
Convex circuit free coloration of an oriented graph

Jean-François Culus, Bertrand Jouve

To cite this version:

Jean-François Culus, Bertrand Jouve. Convex circuit free coloration of an oriented graph. 2007.
<hal-00108272v2>

HAL Id: hal-00108272

https://hal.archives-ouvertes.fr/hal-00108272v2

Submitted on 4 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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émanant des établissements d’enseignement et de
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Convex circuit free coloration of an oriented graph

Jean-François Culus and Bertrand Jouve 1

Mathematics Institute of Toulouse (UMR 5219 CNRS-UTM-UPS-UT1-INSA)
Maison de la Recherche - Université of Toulouse 2 Le Mirail

5 allées Antonio Machado - 31058 Toulouse Cedex 1 - France

Abstract

We introduce the convex circuit-free coloration and convex circuit-free chromatic number
−→χa(
−→
G) of an oriented graph

−→
G and establish various basic results. We show that the

problem of deciding if an oriented graph verifies χa(
−→
G ) ≤ k is NP-complete if k ≥ 3 and

polynomial if k ≤ 2. We exhibit an algorithm which finds the optimal convex circuit-free
coloration for tournaments, and characterize the tournaments that are vertex-critical for
the convex circuit-free coloration.

Keywords: Oriented Chromatic Number, acyclic homomorphism, decomposition of tournaments

1 Introduction

A convex subset is a vertex subset with the property that every 2-directed path beginning
and ending inside the convex subset is completely contained within the subset. In this

paper we investigate the coloration of an oriented graph
−→
G into convex subsets without

circuit, referenced in the following by CCF-coloration for ’Convex Circuit-Free coloration’.
If we color each subset with a different color, such a coloration appears as an extension
of the notion of oriented coloring introduced by Sopena [11]. Indeed, within an oriented
coloring, each monochromatic subgraph is more than without circuit but without arc
(independent set). In the same way, as an oriented coloration may be defined by means of
oriented homomorphism ([6, 11]), the CCF-coloration may be equivalently defined by the
notion of circuit-free homomorphism (called acyclic homomorphism in [4]). A circuit-free

homomorphism of a digraph
−→
G into a digraph

−→
F is a mapping φ from V (

−→
G ) to V (

−→
F )

such that:
(i) for every arc (u, v) ∈ A(

−→
G ), either φ(u) = φ(v) or (φ(u), φ(v)) is an arc of

−→
F ,

(ii) for every vertex v ∈ V (
−→
F ), the induced oriented graph

−→
G(φ−1(v)) is circuit-free.

An oriented graph
−→
G admits a k-CCF coloration if and only if there exists an oriented

graph
−→
F of order k and a circuit-free homomorphism of

−→
G into

−→
F . Such a minimal k

1culus,jouve@univ-tlse2.fr, Fax (33) 5 61 50 25 40
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is called CCF-chromatic number of
−→
G and denoted by −→χa(

−→
G ). That type of coloration

was originally motivated by the search of structures in large majority voting tournaments
([8]).

Let us give some notations and definitions. All digraphs considered here are finite and
have no loop or multiple edge. A circuit is a directed cycle. An oriented graph is a digraph
without circuit of length two. In other words, it is an orientation of a simple graph. An
oriented graph T is a tournament if and only if it is complete, ie. for every pair {i, j} of
vertices, (i, j) or (j, i) is an arc of T . Finally, for a graph having property P we say that
G is vertex-critical for P if it loses the property P whenever any vertex is removed. The

set of vertices and the set of arcs of a digraph
−→
G are respectively denoted by V (

−→
G ) and

A(
−→
G ). If (x, y) is an arc of

−→
G , then we say that x dominates y or y is a successor of x

and that x is a predecessor of y. We shall use the notation x → y to denote this. We
respectively denote by Γ+(x) and Γ−(x) the set of successors and the set of predecessors
of x. The in-degree of a vertex x is the cardinal of Γ−(x), and the out-degree of x is the

cardinal of Γ+(x). If A and B are disjoint subsets of V (
−→
G ) such that all arcs between A

and B are directed toward B, then we use the notation A → B and say that the sets A

and B verify the unidirection property or are in unidirection. For a subset B of V (
−→
G),

−→
G \B denotes the subdigraph of

−→
G obtained after removing the vertices of B and all the

arcs with at least one extremity in B. The subdigraph induced by a vertex subset B of
−→
G is defined as

−→
G \

(

V (
−→
G) \B

)

and is denoted by
−→
G (B).

