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recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50545089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00168316


Estimation of depth on thick edges images
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Abstract—This article deals with a spatial approach to depth

estimation by analysis of edges in images. A Depth from Defo-

cus method is explained and the physical process is described.

Theoretical developments are made to apply it on thin or thick

edges and the conditions of use are pointed out. Some results

on images are presented to illustrate the efficiency and the in-

fluence of the conditions of use.

Index Terms— Blur estimation, depth from defocus, thick

edge, 3D primitives.

I. INTRODUCTION

The depth, distance between the visible surface of objects

in a scene and the sensor of the camera, is a useful piece

of information for the computation of the coordinates of the

points belonging to this surface in a 3D-space of reference.

Several methods such as stereopsis, depth from focus or de-

focus and shape from shading or structure for motion have

been proposed to obtain these coordinates.

There are many works with multiocular stereovision ap-

proaches on depth perception. The well known triangulation

principle is used and good efficiency can be obtained. Never-

theless, the problem of stereo correspondence has to be han-

dled. Monocular stereovision approaches have also been de-

veloped and overcome this correspondence problem. Depth

From Focus (DFF) techniques ([1], [2], [3], [4]), look for

patches of sharpness in the image and link them to the depth

by classic relationships of the geometrical optic. One major

drawback is the long processing time to obtain a complete

depth map because of the movement of the lens. So, this

technique is reserved to low time process. By using at least

two images of the same scene with only one point of view,

Depth From Defocus (DFD) methods speed up the process-

ing time by using the perceptible optical blur on heteroge-

neous image patch corresponding to edges [5] or textures [6].

These images are acquired with different well-known camera

parameters settings. In comparison with multiocular stereo-

vision, the correspondence problem does not arise in DFD.

However, the main problems associated with the DFD are

the requirement of proper modelling of defocusing in terms

of camera parameters and the need for precise camera cali-

bration.

In the literature on DFD, Pentland [7] compares two im-

ages of the scene, one formed with a very small (pin-hole)

aperture and the other image formed with a normal aper-

ture. By approximating the defocus blur by a Gaussian func-

tion, the depth was recovered through inverse filtering. Sub-

barao [8] proposes a frequency domain method in which the

constraint of one image being formed with a pin-hole aper-

ture is removed and allowed several camera parameters to

be varied simultaneously. Subbarao and Surya propose an

approach in [9] called the S-transform where the inverse fil-

tering is done directly in the spatial domain. Ziou and Desch-

enes [10] improve this method with the Hermite polynoms.

Pham and Astlantas [12] employ a multi-layer perceptron

network trained by backpropagation to compute distances

from derivative images of blurred edges. For each approach,

the actual problem is the blur identification from observa-

tions. In recent works [13], the original image is modelled as

a 2D autoregressive process and the identification problem is

formulated as a maximum likelihood estimation problem.

As in the major works on blur identification, our method

deals with the impulse response of the optical system. Our

technique uses only sharp and blurred images of the same

scene. The optical blur, characteristic of the depth, is ob-

served on gray level discontinuities in the blurred image.

This article deals with the generalization of a local depth

estimation on edges. First of all the estimation method of

the amount of blur linked with the depth using a couple

of focused and defocused images is explained. More de-

tails can be found in [14]. The theoretical relations are ex-

posed and improvement with introduction of a generalized

form is described. Therefore, a new relation to compute the

spread parameter on several points belonging to the edges

is defined and allows to reduce the noise sensitivity of the

method. Conditions of application are pointed out and lead

to new consideration such as constraints for further develop-

ment. Then, some experiments are carried out to highlight

improvements of noise sensitivity, importance of application

constraints and performances. Results on synthetic and real

images are finally presented.

II. CAMERA DEFOCUS BLUR AND IMAGE MODEL

In DFD methods, a relationship between depth, the pa-

rameters of the camera and optical blur in images is searched.

The physical effect produced by the modification of the aper-

ture of the diaphragm on images characteristics is used in or-

der to establish this relationship. In the image formation pro-

cess, for a scene containing several depth planes, only one

plane gives a sharp or a focused image corresponding to an

image plane with a fixed distance. Points of objects belong-

ing to the other planes will form spots more or less blurred

according to their distance to the image plan.

The formation of the optical blur is linked to the optical

transfer function of the system [15] in the spatial domain rep-

resented by its Point Spread Function (PSF). Thus, a con-



volution relationship is established between the sharp image

Is (i, j), the blurred image Ib (i, j) and the PSF h (i, j) given

by:

Ib (i, j) = Is (i, j)
⊗
2D PSF (i, j) (1)

where i and j are the coordinates of a pixel and
⊗
2D is the 2D

convolution operator.

The PSF depends on the properties of the optic materi-

als (indication of refraction) and on the geometrical form

of the lens (focal distance) as well as on the parameter shot

(distance of the object plan to the main plan, aperture, light-

ing). A realistic model taking into account both the aspects of

the geometrical optic effects of the diffraction and the non-

idealities of lenses does not exist. Several models have al-

ready been proposed. In order to deal with different forms of

point spread function h, we use the spread parameter σh to

characterize them where σh is the standard deviation of the

distribution of any function h.

