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Abstract

We study the pure braid groups P,(RP?) of the real projective plane RP?, and in
particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 —

Pp(RP2\ {x1,...,%n}) = Puym(RP?) = P, (RP?) — 1, wheren > 2and m > 1,
and p, is the homomorphism which corresponds geometrically to forgetting the
last m strings. This problem is equivalent to that of the existence of a section for
the associated fibration p: F,;,(RP?) — F,(RP?) of configuration spaces. Van
Buskirk proved in 1966 that p and p. admit a section if n = 2 and m = 1. Our main
result in this paper is to prove that there is no section if n > 3. As a corollary, it
follows that n = 2 and m = 1 are the only values for which a section exists. As part
of the proof, we derive a presentation of P,(RP?): this appears to be the first time
that such a presentation has been given in the literature.

hal-00160464, version 1 - 6 Jul 2007

1 Introduction

Braid groups of the plane were defined by Artin in 1925 [[AT]], and further studied
in [A2, [AJ]. They were later generalised using the following definition due to Fox [FoN]].
Let M be a compact, connected surface, and let n € N. We denote the set of all ordered
n-tuples of distinct points of M, known as the n'" configuration space of M, by:

F.(M) = {(p1,...,Pn) ]pi € M and p; #pjifi;«éj}.



Configuration spaces play an important role in several branches of mathematics and
have been extensively studied, see [CQG, [FH]] for example.

The symmetric group S, on n letters acts freely on F, (M) by permuting coordinates.
The corresponding quotient will be denoted by D, (M). Notice that F, (M) is a regular
covering of D,(M). The n'" pure braid group P,(M) (respectively the n' braid group
B,(M)) is defined to be the fundamental group of F,(M) (respectively of D,(M)). If
m € N, then we may define a homomorphism p..: P, (M) — P, (M) induced by the
projection p: Fy (M) — F,(M) defined by p((x1,...,Xn, ..., Xn+m)) = (X1,..., Xn).
Representing Py, (M) geometrically as a collection of n + m strings, p. corresponds to
forgetting the last m strings. We adopt the convention, that unless explicitly stated,
all homomorphisms Py ,,(M) — P,(M) in the text will be this one.

If M is without boundary, Fadell and Neuwirth study the map p, and show ([FaN,
Theorem 3]) that it is a locally-trivial fibration. The fibre over a point (xy,...,x,) of
the base space is F, (M \ {x1,...,x,}) which we consider to be a subspace of the to-
tal space via the map i: F,(M\ {x1,...,x,}) — F,(M) defined by i((y1,...,ym)) =
(X1,..., X0, Y1,.-.,Ym). Applying the associated long exact sequence in homotopy, we
obtain the pure braid group short exact sequence of Fadell and Neuwirth:

1 — Puy(M\ {x1, .. xn}) = Poa(M) 25 Py(M) — 1, (PBS)

where n > 3 if M is the sphere S? [Fd, FVB], n > 2 if M is the real projective plane
RP? [VB], and n > 1 otherwise [FaN], and where i, and ps« are the homomorphisms
induced by the maps i and p respectively. The sequence also exists for the classical pure
braid group P,, where M is the 2-disc D? (or the plane). The short exact sequence (PBS)
has been widely studied, and may be employed for example to determine presentations
of P,(M) (see Section [), its centre, and possible torsion. It was also used in recent
work on the structure of the mapping class groups [[PR] and on Vassiliev invariants for
surface braids [GMD]].

The decomposition of P, as a repeated semi-direct product of free groups (known
as the ‘combing’ operation) is the principal result of Artin’s classical theory of braid
groups [[A7], and allows one to obtain normal forms and to solve the word problem.
More recently, it was used by Falk and Randell to study the lower central series and
the residual nilpotence of P, [FR], and by Rolfsen and Zhu to prove that P, is bi-
orderable [[R4].

The problem of deciding whether such a decomposition exists for surface braid
groups is thus fundamental. This was indeed a recurrent and central question dur-
ing the foundation of the theory and its subsequent development during the 1960’s [[F4,
FaN], Bi]. If the fibre of the fibration is an Eilenberg-MacLane space then
the existence of a section for p. is equivalent to that of a cross-section for p [Bal [WH]
(cf. [GGZ]). But with the exception of the construction of sections in certain cases (for
the sphere [[Fa] and the torus [Bi]), no progress on the possible splitting of (PBS) was
recorded for nearly forty years. In the case of orientable surfaces without boundary of
genus at least two, the question of the splitting of (PBS) which was posed explicitly by
Birman in 1969 [Bi], was finally resolved by the authors, the answer being positive if
and only if n = 1 [[GGT]].

