
A Framework to Formalise the MDE Foundations

Xavier Thirioux, Benôıt Combemale, Xavier Crégut, Pierre-Löıc Garoche

To cite this version:

Xavier Thirioux, Benôıt Combemale, Xavier Crégut, Pierre-Löıc Garoche. A Framework to
Formalise the MDE Foundations. International Workshop on Towers of Models (TOWERS
2007), Jun 2007, Zurich, Switzerland. University of York, pp.14-30, 2007. <hal-00159748v2>

HAL Id: hal-00159748

https://hal.archives-ouvertes.fr/hal-00159748v2

Submitted on 8 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50545173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00159748v2

A Framework to Formalise the MDE Foundations

Xavier Thirioux, Benoît Combemale, Xavier Crégut, and Pierre-Loïc Garoche

Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505), Toulouse, France
first_name.last_name@enseeiht.fr

Abstract. Domain-Specific Language (DSL) are getting more and more popular
and are being used in critical systems like aerospace and car industries. Methods
for simulating and validating DSL models are now necessary in order to make the
new software generation more reliable and less costly.
Developing analysis tools for DSL requires the definition of models semantics.
In this paper, we propose a framework to give a formal foundation of the Model-
Driven Engineering (MDE) approach. We separate the usually common notions
of models and modelling languages associating to each of them a different goal.
In order to prove the consistency of our proposal we express a subset of EMOF,
its static semantics and validate its meta-circularity.

1 Introduction

After the object-oriented approach of the Eighties and its core principle “everything
is an object”, nowadays software engineering follows the Model-Driven Engineering
(MDE) approach with its core principle “everything is a model” [1]. The UML (Unified
Modelling Language) consensus [2,3] was decisive in this transition towards the model-
driven techniques. Once the key concept of metamodel has been accepted as a model
description language, many metamodels emerged. Each with its own specificities ac-
cording to the corresponding domain (software development, process engineering, data
warehouse. . .). For instance, aside UML, the OMG has defined several metamodel such
as SPEM (Software Process Engineering Metamodel) [4] for process modelling.

In order to prevent this wide variety of metamodels to emerge in an independent and
incompatible manner, there was an urgent need to define a general framework for their
description. Among the proposals, the OMG introduced a language to define metamod-
els, which takes itself the form of a model: the MOF meta-metamodel (Meta-Object Fa-
cility) [5] was born. This meta-metamodel is self-descriptive, i.e. MOF may be defined
using concepts defined in MOF (meta-circularity). Because MOF is self-descriptive,
there is no need for further languages to define MOF. Based on these principles, the
OMG organisation introduced the MDA R© (Model Driven Architecture) [6] view of
software modelling. This MDA approach is described in a pyramidal form as presented
in Figure 1. The OMG calls M0 the real world, M1 its models, M2 the metamodels and
M3 the self-defined meta-metamodel.

Unfortunately, MOF can only define the abstract syntax of the modelling language.
It still lacks a concrete syntax and a definition of the semantics of this language. As
users wish to have the same capabilities with DSL as the one they have with usual
tools, there is an increasing demand for editing facilities, simulation, verification or

M1

M0

M2

M3
metamodel(UML, SPEM...)

model(UML models...)

"real" world

metametamodel(MOF)

Fig. 1. OMG Pyramid

code generation features. To fulfil these wishes it is required to define the semantics of
the DSL, that is defining a semantic mapping to a semantic domain [7]. Being able to
formally define a semantics for a DSL and being able to check the consistency of such
semantic mapping become a tremendous challenge that has to be tackled.

First, languages such as OCL [8] appeared and allowed to specify structural se-
mantics through invariants defined over the abstract language. They are used to limit
the number of models that conform to the DSL. OCL can also be used to specify be-
havioural semantics through the definition of pre- and post-conditions on operations.
However, being side-effect free, OCL does not allow to alter the state of a model.

During the last years many works have addressed execution semantics in order to
execute models. Different solutions have been proposed that may be classified into two
main trends [9]. The first one consists in defining an operational semantics directly
on the abstract syntax of the DSL using techniques like meta-programming languages
(e.g., using Kermeta [10], xOCL [9]. . .), an action language such as UML actions [3,
§11] or endogenous transformations as proposed in [11]. The second one consists in
defining a mapping to an abstract syntax of another technical space (TS) [12] which
is formally defined (i.e., for which a mapping to a semantic domain is defined). This
translational semantics has been used in [13] where is proposed a semantic anchoring to
a model of formal semantics built upon ASM (Abstract State Machine [14]), using the
transformation language GReAT (Graph Rewriting And Transformation language [15]).
Using ATL (ATLAS Transformation Language [16]), a direct mapping from the abstract
syntax to ASM is proposed in [17] and a mapping to time Petri nets for process models
validation is described in [18].