The paper is organized in two parts. In the first one, we prove that the minimization
problem of finding the smallest integer k such that G has a CCF-coloration in k classes is
of polynomial complexity if G is a tournament and NP-complet in the general case. In a
second part we focus on the CCF-indecomposable tournaments, that is tournaments T for

which
−−−→
χa(T ) is equal to the number of vertices. That class is large since the probability

that a tournament belongs to it tends toward one when the number of its vertices goes to
the infinity. Here, we characterize tournaments that are CCF-indecomposable and critical
for that property.
Questions related to the minimum subsets of a CCF-coloration are also closed in their
formulation to those of the dichromatic number [2]. The dichromatic number is calculated
to avoid monochromatic circuits since a CCF-coloration is caraterized by the absence
of dichromatic circuits. In fact the CCF-coloration may be seen as the satisfaction of
two properties on the subsets : circuit-free and convexity. In the particular case of
tournaments both of these properties have been studied separately by several authors. In
the case of tournaments circuit-free subsets are the transitive ones and [9] characterizes
some critically r-dichromatic tournaments. Such tournaments have a partition of its
vertex set in at least r transitive subsets and are critical for that property. In the case
of tournaments, convex subsets are also called intervals [7] or modules [12] and transitive
convex subsets are also called clan [1]. The critically indecomposable tournaments are
characterized by Schmerl and Trotter in [10]. Indecomposable tournaments (that are
tournaments which convex subsets are the singletons, the empty set and the whole vertex
set) are CCF-indecomposable. In [7] is provided a structural theorem on indecomposable
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graphs. The CCF-indecomposable tournaments, also called primitive tournaments in
[1], are the tournaments without non trivial clan (the trivial clans are ∅ or {x} where
x ∈ V (T )). Let us notice that if a tournament admits a non trivial clan then it admits a
clan of size 2.

2 Complexity of the CCF-chromatic number prob-

lem

For the oriented chromatic number, the threshold between the ”easy” and the ”hard”
computable oriented chromatic number is between 3 and 4. For the CCF-coloration,
deciding whether the CCF-chromatic number is less or equal to 3 is already NP-complete.

Let k be a fixed positive integer. The k-CCF Col problem is the following decision
problem:

k-CCF Col (CCF-chromatic number ≤ k).

Instance: An oriented graph
−→
G .

Question: Does
−→
G admit a k-CCF coloration ?

We first note that an oriented graph
−→
G admits a 1-CCF coloration if and only if

−→
G is

circuit-free. Moreover, if
−→
G admits a 2-CCF coloration then

−→
G is circuit-free and admits

a 1-CCF coloration. Hence 1-CCF Col and 2-CCF Col can be solved in polynomial
time.

Theorem 1 The decision problem 3-CCF Col is NP-complete, even if the input is re-
stricted to connected oriented graphs.

Proof: It is clear that the 3-CCF Col problem belongs to NP . To show its NP-
completness, we shall describe a polynomial-time reduction from 3-Sat to 3-CCF Col.

Let us consider an instance (X, C) of 3-Sat, where X = {x1, x2, ..., xn} is a set of
boolean variables and C = {C1, C2, ..., Cm} contains m clauses of 3 literals (the set of
literals is denoted by L =

⋃

1≤i≤n{xi, xi}). The clause Cj is denoted by zj
1∨zj

2∨zj
3, where

{zj
1, z

j
2, z

j
3} ⊂ L. Since we may assume that no clause is a tautology (ie. contains xi and

xi), we will consider that the indexes of literals of any clause are strictly increasing.