In this paper, we study the braid groups of RP?, in particular the splitting of the
sequence (PBS), and the existence of a section for the fibration p. These groups were
first studied by Van Buskirk [VB], and more recently by Wang [W4]. Clearly P;(RP?) =
B1(RP?) = Z,. Van Buskirk showed that P,(RP?) is isomorphic to the quaternion group

2



Qs, B>(RP?) is a generalised quaternion group of order 16, and for n > 2, P,(RP?) and
B, (RP?) are infinite. He also proved that these groups have elements of finite order
(including one of order 2n in B,(RP?)). The torsion elements (although not their or-
ders) of B, (RP?) were characterised by Murasugi [M]. In [GGZ)], we showed that for
n > 2, B,(RP?) has an element of order ¢ if and only if ¢ divides 47 or 4(n — 1), and that
P, (IRP?) has torsion exactly 2 and 4. With respect to the splitting problem, Van Buskirk
showed that for all n > 2, neither the fibration p: F,(RP?) — F;(RP?) nor the homo-
morphism p,: P,(RP?) — P;(RP?) admit a cross-section (for p, this is a manifestation
of the fixed point property of RP?), but that the fibration p: F;(RP?) — F(RP?) ad-
mits a cross-section, and hence so does the corresponding homomorphism. It follows
from (PBS) that P3(RP?) is isomorphic to a semi-direct product of 7r; (RP?\ {x1, x2}),
which is a free group F; of rank 2, by P,(RP?) which as we mentioned, is isomorphic
to Qg (see [[GGZ] for an explicit algebraic section). This fact will be used in the proof of
Proposition [ (see Section B). Although there is no relation with the braid groups of the
sphere, it is a curious fact that the commutator subgroup of B4(S?) is isomorphic to a
semi-direct product of Qg by [F, [GGA]. In fact B, (S?) possesses subgroups isomorphic
to Qg if and only if n > 4 is even [GG3].

In [GGZ]], we determined the homotopy type of the universal covering space of
F,(RP?). From this, we were able to deduce the higher homotopy groups of F,(RP?).
Using coincidence theory, we then showed that for n = 2,3 and m > 4 — n, neither the
fibration nor the short exact sequence (PBS) admit a section. More precisely:

Theorem 1 ([GG2)). Let r > 4 and n = 2,3. Then:

(a) the fibration p: F,(RP?) — F,(RP?) does not admit a cross-section.
(b) the Fadell-Neuwirth pure braid group short exact sequence :

1 — P (RP2\ {x1,...,x,}) == P(RP?) % P, (RP?) — 1
does not split.

Apart from Van Buskirk’s results for F,(RP?) — F;(RP?) and F3(RP?) — F,(RP?)
(published in 1966), no other results are known concerning the splitting of (PBS) for
the pure braid groups of RP2. The question is posed explicitly in the case r = 1 + 1 on
page 97 of [[VB]. In this paper, we give a complete answer. The main theorem is:

Theorem 2. For all n > 3 and m > 1, the Fadell-Neuwirth pure braid group short exact
sequence (PBS):

1 — Ppu(RP2\ {x1,...,%1}) — Ppym(RP?) 25 P, (RP?) — 1

does not split, and the fibration p: Fyyy(RP?) — F,(RP?) does not admit a section.

Taking into account Van Buskirk’s results and Theorem [[, we deduce immediately
the following corollary:

Corollary 3. Ifm,n € N, the homomorphism p..: Py m(RP?) — P,(RP?) and the fibration
p: Fyim(RP?) — F,(RP?) admit a section if and only if n = 2 and m = 1. O

In other words, Van Buskirk’s values (n = 2 and m = 1) are the only ones for which a
section exists (both on the geometric and the algebraic level). The splitting problem for
non-orientable surfaces without boundary and of higher genus is the subject of work in
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progress [[GGH]. In the case of the Klein bottle, the existence of a non-vanishing vector
tield implies that there always exists a section, both geometric and algebraic (cf. [FaN]).

This paper is organised as follows. In Section [i, we start by determining a presen-
tation of P, (RP?) (Theorem f). To the best of our knowledge, surprisingly this appears
to be the first such presentation in the literature (although Van Buskirk gave a presen-
tation of B, (RP?)).

In order to prove Theorem P, we argue by contradiction, and suppose that there
exists some n > 3 for which a section occurs. As we indicate in Section [, it then
suffices to study the case m = 1. The general strategy of the proof of Theorem [ is
based on the following remark: if H is any normal subgroup of P, 1 (RP?) contained in
Ker (p.), the quotiented short exact sequence 1 — Ker (p,) /H — P,1(RP?)/H —
P,(RP?) — 1 must also split. In order to reach a contradiction, we seek such a sub-
group H for which this short exact sequence does not split. However the choice of H
needed to achieve this is extremely delicate: if H is too ‘small’, the structure of the
quotient Pn+1(RP2) /H remains complicated; on the other hand, if H is too ‘big’, we
lose too much information and cannot reach a conclusion. Taking a variety of possi-
ble candidates for H, we observed in preliminary calculations that the line between
the two is somewhat fine. If n is odd, we were able to show that the problem may be
solved by taking the quotient Ker (p.) /H to be Abelianisation of Ker (p.) (which is a
free Abelian group of rank n) modulo 2, which is isomorphic to the direct sum of n
copies of Zp. However, this insufficient for n even.

With this in mind, in Section [J, we study the quotient of P,,1(RP?) by a certain
normal subgroup L which is contained in Ker (p,) in the case m = 1. A key step in
the proof of Theorem ] is Proposition fj where we show that Ker (p.) /L is isomorphic
to Z"~1 x 7, the action being given by multiplication by —1. This facilitates the cal-
culations in P, 1(RP?)/L, whilst leaving just enough room for a contradiction. This
is accomplished in Section f] where we show that the following quotiented short exact
sequence:

1 — Ker (p.) /L — P,.1(RP?*)/L — P,(RP?) — 1

does not split.