Operational semantics is generally more straightforward as it builds atop the DSL
concepts and thus the domain concepts well known by the domain experts. On the con-
trary, mapping to another TS requires a deep knowledge of both the DSL domain and
the targeted TS. Its main advantage is to be able to reuse tools available in that TS like
simulators, model checkers, etc. Both approaches may be combined by (1) defining an

operational semantics used as a reference and (2) defining several mappings to reuse
tools of the target TS. One important point is to be able to assert that all the defined
semantics are consistent. It may be achieved through a proof of equivalence (e.g. bis-
simulation [19]) but relies on a formal specification of the DSL semantics. Furthermore,
this formal specification should be built atop a general framework providing all formal
structures required for the proof of the equivalence. It should also be general enough to
support the different views of MDE, for example those of the OMG.

In this context, our contribution consists in defining a formal framework in which
both models and modelling language concepts could be mathematically defined. We
first introduce some background and related works in Section 2. Then, we present our
framework in Section 3. One important point is to clearly separate the instance level, the
model, and the type level, the modelling language. Also, we define the (1) conformance
criteria which states whether a model is valid according to a modelling language and (2)
the promotion operation which consists in mapping a model into a modelling language
that in turn is used to build models that conform to it. We then validate our framework in
Section 4 by formalising one of the approach of the MDE, that is the pyramid proposed
by the OMG in its view of the Model-Driven Architecture. In particular, we formalise
a subset of Essential MOF (EMOF) [5]. In this paper, we only address static semantic
issues. In the last section we give some concluding remarks and perspectives.

2 Background & Related works

Following the object-oriented (OO) paradigm, the MDE approach relies on two differ-
ent levels:

– a first one allows the definition of concepts and relations between them (i.e. the lan-
guage). It will drive the conception of particular systems. Such systems are defined
according to these concepts and relations. In an OO view, concepts are represented
by Classes and relations are represented by References.

– a second level allows the definition of systems. It is composed of a set of elements
and a set of relations among these elements. In an OO view, these elements are
called Objects and these relations are called Links.

The notion of systems used previously is used in a very general view in MDE. The
modelling can be made at any abstraction level and in every domain, as soon as the
modelling language is defined.

These two different abstraction levels are linked by an instantiation relation, also
called typing relation in the opposite direction. In the OO view, an object O is an in-
stance of a given class A. One can say that O is of type A. Every link between two
objects is such that it exists, in the associated language, a reference between the two
types, the two classes, of both considered objects.

After having precisely defined the concept of model and its representationOf rela-
tion with the modelled system [20,21,22], many works in the MDE community have
precisely defined the different abstraction levels and relations between them, in the
context of one model-driven approach. They allowed to well differentiate the instan-
tiation relation, between one element of a model and one element of the modelling

language, from the conformity relation, between one model and its modelling lan-
guage [23,24,12].

However, these different conceptual frameworks did not define an associated formal
coding. This purpose is addressed by the model type definition. It allows to formalise
the contents of one model. For instance, the works proposed by Steel et al. in [25] have
allowed to define a MOF-based model type-checker for in-place model transformation.
Then, he allowed to evaluate the type substitutability for an input model of one trans-
formation. The same issues arose in the ModelBus project. The purpose is to provide a
bus of models so that MDE CASE tools, seen as service providers, may be integrated
and may interoperate with each other through the exchange (input and output parame-
ters) and sharing (in-out parameters) of models [26]. Parameters sent or received when
a service is called have to be checked. They are thus typed according to a MOF con-
forming meta-model. It means that the model should conform to the metamodel given
as its type. Further constraints have to be defined according to the restrictions of the
tool implementing the service. For instance, it may not be able to handle more than a
certain number of instances of some particular metaclass. Such constraints are defined
through a specific metamodel and an ad hoc semantics. These works deal with the na-
ture of model elements in a particular context, that is MOF in both cases. So they do
not provide a general framework to define any type of model, and thus of modelling
language.

Other works result from the graphs transformations community (e.g., AGG [27]).
They are interested in graph representation of one model. The principle is to define a
type graph from this model graph, which is its conceptual generalisation. Targeted on
the structural graphs transformations, these works do not take into account the definition
of semantic properties on the type graph to perform graph validation.

Finally, Jouault and Bézivin have proposed in [28] a formalisation of their KM3 lan-
guage, a textual language to define metamodels including MOF. They introduce the no-
tion of Re f erenceModel as a model that is a language to define models (Figure 2, left).
A model must conform to its reference model. They also formalise the MDE concepts
of TerminalModel, MetaModel and MetaMetaModel all being models following the
usual view of the MDE community (Figure 2, right). Metamodel and meta-metamodels
are reference models that differ depending on the level of the reference model they con-
form to. They define a model as a triple (G,ω,µ) where G is a graph, ω another model
which is the reference model for the given model and µ is a function that maps elements
of G to nodes of the ω graph. As this recursive definition does not allow finite represen-
tation of models, the authors propose to define an initial model in a reflexive manner.
Such a model is a meta-metamodel and allows the definition of metamodels, that will
in turn permit the definition of models (Figure 2). The core of the article is a formali-
sation in this framework of their meta-metamodel proposal KM3. This model is mainly
composed of two classes: class and reference. Class is linked to reference which is itself
linked back to class. It allows to model relationships between elements in metamodels.