To such an instance of 3-Sat, we associate the following oriented graph
−→
G :

V (
−→
G ) =

⋃

1≤i≤n{xi, ei, e
′
i, xi} ∪

⋃

1≤j≤m{c
j
1, c

j
2, c

j
3, c

j
4, c

j
5, c

j
6, F

j
1 , F j

2 , F j
3} ∪ {T, F, I}.

The arc set of
−→
G is the union of four types of arcs:

First type: For all integer i ∈ {1, 2, ..., n}, we have the set of arcs

{(e′i, ei), (ei, xi), (xi, e
′
i), (xi, ei), (F, xi), (F, xi)}.
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xi ei xi

F

e′i

bc bc bc

bc

bc

Second type: For all j ∈ {1, 2, ..., m}, for Cj = zj
1 ∨ zj

2 ∨ zj
3, we get a copy of the oriented

graph
−→
Kj , identifying the vertices zj

1, z
j
2, z

j
3 to vertices in

⋃

1≤i≤n{xi, xi} :

zj
1

cj
1 F j

1 cj
2 zj

2 cj
3 F j

2 cj
4

zj
3

cj
5F j

3cj
6

bc

bc bc bc bc bc bc bc

bc

bcbcbc

Third type: For all j ∈ {1, 2, ..., m}, we have: {I, F} → {F j
1 , F j

2 , F j
3}. Then, we obtain

a copy of the following oriented graph:

F j
1

F j
2 F j

3

I F

bc bc bc

bc bc

Fourth type: The induced oriented graph
−→
G ({V, F, I}) is isomorphic to:

T I F
bc bc bc

The construction of
−→
G may be carried out in polynomial time. We claim that

−→
G is 3

CCF-decomposable if and only if the clauses C1, C2, ..., Cm are simultaneously satisfiable.

Let us suppose that the oriented graph
−→
G admits a 3-CCF-coloration. The arcs of the

fourth type imply that there exists a circuit-free homomorphism φ from
−→
G to the 3-circuit
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(1, 2, 3). Without loss of generality, we may assume that φ(T ) = 1, φ(I) = 2 and φ(F ) = 3.
The arcs of the first type imply that, for each i in {1, 2, ..., n} , {φ(xi), φ(xi)} = {1, 3}.
Since the vertices {F j

l } 1≤j≤m

1≤l≤3

are successors of I and F , then ∀j ∈ {1, ..., m}, ∀l ∈ {1, 2, 3},

φ(F j

l ) = 3. Given an integer j in {1, 2, ..., m}, let us suppose that φ(zj
1) = φ(zj

2) = φ(zj
3) =

3, then, for all l ∈ {1, 2, ..., 6}, φ(cj

l ) = 3. Then, Kj ⊂ φ−1(3), which contradicts the fact
that φ is a circuit-free homomorphism.

Then, at least one of the vertices {zj
1, z

j
2, z

j
3} is in the monochromatic class φ−1(1).

The truth distribution T : X → {True, False} defined by

{

T (xi) = True if φ(xi) = 1,
T (xi) = False if φ(xi) = 3

satisfies all the clauses {Cj}1≤j≤m of the 3-Sat instance.
Conversely, suppose that T : X → {True, False} is a satisfying truth assignment for the

clauses C1, C2, ..., Cm. Then, we define the circuit-free homomorphism φ from V (
−→
G ) into

the set of vertices of the 3-circuit (1, 2, 3) by φ(T ) = 1, φ(I) = 2 and φ(F ) = 3.

{

if φ(xi) = True then φ(xi) = 1 and φ(xi) = 3;
else φ(xi) = 3 and φ(xi) = 1

For every integer j ∈ {1, 2, ..., m}, φ(F j
1 ) = φ(F j

2 ) = φ(F j
3 ) = 3, and, for k ∈ {1, 2, 3}, if

φ(zj

k) = 3 then φ(cj

k) = 3 else φ(cj

k) = 1.

