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Vote and aggregation in combinatorial domains
with structured preferences

Jerdme Lang

Abstract

In many real-world collective decision problems, the set of alternatives is a Carte-
sian product of finite value domains for each of a given set of variables. The pro-
hibitive size of such combinatorial domains makes it practically impossible to rep-
resent preference relations explicitly. Now, the Al community has been developing
languages for representing preferences on such domains in a succinct way, exploiting
structural properties such as conditional preferential independence. In this paper we
reconsider voting and aggregation rules in the case where voters’ preferences have a
common preferential independence structure, and address the issue of decomposing
a voting rule or an aggregation function following a linear order over variables.

Key words : vote, combinatorial domains, compact preference representation

1 Introduction

Researchers in social choice have extensively studied the properties of voting rules and
aggregation functions, up to an important detail: candidates are supposed to be listed
explicitly (typically, they are individuals or lists of individuals), which assumes that they

are not too numerous. In this paper, we consider the case where the set of candidates has
acombinatorial structure, i.e., is a Cartesian product of finite value domains for each of

a finite set of variables.

Since the number of possible alternatives is then exponential in the number of vari-
ables, it is not reasonable to ask voters to rank all alternatives explicitly. Consider for
example that voters have to agree on a common menu to be composed of a first course,

*IRIT - Universite Paul Sabatier, Toulouse (France)
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\ote and aggregation in combinatorial domains with structured preferences

a main course, a dessert and a wine, with a choice of 6 items for each. This édakes
candidates. This would not be a problem if each of the four items to be chosen were inde-
pendent from the other ones: in this case, this vote over a §étahdidates would come

down to four independent votes over set$afandidates each, and any standard voting
rule could be applied without difficulty. Things become more complicated if voters ex-
press dependencies between items, such as “if the main course is meat then | prefer red
wine, otherwise | prefer white wine”. Indeed, as soon as variables are not preferentially
independent, it is generally a bad idea to decompose a vote problem vétiables into

a set ofp smaller problems, each one bearing on a single variable: “multiple election para-
doxes” [5] show that such a decomposition leads to suboptimal choices, and give real-life
examples of such paradoxes, including simultaneous referenda on related issues. They ar-
gue that the only way of avoiding the paradox would consist in “voting for combinations
[of values]”, but they stress its practical difficulty without giving any hint for a practical
solution.

Because the preference structure of each voter in such a case cannot reasonably be
expressed by listing all candidates, what is needed is a corppetence representation
language. Such preference representation languages have been developed within the Ar-
tificial Intelligence community so as to escape the combinatorial blow up of the explicit
representation. Such languages allow a much raoceinctrepresentation than explicit
representations. Many of these languages (including CP-nets and their extensions) are
graphical: preferences are expressed locally (on small subsets of variables). The common
feature of these languages is that they allow for a concise representation of the preference
structure, while preserving a good readability (and hence a proximity with the way agents
express their preferences in natural language).

Thus, Al gives a first answer to the problem pointed in [5]. However, another problem
then arisesonce preferences have been elicited, and represented in some compact rep-
resentation language, how is the voting or aggregation rule compufigu prohibitive
number of candidates makes it practically impossible to compute these rules in a straight-
forward way.

When domains are not too large, it may still be reasonable to first generate the whole
preference relations from their compact representations and then compute the outcome by
a direct implementation of the voting rule. However, when domains become bigger, this
naive method becomes too greedy and then we need to find a more sophisticated way of
computing the outcome of the vote. Two methods come to mind: either (1) give up opti-
mality and compute aapproximatiorof the voting or aggregation rule, or (2) assume that
the voters’ preferences enjoy specific structural properties that can be exploitedeso as
composehe problem into smaller, local subproblems. Here we address (2), and we focus
on a specific restriction of preference profiles where all voters have a preference rela-
tion enjoying conditional preferential independencies compatible with a common acyclic
graphG. After giving some background on preference relations over combinatorial do-
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mains and vote in Section 2, we introduce and study sequential voting rules in Section 3.
Section 4 then considers preference aggregation over combinatorial domains, and Section
5 concludes.