In our opinion, this approach has some drawbacks. Seeing everything as a model
does not allow cleanly to define a reflexive model. The initial formalisation of models
is not well founded without assuming the existence of initial models. Introducing this
concept of an initial model, as a reflexive model, differentiates it from the other non-

Model

ReferenceModel
1

conformsTo

*

Model

ReferenceModel TerminalModel

MetaModel MetaMetaModel

conformsTo 1

*

self.conformsTo.
oclIsKindOf(MetaMetaModel)

self.conformsTo = self

Fig. 2. Formalisation of MDE according to [28]

initial models and therefore breaks the view of “everything is a model” without any
distinction.

Another problem is the definition of the µ function in non-initial models. The µ
function maps edges and nodes of the model graph to nodes of its reference model.
Let us consider a simple model with only one node and a cyclic edge on this node.
This model can be well defined as it conforms to KM3 meta-metamodel: the node is
mapped to the class concept and the edge is mapped to the reference concept. But this
model, instance of the meta-metamodel, is, in their view, a metamodel. Consider now
a model with two nodes linked by an edge. This model conforms to the metamodel but
it is impossible to map via a µ function its edge to a node of its reference model. In
fact, the µ function signature requires that every metamodel, at the level M2, contains a
class similar to “reference” that allows to define links between objects at the sub-level.
If not the case, edges cannot be typed and therefore the model is not definable. So, the
proposed formalisation only applies for meta-metamodels but not to any model in the
general case.

A prolog code is given as an appendix which validates the KM3 reflexivity but it
does not follow the mathematical formalisation of the paper. For instance, the µ func-
tion is not explicit and scattered among prolog rules. The choice of prolog for such an
implementation does not provide any typing or structuring mechanism.

Our work differs from this approach and separates models from reference models
considering them elements of different types. It allows the definition of the reflexiveness
of an initial model in a more satisfying way while not relying on the structure required
at a particular level of the OMG pyramid.

3 Formalisation of a Model-Driven Engineering Framework

In this section, we give the insight of our framework. We first define the notions of
model and reference model. We then describe conformity through the conformsTo func-
tion and also the promotion operation that maps a model into a reference model.

Model (M) ReferenceModel (RM)

conformsTo(m:M) : Bool
1..*

0..1

◀ promotionOf

conformsTo ▶

Fig. 3. Model & Reference Model Definition with UML Class Diagram Notation

3.1 Model Vs. Reference Model

Our approach consists in separating the type level from the instance level, describing
them with different structures hence different types. Our aim is to provide a solid foun-
dation to the MDE approach, thus allowing further developments in formalisation and
validation activities. Following [28], we use the terms Model and Reference Model in
order to distinguish between these two levels. A Model (M) is the instance level and
a Reference Model (RM) is a modelling language from which we can define a family
of models (Figure 3). A RM also specifies the semantic properties of its models. For
instance, in UML, a multiplicity is defined on relations to specify the allowed num-
ber of objects that have to be linked. Moreover, OCL is used to define more complex
constraints which may not have any specific graphical notation.

Into our framework, the concept of Re f erence Model is not a specialisation of
Model. They are formally defined in the following way: let us consider two sets: Classes
represents the set of all possible classes and References correspond to the set of refer-
ence labels. We also consider instances of such classes, the set Objects.

Definition 1 (Model). Let C ⊆Classes be a set of classes. Let R⊆{〈c1,r,c2〉 | c1,c2 ∈
C ,r∈References} be the set of references among classes such that ∀c1 ∈C ,∀r∈Refer-
ences, card{c2 | 〈c1,r,c2〉 ∈R} ≤ 1.

We define a model 〈MV,ME〉 ∈ Model(C ,R) as a multigraph built over a finite
set MV of typed objects and a finite set ME of labelled edges such that:

MV ⊆ {〈o,c〉 | o ∈ Objects,c ∈ C }
ME ⊆

{
〈〈o1,c1〉,r,〈o2,c2〉〉 〈o1,c1〉,〈o2,c2〉 ∈MV,〈c1,r,c2〉 ∈R

}
Note that in our framework, an object can be duplicated in a model graph, associ-

ated to different classes to form different graph nodes. The semantics of this potential
duplication is related to inheritance and to the possibility of object upcasting, both no-
tions usually being present in OO languages. This concern will be further discussed in
Section 4.1.

Definition 2 (Reference Model). A Reference Model is a multigraph representing classes
and references as well as semantic properties over instantiation of classes and refer-
ences. It is represented as a pair composed of a multigraph (RV,RE) built over a finite
set RV of classes, a finite set RE of labelled edges, with a property over models repre-
sented as a predicate function.

