We have~x∗ ≻i ~x′ for everyi ∈ Ik, because≻i is lexicographic w.r.t.x1 ⊲ . . . ⊲ xp.

Therefore a majority of voters prefers~x∗ to ~x′. This being true for all~x′ 6= ~x∗, ~x∗ is a CW. ¥

4 Arrow’s theorem and structured domains

We end this paper by considering decomposable domains from the point of view of pref-
erence aggregation. A preference aggregation function maps a profile to an aggregated
profile representing the preference of the group. Arrow’s theorem [1] states that any
aggregation function defined on the set of all profiles and satisfying unanimity and inde-
pendence of irrelevant alternatives (IIR) is dictatorial. An Arrow-consistent domainD is
a subset ofP allowing for unanimous, IIR and nondictatorial aggregation functions.

It is easy to see that for any acyclic graphG, Comp(G) is an Arrow-consistent. In-
deed, consider the preference aggregation function defined as follows:

• reorder the variables in an order compatible withG, i.e., w.l.o.g., assume that there
is no edge(xi,xj) in G with i ≥ j. Such an order exists becauseG is acyclic.

• let h : V → A associating a voter to each variable, such thath is not constant (it is
possible because|V| ≥ 2).

• for any~x and~y 6= ~x, let k(~x, ~y) = min{j, xj 6= yj}.

• for any collective profile〈≻1, . . . ,≻N〉, define≻∗= fh(≻1, . . . ,≻N) by: for all ~x
and~y, ~x ≻∗ ~y if xk ≻

xk|x1=x1,...,xn=xn

h(k) yk, wherek = k(~x, ~y).

Proposition 5 fh is a nondictatorial aggregation function onComp(G) satisfying una-
nimity and IIR.

Therefore,Comp(G) is Arrow-consistent.fh is easier to understand when it is turned
into a voting rule: voterh(x1) first chooses his preferred value for variablex1, then voter
h(x2) comes into play and chooses his preferred value for variablex2 given the value
assigned tox1, and so forth.
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Now, even iffh is truly nondictatorial, it however hasp local dictators (one for each
variable), since voterh(i) imposes his preference on the domain ofxi We may then won-
der whether a weaker form of Arrow’s theorem holds forComp(G). This is actually the
case. Let us first express the following properties (P1), (P2), (P3).

(P1) preservation of the independence structure
f is a mapping fromComp(G)N to Comp(G).

(P2) independence of irrelevant values and variables
For anyxi ∈ V , ~z ∈ DPar(xi), andP = 〈P1, . . . , PN〉, Q = 〈Q1, . . . , QN〉 in

Comp(G)N such that for everyj and allx, x′ ∈ Dxi
, x ≻

xi|~z
Pj

x′ iff x ≻
xi|~z
Qj

x′, we
have
x ≻

xi|~z
f(P ) x′ if and only if x ≻

xi|~z
f(Q) x′.

(P3) local unanimity
For anyP ∈ Comp(G), xi ∈ V and~z ∈ DPar(xi), if P

xi|~z
1 = . . . = P

xi|~z
N then

f(P )xi|~z = P
xi|~z
1 .

(P1) expresses that the preferential independencies expressed in the graphG should
be transferred to the aggregated preference relation. Therefore, under (P1), for any pref-
erence relation≻∗ resulting from the aggregation ofN preferences relations inComp(G)

there existp local conditional preference relations≻xi|Par(xi)
∗ , for i = 1, . . . , p.

(P2) is a local version of independence of irrelevant alternatives: whether the society
prefers a valuexi to another valueyi of xi given an assignment~z of the parent variables
of xi depends only on the voters’ preferences between these two values given~z (and not
on their preferences on other values ofxi nor on their preferences on other variables.)

(P3) tells that if all voters have the same local preference relation over the values of a
variablexi given a fixed value~z of its parents, then the local collective preference onDxi

given~z should be equal to this local preference relation.

Importantly, note that the way (P2) and (P3) are writtendepends on the assumption
that (P1) holds– otherwise we would not have been allowed to write≻

xi|~z
f(P ).