2 Background

2.1 Preferences on combinatorial domains

LetV = {xi,...,x,} be a set olariables. For eack; € V, D, is thevalue domain
of x;. A variablev; is binaryif D; = {z;,7;}. Note the difference between the variable
x; and the value;. If X = {x;,,...,x;,} C V,withi; <... <1, thenDy denotes
Dy, ... x Dy, .
X = Dy x ... x D, is the set of allalternatives, orcandidates. Elements ot
are denoted by, 7’ etc. and represented by concatenating the values of the variables:
for instance, ifV = {x,x9,x3}, 17223 assignsx; to 1, x, t0 T3 andx; to z3. We
allow concatenations of vectors of values: for instanceVlet {xi,xs, x3,%y4,X5},
Y = {xy, 20}, Z = {x3,24}, § = 2173, Z = T3x4, theny.Z.T; denotes the alternative
T1T9T3T4T5.

A (strict) preference relatioron X' is a strict order (an irreflexive, asymmetric and
transitive binary relation). Ainear preference relation is @ompletestrict order, i.e., for
anyZ andy # 7, eitherz > i or ¢/ = 2 holds. If R is a preference relation, we generally
notez >p &’ instead ofR(Z, ).

Let{X,Y, Z} be a partition of the sét of variables and- a preference relation over
Dy. X is(conditionally) preferentially independeat Y givenZ (w.r.t. ) if and only if
forall Z;, 75 € Dy, 11,7 € Dy, Z € Dy,

—

fl~?jl-g>' fgglglﬂ: {l_f’l.gg.EF l‘z.?jg.g

Unlike probabilistic independence, preferential independence is a directed nition:
may be independent df given Z without Y being independent of given Z.

A CP-net\ [2] over V is a pair consisting of a directed graghover V' and a
collection of conditional preference tabl€s”T(x;) for eachz; € V. Each conditional
preference tabl€' PT(x;) associates a total order-%, with each instanciatio’ of x;'s
parentsPa(x;) = U. For instance, leV = {x,y, z}, all three being binary, and assume
that preference of a given agent o\&r can be defined by a CP-net whose structural
part is the directed acyclic gragh = {(z,y), (v, 2), (z, z)}; this means that the agent’s

%More generally, the entries of conditional preference tables may contain partial orders over the domains
of the variables (see [2]), but we don’t need this here.
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preference over the values xfs unconditional, preference over the valuey ¢fesp.z)
is fully determined given the value af(resp. the values of andy).

The conditional preference statements contained in these tables are written with the
usual notation, that is;;Z; : z3 = T3 means that wher; is true andx, is false then
x3 = x3 is preferred tax; = 73. In this paper we make the classical assumptionhist
acyclic. A CP-netV induces a preference ranking éh 7 - ¥ iff there is a sequence
of improving flips fromg/ to #, where an improving flip is the flip of a single varialte
“respecting” the preference tab{éPT'(x;) (see [2]). Note that the preference relation
induced from a CP-net is generally not complete.

Let G be a directed graph ovér, and:~ a linear preference relation- is said to
be compatible withG iff for eachx € V, x is preferentially independent &f \ ({x} U
Par(x)) given Par(x). The following fact is obvious, but important:

Observation 1 A linear preference relatior- is compatible withG if and only if there
exists a CP-nel whose associated graphdsand such that- extends- .

Let G be an acyclic graph ovér and letO = x; > ... > x, be alinear order of’. G
is said tofollow O iff for every edge(x;, x;) in G we havei < j. A preference relatios
is said to follow( iff it is compatible with some acyclic grapfi following O. Clearly, -
follows O = x; > ... > x, ifand only if for alli < p, X; is preferentially independent of
{Xit1, ... X, } given{xy, ...,x;_1 } with respect to-. If - follows O then theprojectionof
= oNnx; given(zy,..., ;1) € Dy x ... x D;_;, denoted by-ix1=1--xi1=ri-1 ig the
preference relation of; defined by: for alls;, 2} € D;, z; =XPi=rrxici=vict g jff
L1 L 1TiTjq1...Tp > xl...$i71$;$i+1..Ip holds for all(l‘i+1, e ,I'p) € Di+1 X... X Dp.