We define a reference model as a triple 〈(RV,RE),con f ormsTo〉 ∈ refModel such
that:

RV ⊆ Classes
RE ⊆ {〈c1,r,c2〉 | c1,c2 ∈ RV,r ∈ References}
con f ormsTo : Model(RV,RE)→ Bool

such that ∀c1 ∈ RV,∀r ∈ References,card{c2 | 〈c1,r,c2〉 ∈ RE} ≤ 1

3.2 Conformity

Given one model M and one reference model RM, we can check conformance. The
con f ormsTo function embedded into the RM achieves this goal. It identifies the set of
valid models with respect to a reference model.

In our framework, the conformance checks on the model M that:

– every object o in M is the instance of a class C in RM.
– every link between two objects is such that it exists, in RM, a reference between the

two classes typing the two elements. In the following we will say that these links
are instances of the reference between classes in RM.

– finally, every semantic property defined in RM is satisfied in M. For instance, the
multiplicity defined on references between concepts denotes a range of possible
links between objects of these classes (i.e. concepts). It is treated in Section 4.1.

This notion of conformity can be found in the framework depicted in Figure 3 by a
dependency between a M and a RM it conforms to.

In fact, the semantic properties associated to the reference model are encoded into
the con f ormsTo function. These semantic properties are not to be given a syntax. In-
stead, in order to express our properties, we assume an underlying logic that should
encompass OCL in terms of expressive power. As such, the problem of representing
logical sentences that we may promote to properties afterwards is a secondary concern.
As shown below, we can prove the MOF to be meta-circular without any OCL formula.

3.3 Promotion: from a MODEL to a REFERENCE MODEL

In this framework, a Reference Model can be either directly defined or built as the pro-
motion of a given model. Despite it is represented as a predicate function promotionOf
on Figure 3, promotion is an operation that allows to map a model to a reference model.
The resulting Reference Model can then be used to define new models.

Promotion operation must then build the Reference Model multigraph composed of
concepts, represented by nodes, and relations between these concepts, as well as the
semantic properties encoded into the con f ormsTo function.

The different steps of a promotion operation are the following:

1. Identify the different concepts among the model elements, inside the model graph.
These elements will be mapped at a concept level. They will define types in the
Reference Model.

2. Identify relations between the previous concepts. The model graph is again used
to identify paths between elements promoted to the concept level. These paths are
then promoted to the reference level in the Reference Model graph.

3. The last step defines the different semantic properties that must be satisfied by
models conforming to the Reference Model. The conjunction of these properties
will then define the semantic properties of the con f ormsTo function in the resulting
reference model.

4 Application to EMOF and OMG pyramid issues

As a proof of concepts, we apply our approach to the formalisation of the OMG pyra-
mid. We choose to formalise the main subset of the OMG EMOF [5, §12], Core EMOF,
as the initial reference model. It is presented in Section 4.1 with the formalisation of the
semantic properties that are used to define the conformsTo function. In Section 4.2, we
show meta-circularity of Core EMOF by first defining the model of Core EMOF that
conforms to the reference model of Section 4.1 and then by promoting it to a reference
model that is equivalent to the initial reference model.

4.1 Core EMOF as an initial Reference Model
The reference model of this EMOF subset is defined in Figure 4 using the usual UML
class diagram. It is discussed hereafter.

We informally describe the EMOF reference model and also define a set of generic
properties representing its core concepts. Each property, once instantiated, is meant to
yield (a conjunct of) an overall con f ormsTo function.

The EMOF reference model, as can be guessed from Figure 4, is defined with:

RV , { NamedElement,Type,TypedElement,DataType,Boolean,
String,Natural>,Class,Property }

RE , { 〈Class,ownedAttribute,Property〉,〈Class,isAbstract,Boolean〉,
〈Class, inh,Type〉, . . . }

where “inh” stands for the standard inheritance relation. Due to lack of space, we cir-
cumvent the formal definition of the con f ormsTo function of EMOF and expose it in
section 4.2 only as the result of a model promotion (of one of its conforming models),
that instantiates our generic properties.

Classes & Properties The class (Class in Figure 4) is the conceptual entity that allows
to define a family of objects. It can be instantiated to build instances. An instance is a
particular object that has been created following constraints related to its class. Every
instance is linked to exactly one class through the instantiation relation.

A class gathers an ordered set of properties (Property) that are duplicated to build
the structure of each instance. Each of these properties is defined between a class and a
type (Type) that can be:

– a datatype (DataType), associated to a specific value semantics. It is then called an
attribute.

– another class, following the aforementioned semantics. It is then called a reference.

Property
lower: Natural⊤ = 1
upper : Natural⊤ = 1
isOrdered : Boolean = false
isComposite: Boolean = false
default: String = ""

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType

Boolean String Natural

owner

⊤

Fig. 4. The EMOF Core with UML Class Diagram Notation

Class description

Inheritance is a way to form new classes (i.e. sub-classes) using other classes (i.e.
parent-classes) that have already been defined. A sub-class is linked to its parent-classes
by a link of kind superClass. The new classes take over (or inherit) properties of the
pre-existing parent classes.