Acknowledgements

This work took place during the visit of the second author to the Departmento de
Matematica do IME-Universidade de Sdo Paulo during the period 18t June — 18t July
2006, and of the visit of the first author to the Laboratoire de Mathématiques Emile Pi-
card, Université Paul Sabatier during the period 15" November — 16t December 2006.
This project was supported by the international Cooperation USP /Cofecub project num-
ber 105/06.

2 A presentation of P,(RP?)

If n € Nand D?> C RP? is a topological disc, the inclusion induces a (non-injective)
homomorphism ¢: B,(D?) — B,(RP?). If B € B,(D?) then we shall denote its image
1(B) simply by B. For 1 < i < j < n, we consider the following elements of P, (RP?):

-1 2
Ui 10j-2""0i,

~1
B o 0;_50;

i = Yi



where 07, ...,0,_1 are the standard generators of B, (D?). The geometric braid corre-
sponding to B; ; takes the ith string once around the jt" string in the positive sense, with
all other strings remaining vertical. For each 1 < k < n, we define a generator p; which
is represented geometrically by a loop based at the k' point and which goes round the
twisted handle. These elements are illustrated in Figure [ (RP? minus a disc may be
thought of as the union of a disc and a twisted handle).

Figure 1: The generators B; ; and py of P, (RP?).

A presentation of B, (RPZ) was first given by Van Buskirk in [VB]. Although presen-
tations of braid groups of orientable and non-orientable surfaces have been the focus
of several papers [Bi, B, [GM, Bd], we were not able to find an explicit presentation of
P,(RP?) in the literature, so we derive one here.

Theorem 4. Let n € N. The following constitutes a presentation of pure braid group P, (RP?):

generators: B;; 1 < i<j<n,andpr, 1<k <n.
relations:

(a) the Artin relations between the B; ; emanating from those of P, (D?):

B;, fi<r<s<jorr<s<i<j
“1p-1p. p 7 . ' | = '
g g g1 J Bij BrjBiibrjBij fr<i=s<j
r,sD1,jPrs Bs_,jl B; ;Bs fi=r<s<j

p-1 1p-1 ~ - ;
Bs,j Br,]' Bs,jBr,jBi,]'Byl]' Bs,j Br,]'Bs,j lf?’ <1 <s <.

(b) foralll <i<j<n, PinPfl = P;lBilep]Z'

(c) forall 1 <i < n, the ‘surface relations’ p? =By - Bi_1iBiit1- - Bin.
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(d) foralll1 <i<j<nand1 <k<mn k#j,

Bi,j lfj<k01’k<i
okBi o ! = Pleifjlpj ifk=i

p]-_lB]:’]lijlgjlB,-,]-Bk,]-pj_lBk,]-p]‘ ifi <k<j.

Proof. We apply induction and standard results concerning the presentation of an ex-
tension (see Theorem 1, Chapter 13 of [[]]).

First note that the given presentation is correct for n = 1 (P;(RP?) = 711(RP?) = Z,),
and n = 2 (P,(RP?) = Qg). So let n > 2, and suppose that P,(RP?) has the given
presentation. Consider the corresponding Fadell-Neuwirth short exact sequence:

1 — m(RP2\ {x1,...,x,}) — Pyq(RP?) 5 P (RP?) — 1. (1)

In order to retain the symmetry of the presentation, we take the free group Ker (p.) to
have the following one-relator presentation:

2
<Pn+1/ Bl,n+1/ ey Bn,n+1 Pn+1 - Bl,n+1 e Bn,n+1> .

Together with these generators of Ker (p,), the elements Bij,1<i<j<mn, and py,

1 <k < n, of P,,1(RP?) (which are coset representatives of the generators of P, (RP?))
form the required generating set of P, ,1(RP?).

There are three classes of relations of P, 1(RP?) which are obtained as follows. The
tirst consists of the single relation pfl +1 = Biut1- - Byus1 of Ker (pi). The second class
is obtained by rewriting the relators of the quotient in terms of the coset representatives,
and expressing the corresponding element as a word in the generators of Ker (p.). In
this way, all of the relations of P,(RP?) lift directly to relations of P, 1 (RP?), with the
exception of the surface relations which become p? = By;---Bi_1iBiit1-- - BinBint1
forall1 <i < n. Together with the relation of Ker (p,), we obtain the complete set of
surface relations (relations (@)) for P, 1 (RP?).

The third class of relations is obtained by rewriting the conjugates of the generators
of Ker (p.) by the coset representatives in terms of the generators of Ker (p.):

(i) Foralll1<i<j<mnand1l <I<mn,

B i1 ifl <iorj<l
-1 -1 . .
1 Blln+1Bi,n+1Bl,n+1Bi,n+1Bl,n+1 if [ =]
Bi,jBl,n+1Bi,j = Bfl B B: ifl — i
in+1PLn+15)n+1 ml=1
B]‘,n+1Biln+1Bj,n+1Bi,n+1Bl,n+1Bi,n+1B]‘,n+1Bi,n+1Bj,n+1 ifi <l < ]

(ii) B,-,]-anB;j1 =pysq foralll <i<j<n.
(ifi) PkPn110; " = Pyi1Bepy10h4q forall 1 <k <mn.
(iv) Foralll <k,I <mn,
Bini1 ifk <1
0kBru10; " = PpiaBlriPni1 k=1
p;ilBI:,rlszlpn—i—lBki;_,_lBl,n+1Bk,n+1p;}r1Bk,n+1pn+1 ifl < k.