Due to the fact that follows © and that- is a linear ordery-Xilx1=#1,--Xi-1=zi-1 jg
a well-defined linear order as well. Note also that-ifollows bothO = x; > ... > x,
and®’ = Xo(1) > oo > Xo(k-1) > Xi<= Xg(k>) > o> Ko (p)s then s=XiX1=o1,.Xi-1=2i -1
and>-%i*=()=2()Xo(:-1)=%=(:-1) coincide. In other words, the local preference relation
on x; depends only on the values of the parentsxpin G: =*iFi=21Xi-1=zi-1 gnd

Lastly, for any acyclic graplis over V, we say that two linear preference relations
R, and R, are G-equivalent, denoted by?, ~¢ R,, if and only if B, and R, are

both compatible withG and for anyx € V, for anyy,y € Dom(par(x)) we have
RT\WT(X)I? _ R;\par(X)zﬂ” .

Observation 2 For any linear preference relation® and R, R ~¢ R’ if and only if
there exists a CP-ne¥” whose associated graphdsand such thaiz and i’ both extend

N
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Example 1 LetV = {x,y, z}, all three being binary. and lek and R’ be the following
linear preference relations:

R:xyz > xyz > xyz = xyz = Tyz > TYZ > TY2 > TY2
R':xyz = xyz = Tyz = xyz = Tyz = TYZ = xijz = Tijz

LetG the graph ovell” whose set of edges{$x, y), (x,z)}. R and R’ are both compat-
ible with G. Moreover,R ~¢ R/, since all local preference relations coincide: ~%
andz =% 7; 2 =" zandz =" z; etc. The CP-nel such thatR and R’
both extend-  is defined by the following local conditional preferences+ z; y > 7;
TY: 22, XY 2= 2, Y2+~ 2,TY 2> Z.

2.2 \oting rules and correspondences

Let A = {1,..., N} be afinite set ofotersandX a finite set ocandidates. Acollective)
preference profilev.r.t. 4 andX is a collection ofV individual preference relations over
X:P=(1,..>n)= (P, ..., Py). Let P4 x set of all preference profiles fot and X'

A voting correspondencé’ : P4y — 2%\ {0} maps each preference profie
of P4y into a nonempty subs&t(P) of X. A voting ruler : P4,y — X maps each
preference profilé” of P4 x into a single candidate(P). A rule can be obtained from a
correspondence by prioritization over candidates (for more details see [4]).

To give an example, consider the well-known familypafsitional scoring rules and
correspondences. A positional scoring correspondence is defined fsooriag vector,
that is, a vectog = (sy,..., s,) of integers such that; > s, > ... > s,, ands; > sy,.
Letrank;(x) be the rank of: in >, (1 if it is the favorite candidate for votey 2 if it is the
second favorite etc.). The score:ofs defined byS(z) = ZiN: | Srank;(z)- The candidates
chosen by the correspondence defined fetaithe set of all candidates maximizisg A
positional voting rule is defined as a positional scoring correspondence plus a tie-breaking
mechanism, for the case where more than one candidate have a maximum score. Well-
known examples are thBordarule, given bys, = m — kforall K = 1,...,m; the
plurality rule, bys; = 1, ands;, = 0 for all £ > 1; and thevetorule, bys, = 1 for all
k < m, ands,, = 0.

We also recall the definition of @ondorcet winne(CW). Given a profileP = (>,
...>n), ¢ € X is aCondorcet winneiff it is preferred to any other candidate by a strict
majority of voters, that is, for aly # =z, #{i,z =; y} > % It is well-known that there
are some profiles for which no CW exists. Obviously, when a CW exists then it is unique.
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3 Sequential voting

Given a combinatorial set of alternatives and a compact representation (in some prefer-
ence representation langua@g of the voters’ preferences, how can we compute the (set
of) winner(s)? The naive way consisting in “unfolding” the compactly expressed prefer-
ence relations (that is, generating the whole preference relatiofi on... x D, from

the input), and then applying a given voting rule, is obviously unfeasible, except if the
number of variables is really small. We can try to do better and design an algorithm for
applying a given voting rule on a succinctly described profile without generating the
preferences relations explicitly. However, we can't be too optimistic, because it is known
that the latter problem is computationally hard, even for simple succinct representation
languages and simple rules (see [6]).