In our framework, we have many open directions, chosen whether our reference
model should include a notion of inheritance or not. For instance:

– No inheritance: in this context, no object may ever be duplicated and we can assume
the following property.

noInheritance , 〈MV,ME〉 7→ ∀〈o1,c1〉,〈o2,c2〉 ∈MV,o1 = o2 ⇒ c1 = c2

– Standard Inheritance: objects can be duplicated, provided these duplicates may be
downcasted to a common base object. The following properties are parametrised by
inh, taken as the standard inheritance relation. First, we define an auxiliary predi-
cate stating that an object o of type c1 has a downcast duplicate of type c2.

hasSub(inh ∈ RE,o ∈ Objects,c1,c2 ∈ Classes,〈MV,ME〉) , c1 = c2
∨∃c3 ∈ Classes,〈〈o,c2〉, inh,〈o,c3〉〉 ∈ME ∧hasSub(inh,o,c1,c3,〈MV,ME〉)

Then, we define the notion of standard inheritance. The first conjunct states that
the inheritance relation only conveys duplicate objects. The second one states that
every set of duplicates has a base element.

standardInheritance(inh ∈ RE) , 〈MV,ME〉 7→
∀〈〈o1,c1〉, inh,〈o2,c2〉〉 ∈ME,o1 = o2
∧∀〈o1,c1〉,〈o2,c2〉 ∈MV,o1 = o2 ⇒∃c ∈ Classes,

hasSub(inh,o1,c1,c,〈MV,ME〉)∧hasSub(r,o2,c2,c,〈MV,ME〉)

Finally, the following property states that c2 is a direct subclass of c1.

subClass(inh ∈ RE,c1,c2 ∈ RV) , 〈MV,ME〉 7→
∀〈o,c〉 ∈MV,c = c2 ⇒ 〈〈o,c2〉,r,〈o,c1〉〉 ∈ME

Abstract Classes are identified with the attribute isAbstract set to true. These classes
serve as parent classes and child classes are derived from them. They are not themselves
suitable for instantiation. Abstract classes are often used to represent abstract concepts
or entities. Features of an abstract class are then shared by a group of sibling sub-classes
which may add new properties.

Therefore, a model M does not conform to a RM if it contains objects that are
instances of abstract classes of RM without having instances of concrete derived classes
as duplicates.

isAsbstract(inh ∈ RE,c1 ∈ RV) , 〈MV,ME〉 7→
∀〈o,c〉 ∈MV,c = c1 ⇒∃c2 ∈ RV,〈〈o,c2〉,r,〈o,c1〉〉 ∈ME

Property description

Lower & Upper Either for attributes or for references, a minimum and maximum
number of instances of target concept can be defined using the lower and upper at-
tributes. This pair is usually named multiplicity. In order to ease the manipulation of
this datatype, we introduce the type Natural> = N∪{>}. Using both attributes, it is
used to represent a range of possible numbers of instances. Unbounded ranges can be
modelled using the > value for the upper attribute.

lower(c1 ∈ RV,r1 ∈ RE,n ∈ Natural>) , 〈MV,ME〉 7→
∀〈o,c〉 ∈MV,c = c1 ⇒ card({m2 ∈MV | 〈〈o,c1〉,r1,m2〉 ∈ME})≥ n

An analogous formalisation is defined for the upper property replacing ≥ by ≤.

Opposite A reference can be associated to an opposite reference. It implies that, in
valid models, for each such a link between two object instances of this reference, there
must exists a link in the opposite direction between these two same objects.

isOpposite(r1,r2 ∈ RE) , 〈MV,ME〉 7→
∀m1,m2 ∈MV,〈m1,r1,m2〉 ∈ME ⇔ 〈m2,r2,m1〉 ∈ME

Composite A reference can be composite and as a matter of fact, defining a set of
references considered as a whole to be composite, instead of a single one, appears closer
to the intended meaning. In such a case, instances of the target concept belong to a single
instance of source concepts. Another constraint, a temporal one, considers the lifetimes
of source and target instances to be entangled. But this constraint can not be modelled
yet in our framework.

areComposite(c1 ∈ RV,R⊆ RE) , 〈MV,ME〉 7→
∀〈o,c〉 ∈MV,c = c1 ⇒ card({m1 ∈MV | 〈m1,r,〈o,c〉〉 ∈ME,r ∈ R})≤ 1

Other properties, which are not treated here, are firstly the impossibility to have two
opposite references which are both composite. A second one is the ordered property.
This semantic property is only temporal and is not treated in this article.

Indeed, we choose not to model the notion of operation on classes. This notion
would allow the definition of behaviours through an execution semantics. It is out of
the scope of this paper.