Then relations () for P, ;(RP?) are obtained from relations (@) for P, (RP?) and rela-
tions (§), relations (B)) for P,1(RP?) are obtained from relations (B) for P,(RP?) and re-
lations (), and relations (g) for P, 1(IRP?) are obtained from relations (d) for P,(RP?),
relations ([v]) and ([). O

For future use, it will be convenient at this point to record the following supplemen-
tary relations in P, (RP?) which are consequences of the presentation of Theorem . Let
1<i<j<n
(I) The action of the plfl on the p; may be deduced from that of p;: plflp]-pl- = B;jlpj.

(II) By relations () and (d]), we have:

-1 -1 -1 -1 —1p-12 —1p-1 -2 —1p-1 -1
Pi(Bi,j 0iBijp; Bij)p; " = P Bijoj-p; Biipj-p; Biipj-p; Bijpj-p; B ipj=B;;.

Hence p]-Biljp]._l = Bi,]-pi_lB;jlpiB;jl.
(III) From relations () and (), we see that:

pip; ;=i oy "B pjpi- ot = p;i 'Bij-pi B loi By lpjp; ' = By,

s0 pjpip; | = piB; -
(IV) From relations () and (d)), we obtain:

o; 'pip; = pip; ' Bijo; = piB; oy -

3 A presentation of the quotient P, (RP?)/L

For n > 2, we have the Fadell-Neuwirth short exact sequence () whose kernel K =
Ker (p.) is a free group of rank n with basis p,1+1, B1 n+1, Bont1,- -+, Bu—1,n+1. We first
introduce a subgroup L of K which is normal in P, ;1 (RP?), from which we shall be able
to prove Theorem 3.

We define L to be the normal closure in P, 1 (RP?) of the following elements:
(1) [Bin+1,Bjns1], where1 <i<j<n-—1,and
(ii) [Bin+1,0x), wherel <i<n—-1land1 <k <n.
The elements [B; 11, Bj,+1] clearly belong to K. The presentation of P, (RP?) given by
Theorem f implies that:

1 itk <i
[Bins1,0k) = { Bins10y 51 Bin+1Pn1 ifk =i
Bi,n+1P;}r1BlgiﬂpnﬂB;;;HB;711+1Bk,n+19;i1Bk,n+1Pn+1 ifi <k <n.
Thus L is a (normal) subgroup of K.
Letg: P, 1(RP?) — P, 1(RP?)/L denote the canonical projection. Fori = 1,...,n —
1, let A; = g(Bin+1). Apart from these elements, if x is a generator of P, (RP?),
we shall not distinguish notationally between x and g(x). The quotient P, 1(RP?)/L
is generated by p1,..., 0041, Bi,]', 1 <i<j<mnand A, Ay,..., A1 (we delete
B, n+1 from the list using the surface relation ple = A1Ay- - Ay_1Bynt1,80 By i1 =
Ay A A ):
A presentation of P, ,1(RP?)/L may obtained from that of P, {1 (RP?) by adding the

relations arising from the elements of L. We list those relations which are relevant for
our description of P, (RP?)/L.



(a) The Artin relations between the B,-,]-, 1<i<j<n.
(b) The relations of P,(RP?) between p;, pi,1<i<j<n
(c) The relations of P,(RP?) between Bijj1<i<j<mandp1<k<n.
The following two sets of relations arise from the definition of L:
(d) Aj = A;,1<i<j<n-—1(thesymbol = is used to mean that the given elements
commute).
(e) Ai=pji= 1l,...,n—1landj=1,...,n
(f) The surface relations:

P%l = B1uBou- - By_1u- A;E1 Ay 1Al pn+1

(¢) Fori=1,...,n—-1, p,,+1A,-p;}r1 = Ai’1 (since p;ilAi’lan = piAipl.’l = A)).
The following relations are implied by the above relations:
—for1<i<j<n-1, ijl-pj_l = p;ilA]._lanA]._lAiAjp;}rlAjan (both are equal to
Aj).
—forl1<i<n-1, anAip;}rl Ajp: 1A piA 1 (both are equal to A;° 1y
(h) For1 <j<n-1,

PiPn+1Pi_1 = P;JlrlAi_lpsz = Aipps1 = PnHAi_l
From these relations, it follows that p; = p2_; fori=1,...,n—1.

D) a1’ = 0By ialiin = PuiaPuiiAr - A1l = Ar - A0y From
this relation, it follows that p,,02 0, = prﬁl.
Fori=1...,n —1, the following relations are implied by the above relations:

pnAl-pn = anBn annHBn n+1A B, n+1pn+1 nn+1Pn+1 (both are equal to A;).

Proposition 5. The quotient group K/ L has a presentation of the form:

generators: Ay,...,An_1,0n+1.

relations: A; = Ajfor 1<i<j<n-1,and PnHAiP;il = Ai’lfor 1<i<n-1.

In particular, K/ L is isomorphic to Z""~! x 7Z, the action being given by multiplication by —1.

