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ABSTRACT
Using former maps, geographers intend to study the evolution of the land

cover in order to have a prospective approach on the future landscape; pre-
dictions of the future land cover, by the use of older maps and environmental
variables, are usually done through the GIS (Geographic Information Sys-
tem). We propose here to confront this classical geographical approach with
statistical approaches: a linear parametric model (polychotomous regression
modelling) and a nonparametric one (multilayer perceptron). These method-
ologies have been tested on two real areas on which the land cover is known at
various dates; this allows us to emphasize the benefit of these two statistical
approaches compared to GIS and to discuss the way GIS could be improved
by the use of statistical models.

1. PREDICTING LAND COVER
From the sketch maps made by geographers or from the analysis of satel-

lite images or aerial photographs, we can build land cover maps for a given
country which can be rather precise: the studied area is then cut into several
squared pixels whose sides are about 20 meters long and whose land cover
is known on various dates. The type of land cover can be chosen from a
pre-determined list: coniferous forests, deciduous forests, scrubs, . . .

Here, we are not interested in making such maps (for satellite data anal-
ysis, see (Cardot et al., 2003)). Our purpose is to contruct a simulated land
cover map at a given future date, by the use of land cover maps at older
dates and of other environmental variables; on a geographical point of view,
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prospective simulations have a great interest to help the local administra-
tions to develop these mountain areas. The idea is then to compare different
approaches in order to confront their ability to be generalized to various
mountain areas.

For a given pixel, determined by its spatial coordinates, latitude (i) and
longitude (j), the value of the land cover on date t, ci,j(t), is a categorical
random variable depending on several variables:

• the land cover of this pixel on previous dates: ci,j(t− 1), . . . , ci,j(t−T )
(time serie of length T );

• the land covers of the neighbouring pixels on previous dates: Vi,j(t −
1), . . . , Vi,j(t − T ), where Vi,j(t − τ) is a set of values of land cover on
date t− τ for the pixels in a neighbourhood of the pixel (i, j) (vectorial
time serie);

• some environmental variables: for example, the elevation, the aspect,
the proximity of roads and villages, . . . : Y 1

i,j, . . . , Y
p
i,j.

We face here a problem of classification in which the predictors are both
qualitative and quantitative and are also highly dependent (spatial time pro-
cess). To solve this question, we propose to use and to compare two well-
known statistical approaches with the empirical geographic method (namely
the GIS, Geographic Information System). The first of these methods is a
generalized linear model in which we estimate the parameters of the model by
maximizing a log-likelihood type criterion. The second one uses a supervised
multilayer perceptron. By confronting these various approaches, we expect
to give ideas in order to improve the GIS approach.

A comparison of these two approaches was done on two little areas: the
“Garrotxes” (“Pyrénées Orientales”, south west of France) and the “Alta
Alpujarra Granaderia” (Sierra Nevada, Spain) where several surveys of the
land cover were done at various dates. We confronted the various scenarii
constructed with the real maps.

In the following, we describe the data more precisely (section 2) and
present the two approaches (section 3). Then we present how we applied
these methodologies on these data sets (section 4) and finally, we compare
the results obtained by analyzing the advantages and the limits of the models
(section 5).

2. DESCRIPTION OF THE DATA SETS
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The areas under study stand in the moutains “Pyrénées” for the Gar-
rotxes and Sierra Nevada “Alta Alpujarra”. A big drift from the land has
led to the desertion of the land under cultivation and the recovery of the
fields by scrubs and forests. There is almost none human action on these
areas. The aridity of the climate explains a much slower dynamic in the
spanish area than in the Garrotxes: we count 3 times less pixels changing in
the Alta Alpujarra than in the Garrotxes. On the contrary, the french area
is considered, at least on a geographical point of view, as a dynamic area and
it is then more difficult to predict the land cover.

We are given quantitative and qualitative informations through maps
divided into pixels: about 241 000 pixels for the French area and 560 000 for
the Spanish one (which is much bigger). For each pixel, we know:

• a categorical variable which is the land cover at different dates: 3 dates
(1980, 1990 and 2000) were avalaible for the Garrotxes and 4 dates
(1957, 1974, 1987 and 2001) for the Alta Alpujarra. As the land cover
evolution is very slow in the Sierra Nevada (less than 25% of the pix-
els had changed their value between 1957 and 2001), these dates were
considered as equidistant, according to geographers opinion. This cat-
egorical variable was taken from a list of several choices (8 for the
Garrotxes and 9 for the Alta Alpujarra) which are of classical use in
geography. These data were used to make maps of the studied area
(see Figure 1);

[Figure 1 about here.]