A way of escaping this problem consistsrastricting the set of admissible prefer-
ence profilesn such a way that computationally simple voting rules can be applied
A very natural restriction (that we investigate in the next Section) consists in assuming
that preferences enjoy some specific structural properties such as conditional preferential
independencies.

3.1 Sequential voting rules and correspondences

Now comes the central assumption to the sequential apprahere exists an acyclic
graph G such that the preference relation of every voter is compatible @itfThis as-
sumption is not as restrictive as it may appear at first look: suppose indeed that preference
relations(>1, ..., =) are compatible with the acyclic graplis, . .., Gy, whose sets

of edges ardvy, ..., Ex. Then they are a fortiori compatible with the gragh whose

set of edges i¥; U ... U Ey. Thereforejf G* is acyclic, then sequential voting will

be applicable td>4, ..., >y) (of course, this is no longer true@* has cycles). More-

over, in many real-life domains it may be deemed reasonable to assume that preferential
dependencies between variables coincide for all agents.

Sequential votingonsists then in applying “local” voting rules or correspondances on
single variables, one after the other, in such an order that the local vote on a given variable
can be performed only when the local votes on all its parents in the grapve been
performed.

We defineComp¢ as the set of all collective profileB = (>,...,>x) such that
each-; is compatible withG.

1Such an assumption is called a “domain restriction” in social choice theory — here, the “domain” has to
be understood as the set of admissible preferences, not the set of alternatives.
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Definition 1 LetG be an acyclic graph of; let P = (P, ..., Py) in Compg, O = x; >
... > x, alinear order onV" following G, and(r4,...,r,) a collection of deterministic
voting rules (one for each variabte;). Thesequential voting ruleSeq(ry,...,r,) is
defined as follows:

* X1 X1\ .
o i =r (P, PY);
x Pxﬂ}q:x’{ PXQ\xlzm*f .
..’11'2—7’2(1 IARESEN )1
o ...
. Pxp\xlsz,..,xp,lzac;_l Pxp\xlza:”{,..,xp,lzz;_l
* mp - TP( 1 yr N )

ThenSeq(ry,...,1m)(P) = (27,...,2)).

p

Example 2 Let N = 12, V' = {x,y} with Dom(x) = {z,z} and Dom(y) = {y, 4},
andP = (P, ..., Pjy) the following 12-voter profile:

Pl,PQ,Pg,P4: TY =Ty =Y = TY

Ps, Py, Pr. TY = TY = TY = TY
Pg,Pg,Plo: TY =Ty =Yy = TY
P107P11: a_cy>-a_:gj>-xﬂ>-:vy

All these preference relations are compatible with the gréplver {x,y} whose
single edge igx,y); equivalently, they follow the ordex > y. Hence,P € Compg.
The corresponding conditional preference tables to are:

voters 1,2,3,4 voters 5,6,7 voters 8,9,10 voters 11,12
T >1T T >-T T > T>T

T ] TN Tl T ]
T:y=y T:y=y T:Yy=1y T:y=y

Takery andry both equal to the majority rule, together with a tie-breaking mechanism
which, in case of a tie betweenandz (resp. between andy), electsz (resp.y). The
projection of P onx is composed of 7 votes forand 5 forz, that is, P* is equal taz > z
for1 <i<7andtoz > xfor8 <i < 12. Thereforer* = ry(Pf,..., PY) = x: the
x-winner isz* = x. Now, the projection oP ony givenx = z is composed of 7 votes for
y and 5 fory, thereforey* = y, and the sequential winner is now obtained by combining
thex-winner and the conditionat-winner givenx = z* = x, namelySegq,, ,, (P) = zy.

In addition to sequential voting rules, we also defsegjuential voting correspon-
dencesn a similar way: if for eachi, C; is a correspondence dn, thenSeq(Cy, ..., C,)(P)
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is the set of all outcomesy, .. ., z,) such thaty; € Cy (P, ..., Py'), and for alli > 2,
7 € CZ-(PZ."Z"‘F“’“’"H:”“, P]’Qi"‘lzx“""i*l:“*). Due to the lack of space, we give
results for voting rules only.

An important property of such sequential voting rules and correspondences is that
the outcome does not depend @, provided that follows O. This can be expressed
formally:

Observation 3 LetO = (x; > ... > x,) and 0’ = (X,(1) > ... > Xq()) be two linear
orders onV such thatG follows bothO andO'. Then

Seq(ry,....rp)(P) = Seq(ro1)s - - -, To(p)) (P)
and similarly for voting correspondences.