The ideal model or pillbox model doesn’t take any optical

aberrations into account and directly translates the geomet-

rical optic relation. This model is usually used if there is a

large amount of blur because in this case effects of defocus

are predominant on those due to diffraction. Under this as-

sumption, this model appears as a good approximation of the

physical point spread function.

A real model that takes diffraction of light into account

was defined by Hopkins [16] and approximated by Stokseth

[17]. This model uses Bessel functions with a wavelength as

a parameter. In our application, we use only intensity images

and are only able to give an estimated mean value for the

wavelength. The accuracy of the model is lost in the defini-

tion of the value of the wavelength.

A good approximation for the intensity distribution has

been suggested by a 2D gaussian model h. This model is

a good approximation of Stokseth model in spatial domain

but it is different over the first lobe in frequency domain that

means small differences appear only for large values of (i, j)

for which the value of h (i, j) becomes lower. However,

these differences can be neglected. So, we have selected this

model with a corresponding spread parameter σh.

h (i, j) =
1

2πσ2
h

e
− i2+j2

2σ2
h (2)

For each PSF model, the spread parameter σ is directly

linked with the depth so by:

σso
=

m

so

+ c (3)

where m and c are characteristic of a set of camera tuning pa-

rameters [18]. These parameters are based on the ideal thin

lens model and can never be measured precisely for any cam-

era since real imaging systems have several lenses. That’s

why a calibration procedure is often used to determine m and

c. Experimental determination of m and c has to be carefully

done because uncertainty in these parameters is source of er-

ror evaluation of the depth so. .

Relation (3) shows that depths so can be computed if val-

ues of σso
are evaluated, that means the depth is directly

linked to the spread parameter of the space variant point

spread function.

III. DEPTH PERCEPTION METHOD

Classic depth estimation approaches use either the spa-

tial content of the image by geometrical characteristics ([19],

[7]) as well as the form of objects in the scene [1], or the

frequency information by a Fourier analysis [8].

Discontinuities of luminance expressed on the edges of

observed objects for which the blur effects are easily percep-

tible, are used. The initial used method is similar to those

proposed by Pentland where the acquisition of a sharp im-

age with a closed aperture and a blurred image with an open

aperture is retained. The position of edges is detected with

a gradient operator. An estimation of the optical blur is ob-

tained from the module of the gradients of each gray level

image. With the ratio of gradient magnitude of sharp and

blurred images, it is possible to identify the spread parameter

σso
and thus to estimate the depth so with the relation (3).

Figure 1 shows the synopsis of the method.

Fig. 1. Synopsis of the method

|▽Is (i, j)| and |▽Ib (i, j)| are respectively the sharp im-

age gradient magnitude and the blurred image gradient mag-

nitude used to compute the ratio:

R(i, j) =
|▽Is (i, j)|
|▽Ib (i, j)| (4)

As ▽Is (i, j) can take different values, computing this ra-

tio allows us to normalize the level of luminance of each edge

point.

A. Method description

Lets the sharp image Is (i, j) presenting gray level dis-

continuities in slope with a magnitude (b − a) and a length

ε under a single direction θ. In other directions, the sharp

image does not present gray level variations. The gray level

function for the sharp edge profile cs (x) can be expressed

by the following relation where x is expressed in pixels and

represents one line or one column of this image:

cs (x) =







a

a +
(

b−a
ε

)

(x − x0)

b

x < x0

x0 ≤ x ≤ x0 + ε

x > x0 + ε

(5)

In order to compute ▽Is(i, j) from the digital image

Is(i, j), the gradient Prewitt operator (▽p) is used for its

simplicity in image real time implementation. The Sobel gra-

dient operator can also be applied for its efficiency in noisy

context but it introduces an higher computation time. One

may use optimal edge detectors like Canny-Deriche, how-

ever as IIR filter it introduces contributions of all edges in

the image in the gradient computation . Its application will

be more suitable in frequency domain approaches of DFD.



The gradient magnitude of the sharp edge profile is com-

puted using a 2D-1D correspondence in case of edge direc-

tions θ = ±kπ/2:

|▽pcs (x)| =
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x > x0 + ε

(6)

The same analysis can be done with the blurred image.

The blurred edge profile can be expressed by:
|cb(x)| = |cs(x) ⊗ LSFso

(x)| (7)
where LSFso

(x) is the line spread function with a spread

parameter σh = σso
expressed by:

LSFso
(x) =

∑

y

h (x, y)∆y ∼= 1

σso

√
2π

e
− x2

2σ2
so (8)

The subscript so is introduced here to specify the depth de-

pendency of spread parameter.

Sharp and blurred edge profiles are represented on figure

2.