• several environmental variables; some of them are of numeric type (the
elevation, the slope, the aspect, the distance of roads and villages,. . . )
and others are of categorical type (forest and pasture management:
governmental or not ? ground geological type, . . . ). The environ-
mental variables were not the same for the Garrotxes and the Alta
Alpujarra (see Figure 2 for examples of environmental variables); all
these environmental variables kept the same value at all dates.

[Figure 2 about here.]

3. PRESENTATION OF THE TWO APPROACHES
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Geographers usually estimate the land cover evolution by an empirical
method which allows to introduce some expert knowledge. The so-called
GIS (Geographic Information System) approach is time expensive and ne-
cessitates precise knowledge on the geographic constraints of the area under
study. Roughly speaking, the method consists in two steps: at first one
computes time transition probabilities for each land cover type whereas, in
a second step, one uses spatial constraints (introduced by an expert) for
“smoothing” the maps obtained at the first step (see (Paegelow et al., 2004)
or (Paegelow and Camacho Olmedo, 2005) for further details on GIS for
these data sets). In order to propose automatic alternatives to the GIS,
which can take in the same model the spatio-temporal nature of the prob-
lem, two approaches have been adapted to estimate the evolution of the land
cover: the first one, polychotomous regression modelling, is a generalized
linear approach based on the maximum log-likelihood method. The second
one, multilayer perceptron, is a popular method which has recently proved
its great efficiency to solve various types of problems.

The idea is to confront a parametric linear model with a non parametric
one to provide a collection of automatic statistical methods for geographers.
They both have concurrent advantages that have to be taken into account
when choosing one of them: the polychotomous regression modelling is faster
to train than multilayer perceptrons, especially in high dimensional spaces
and does not suffer from the existence of local minima. On the contrary,
multilayer perceptrons can provide nonlinear solutions and are then more
flexible than the linear modelling; moreover, both methods are easy to imple-
ment even for non statisticians through the pre-made softwares (for example,
“Neural Network” Toolbox for neural network with Matlab).

3.1. THE MODEL
Let us now describe the statistical setting more formally. We note Xi,j(t)

the vector of variables that could explain the value of the land cover for a
given pixel (i, j) on date t. We suppose that the time dependence is of order
1; then, Xi,j(t) contains:

• for the time series: the value of the land cover for the pixel (i, j) at
the previous time t− 1;

• for the spatial aspect: the frequency of each type of land cover in the
neighbourhood of pixel (i, j) on the previous date. Then, the shape
and the size of the neighbourhood had to be chosen. For the shape, we
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had many choices: the simpler one was a square neighbourhood or a
star-shaped neighbourhood around the pixel (i, j); the most sophisti-
cated could use the slope to better take into account the morphological
influences of the land. For the size of the neighbourhood, we had to
find at which distance a pixel could influence the land use of pixel (i, j).
Moreover, for the multilayer perceptrons, in order to respect the spa-
tial aspect of the problem, we weighted the influence of a pixel by a
decreasing function of its distance to the pixel (i, j) (see Figure 3).

[Figure 3 about here.]

• environmental variables (slope, elevation, . . . ).

Let us repeat that ci,j(t) is the land cover for a given pixel on date t.
We note C1, . . . , CK the different types of land cover. Then, for every k =
1, . . . , K, we try to estimate the probability P (ci,j(t) = Ck|Xi,j(t)) that the
pixel (i, j) has a land cover equal to Ck given the vector Xi,j(t); thus, the
model is of the following form :

P (ci,j(t) = Ck|Xi,j(t)) = fk(Xi,j(t)). (1)

Once a model was chosen through fk, these probabilities were estimated by
the way of a multi-layer perceptron or a generalized linear model and we
predicted the type of land cover, ci,j(t), by the rule of maximum:

argmaxk=1,...,KP (ci,j(t) = Ck|Xi,j(t)).

In both approaches, we estimated fk thanks to a training sample. To that
end, we have collected the values of the predictors and of the land cover
for many pixels on various dates (see next section for more details); the
observations are denoted by (X(1), c(1)), . . . , (X(N), c(N)).