Note thatwhen all variables are binary, all “reasonable” neutral voting rules (we have
no space to comment on what “reasonable” means — and this has been debated extensively
in the social choice literature) coincide with the majority rule when the number of candi-
dates is 2 (plus a tie-breaking mechanism). Therefore, if all variables are binary and the
number of voters is odd (in which case the tie-breaking mechanism is irrelevant), then the
only “reasonable” sequential voting rule§eq(ry, . . ., r,) where eachr; is the majority
rule.

It is important to remark that, in order to computeq(r,,...,r,)(P), we do not
need to know the preference relatiofis .. ., Py entirely: everything we need is the local
preference relations: for instance}if= {x,y} andG contains the only edge, y), then
we need first the unconditional preference relationg and then the preference relations
ony conditioned by the value of. In other words, if we know the conditional preference
tables (for all voters) associated with the graghthenwe have enough information
to determine the sequential winner for this profile, even though some of the preference
relations induced from these tables are incomplete. This is expressed more formally by
the following fact (a similar result holds for correspondences):

Observation 4 LetV = {x,,...,x,}, Ganacyclicgraph oveV/,andP = (P,,..., Py),

P = (P],...,Py) two complete preference profiles such that foria# 1,..., N we

haveP, ~¢ P/. Then, for any collection of local voting rul¢s;, . .., r,), we have
Seq(ry,...,rp)(P) = Seq(ry,...,1mp)(P').

This, together with Observation 2, means that applying sequential voting to two col-
lections of linear preference relations corresponding to the same collection of CP-nets

gives the same result. This is illustrated on the following example.

Example 3 Everything is as in Example 2, except that we don't know the voters’ complete
preference relations, but only their corresponding conditional preference tables. These
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conditional preferences contain strictly less information thanbecause some of the
preference relations they induce are not complete: for instance, the induced preference
relation for the first 4 voters isy = zy > Zy, xy = xy = Zy, with zy and Zy being
incomparable. However, we have enough information to determine the sequential winner
for this profile, even though some of the preference relations are incomplete. For instance,
taking again the majority rule for, andr, the sequential winner igy for any complete
profile P = (P}, ..., P],) extending the incomplete preference relations induced by the
12 conditional preference tables above.

3.2 Sequential decomposability

We now consider the following question: given a voting rulés there a way of comput-
ing r sequentially when the preference relations enjoy common preferential independen-
cies?

Definition 2 Avoting ruler onX = D, x ... x D, is decomposablef and only if there
existn voting rulesr, ..., r, on Dy,..., D, such that for any linear orde® = x; >

... > x, onV and for any preference profil® = (P4, ..., Py) such that eaclP; follows
O, we haveSeq(ry, ..., r,)(P) = r(P). The definition is similar for correspondences.

An interesting question is the following: for which voting rubedoes the sequential
winner (obtained by sequential applications-paind the “direct” winner (obtained by a
direct application of’) coincide? The following result shows that this fails for the the
whole family of scoring rules (and similarly for correspondances).

Proposition 1 No positional scoring rule is decomposable.

Proof sketch: We give a proof sketch for the case of two binary variables (this generalizes eas-
ily to more variables, as well as to non-binary variables). t.be a decomposable scoring rule

on 2tx¥}: there exist two local rules, andry such that wheneveP follow x > y, we have
Seq(rx,my)(P) = r(P). Then we show that, andr, are both the majority rule (this follows
easily from the fact that some properties-pincluding monotonicity, carry on te, andry.) Now,
consider the same preference profiteas in Example 3. P follows the orderx > y. Now, let

81> 89 > s3 > sy = 0 (with s; > 0) the weights defining. The score ofy is 4s1 + 3s9 + 3s3;

the score ofty is 5s1 +4s9 + 3s3, which is strictly larger than the score o, thereforery cannot

be the winner for-, whatever the values 6, s9, s3. |

Such counterexamples can be found for many usual voting rules outside the family
of scoring rules (we must omit the results due to the lack of space), including the whole
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family of voting rules based on the majority graph. Positive results, on the other hand,
seem very hard to get. Obviously, dictatorial rules (electing the preferred candidate of
some fixed voter) and constant rules (electing a fixed candidate whatever the voters’ pref-
erencesjare decomposable. But the latter rules are of course not reasonable, and we
conjecture that the answer to the above question is negative as soon as a few reasonable
properties are requiréd