Such a mapping is a 3 circuit-free homomorphism from
−→
G to the 3-circuit (1, 2, 3),

and then
−→
G admits a 3-CCF coloration. �

3 The case of tournaments

In this section, we investigate the complexity of the k-CCF Col problem over the family
of tournaments. Let T = (V, A) be a tournament and x a vertex of T . If it exists, we
define and denote by x+ the highest successor of x as the vertex of Γ+(x) which verifies
the equality Γ+(x+) = Γ+(x) \ {x+}. Given a tournament T and a vertex x, we can
compute x+ in polynomial time by the following greedy algorithm:

Down(x)
Input: A tournament T and a vertex x of T .
Output: A vertex y such that y = x+ if it exists, ∅ if not.

We denote by {y1, y2, ..., yk} the set Γ+(x), i = 1 and x+ = ∅.
While i ≤ k Do:

If yi verifies Γ+(yi) = Γ+(x) \ {yi}, then x+ = yi and i = k + 1;
Else i = i + 1.

Return(x+).
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Proposition 1 Let T be a tournament of order n with −→χa(T ) = k and x a vertex of T .
(i) If there is a k-CCF coloration c of T such that x is not the smallest vertex in its
monochromatic class then x+ exists.
(ii) Conversely, if x+ exists then for all convex circuit-free k-coloration c of T , c(x) =
c(x+).

Proof: (i) Let Cx = c−1(c(x)) be the CCF-monochromatic class of x, and let us suppose

that x is not the smallest vertex of Cx. The intersection of the induced subdigraphs
−→
G (Cx)

and
−→
G (Γ+(x)) is a non-empty order. Let y be the highest vertex of this order, since any

other CCF-monochromatic class is in unidirection with Cx, we have Γ+(y) = Γ+(x) \ {y}.
Then y is the highest successor of x and y = x+.
(ii) Let c be a k-CCF coloration of T and let us suppose, for contradiction, that y = x+

and c(x) 6= c(y). We denote by C1 and C2 the color classes of x and y respectively, and by
{Cj}3≤j≤k the other CCF-monochromatic classes of T . We have x→ y and by convexity
C1 → C2. Moreover, since y = x+, we have: ∀j ∈ {3, 4, ..., k}, [C1 → Cj] ⇔ [C2 → Cj].
Consequently, the (k− 1)-partition {C1∪C2, C3, ..., Ck} is a (k− 1)-CCF-coloration of T ,
which contradicts the equality −→χa(T ) = k. �

Previous results are also true if we consider predecessors instead of successors. If
it exists, we define the smallest predecessor of x as, the vertex of Γ−(x) such that
Γ−(x−) = Γ−(x) \ {x−}. It could be computed in polynomial time by the following
greedy algorithm:

Up(x)
Input: A tournament T and a vertex x of T .
Output: A vertex y such that y = x− if it exists, ∅ if not.

We denote by {y1, y2, ..., yk} the set Γ−(x), i = 1 and x− = ∅.
While i ≤ k Do:

If yi verifies Γ−(yi) = Γ−(x) \ {yi}, then x− = yi and i = k + 1;
Else i = i + 1.

Return(x−).

Proposition 2 Let T be a tournament with −→χa(T ) = k and let x be a vertex of T .
(i) If it exists a k-CCF coloration such that x does not dominate all vertices of its CCF-
monochromatic class then x− exists.
(ii) Conversely, if x− exists then for every k-CCF coloration c of T , c(x) = c(x−).

Corollary 1 Let T be a tournament such that −→χa(T ) = k. The k-CCF coloration of T is
unique.
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Proof: Let c be a k-CCF-coloration of T . We then have the following equivalence:
[

c(x) = c(y) and y is the direct successor of x whithin the order c−1(c(x))
]

⇔ y = x+

Then, as the highest successor and the smallest predecessor are unique (if there exist), we
deduce the unicity of the optimal convex circuit-free coloration. �

The following algorithm OptDec computes in polynomial time the optimal CCF-
coloration of a tournament T .

Algorithm OptDec

Input: A tournament T
Output: The optimal CCF-coloration of T

For every vertex x ∈ V (T ), let M(x) denote a mark.