Hence the other relations in P, 1 (RP?) /L (which involve only elements from P, (RP?))
do not add any further relations to the quotient K/ L.

Proof of Proposition fl. Clearly Aj,..., Ay_1,pn+1 generate K/L, and from relations (d)
and (g) of P, 1(IRP?)/L, they are subject to the given relations. Consider the following
commutative diagram of short exact sequences:

1 K¢ Py.1(RP?) 2 p,(RP?) —1
[gK | | @
1—=K/L =P, .1 (RP?)/L 2= P, (RP?) —> 1,

where ¢ is the inclusion of K/L in P, 1(RP?)/L, and p, is the homomorphism induced
by p.. Let I be the group with presentation:

I = <tx1,...,ocn,1,p ociitxjforl §i<j§n—1,andpocip_1 :[Xl-_1>.
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So T is isomorphic to Z"~! x Z, where the action is given by multiplication by —1. The
map f: I' — K/L defined on the generators of I' by f(a;) = A;fori =1,...,n—
1, and f(p) = pn4+1, extends to a surjective homomorphism. We claim that f is an
isomorphism, which will prove the proposition. To prove the claim, it suffices to show
that /o f is injective. Letw € Ker (1 o f). Then we may write w uniquely in the form w =

pmMoat - -~zx;”fil, where mg,my, ..., m,_1 € Z,and so 1o f(w) = p;°, A]" -- A;”jil =1
in P, (RP?)/L.
Letz = 0,9, BT;H : B;”ffnﬂ € P,,1(RP?). Since g(z) = 1o f(w) = 1, we must

have z € L. Now L is the normal closure in P, ,1(RP?) of the following elements:
— Cjk = [Bju+1, Brus1l, wherel <j <k <n-1,
- dj = [B jn41s P]] B],n+1P;+1 ],n+1pn+1/ where1l <j <n-1,

ik = [B] n+1, Pkl = B;, 7’l+1pn+1 kn+1pn+1Bk n+1B],7}+1Bk,n+1P;i1Bk,n+1pn+1r where 1 <
j<k<n.

Hence z may be written as a product of conjugates of the elements c; , d;, ¢j x, and their
inverses.

Fori=1,...,n—1,let m;: P,.1(RP?) — P3(RP?, (Pi, Pn, Pn+1)) be the projection
obtained geometrically by forgetting all of the strings, with the exception of the i,
nth and (n + 1)t strings (here P3(RP?, (p;, pn, Pni1)) denotes the fundamental group of
F3(RP?) taking the basepoint to be (p;, pu, Pn+1)). We interpret P3(RP?, (Pi, Pn,Pn+1)) @s
the semi-direct product Fo(B; 41, 0n+1) X P (RP?, ( pi, pn)) [VBI. Under 7;, the elements
Cik dj, ejx (for the allowed values of j and k) are all sent to the trivial element, with the

exception of the two elements d; and ¢;,,. Set h; = m;(d;) = Bi,nﬂp;}rlBi,annH €
IFz(Bz n+1,Pn+1)- Since Bjy11Bnnt1 = 05,1 in P3(RP2, (pi, pu, Pus1)), we have By, 1 =
Bz n+1|0n+1 Hence:

mi(ein) =B; n+1.07;1L1B7731+1Pn+1 B;}Z+1B;,,1+1Bn n+1P;i1 By ni10n+1
=B, n+1pn+1pn+1 in 104105 11Bin 1187 1By 1084100 11Bin 100100 41
=B; n+1pn+1 in+1Pn+1° Pn+1Bl n+1pn+1Bl ,,+1Pn+1Bl n+1Bz n+1Pn+1
PnHBz 1410 11Bin 10410541 PnHPnHBl nHPnHBl 101

1
hi - 0531 Bi 1l Bins1Pna1 - 0oy il 1 - Ol 01

Thus 77;(z) may be written as a product of conjugates in P3(RP?, (p;, pu, pni1)) of hl?tl:
) )
mi(z) = oyt By = [T wi Vwy, ©
=1
where I € N, w; € P3(RP?, (pi, pn, Pns1)), and u(j) € {1,—1}. We claim that each

W hﬂ( j)
it
action of the generators p; and p,, of P,(RP?, (p;, pn)) on the basis of F2(B; 11, 0n11):

lis in fact a conjugate in F(B; 1, 01+1) Of hjEl This follows by studying the

-1 _ . n. -1 ) -1
pihip;* =piB; n+1.0n+1 i n+1.0n+1pl
_pn+1B1 n+1p”+1 pn+1 in+10n+1 pn+1 1n+1p”+1 pn+1Bz n+1pn+1

B;