Fig. 2. Sharp and blurred edge profiles

The ratio given by (4) is computed for different values

of ε at two particular points x0 and x0 + ε with R(x0) =

R(x0 + ε).

The gradient of the sharp edge presented on figure 3 is:

|▽pcs(x0)| =

∣

∣

∣
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b − a

ε

∣

∣

∣

∣

(9)

The gradient of the blurred edge presented on figure 3 is:

|▽pcb(x0)| =

∣

∣

∣

∣

(

b − a

ε

)

(LSFso
(0) + LSFso

(ε))

∣

∣

∣

∣

(10)

Fig. 3. Sharp and blurred edge gradient profiles

Previous works ([21],[14]) use a maximum length ε set

to 3, considering that no larger values occur with high qual-

ity optics. Using standard quality optics, edges of length ε

higher than 3 can be found. Thus, a general expression of

R(x0) available for thin and thick edges that means for all ε

was defined.

The gradient of the sharp edge is still expressed by (9) and

the blurred one becomes:

|▽pcb(x0)| =
∣

∣

(

b−a
ε

)

(LSFso
(0) + LSFso

(ε)+

2
ε−1
∑

u=1
LSFso

(u) ) |
(11)

So, the general form of the ratio ∀ε can be expressed by:

R (xo, ε) =
1

LSFso
(0) + LSFso

(ε) + 2
ε−1
∑

u=1
LSFso

(u)

(12)

This relation allows to estimate the spread parameter σso

for the points x0 and x0 + ε from the values of the gradi-

ent magnitudes of the sharp and blurred images at these two

points and for all ε.

In presence of noisy images, estimation will be corrupted.

Thus, the use of each point belonging to the edge to give sev-

eral estimated values of σso
was defined and the estimation

results will appear more robust. Using the relations (6) and

(8), the gradient magnitude of the blurred edge profile for

each point x with x0 < x < x0 + ε is given by:

|▽pcb (x)| =

∣

∣

∣

∣

b − a

ε

∣

∣

∣

∣

(LSFso
(x − x0)+

LSFso
(x − (x0 + ε)) +

2

ε−1
∑

u=1

LSFso
(x − (x0 + u)) ) (13)

Using the relations (6) and (13), the generalization of the

ratio (12) for each point between x0 and x0 + ε and ∀ε is

given by:

R (x, ε) =















































2

LSFso (x−x0)+LSFso (x−(x0+ε))+2

ε−1
∑

u=1

LSFso (x−(x0+u))

for x0 < x < x0 + ε

1

LSFso (x−x0)+LSFso (x−(x0+ε))+2

ε−1
∑

u=1

LSFso (x−(x0+u))

for x = x0 or x = x0 + ε
(14)

To reduce noise sensitivity, and thus to improve the qual-

ity of the solution, ε + 1 estimations of the spread parameter

σso
are computed and a statistical value is attributed to the

point x0 in the depth map. That implies more computing

time but the estimation obtained is better.

B. Generalization with other edge orientations

The ratio 14 is valid for edge orientation θ = ±kπ/2. In

order to generalize the depth perception method to all poten-

tial edges in images, the same study was made for directions

θ = π/4 ± kπ/2. The study made on image lights out the

anisotropy of Prewitt operator. The analysis of the gradi-

ent magnitude of the sharp image and those of the blur one

leads to the definition to new expressions for the direction

θ = π/4 ± kπ/2:



The gradient magnitude of the sharp edge computed for

all ε at points x0 and x0 + ε is:

|▽pcs (x0)| =

{

2
√

2
3 |a − b| for ε = 1

√
2

ε
|a − b| for ε > 1

(15)

The gradient magnitude of the blur edge computed for all

ε at points x0 and x0 + ε is:

|▽pcb (x0)| =



































































√
2

3 |a − b| .
[

2LSFdso
(x0) +

3LSFdso
(x0 + 1) +

LSFdso
(x0 + 2) ]

for ε = 1
√

2
ε

|a − b| .
[

LSFdso
(x0) +

LSFdso
(x0 + ε)+

1
3LSFdso

(x0 + ε + 1)+
5
3LSFdso

(x0 + ε − 1)+

2
∑ε−2

i=1 LSFdso
(x0 + i) ]

for ε > 1

(16)

where LSFdso
(x) is the line spread function for direction

θ = π/4 ± kπ/2 defined by:

LSFdso
(x) ∼= 1

2σso

√
π

e
− x2

4σ2
so (17)

The ratio defined by 14 becomes:

Rd (x0, ε) =
▽pcs(x0)
▽pcb(x0)

=































2
2LSFdso

(x0)+3LSFdso
(x0+1)+LSFdso

(x0+2)

for ε = 1
1

LSFdso
(x0) + LSFdso

(x0 + ε) + 1
3LSFdso

(ε + 1)

+ 5
3LSFdso

(ε − 1) + 2
∑ε−2

i=1 LSFdso
(i)

for ε > 1
(18)

As previously, the ratio for all points belonging the edge

was defined. Its expression is :
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