The time and spatial aspects are taking into account together both by
the polychotomous regression modelling and by the multilayer perceptron
and the land cover prediction is performed in a single estimation procedure.
This is not the case for the usual GIS approach which is performed in two
steps: it first estimates the land cover probability by modelling a time serie
and it then introduces a spacial smoothing with environmental constraints.

3.2. POLYCHOTOMOUS REGRESSION MODELLING
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When we wish to predict a categorical response given a random vector, a
useful model is the multiple logistic regression (or polychotomous regression)
model (Hosmer and Lemeshow, 1989). A smooth version of this kind of
method can be found in (Kooperberg et al., 1997). Applications of these
statistical techniques to several situations such as in medicine or for phoneme
recognition can be found in these two works. Their good behaviour both on
theoretical and practical grounds have been emphasized. In our case, where
the predictors are both categorical and scalar, we then have the derived model
below.

Let us note, for k = 1, . . . , K

θ (Ck|Xi,j(t)) = log
P (ci,j(t) = Ck|Xi,j(t))

P (ci,j(t) = CK |Xi,j(t))
.

Then, we get the following expression

P (ci,j(t) = Ck|Xi,j(t)) =
exp θ (Ck|Xi,j(t))∑K

k′=1 exp θ (Ck′|Xi,j(t))
. (2)

Now, to estimate these conditional probabilities, we use the parametric ap-
proach to the polychotomous regression problem, that is the linear model

θ (Ck|Xi,j(t)) = αk +
∑

c∈Vi,j(t−1)

K∑

l=1

βkl11[c=Cl] +

p∑

r=1

γkrY
r
i,j, (3)

where we recall that Vi,j(t − 1) are the values of the land cover in
the neighbourhood of the pixel (i, j) on the previous date t − 1
and (Y r

i,j)r are the values of the environment variables. Let us call
δ = (α1, . . . , αK−1, β1,1, . . . , β1,K , β2,1,

. . . , β2,K , . . . , βK−1,1, . . . , βK−1,K, γ1,1, . . . , γ1,K , . . . , γK−1,1, . . . , γK−1,p), the
parameters of the model to be estimated. We have to notice that since
θ (CK |Xi,j(t)) = 0, we have αK = 0, βK,l = 0 for all l = 1, . . . , K, and
γK,r = 0 for all r = 1, . . . , p. We now have to estimate the vector of
parameters δ. For that end, we use a penalized likelihood estimator which is
performed on the training sample. Let us write the penalized log-likelihood
function for model (3). It is given by

lε(δ) = l(δ) − ε

N∑

n=1

K∑

k=1

u2
nk, (4)
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where the log-likelihood function is

l(δ) = log

(
N∏

n=1

Pδ

(
c(n)|X(n)

)
)
. (5)

In this expression, Pδ(c
(n)|X(n)) is the value of the probability given by (2)

and (3) for the observations (X(n), c(n)) and the value δ of the parameter.
In expression (5), ε is a penalization parameter and, for k = 1, . . . , K,

unk = θδ(Ck|X
(n)) −

1

K

K∑

k′=1

θδ(Ck′ |X(n)). Our penalized likelihood estimator

δ̂ε satisfies:
δ̂ε = argmaxδ∈ RM lε(δ),

where M = K2 + (K − 1) ∗ p − 1 denotes the number of parameters to be
estimated.

As pointed out by (Kooperberg et al., 1997) in the context of smooth
polychotomous regression, it is possible that, without the penalty term, the
maximization of the log-likelihood function l(δ) leads to infinite coefficients
βk,l. In our model it may be the case, for example, when, for fixed k, the value
of the predictor is equal to zero for all (i, j). Actually, this “pathological”
case cannot really occurs in practice but for classes k with a few number of
members, the value of the predictor is low and then a numerical unstability
happens when maximizing the log-likelihood. Then, the form of the penalty
based on the difference between the value θδ(Ck|X

(n)) for class k and the
mean over all the classes has the aim of preventing this unstability by forcing
θδ(Ck|X

(n)) to be not too far from the mean. On another side, for reasonable
values of ǫ, we can expect that the penalty term does not affect so much
the estimation of parameters while it guarantees numerical stability. Finally,
numerical maximization of the penalized log-likelihood function is achieved
by a Newton-Raphson algorithm.