_pn+1 i n+1l0n+1Bz n+1u0n+1

_ . 1 1p.
pn+1Bz n+1 pn—i—le n+1p”+1Bz n+1 Blr”+1p”+1 pn+1Bz n+1h Blr”+1p”+1’



and

Pnhiprjl =Pn in+1P;1L1 in+1Pn+1P;1
_Pn+1Bn n+1pn+1Bn n+1B1 n+1Bn n+1pn+1 nn+1Pn+1 Pn+1 nn+1Pn+1"
Pn+1Bn n+1pn+1Bn n+1Bz n+1Bn n+1pn+1 nn+1Pn+1 " Pn+1 " n+1pn+1
_pn—i-an n+1pn+1Bn n+1B1 n+1Bn n+1pn+1B1 n+1Bn n+1Pn+1
=0, 1001 B n 100410, 11 i,n+1Bi,n+1B1’,n+1pn+1pn+1 i,n+1BiTnl+1p$1+1pn+1
=021 Bint105 41 Bint 100110011 = OpiahiOn i1,

again using the fact that B; ,, 1B, y+1 = ple in P3(RP2, (p;, pn, Pns1))- Thus the w; of
equation (B) may be taken as belonging to > (B; 11, 0n+1). We now project Fo(B; 11, Pn+1)

onto the Klein bottle group <Bi,n+1, On+1 ’ P;i1Bi,n+1Pn+1 = B! > in the obvious man-

in+1
ner. Since h; belongs to the kernel of this projection, the right hand-side of equation (3)

is sent to the trivial element, while the left hand-side is sent to p,"? B:n;l 41- It follows that
mo =m; = 0foralli =1,...,n — 1. This proves the injectivity of 1o f, and so completes
the proof of the proposition. O

4 Proof of Theorem

We are now ready to give the proof of the main theorem of the paper.

Proof of Theorem B Letn > 3. For m > 1, let p'™: Py, u(RP?) — P,(RP2) denote the
usual projection. Suppose first that m > 2, and consider the following commutative
diagram of short exact sequences:

(m)
1—— Ppu(RP2\ {x1,...,x%n}) —> Ppym(RP?) 2> P, (RP?) —>1

L
1—=P{(RP2\ {x1,...,%n}) —= Pyi1(RP?) =~ P, (RP?) —1,
(m)

where 1 is the homomorphism which forgets the last m — 1 strings. If p,’ admits a
section s\ then Yo s is a section for pg). In other words, if the upper short exact
sequence splits then so does the lower one.

Since we shall be arguing for a contradiction, we are reduced to considering the
case m = 1. Set p, = pﬂ(ﬁl), and suppose that p, admits a section which we shall denote
by s.. Consider the short exact sequence (ff). Since p. admits a section then so does
P,; we denote its section by 5.. So p,(p;) = p; fori =1,...,n,and p_(B;;) = B;; for
1 <i < j < n (recall that we do not distinguish notationally between the generators of
P, 1(RP?)/L and the corresponding generators of P, (RPZ)). Thus we obtain:

S«(pi) = Pfl’flA“ll AT o fori = 1,. W
4
5.(Bij) = L0 AR AP B for1 << j<n,
where a;, B ik € Z. For x € Z, set
(x) = 1 %f X %s even and 5(x) = 0 %f X %s even
-1 if xisodd, -1 if xis odd.
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Then e(x) = 26(x) + 1, e(x)d(x) = —d(x), d(x) = d(—x), e(x) = e(—x) and for i =
1,...,n—1and k € Z, we have:

_ k
Plrcz+1Aipn§1 = Af( )

_ S5k
pipk 1ot = pk AT
_ —5(k

P; 1P]r<z+1pi = Plr(z+1A )

—o(k —o(k
pﬂp];z—i—lpn = pn+1A ©... An—(l)

— ok o(k
P Oraafn = Pn+1A1( o An(f)l’
using the relations of P, . 1(RP?)/L given in Section 3.
We now calculate the images in P, 1(RP?)/L by 5, of the following relations of

P,(RP?). This will allow us to obtain information about the coefficients defined in
equation (#).

(a) We start with the relation pjpip].’l = piB;jl in P,(RP?), where1 <i<j<n-—1.

S (0iBi) =Pl AT AN gy B AP APt P

pi‘lz—SlA’le A znl pzpnflljoBl] A (ﬁl]O),Bz]n 1 _Al_s(:Bi,j,O):Bi,j,l

‘0“10 A’Xll A“z,nflp

n+1 n—1 Fn+1 i M in—-1

'BI”’OA (ﬁl’]’O)p'A e(Bijo)Bijn1 Al—s(ﬁi,j,o)ﬁi,j,l B;];

ai0—PBijo ,&Bijo)uia €(Bij0)%in-1 ,0(Bijo)
—Fn+1 ]Al : "'An—1] A, "
A;i(lﬁi,j,O),Bi,j,n—l o A;E(,Bi,j,o),Bi,j,l 0; Bijjl
:pzifl_ﬁi,j,OAi(,Bi,j,O)(“i,l_ﬁi,j,l) o Af(ﬁi,j,o)("‘i,i‘ﬁi,j,i)"‘fs(ﬁi,j,o)_
"AE(,Bi,j,O)(’Xi,nflf,Bi,j,nfl) g1

n—1 s W

Xjn—1 &i0 0611 txzn 1 -1 &1 —&jo

5*(P]’Pin_ ) Pn+1A o AL 0 Py A “Pi P] Ay

—ajp A5(D‘j,o)

a;o+a e(wig)a e(ai0)ajn-1 ,0(« ) « Ky
7,0T%i0 i,0/%j,1 i,0/%j,n—1 i,0) . il in—1 ..
A A A Y A An 1 Fn4+1 <% Pi

—Fnt1 1 n—-1 j M1
Aj—fs(“j,o) 71A (“;o)“,n 1 “Al_e(“j,o)“j,l
wio  ae(ej0)e(@io)e;, e(ajo)e(aio)ajn-1 ,€(ajo)d(aio) ,6(ajpo)
nJSlA S An ]1 ’ A] ' A]' "
(

Al(lx],o)l’éz,l o An(fjlo)“l?l 1Af Dé]0)Aj—fS(Déj,o)A;i(llxj,o)“j,nfl o A e(ajp)a;,

Pfffﬁ e(wj) (a1 (e(aip)—1)+ay ) o Af(“j,o)(Déj,i(ﬁ(ﬂfi,o)*l)Jr“i,i)+5( i0)

e(aj0) (@ (e(wio)—1)+a; j+8(wi0)) e(aj0) (ojn—1(e(ei0)—1)+8j,1) —_
A] 70 7] 0 j 0 "'Anfjlo jn—1 0 1 p]plp] 1.