: ownedAttribute
: superClass
: type
: opposite

: Class
name = "NamedElement"
isAbstract = true

: Property
name = "name"

: Class
name = "Type"
isAbstract = true

: Property
name = "type"

: Class
name = "DataType"
isAbstract = true

: Class
name = "TypedElement"
isAbstract = true

: Class
name = "Class"

: Property
name = "isAbstract"
default = "false"

: Property
name = "superClass"
lower = 0
upper = *

: Property
name = "ownedAttribute"
lower = 0
upper = *
isOrdered = true
isComposite = true

: Class
name = "Property"

: Property
name = "lower"
default = "1"

: Property
name = "upper"
default = "1"

: Property
name = "isOrdered"
default = "false"

: Property
name = "isComposite"
default = "false"

: Property
name = "opposite"
lower = 0

: Property
name = "owner"

: Property
name = "default"

: Class
name = "Boolean": Class

name = "Natural⊤"

: Class
name = "String"

Fig. 5. The EMOF Core with UML Object Diagram Notation

4.2 Validation of the Core EMOF Meta-circularity

We now describe, in our framework, how the MOF is correctly self-defined. The usual
view of the MOF presented in Figure 4 is its reference model view without the con-
formsTo function. Only a small part of the semantic properties are represented in such
diagrams, like multiplicities over references. We will first introduce a model for the
MOF reference model. Then we will build a promotion function, mapping this MOF
model to the MOF reference model.

From a MOF Reference Model to the MOF Model The Figure 5 presents a MOF
model, with the UML Object Diagram notation [3]. In this diagram, attributes with
default values are omitted and links have specific graphical notations according to their
types. All model elements are instances of some concepts or references of the MOF
reference model presented in Figure 4 and this model satisfies the reference model
semantic properties.

Each concept is instantiated as an object of type Class and each reference or at-
tribute as an object of type Property. A property of a concept, either a reference or an
attribute, is represented by a link from the object instantiating the concept to the object
instantiating the property. There is also a link from the object instantiating the property
to an object instantiating the type of the property. For instance, the instantiation of an
attribute will point to an object instantiating the concept Boolean, String or Natural>,
when the instantiation of a reference will point to an object instantiating the referenced
concept.

A promotion from the MOF model to the MOF reference model We now describe
a promotion function which maps the model of Figure 5, represented as a typed multi-
graph, to a reference model, represented by a pair composed of a multigraph and a
(conjunction of) semantic properties over the multigraph elements. This function satis-
fies the correctness assumptions of Section 3.3. This function is defined in three parts:

1. we first build the nodes of the reference model graph,
2. we define the references between nodes,
3. we finally enrich the resulting graph with semantic properties expressed on the

graph elements.

Building nodes: reference model concepts This first step is straightforward. We have to
identify the types of nodes in our model that will represent concepts of our reference
model.

In the MOF model, we identify objects that are of type Class as concepts (i.e.,
classes) in the target reference model. The field name of these objects will identify
these classes in the resulting reference model. We thus have the following concepts:
DataType, Natural>. . . .

More formally, let (MV,ME) be the graph of the model. We build the set RV of
reference model vertices:

RV ,
{

o.name 〈o,Class〉 ∈MV
}

Building edges: reference model references Once classes have been built, the second
step aims at enriching the graph with edges between nodes, and modelling references
between classes.

We describe the edge building as a mapping from a sequence of edges and objects
in the MOF model graph to one edge in the MOF reference model graph. Each pattern
must be applied in every possible way. Considering semantic properties of the MOF
reference model would be necessary if we were to prove that these pattern-matching
rules are well formed.

We have only one such rule. This rule maps paths from one object o1 of type Class to
one object o2 of type Property by an edge of type ownedAttribute, followed by an edge
of type type to an object o3 of type Class. Such paths are mapped to a reference from
the class associated to the object o1 to the class associated to the object o3. They are
labelled by the attribute name of the object o2. These references will later be associated
to semantic properties.

Let Rule be the predicate used in this matching rule.

Rule(o1,o2,o3) , 〈〈o1,Class〉,ownedAttribute,〈o2,Property〉〉 ∈ME
∧〈〈o2,Property〉,type,〈o3,Class〉〉 ∈ME

RE is the set of edges in the reference model graph built with this rule.

RE ,
{
〈o1.name,o2.name,o3.name〉 Rule(o1,o2,o3)

}

Enriching the reference model with semantic properties The last step enriches the re-
sulting reference model graph by specifying semantic properties over models. This
global semantic property (seen as a con f ormsTo function) is the conjunction of the
different single properties attached to the promoted reference graph elements. Each of
these single properties is defined as an instantiation of a generic property as defined in
Section 4.1.

inheritance Every link labelled superClass between two objects of type Class is mapped
to an inheritance relation between the two associated classes.^{

subClass(inh,o1.name,o2.name) 〈〈o1,Class〉,superClass,〈o2,Class〉〉 ∈ME
}

abstract classes Every class c resulting from the promotion of some object o with
an attribute isAbstract which value is true has the property isAbstract(c). It
denotes abstract classes that could not be instantiated.^{

isAbstract(inh,o.name) 〈〈o,Class〉,isAbstract,〈true,Boolean〉〉 ∈ME
}

lower Every reference o2.name between classes o1.name and o3.name, for every triple
(o1,o2,o3) matching the reference promotion rule, has a minimum number of o2.lower
instantiations in valid models.^{

lower(o1.name,o2.name,o2.lower) Rule(o1,o2,o3)
}

upper This semantic property is defined similarly.^{
upper(o1.name,o2.name,o2.upper) Rule(o1,o2,o3)