Proposition 6 Let G be an acyclic graphG over a set of variablesV = {x1, . . . ,xp}
with domainsD1, . . . , Dp such that for everyi, |Di| ≥ 3. An aggregation functionf on
Comp(G) satisfies (P1), (P2) and (P3) if and only if there exists a local dictatord(xi, ~z)
for each variablexi and each~z ∈ DPar(xi), such that for each~t ∈ DV \(Par(xi)∪{xi}), we
have

~z~txi ≻f(≻1,...,≻N ) ~z~tx′
i ⇔ ~z~txi ≻d(xi,~z) ~z~tx′

i.
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Proof sketch: The⇐ direction is straightforward. For the⇒ direction, letf satisfying (P1), (P2)
and (P3). (P1) guarantees that for everyxi and~z ∈ DPar(xi), xi is independent ofV \(DPar(xi)∪

{xi}) given~z, therefore there exists a well-defined, local collective preference relation≻
xi|~z
∗ such

that for all~t ∈ DV \(Par(xi) ∪ {xi}) and for allxi, x
′
i ∈ Dxi

, ~z~txi ≻∗ ~z~tx′
i. (P2) implies that

≻
xi|~z
∗ is fully determined by the voters’ preferences on the values ofxi given~z. Therefore, there

exists a local aggregation functionfxi|~z such that≻xi|~z
∗ = fxi|~z(≻

xi|~z
1 , . . . ,≻

xi|~z
N ). It remains to

be shown that these local aggregation functions satisfy the conditions of Arrow’ theorem, which
does not present any particular difficulty. Applying then Arrow’s theorem to each local aggrega-
tion functionfxi|~z enables us to conclude to the existence of a dictatord(xi, ~z) for each variable

xi and each~z ∈ DPar(xi), such thatxi ≻
fxi|~z(≻

xi|~z

1
,...,≻

xi|~z

N
)

x′
i ⇔ xi ≻

xi|~z
d(xi,~z) x′

i. Now, the

fact that≻xi|~z
∗ = fxi|~z(≻

xi|~z
1 , . . . ,≻

xi|~z
N ) allows us to conclude thatxi ≻

xi|~z
d(xi,~z) x′

i is equivalent

to xi ≻
xi|~z
f(≻1,...,≻N ) x′

i , which in turn is equivalent to: for all~t ∈ DV \(Par(xi)∪{xi}) and for all

xi, x
′
i ∈ Dxi

, ~z~txi ≻∗ ~z~tx′
i, where≻∗= f(≻1, . . . ,≻N ). ¥

Note that the local dictator for a given variable may depend on the values of its parents.
For instance, with two variablesx andy and a dependency graph with the edge(x,y),
we have a single dictator forxi and up to|Dx| dictators fory.

Corollary 1 Let Sep(V ) be the domain of fully separable prefence relations onDV . An
aggregation functionf on Sep(V ) satisfies (P1), (P2) and (P3) iff there existsp local
dictatorsd(xi), . . . , d(xp) such that for each~t ∈ DV \{xi},

~txi ≻f(≻1,...,≻N )
~tx′

i ⇔ ~txi ≻d(xi)
~tx′

i.

Finally, note that knowing the local dictators does not fully determinef . Suppose for
instance that we have two voters and two binary variablesx andy, and thatG has no
edge. Assume voter 1 prefersx to x̄ and voter 2 prefersy to ȳ. Then≻∗= f(≻1,≻2) is
such thatx ≻~x

∗ x̄ andy ≻~y
∗ ȳ, but this does not tell whetherxȳ ≻∗ x̄y or x̄y ≻∗ xȳ.

5 Conclusion

As far as we know, aggregating structured preferences on combinatorial domains ex-
ploiting preferential independence properties has never been considered neither in social
choice nor in AI. [7] define a multi-agent extension to CP-nets and propose various se-
mantics for aggregating preferences; but they do not address computational issues.

This paper contains several negative results. But one important question is left unan-
swered:what are the sequentially decomposable voting rules?Answering this question
(by finding a small set of properties implying that a rule cannot be decomposable) seems
much more difficult than we thought, and this is of course an issue for further research.
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Next, we identified a domain for which direct and sequential Condorcet winners co-
incide. Clearly, lexicographic preferences are very specific, so that we would like to find
more reasonable restrictions for the latter property to hold.

Another important issue stems from the fact that in combinatorial domains with struc-
tural properties (independencies), direct (global) voting rules are generally not computable
by a sequential application of local rules: so, what should we favor? Global voting rules,
which are well studied in social choice but which take no advantage of preferential inde-
pendencies, or sequential local rules, which are based on the dependency graph, thereby
being more intuitive and easier to compute? A theoretical comparison between global
voting and sequential local voting is a highly promising issue.
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