A particular case of preferential independence is whtrvariables are preferen-
tially independent from each other, which corresponds to a dependency@rajth no
edges. In this case, the preference profile follows any order on the set of variables, and
the sequential winner is better callegarallel winner, since the local votes on the single
variables can be performed in any order. We might then consider the following property
of separability:

Definition 3 A deterministic rule is separabléf and only if for any preference profile
=(>1, ..., ) such that the variables are pairwise conditionally preferentially indepen-
dent, the parallel winner of w.r.t. P is equal tor(P).

Obviously, any decomposable rule is separable. Are there any separable rules? Fo-
cusing on positional scoring rules, we find a rather intriguing result (the proof of which is
omitted):

Proposition 2 LetV = {x;,...,x,} (withp > 2).

o if p = 2 and both variables are binary, exactly one positional scoring rule is sepa-
rable: the rule associated with the weighis= 2s, = 2s3 (ands, = 0).

o in all other cases (p> 3 or at least one variable has more than 2 possible values),
then no positional scoring rule is separable.

3.3 Sequential Condorcet winners

We may now wonder whether a Condorcet winner (CW), when there exists one, can be
computed sequentially. Sequential Condorcet winners (SCW) are defined similarly as for
sequential winners for a given rule: the SCW is the sequential combination of “local”
Condorcet winners.

2More precisely, itould be the case that the only correspondence satisfying anonymity, neutrality and
decomposability is the correspondence such €\@®) = X for all P. We spent a lot of time trying to
prove such an impossibility theorem, without success.
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Definition 4 LetG be an acyclic graph an® = (>4, ..., y) a profile inCompg. LetO
=X; > ... > X, be alinear order oV’ following G. (7, ..., z;) is asequential Condorcet
winnerfor P if and only if

o V| € Dy, #{i,x} 1 2|} > %;

2

e foreveryk > 1 andvz) € Dy,
Xp|X1=2] 0 Xp_1=2)

#{Z7$z >-i x;c} > %

This definition is well-founded because we obtain the same set of SCWs faP any
following G. The question is now, do SCWs and CWs coincide? Clearly, the existence
of a SCW is no more guaranteed than that of a CW, and there cannot be more than one
SCW. We have the following positive result:

Proposition 3 LetG be an acyclic graph an® = (>-1, ..., y) in Compg. If (3,25, ... a¥)
is a Condorcet winner foP, then it is a sequential Condorcet winner fBr

Proof sketch: Let > be an order oV following G. Assume there is a CW* for P: for any
¥ 7, #{0,7 = @'} > 5. Letay € Dy st.af # 2}, Sincex is preferentially independent
of xo,....xp, @} =10 & iff (27,23, 2}) = (2}, 23,...2}); hence#{i,a} =1 o}} > T
7 is a “local” CW. Similarly, for allk, by comparinge* to (3, ...,z _, &}, 2}, ;- ., L)), We

Xp|X1=2] 0 Xp_1=2)

show thatz} is a “local” CW for (-, Ji=1,...N- .

The following example shows that the converse fails: 2 voters have the preference
relationzy > Ty > xy = Ty, one votery = xj = Ty > Ty, and 2 votersy > Ty >
xy > xy. x andy are mutually preferentially independent in all relations, therefore the
SCW is the combination of the locals CW ffx} and for{y}, provided they exist. Since
3 voters unconditionally preferto z, x is the{x}-CW; similarly, 3 voters unconditionally
prefery to y and is the{y}-CW. Thereforegy is the SCW for the given profildut zy is
not a CW for this profile, because 4 voters prefgito xy.