}
ordered Every reference between classes that has been built using the reference match-

ing rule and for which the object o2 has an attribute named isOrdered with value
true satisfies the ordered property. This property is related to the order in which tar-
get objects of a reference may be accessed and therefore implies that some notions
of time and execution are defined. This property cannot not be treated here, due to
the lack of some operational semantics.

opposite Every reference promoted from an object o1 with a link typed opposite
to another object o2 also promoted to a reference defines these two references as
opposite.^{

isOpposite(o1.name,o2.name) 〈〈o1,Property〉,opposite,〈o2,Property〉〉 ∈ME
}

composite Every reference between classes that has been built using the reference
matching rule and for which the object o2 has an attribute named isComposite with
value true satisfies the composite property. We first define the set of global set of
composite relations.

compRelations , {o2.name | 〈o2,Property〉,isComposite,〈true,Boolean〉〉 ∈ME}

Then we state the promotion itself.^{
areComposite(o1.name,compRelations) 〈o1,Class〉 ∈MV

}

default value Every reference between classes that has been built using the reference
matching rule and for which the object o2 has an attribute named default with value
v has a default value v when instantiated. This property is only valid for the initial
state of objects, so we cannot treat it here, due to the lack of some operational
semantics.

4.3 Definition of the OMG Pyramid

The framework defined allows the formalisation of the pyramid proposed by the OMG
(Figure 6). Indeed, the Model and Reference Model levels are necessary and sufficient to
define in a clear and formal way model, metamodel and meta-metamodel differentiating
the various abstraction levels of the OMG pyramid.

The MOF metamodelling language (i.e., meta-metamodel) allows to standardise
the concepts used to describe the various modelling languages (i.e., metamodels). As
introduced by the OMG, “the MOF has the reflection property that extends the MOF
with the ability to be self describing”. This property makes it possible to limit to four
the number of abstraction levels of the OMG pyramid.

However, this property means that classes (i.e., types) defined in the MOF are in-
stances of classes of this same MOF. From a formal point of view, it is not possible that
a type is an instance of a type!

Within our framework, we define the MOF (Figure 6, M3) like a Reference Model
(MOF : RM) built such that there is a model (MOF : M) in conformity with the Ref-
erence Model and we construct a promotion that makes possible to obtain exactly the
MOF : RM Reference Model.

The description of all other levels is similar. A modelling language (i.e., metamodel)
describes the concepts (i.e., types) that can be instantiated using this language. Thus, a
metamodel (e.g. Figure 6, M2) is defined like a Reference Model (e.g., UML : RM for
the UML modelling language) obtained through the promotion of a Model (UML : M)
that conforms to the MOF : RM.

In the same way, a model (abstraction of the real world, e.g., System : M at the level
M1 in Figure 6) is defined from, and conforms to, a Reference Model (e.g. UML : RM)
of the M2 level.

Note that the framework which is defined in this article supports the formalisation
of the OMG pyramid but, with the advantage of being more general, does not bound the
number of abstraction levels (as described by OMG). Nonetheless, the classification of
the OMG is still meaningful.

5 Conclusion

In this paper, we have proposed a mathematical formalisation of the MDE framework.
Our work, inspired by [28], consists in defining the notions of model and reference
model based on typed multigraphs. We also formalise the two operations that are fun-
damental to the MDE approach, conformsTo that indicates whether a model is valid
with respect to a reference model and promotion which builds a reference model from a

MOF:M

MOF:RM
<<promotionOf>>

<<conformsTo>>

UML:M UML:RM
<<promotionOf>>

<<conformsTo>>

System:M
<<conformsTo>>

Real World M0

M1

M2

M3

me
tam
eta
mo
de
l

me
tam
od
el

mo
de
l

Fig. 6. OMG Pyramid with our Framework

model. It is then possible to prove that EMOF is self-defined and to derive the MOF ref-
erence model from the MOF model. The OMG pyramid but also any tower of reference
model/model with an arbitrary number of levels may be built using this process: starting
from a reference model, a model is defined that conforms to it and is then promoted to a
new reference model. In this paper, the formalisation is presented using set theory. This
formal framework for MDE is being implemented using the COQ proof assistant [29]
with the aim of being able to formally reason on metamodels (in fact reference model)
and models.

Short-term perspectives include formalising common operations on models, such
as the merge, import and fusion operators as well as models parametrised by models.
Also, reflecting the OCL logic into our formalism seems to be a rather simple but useful
task, as it would allow standard presentation of reference models to be embedded in our
framework in a straightforward way.

In this paper, we have only addressed the formalisation of static semantics, applied
on EMOF. A further more complex task would be to deal with operational semantics (in-
cluding semantics of so-called operations) in the same spirit, our wish being to handle
as homogeneously as possible both structural relations between two concept instances
and next-time relations between concept instances and their images (new states repre-
sented by new models) as a side-effect of an operation calling. It would allow to define
a reference semantics for a given DSL. That could be use to check the behavioural
equivalence with different translations from this DSL to other technical spaces.