3.3. MULTILAYER PERCEPTRON
Neural networks have a great adaptability to any statistical problems

and especially to overcome the difficulties of non linear problems even if the
predictors are highly correlated; thus it is not surprising to find them used
in the chronological series prediction ((Bishop, 1995), (Lai and Wong, 2001)
and (Parlitz and Merkwirth, 2000)). The main interest of neural networks is
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their ability to approximate any function with the desired precision (universal
approximation): see, for instance, (Hornik, 1991).

Here we propose to estimate, in model (1), the function fk in the form of
a multilayer perceptron with one hidden layer (see Figure 4), ψ, which is a
function from R

q to R that can be written, for all x in R
q, as

ψw(x) =

q2∑

i=1

w
(2)
i g

(
〈x, w

(1)
i 〉 + w

(1)
i,0

)
,

where q2 in N is the number of neurons on the hidden layer, (w
(1)
i )i=1,...,q2

(respectively (w
(2)
i )i=1,...,q2, (w

(1)
i,0 )i=1,...,q2) are in R

q (resp. R) and are called
weights of the first layer (resp. weights of the second layer, bias) and where
g, the activation function, is a sigmöıd; for example, g(x) = 1

1+e−x .

[Figure 4 about here.]

Then, the output of the multilayer perceptron is a smooth function (here
it is indefinitly continuous and derivable) of its input. This property ensures
that the neural network took into account the spatial aspect of the data set,
since two neighbouring pixels have “close” values for their predictor variables.

To determine the optimal value for weights w = ((w
(1)
i )i, (w

(2)
i )i, (w

(1)
i,0 )i),

we minimized, as it is usual, the quadratic error on the training sample: for
all k = 1, . . . , K, we chose

wk
opt = argminw∈R

q2(q+2)

N∑

n=1

[
c
(n)
k − ψk

w(X(n))
]2
, (6)

where c(n) and the categorical data in X(n) are written on a disjunctive form.
This can be performed by classical numerical methods of the first or the
second order (such as gradient descent or conjugate gradients, . . . ) but
faces local minima problems. We explain in section 4 how we overcome
this difficulty. Finally, (White, 1989) gives many results that ensure the
convergence of the optimal empirical parameters to the optimal theoretical
parameters.

4. PRACTICAL APPLICATION TO THE DATA SETS
In order to compare the two approaches, we applied the same methodol-

ogy: we first determined the optimal parameters for each approach (training
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step, see below) and then, we used the first maps to predict the last one and
compared the errors to real map (comparison step, see section 5).

As usual in statistical methods, there are two stages in the training step:
the estimation step and the validation step.

• The estimation step consists in estimating the parameters of the models
(either for the polychotomous regression or the neural network);

• The validation step allows us to choose, for both methodologies, the
best neighbourhood, for polychotomous regression, the penalization
parameter and, for neural network, the number of neurons on the hid-
den layer. Concerning the neighbourhood, we only considered square
shapes so choosing a neighbourhood is equivalent, in our procedure, to
determine its size.

For the Sierra Nevada, we saw that large areas are constant, thus we
only used the pixels for which one neighbour, at least, has a different land
cover. These pixels are called “frontier pixels”; the others were considered as
constant (see Figure 5). For the generalized linear model, we used the whole
frontier pixels of the 1957/1974 maps for the estimation set and the whole
1974/1987 maps for the validation set. We then constructed the estimated
2001 map from the 1987 one. For the multilayer perceptron, we reduced
the training set size in order not to have huge computational times when
minimizing the loss function. Then, estimation and validation data sets were
chosen randomly in the frontier pixels of the 1957/1974 and 1974/1987 maps.

[Figure 5 about here.]

For the Garrotxes data set, due to the fact that we only had got 3 maps
and much less pixels, we had to use the 1980/1990 maps for the estimation
step (only their frontier pixels for the MLP) and the whole 1990/2000 ones
for the validation step. This led to a biased estimate when constructing the
2000 map from the 1990 map but, as our purpose is to compare two models
and not to make significant the error rate, we do not consider this bias as
important.

4.1. POLYCHOTOMOUS REGRESSION

• The estimation step produces the estimated parameter vector δ̂ε of the
parameters δε of model (3) for given neighbourhood and penalization
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parameter ε. This step was repeated for various values concerning both
neighbourhood and penalization parameter.