Initialization: ∀x ∈ V (T ), M(x) = 0 and k = 0.
While a vertex x such that M(x) = 0 exists, DO:

k ← k + 1
v ← x
M(x)← k

While Up(v) 6= ∅, DO:

v ← Up(v)
M(v) = k end.

v ← x
While Down(v) 6= ∅, DO:

v ← Down(v),
M(v) = k end.

End.

Proposition 3 Given a tournament T with −→χa(T ) = k, the optimal CCF − k coloration
is computed in polynomial time by the algorithm OptDec. The optimal CCF-coloration c
of T is given by ∀x ∈ V (T ), c(x) =M(x).

The previous algorithm provides a partition of V (T ) into maximal clans under inclu-
sion that are the CCF-monochromatic classes. Let us recall the definition of the quotient
of a tournament by a convex partition. A partition P of V (T ) is a convex partition (or
interval partition) of T when each element of P is a convex subset of T . For such a
partition P , the quotient T/P of T by P is the tournament defined on V (T/P ) = P as
follows: given X 6= Y ∈ P , (X, Y ) is an arc of T/P if X → Y in T . We now associate
with T the family Π(T ) of the maximal clans of T which is an interval partition of T . We
have −→χa(T ) = |Π(T )| and we can formulate the results by :

Proposition 4 For every tournament T with |V (T )| ≥ 2, one of the following is satisfied
:

1. |Π(T )| = 1 and T is a total order

2. |Π(T )| ≥ 3 and T/Π(T ) is CCF-indecomposable (or primitive)
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4 CCF-Indecomposable tournament

The aims of this part is to introduce the notion of CCF-indecomposable oriented graph
and to characterize the vertex-critical CCF-indecomposable tournaments. An oriented

graph
−→
G with n vertices is CCF-indecomposable if −→χa(

−→
G ) = n. In other words, any

convex subset of T with at least 2 vertices contains a circuit. Remark that such an
indecomposable tournament does not contain convex subset of size two. If

−→
G is not CCF-

indecomposable then
−→
G is called CCF-decomposable. For the following probabilistic

proof, we need the notion of random tournament, constructed by picking uniformly at
random and independently the orientation of every edge of the complete graph Kn (i.e.
if {x, y} is an edge of Kn, P ((x, y) ∈ A(T )) = P ((y, x) ∈ A(T )) = 1

2
). We denote by Tn

the set of such random tournaments with n vertices.

Proposition 5 The probability for a tournament T ∈ Tn to be CCF-indecomposable tends
to 1 when n→∞.

Proof: Let A the event ”T is CCF -indecomposable”. The event Ac is realized when
there exist two vertices x and y such that ∀z ∈ V (T ) \ {x, y}, (x, z) ∈ A(T ) ⇔ (y, z) ∈
A(T ). We then obtain: P (A) = 1−P (Ac) ≤ 1−

(

n

2

)

(1

2
)n−2, and so limn→∞ P (A) = 1. �

We could easily exhibit a family of CCF-indecomposable tournaments. Let us recall
that a tournament is regular if the in and out-degrees of its vertices are equals. Regular
tournaments are CCF-indecomposable, otherwise the existence of both vertices x and x+

implies d+(x+) = d+(x) − 1 (where d+(x) denotes the outdegree of x). Given a CCF -
indecomposable tournament, the following proposition shows that we can add a vertex in
order to obtain another CCF -indecomposable tournament. Let us remind that a vertex
is a source if it has no predecessor and a sink if it has no successor.

Proposition 6 Let T be a CCF-indecomposable tournament without source and sink.

• Tournament T ′ obtained by adding a source s to T is CCF-indecomposable.

• Tournament T ′′ obtained by adding a sink p to T ′ is CCF-indecomposable.

• Tournament T ′′′ obtained by reversing the arc (s, p) in T ′′ is CCF-indecomposable.

Indeed, we also obtain a CCF-indecomposable tournament by the converse operations
(deleting a source or a sink from a CCF-indecomposable tournament).