Finally, from a theoretical standpoint, when a complete framework exists endowed
with its final characteristics, it will remain to find out its relative pros and cons with the
much more well-behaved and structured category theory. For the time being, our ideas
have led to a typed framework, but with quite a loose structure. In other words, is there
a specific place to be taken between untyped set theory and category theory or is one of
the aforementioned mathematical languages able to fully handle MDE activities on its
own in a smart way.

References

1. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering. CEPIS, UP-
GRADE, The European Journal for the Informatics Professional V(2) (2004) 21–24

2. Object Management Group, Inc.: Unified Modeling Language (UML) 2.1.1 Infrastructure.
(February 2007) Final Adopted Specification.

3. Object Management Group, Inc.: Unified Modeling Language (UML) 2.1.1 Superstructure.
(February 2007) Final Adopted Specification.

4. Object Management Group, Inc.: Software Process Engineering Metamodel (SPEM) 2.0
RFP. (novembre 2004) ad/04-11-04.

5. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Core Specification. (Jan-
uary 2006) Final Adopted Specification.

6. Miller, J., Mukerji, J.: Model Driven Architecture (MDA) 1.0.1 Guide. Object Management
Group, Inc. (June 2003)

7. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of "semantics"?. IEEE
Computer 37(10) (2004) 64–72

8. Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0 Specifica-
tion. (October 2003) Final Adopted Specification.

9. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling - A Foundation for
Language Driven Development. version 0.1 (2004)

10. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented Meta-
Languages. In: MODELS/UML’2005. LNCS, Montego Bay, Jamaica, Springer Verlag (Oc-
tober 2005)

11. Combemale, B., Rougemaille, S., Crégut, X., Migeon, F., Pantel, M., Maurel, C., Coulette,
B.: Towards a Rigorous Metamodeling. In: 2nd International Workshop on Model-Driven
Enterprise Information Systems (MDEIS), Paphos, Cyprus, INSTICC (May 2006)

12. Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-based DSL Frameworks. In: On-
wards! track of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2006, Oc tober 22-26, 2006, Port-
land, OR, USA, ACM (2006)

13. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring with Model
Transformations. In: Model Driven Architecture, Foundations and Applications (MDA-FA).
Volume 3748 of LNCS., Springer (2005) 115–129

14. Gurevich, Y.: The Abstract State Machine Paradigm: What Is in and What Is out. In: Ershov
Memorial Conference. (2001)

15. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo, A.: The Design of a
Language for Model Transformations. Technical report, Institute for Software Integrated
Systems, Vanderbilt University, Nashville, TN 37235, USA. (2005)

16. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the MoDELS
2005 Conference, LNCS 3844, Springer (2006) 128–138

17. Ruscio, D.D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending AMMA for Sup-
porting Dynamic Semantics Specifications of DSLs. Technical Report 06.02, LINA (2006)

18. Combemale, B., Garoche, P.L., Crégut, X., Thirioux, X.: Towards a Formal Verification
of Process Model’s Properties – SimplePDL and TOCL case study. In: 9th International
Conference on Enterprise Information Systems (ICEIS), Portugal, INSTICC (June 2007)

19. Milner, R.: Communication and concurrency. Prentice Hall International (UK) Ltd., Hert-
fordshire, UK, UK (1995)

20. Atkinson, C., Kuhne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Softw. 20(5) (2003) 36–41

21. Seidewitz, E.: What models mean. Software, IEEE 20(5) (2003) 26–32

22. Bézivin, J.: In search of a Basic Principle for Model-Driven Engineering. Novatica – Special
Issue on UML (Unified Modeling Language) 5(2) (2004) 21–24

23. Favres, J.M.: Towards a Basic Theory to Model Model-Driven Engineering. In: 3rd Work-
shop in Software Model Engineering (WiSME@UML), Lisbon, Portugal (October 2004)

24. Kuhne, T.: Matters of (meta-) modeling. Software and Systems Modeling (SoSyM) 5(4)
(December 2006) 369–385

25. Steel, J., Jézéquel, J.M.: On model typing. Software and Systems Modeling (SoSyM) (2007)
26. Blanc, X., Gervais, M.P., Sriplakich, P.: Model Bus: Towards the Interoperability of Mod-

elling Tools. In: Model Driven Architecture, Foundations and Applications (MDAFA). Vol-
ume 3599 of LNCS., Twente, The Netherlands, Springer (June 2004) 17–32

27. Taentzer, G.: AGG : A Graph Transformation Environment for Modeling and Validation of
Software. In Springer-Verlag, ed.: AGTIVE’03. Volume 3062 of LNCS. (2003) 446–453

28. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: IFIP Int. Conf. on
Formal Methods for Open Object-Based Distributed Systems (FMOODS). Volume 4037 of
LNCS., Springer (2006) 171–185

29. The Coq Development Team: The Coq Proof Assistant Reference Manual – Version V8.1.
(2006) http://coq.inria.fr.