• Validation step: Once given an estimated parameter vector
δ̂ε = (α̂1, . . . , α̂K−1, β̂1,1, . . . , β̂1,K , β̂2,1, . . . , β̂2,K , . . . , β̂K−1,1, . . . , β̂K−1,K,

γ̂1,1, . . . , γ̂1,p, . . . , γ̂K−1,1, . . . , γ̂K−1,p), the quantities

P̂ (ci,j(t) = Ck|Xi,j(t)) =
exp θ̂ (Ck|Xi,j(t))∑K

k′=1 exp θ̂ (Ck′|Xi,j(t))
,

were calculated, for all k = 1, . . . , K, with

θ̂ (Ck|Xi,j(t)) = α̂k +
∑

c∈Vi,j(t)

K∑

l=1

β̂kl11[c=Cl] +

p∑

r=1

γ̂krY
r
i,j.

At each pixel (i, j) for the predicted map on date t, we affected the
most probable vegetation type namely the Ck which maximizes

{
P̂ (ci,j(t) = Ck|Xi,j(t))

}

k=1,...,K
.

Programs were made using R programm (see (R Development Core
Team, 2005)) and are avalaible on request.

4.2. MULTILAYER PERCEPTRON
We used a neural network with one hidden layer having q2 neurons (where

q2 is a parameter to be calibrated). The inputs of the neural network were:

• For the time series, the disjunctive form of the value of the pixel;

• For the spatial aspect, the weighted frequency of each type of land cover
in the neighbourhood of the pixel;

• the environmental variables.

The output was the estimation of the probabilities (1).
The estimation was also made in two stages:
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• The estimation step produces the estimated weights as described in (6)
for a given number of neurons (q2) and a given neighbourhood. For this
step, the neural network was trained with an early stopping procedure
which allows to stop the optimization algorithm when the validation
error (calculated on a part of the data set) is starting to increase (see
(Bishop, 1995)).
This step was repeated for various values of both neighbourhood and
q2.

• Validation step: once an estimation of the optimal weights was given,
we chose q2 and the size of neighbourhood, as for the previous model.
Moreover, in order to escape the local minima during the training step,
we trained the perceptrons many times for each value of neighbourhoud
and of q2 with various training sets; the “best” perceptron was then
chosen according to the minimization of the validation error among
both the values of the parameters (size of the neighbourhoud and q2)
and the optimization procedure results.

Programs were made using Matlab (Neural Networks Toolbox, see (Beale
and Demuth, 1998)) and are avalaible on request.

5. COMPARISON AND DISCUSSION
The validation step led to select the following parameters (Table 1):

[Table 1 about here.]

After the two models were trained, we built the predicting map on date
2000 (Garrotxes data set) and 2001 (Alta Alpujarra data set). The perfor-
mances of the two models were compared with a GIS approach.

For the Garrotxes data set, the results are summarized in Table 2 and the
frequencies of errors for each land cover type were calculated on the pixels
which are really of this land cover type. We focus on the 6 more frequent
land cover types, since the number of agriculture pixels tends to zero. In
Figure 6, we can see the three predictive maps given by our approaches and
the GIS approach that can be confronted with the real map.

[Table 2 about here.]

[Figure 6 about here.]
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For the Alta Alpujarra data set, the results are summarized in Table 3
(land cover type under 5 % of the area have been omitted). Predicted maps
and real maps are compared in Figure 7.

[Table 3 about here.]

[Figure 7 about here.]

First of all, the predictive maps provided by the two statistical methods
are coherent, smooth and close to reality. This can also be shown through the
good error rates (about 25 % - 27 % for the Garrotxes data set and 9 % - 12
% for the Alta Alpujarra) which are clearly a good performance considering
the poverty of the data (we only had got 3 or 4 dates to train the models).
Furthermore, the striking fact is that the “automatic” statistical approaches
did as well (Garrotxes data set) or even much better (Alta Alpujarra) than
the guided GIS approach. This is an interesting point in order to help im-
proving the classical geographical approach to predicting land cover, and
better understand the environmental changes in time and space. Moreover,
the “automatic” statistical methods were much faster than the GIS as they
do not use any expert knowledge which takes a long time to be modelized
and needs to be remade for each area. On the contrary, the polychotomous
regression modelling and the multilayer perceptron approaches did not lead
on these data sets to significant differences. The first method was much faster
to train and it was then quite attractive to use it. However, we think that, on
a general point of view, the greater flexibility of multilayer perceptron could
be usefulness to predict land cover for other data sets where a parametric
model could fail.