We now characterize the tournaments that are vertex-critical for the CCF−indecomposable
property. Tournament T is vertex-critical CCF-indecomposable if T is CCF-indecomposable
and, for every vertex u of T , T \ {u} is CCF -decomposable. Given such a tournament,
for every vertex u, there exists a pair of vertices {iu, ju} which verifies the unidirection
property with every set {x} for x in V (T )\{u, iu, ju}. Such a pair is said to be associated
with vertex u, which is denoted by u ∼ {iu, ju}.
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Remark 1 For every vertex u of a vertex-critical CCF-indecomposable tournament, there
exists at least one pair {iu, ju} of vertices such that (iu, u, ju) is the only 2-directed path
between the vertices iu and ju.

Lemma 1 Let u be a vertex of a vertex-critical CCF-indecomposable tournament T , and
let {iu, ju} be a pair associated with u.
a. iu ∼ {u, v} with v ∈ V (T ) \ {u, iu}.
b. Let u and v be two vertices of a vertex-critical CCF-indecomposable tournament, we
have:

u = v ⇔ {iu, ju} = {iv, jv}.

c. ∀v, z ∈ V (T ) \ {u}, if z ∼ {u, v} then z ∈ {iu, ju}.

Proof: a. We have u ∼ {iu, ju}. There exist z 6= z′ ∈ V (T ) \ {iu} such that iu ∼ {z, z
′}.

Of course, if {z, z′} ∩ {u, ju} = ∅ then (z, iu, z
′) and (z, ju, z

′) are two distinct 2-directed
paths between z and z′, which contradicts the fact that {z, z′} is a convex subset of
T \ {iu}. Then {z, z′} ∩ {u, ju} 6= ∅. Let us suppose that u /∈ {z, z′} then {iu, ju, z} or
{iu, ju, z

′} is a clan of T \ {u}. We are going to prove that T \ {u} cannot contain a clan
C with |C| ≥ 3.
Let C = {x1, x2, · · · , xn} with n ≥ 3 and xi → xj for all i < j. Furthermore, suppose
that C is a maximal clan under inclusion of T \ {u}.
Let us remark that since T is CCF-indecomposable then xi → u if and only if u → xi+1

for all i ∈ {1, · · · , n− 1}.

• If x1 → u then T \ {x1} is CCF-indecomposable. By the previous remark, {xi, xj}
and {xi, u} are not clans of T \ {x1}. Now, let {α, β} be two distinct vertices of
T \ (C ∪ {u}). Set {α, xi} is not a clan of T \ {x1} otherwise C ∪ {α} is a clan
of T \ {u} which contradicts the maximality argument. Finally, neither {α, u} nor
{α, β} are clans of T \ {x1} otherwise they are clans of T .

• If u→ xn then T \ {xn} is CCF-indecomposable by applying the previous assertion
to the dual of T .

• If xn → u→ x1 then x2k → u→ x2k+1 implies that n is even and |C| ≥ 4. In that
case, T \ {x1, x2} is similar to T \ {x1} of the first assertion and consequently is
CCF-indecomposable. Then the only non trivial clan of T \ {x1} contains x2 which
is impossible.

In conclusion, T has no clan of order 3 and then u ∈ {z, z′}.

b. We may easily verify that such a proposition is true for tournaments with less than
four vertices. Let us now consider that |V (T )| ≥ 5. Let us suppose that u 6= v and iu = iv,
ju = jv. Then, there exist two different paths between iu and ju, which contradicts the
remark.
Let us suppose now that the pairs {iu, ju} 6= {iv, jv} and u = v. Assume for instance that
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ju 6= jv and jv → ju. Since {iu, ju} is a convex subset of T \ {u}, we obtain that jv → iu.
By lemma 1.a, there exists α ∈ V (T ) \ {u, ju} such that ju ∼ {u, α}. Now, if α = iv then
(jv, ju, iv) is a 2-directed path which contradicts u ∼ {iv, jv}. Therefore iv /∈ {u, ju, α}.
Since ju ∼ {u, α} and iv → u, we have iv → α. Furthermore jv 6= α because jv → ju → α
and then jv /∈ {u, ju, α}. Since ju ∼ {u, α} and u → jv we have α → jv. Consequently
(iv, α, jv) is a 2-directed path which contradicts u ∼ {iv, jv}.

c. If not we have two distinct 2-directed paths (iu, u, ju) and (iu, z, ju) between iu and
ju which contradicts the remark 1. �

Let T be a vertex-critical CCF-indecomposable tournament of order n. We may insist
on the fact that the pair {iu, ju} associated with u ∈ V (T ) is unique. We define the graph
GT associated with T by: V (GT ) = V (T ) and {i, j} ∈ E(GT ) if it exists u ∈ V (T ) such
that u ∼ {i, j}.