We now give a condition on the preference relations ensuring that SCWs and CWs
coincide. LetO = x; > ... > x, be a linear order oiv. We say that a preference
relation- on Dy is conditionally lexicographiav.r.t. O if there existp local conditional
preference relations*i*1=21-Xi-1=zi-1 g/ for j = 1, ... p, such that’ »~ 7 if and only
if there is aj < p such that (a) for every < j, z; = y; and (b)z; =XiX1=r1Xi1=2i-1
y;. A profile P = (>,...,>y) is conditionally lexicographic w.r.tO if each:-; is
conditionally lexicographic w.r.t.O. Such preference relations can be represented by
TCP-nets [3] or conditional preference theories [8].
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Proposition 4 Let O be a linear strict order ove¥. If P = (>4,...,>y) is condition-
ally lexicographic w.r.t.0, thenZ is a sequential Condorcet winner fét if and only if it
is a Condorcet winner foP.

Proof sketch: Let #* a SCW forP, andi’ # 7*. Letk = min{i,z} # 2}} andl, C A be
the set of voters who prefer; to z), givenx; = z1,...,x;_1 = 2;4_1. Becauser* is a SCW,
|I;| > % We haver* »-; 2 for everyi € I, because-; is lexicographic w.rtx; &> ... > x,.

—% %

Therefore a majority of voters prefef$ to #. This being true for ali’ # 7*, 7*isaCW. =

4 Arrow’s theorem and structured domains

We end this paper by considering decomposable domains from the point of view of pref-
erence aggregation. A preference aggregation function maps a profile to an aggregated
profile representing the preference of the group. Arrow’s theorem [1] states that any
aggregation function defined on the set of all profiles and satisfying unanimity and inde-
pendence of irrelevant alternatives (IIR) is dictatorial. An Arrow-consistent dofias

a subset of° allowing for unanimous, IR and nondictatorial aggregation functions.

It is easy to see that for any acyclic gragh Comp(G) is an Arrow-consistent. In-
deed, consider the preference aggregation function defined as follows:

e reorder the variables in an order compatible withi.e., w.l.0.g., assume that there
is no edgex;, x;) in G with i > j. Such an order exists becausés acyclic.

e leth : V — A associating a voter to each variable, such thigtnot constant (it is
possible becaug®’| > 2).

o foranyz andy # 7, letk(z, §) = min{j, z; # y;}.

e for any collective profile(>-1, ..., >y), define-.= f,(>1,...,>x) by: forall #

Xk ‘X1:1‘1 ey Xn=ITn

andy, 7 -, §if o =) Y, Wherek = k(Z, 7).

Proposition 5 f; is a nondictatorial aggregation function aflomp(G) satisfying una-
nimity and IIR.

ThereforeComp(G) is Arrow-consistent;, is easier to understand when it is turned
into a voting rule: voteh(x; ) first chooses his preferred value for variakle then voter
h(x3) comes into play and chooses his preferred value for varigplgiven the value
assigned te, and so forth.
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Now, even if f;, is truly nondictatorial, it however haslocal dictators (one for each
variable), since votel(i) imposes his preference on the domairxpfVe may then won-
der whether a weaker form of Arrow’s theorem holdsdarmp(G). This is actually the
case. Let us first express the following properties (P1), (P2), (P3).

(P1) preservation of the independence structure
f is a mapping fronComp(G)™ to Comp(G).

(P2) independence of irrelevant values and variables
Foranyx; € V, 7 € Dpgrx,), andP = (Py,..., Py), Q = (Q1,...,Qn) in
Comp(G)N such that for every and allz, 2’ € Dy, x >’1§;‘Z z', we
have

Xi|2 xL\Z

r - ppy @ ifandonly ifz -5 .

!y Xllz
2 iff z =0

J

(P3) local unanimity
For anyP € Comp(G), x; € V andZ € Dpyyis), if PP = ... = P5 then
f(P)xdE: P1x7|z

(P1) expresses that the preferential independencies expressed in thé&gshphld
be transferred to the aggregated preference relation. Therefore, under (P1), for any pref-
erence relatior-, resulting from the aggregation of preferences relations itlomp(G)
there exisp local conditional preference relations™ ™™ fori =1,...,p.

(P2) is a local version of independence of irrelevant alternatives: whether the society
prefers a value; to another valuey; of x; given an assignmentof the parent variables
of x; depends only on the voters’ preferences between these two values'daed not
on their preferences on other valuesphor on their preferences on other variables.)