The main advantage of the automatic statistical approaches is in the fact
that they simultaneously take into account the spatio-temporal aspect of the
problem and also the environmental variables. GIS works in two steps: it first
predicts the number of pixels for each land cover type by a simple temporal
model and then takes into account the spatial aspect and the environmental
variables to allocate these pixels spatially. This could partially explain that
GIS had worse performances for the Alta Alpujarra data set, as the coniferous
reforestation used to be important in the 60’s and has then be given up. This
led the GIS to predict, in the 2001 map, much more coniferous reforestation
pixels than in the real map: 18.8 % of the pixels were predicted in the
coniferous reforestation type against 7.9 % for the multilayer perceptron,
9.6 % for the polychotomous regression modelling and 9.2 % for the real
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map. Then GIS approach had a much lower error rate on the coniferous
reforestation land cover type but a bigger one for the other ones.

Finally, looking further in the missclassification rates for the various land
cover types, we can see that the most dynamic land cover type were harder
to train: this is the case, for instance, for the scrubs in the Garrotxes area
where they tended to grow fast and became deciduous forests; this is also the
case, in the Alta Alpujarra for the fallows and irrigated croplands because
agricultural lands were tending to be left. These dynamics could be better
predicted by adding pertinent informations for these kinds of land cover
types (density of the scrubs, for example, can help knowing if they can, or
not, become forests).

6. CONCLUSION
Finally, this work shows the great potential of the two statistical models

in predictive prospection on geographical data. These models had as good
performances as GIS approach and we can hope that a combination of the two
points of view (statistics and GIS) can improve the land cover predictions:
the empirical first step of the GIS could be improved by being replaced by
one of these statistical approaches. This issue, that is of big interest for
geographers, is still under study as the GIS approach was performed through
pre-made programs and has then to be totally re-though to that aim.

Another aspect that has to be worked on is the form of the data: for
example, we underlined that an information on the density of the scrubs is
needed to better understand their evolution. This could help geographers to
better understand what is of interest for predicting the land cover evolution
for their future studies.
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Figure 1: Land cover for the Garrotxes (1980 - left) and for the Alta Alpujarra
(1957 - right)
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Figure 2: Examples of a numerical variable (elevation for the Garrotxes -
left) and a categorical one (ground geological type for the Alta Alpujarra -
right)
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Figure 4: Multilayer perceptron with one hidden layer
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Figure 5: Frontier pixels (order 4) for the 1957 map (Alta Alpujarra)
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Figure 6: Predictive maps for the various approaches on date 2000 and real
map (bottom right)
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Figure 7: Predictive maps for the various approaches on date 2001 and real
map (bottom right)
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Table 1: Parameters selected by the validation step
Garrotxes Alta Alpujarra

Poly. regression

Size of neighbourhood 9 1
ǫ 10 0.1

ML perceptron

Size of neighbourhood 7 4
q2 8 30
perceptron size 19-8-7 35-30-9

24



Table 2: Missclassification rates for the Garrotxes

Land cover Frequency Poly. Regression ML perceptron GIS
types in the area error rate error rate error rate

Coniferous forests 40.9 % 11.9 % 10.6 % 11.4 %
Deciduous forests 11.7 % 51.7 % 45.8 % 55.3 %

Scrubs 15.1 % 57.1 % 54.5 % 51.9 %
Broom lands 21.6 % 14.4 % 16.2 % 17.1 %

Grass pastures 5.7 % 59.2 % 59.4 % 54.4 %
Grasslands 4.8 % 25.6 % 19.3 % 30.4 %
Overall 27.2 % 25.7 % 27.2 %
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Table 3: Missclassification rates for the Alta Alpujarra

Land cover Frequency Poly. Regression ML perceptron GIS
types in the area error rate error rate error rate

Deciduous forests 10.9 % 3.5 % 2.6 % 14.3 %
Scrubs 33.0 % 3.1 % 1.4 % 15.2 %
Pasture 20.8 % 0.6 % 0 % 12.5 %

Coniferous refor. 9.23 % 3.5 % 16.3 % 1.9%
Fallows 18.8 % 32.5 % 41.4 % 46.8%

Irrigated cropland 5.8 % 8.9 % 6.8 % 38.9%
Overall 9.0 % 11.28 % 21.1 %
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