Lemma 2 Let T be a vertex-critical CCF-indecomposable tournament of order n and GT

its associated graph. Then, we have the following properties:

• a. The degree of any vertex of GT is less or equal to 2.

• b. Connected components of GT are cycles (without chord).

• c. Let u be a vertex of T and {iu, ju} be the edge of GT associated with u. We
denote by C the cycle of GT which contains {iu, ju}. Then, u ∈ C.

• d. The cardinal of any cycle of GT is odd.

Proof: a. Suppose, for a contradiction, that a vertex u has three distinct neighbourgs
(x, y and z) in GT . By lemma 1.c, we have x, y, z ∈ {iu, ju} which contradicts the unicity
of the associated vertex in a vertex critical CCF-indecomposable tournament.
b. The equivalence of lemma 1b. implies that |V (GT )| = |E(GT )|. Such equality implies
that GT contains at least one cycle. As the degree of every vertex of GT is bounded by 2,
it follows that the connected components of GT are cycles, and that every vertex of GT

belongs to exactly one cycle.
c. We denote by (a0 = iu, a1 = ju, a2, a3, ..., ak) the cycle C and suppose that u /∈ C. Then
(iu, u, ju) is a 2-directed path in T . We have u→ {ai, ai+1}, for i ∈ {1, 2, ..., k − 1}. This
implies that (iu, u, ak) is a 2-directed path of T which contradicts the unicity of the paire
associated with u. Hence u ∈ C.
d. Let C = (x0, ..., xk) be a cycle in GT . We suppose that x0 ∼ {xl, xl+1}. By lemma 1a,
{x0, x1} is associated with xl or xl+1.
First case: Suppose that xl+1 ∼ {x0, x1}. Using lemma 1a., we iterate the process: from
[x0 ∼ {xl, xl+1} and xl+1 ∼ {x0, x1}], we obtain [x1 ∼ {xl+1, xl+2} and xl+2 ∼ {x1, x2}]
and [x2 ∼ {xl+2, xl+3} and xl+3 ∼ {x2, x3}] ... . As every vertex of C must be associated
with a unique edge of C, the iterated process ends with [xl ∼ {xk, x0} and xk ∼ {xl−1, xl}].
Then, k = 2l is even, and so the cycle is odd.
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Second case: Suppose that xl ∼ {x0, x1}. Previous iterated process leads to a contradic-
tion, because a vertex must be associated with an edge incident to it, which is impossible.
�

For any integer k, the circular tournament
−→
Ck is the tournament of order 2k+1 defined

by: V (
−→
Ck) = {0, 1, 2, ..., 2k} and (i, j) ∈ A(

−→
Ck) if 1 ≤ j − i ≤ k, where j − i is considered

modulo 2k + 1.

Proposition 7 Let C be a cycle of GT of length 2k + 1. The induced oriented graph

T (V (C)) is isomorphic to
−→
Ck.

Proof: Lemma 2 shows that if C = (x0, x1, ..., x2k) then for all i in {0, ..., 2k} the iterated
process detailed in the proof of lemma 2 implies that xi ∼ {xk+i, xk+i+1}, where the
indexes are considered modulo 2k + 1. Following that process, T (V (C)) is recognized as
a circular tournament. �

Let T be a tournament which vertex set is V (T ) = {1, 2, ..., n} and let T1, ..., Tn be
tournaments. The composition T [T1, ..., Tn] (or lexicographic sum) is the tournament
obtained from T by substituting each vertex i of T by the tournament Ti: if (i, j) ∈ A(T ),
then Ti → Tj . Let us remark that {T1, · · · , Tn} is an interval partition of T [T1, ..., Tn] and
then the quotient T [T1, ..., Tn]/{T1, · · · , Tn} is equal to T . Such a definition allows us to
characterize the vertex-critical CCF -tournament.