Comparing coefficients in K/L, we obtain:
Bijo=0,s0¢(Bijo) =1land §(B;jo) =0foralll <i<j<n-—1 5)
e(ajo)ajr(e(aio) —1) +ajr(e(ajo) —1) = =Bjjrforallk=1,...,.n -1,k #1i,j
e(ajo)agi(e(aio) —1) +aii(e(wjo) —1) +6(aj0) = —Biji
e(wjo)ajj(e(aig) — 1) +a;(e(ajo) — 1) +e(ajo)d(aig) = —PBij,-

p]Pzp]
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In particular, the coefficient ;o of p,,;1 in 5.(B; ;) is zero. Also, since ¢(x) — 1 is even
forall x € Z, ,B,-,]-’k =0 (mod 2) forallk #i,j,and forall1 <i<j<n-1,

Biji =9d(ajp) (mod 2) (6)
Bijj =d(aip) (mod 2). (7)

(b) Now consider the relation p,p;0,! = p;B; Lin P,(RP?), where 1 <i < n— 1.

&0 ’Xll “zn 1 1A7ﬁi,n,n71 . A ﬁlnl ﬁan

§*<!0iBijn) pn+1 ’ n 1 Pi- Pn+1
pi‘ll—SlAD‘ll A Lnl 1‘01pn ﬁanB 1A (ﬁan),BLnn 1 . A E(,Bi,n,O)ﬁi,n,l

pii)lAﬂézl A znl pn ﬁznOA (ﬁznO)pl (ﬁznO),ann 1, _A;E(,Bi,n,o)ﬁi,n,lB;nl

_pnIO ,anOA (ﬁlﬂO)“zl . An(fin,o)“z,nflAi (ﬁl,n,O)_

An (fz,n,O)ﬁl,n,nfl L A (,Bi,n,O),Bi,n,lpiBiTnl

_pnzo ,anOA (Bin0)(&i1— ﬁznl) . _A;(,Bi,n,o)(“i,i*ﬁi,n,i)""s(ﬁi,n,O).

(,Bl,n, )(Dcl,n* ,Bl,n,nf ) 71
AL ’ . 1.01' in

g*(pnplp; ) pnnOA nl A Xpn— 1pn Pil_:_)lAIXll A 1n1 0; - ,OnlA Xpn—1 ._Al_“n,lp;jfrll,O
Xn,0— ‘XLOA (“10)”‘711 A e(a;0)an,n— 1A d(aip) A —d(aip) Xn,0

n+1 n—1 n—1 Pn41’

Al(lxn,o)ﬂm o An(“rlzo)“m AL d(an, o)plAfls(IXn,o) L Ai(_ﬂf?,o)p; .
A’;e(l“m())“n,n—l e A] (“»1,0)%,1

_pn+110A e(an0)e(@io)an Ai(i‘r{,O)s(D‘i,O)“n,n—lA*S(D‘n,o)(s(“i,O) . A;i(fén,o)fs(ﬂéi,o),
A] 6(ano) Anf(lan,o)Al(“n,o)“i,l o An(lxqo)lxm 1A S(ay, O)A(;(“"'O) o Ai(_“?’())~
A S A g 0000,

Comparing coefficients in K/L, we obtain:
Bino = 2ui0, 50 Binoiseven, e(Bino) =1and d(Bino) =0 (8)

e(an0)ayr(e(aio) — 1) +a;k(e(ano) — 1) — e(an0)d(aio) = —Binkfork=1,...,.n -1,k #i
e(an,0)ani(e(aig) —1) +a;i(e(ano) —1) —e(an0)d(xip) +6(an0) = —Bin,i-

In particular, the coefficient ; , g of p,+1 in 54(B; ;) is even. Further:

Bink =0(aip) (mod 2) forall k # i
Bini=0(wig) +6(ay0) (mod2)foralll <i<n-—1. )

(c) Consider the relation p;?' =By;---Bi_1iBijiy1---B;,in P, (RP?), where1 < i <n—

12



1. Using equations (B) and (B), we see that:

- B, B1,in—1 Bi-1,i1 Bi-1,in-1
S«(B1i- -+ Bi—1,iBiiz1- - Bin-1Bin) =A7" - A By AV AT B

Biit11 Biji+1,n—1 Bin-1,1 Bin-1n-1
Al P AR o AP,

200 4 Bina Binn—1
Bin-10, 741" - A7 Big
_ 2ap A,Bl,i,1+'"+:3i71,i,1+,3i,i+1,1+'"+,Bi,n71,1+ﬁi,n,1.
T Pn+1°71
Bin—1++Bi—1in-1+Bii+1,u—1++Bin-1n—1+Binn-1
L AP :

By Bi1Biiy1- - Bin_1Bin

i Zo‘i,OAﬁl,i,1+'"+ﬁi71,i,1+,8i,i+1,l+'"+ﬁi,n71,l+ﬁi,n,l_

T Pn+1°71

o APt Bt B it B it Bimi—1
1

Bin—1t+Bi—1in-1+Biiv1,n-1++Bin-1n-1+tBinn-1 2

.“Anfl 0,

using the relation By ;- - - Bj_1iB; i1 Bin_1BinAi = p;?' in P, (RP?)/L.