(P3) tells that if all voters have the same local preference relation over the values of a
variablex; given a fixed valug’ of its parents, then the local collective preferencegn
givenz should be equal to this local preference relation.

Importantly, note that the way (P2) and (P3) are writtiepends on the assumption
that (P1) holds- otherwise we would not have been allowed to vv;i%‘;).

Proposition 6 Let G be an acyclic graphG over a set of variable¥ = {x;,...,x,}
with domainsDy, . .., D, such that for every, |D;| > 3. An aggregation functiorf on
Comp(G) satisfies (P1), (P2) and (P3) if and only if there exists a local dictdter;, 2)
for each variablex; and each? € Dpq,(x,), Such that for each € D\ (Par(x:)uix, ) We
have

Et_ii " F( 1y N) foi = z"fxl ™ d(x;,2) 2{1';

Lyeeey
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Proof sketch: The« direction is straightforward. For the direction, letf satisfying (P1), (P2)
and (P3). (P1) guarantees that for everandz' € Dpq,(x,), X; is independent oF \ (D pgy.(x,) U

{x;}) givenZ, therefore there exists a well-defined, local collective preference retafionsuch
that for allf € Dy (par(x,) U {xi}) and for allz;, 2} € Dy,, Ztx; >, Ztxl. (P2) implies that
>f’|z is fully determined by the voters’ preferences on the values; @fiven Z. Therefore, there
exists a local aggregation functigit!? such that-"= palEexlE >’]§;‘Z) It remains to

be shown that these local aggregation functions satisfy the condltlons of Arrow’ theorem, which
does not present any particular difficulty. Applying then Arrow’s theorem to each local aggrega-

tion function f*:¥ enables us to conclude to the existence of a dicitey, Z) for each variable

XI‘Z /

x; and eachy’ € Dpg,(x,), such thaty; >fxv5(>xﬂz- i) T & = d(xz) i Now, the
xlE

fact thats-X17= pxilF(-%il% >’]§;‘z) allows us to conclude that; >xg|f = T is equivalent

to z; >_;EI>ZI;~~'3>N) 2/, which in turn is equivalent to: for afl € Dv\(Par(x;)uix;}) @nd for all

z;, @ € Dy, Zta; =, Ztxl, where-,= f(>1,...,=n). [ |

Note that the local dictator for a given variable may depend on the values of its parents.
For instance, with two variables andy and a dependency graph with the edgey ),
we have a single dictator for; and up to Dy | dictators fory.

Corollary 1 LetSep(V') be the domain of fully separable prefence relationggn An
aggregation functionf on Sep(V') satisfies (Pl) (P2) and (P3) iff there exigtdocal
dictatorsd(x;), . . ., d(x,) such that for each € DV\{X b

tIZ =1 )tI <:>tIZ >d(x ){/

Finally, note that knowing the local dictators does not fully deternmfinBuppose for
instance that we have two voters and two binary variaklesdy, and thatG' has no
edge. Assume voter 1 preferdo z and voter 2 preferg to . Then-,= f(>1,>2) iS
such thatr =7 z andy 7 , but this does not tell whethetj -, zy or zy >, 7.

5 Conclusion

As far as we know, aggregating structured preferences on combinatorial domains ex-
ploiting preferential independence properties has never been considered neither in social
choice nor in Al. [7] define a multi-agent extension to CP-nets and propose various se-

mantics for aggregating preferences; but they do not address computational issues.

This paper contains several negative results. But one important question is left unan-
swered:what are the sequentially decomposable voting rulési@wering this question
(by finding a small set of properties implying that a rule cannot be decomposable) seems
much more difficult than we thought, and this is of course an issue for further research.
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Next, we identified a domain for which direct and sequential Condorcet winners co-
incide. Clearly, lexicographic preferences are very specific, so that we would like to find
more reasonable restrictions for the latter property to hold.

Another important issue stems from the fact that in combinatorial domains with struc-
tural properties (independencies), direct (global) voting rules are generally not computable
by a sequential application of local rules: so, what should we favor? Global voting rules,
which are well studied in social choice but which take no advantage of preferential inde-
pendencies, or sequential local rules, which are based on the dependency graph, thereby
being more intuitive and easier to compute? A theoretical comparison between global
voting and sequential local voting is a highly promising issue.
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