T (n2) — %0 A%id o A%in-1 0 R0 ARl AT

s«(07) =0, 144 AP0 A A, pi

200 41 (e(ao)+1) w;i(e(aio)+1)+0(ai0) 4ain—1(e(aio)+1) 2
A e A A" ;.

T Fn+l
Comparing coefficients in K/L, forall 1 <i < n — 1, we obtain:

Brik+ -+ Bictik + Biirik+ -+ Bin—1k + Bink = &ix(e(ajo) + 1) for all k # i
Biii+ -+ Bic1ii+Biit1,i T+ Bin-1i+ Bini —1=waii(e(ajo) +1)+6(a;p). (10)

(d) Consider the relation p% =By By_1nin P, (RP?):

- 2010 4PB1u1 B1nn-1 200510 4Br-111 Brn-1,n-1
5*(B1,n T Bn—l,n) =Pn Al R An,nln Biy---on" Aln HEREE Anil Y Bu—1,n
_ 2(mq 0t Fay—1,0) 4Bt Bu—t Bnn—1+F+Bu-1mn-1
_pn Al . Anfl .
Bl,n o Bn—l,n

_ 2(“1,0"'"""‘0‘7171,0) ,Bl,n,l+"'+ﬁn71,n,1 ,Bl,n,nfl"'“""ﬁnfl,n,nfl
_pn Al e Al’l—l .

P22 AL A

_p2laotettn10=1) gPruatetBunitl o pBimn-attBuoamnatl 2
—Pn 1 n-1 Pns

using the relations By ,, - - - By,_1,4 By nt1 = p% and Ay ---Ap_1Bypy1 = ple, and the fact
that p% = p2_; in P,41(RP?)/L.

- 2\ &n0 %1 Ky n—1 X0 A%n1 Xy n—1
Se(0n) =01 A7 - A o 0 AT A o

n+1
A A A g A
:Ai(‘xn,o)‘xn,l o A;(ﬁ,o)“n,nqu*J(“n,o) o A;i(lﬂén,o)Al;nJ N -Aﬁ"_'"{lp%
:A;‘n,l(8(“n,0)+1)_‘5(“n,0) L A:in_,nlq(8(06;1,0)+1)—(S “n,O)p%‘

Comparing coefficients in K/L, we obtain:

K0+ F+ag_10=1 (11)

Biui+ -+ Bnini+1=uayi(e(an)+1)—0(aypo)foralli=1,...,n—1.
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Now consider equation ([[J) modulo 2. Forall 1 <i < n — 1, we have:

O(aig) = Prii+ -+ Bicrii+Biivri+ -+ Bin-1i+Bini+1
= (5(0‘1,0) + o+ 0(aio10) +O(ip10) + o+ (an—1,0) + (O(aig) +(anp)) +1,

using equations (f)), (7)) and (f)). Hence

n

O(ajp) =1+ Z d(ajp) (mod 2)foralll <i<n-1, (12)
j=1
and thus d(a19) = -+ = 6(ay_10) (mod 2). Further, since x = é(x) (mod 2) for all

x € Z, we see from equation (1) that 27:_11 5(ajp) = 1 (mod 2), é(azp) = -+ =
O(ay—10) = 1 (mod 2) and that n is even. It follows from equation ([2) that d(a; ) =
- =0(0y—10) =9(an0) =1 (mod 2), and so ay,...,a,0 are odd. Since  is even, the
element B, 3 exists. Further, 3 < n —1, and hence B30 = 0 from equation (§). Now
consider the image in P, 41 (RP?)/L under s, of the relation p1 = By3z of Py (RP?):

5.(01B25) = O AT - AV pr - AP AR By

41,0 A01,1+P231 a1,n-1+B23n-1

n+1A ’ An 1 plB2/3'

w10 pe(ar,0)B231+01,1 e(a1,0)B2,3n—1+1,n—1
S.(B2j301) = 0,144 AT "By j3p1.

Comparing coefficients in K/L, we see that 8,3 ;(¢(a19) —1) = Oforalli =1,...,n—
1. Since w1 is odd, e(a19) = —1, and thus Bp3; = Oforalli = 1,...,n — 1. Hence
B232 = 0. But since n is even, 3 < n — 1, and this contradicts equation (f). Hence 7,
does not admit a section, and so neither does p.. This proves the first statement of the
theorem. The second statement follows from the fact that we mentioned in the introduc-
tion, that under the hypotheses of the theorem, the fibration p: F, (RP?) — F,(RP?)
admits a section if and only if the group homomorphism p.: Py (RP?) — P, (RP?)
does. O
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