Theorem 2 Every vertex-critical CCF-indecomposable tournament is isomorphic to

T ′[
−→
Ck1

,
−→
Ck2

, ...,
−→
Ckp

] where T ′ is a tournament of order p and where (k1, k2, ..., kp) ∈ (N∗)p.

Proof: Let T be a vertex-critical CCF -tournament and GT the graph associated with
T . We denote by p the number of cycles in GT . For 1 ≤ i < j ≤ p, if Ci and Cj are two
disjoint cycles of GT then the subtournaments of T induced by the vertices of Ci and Cj
verify the unidirection property in T . We define the tournament T ′ by V (T ′) = {1, 2, ..., p}
and (i, j) ∈ A(T ′) if and only if the subtournament induced by V (Ci) dominates the
subtournament induced by V (Cj).

For every i in {1, 2, ..., p}, ki is the integer such that the number of vertices of cycle Ci
is 2ki + 1, and by proposition 7, we deduce that T is isomorphic to T ′[

−→
C k1

,
−→
C k2

, ...,
−→
C kp

].

Conversely, let X be a convex subset of T ′[
−→
Ck1

,
−→
Ck2

, ...,
−→
Ckp

] with at least two vertices.

If every vertex of X belongs to the same
−→
Ci, then

−→
Ci ⊂ X because circulant tournaments

are CCF -indecomposable. If {x, y} ⊂ X such that x belongs to
−→
Ci and y belongs to

−→
Cj (with i 6= j), then

−→
Ci ∪

−→
Cj ⊂ X. We conclude that X contains at least a circulant

tournament and then a circuit, and so such tournament are CCF -indecomposable. It is

easy to see that T ′[
−→
Ck1

,
−→
Ck2

, ...,
−→
Ckp

] \ {x} is CCF -decomposable. �
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5 Discussion

We have introduced a new decomposition, called CCF-decomposition, of an oriented graph
into convex subgraphs without circuit. CCF-decomposition may be translated in terms of
coloration or homomorphism, as it is made in a classical way with other decompositions.
We defined a CCF-chromatic number associated with that decomposition and proved that
its calculus is generally NP-complete. For tournaments however, we construct a polyno-
mial algorithm that finds an optimal CCF-coloration (ie. with a minimum of colors) and
we characterize the vertex-critical tournaments for the CCF-decomposition. As we have
noticed in the introduction, indecomposable tournaments (with the definition of Schmerl
and Trotter [10]) are CCF-indecomposable and it is easy to prove that the trace of the
vertex-critically CCF-indecomposable tournaments into the indecomposable tournaments
are the circular tournaments. In our paper we prove in more that the trace of the vertex-
critically CCF-indecomposable tournaments into the decomposable tournaments are the
compositions of circular tournaments. Formulating the question as a decomposition prob-
lem, we have to indicate another possible demonstration of our theorem 2 from the Gallai
decomposition theorem of tournaments [5, 3]. Let us indicate in the following the main
points of that proof which is at least as long as that presented previously in this paper.
Given a tournament T , a subset X of V (T ) is a strong interval of T provided that X is
an interval of T such that for every interval Y of T , we have: if X ∩ Y 6= ∅ then X ⊆ Y
or Y ⊆ X. The family of the strong intervals of T realizes a partition P (T ) of T . In
the case of a non strongly connected tournament T , it is easy to establish the following
proposition :

Proposition 8 Let T be a non strongly connected tournament with |V (T )| ≥ 3, T is
critically CCF-indecomposable if and only if for every X ≥ P (T ), |X| ≥ 3 and the induced
tournament T (X) is critically CCF-indecomposable.

The strongly connected case is more difficult to obtain. We have :

Proposition 9 Given a strongly connected tournament T , with |V (T )| ≥ 3, T is critically

CCF-indecomposable if and only if either T is isomorphic to
−→
Ck, where |V (T )| = 2k + 1,

or for each X ∈ P (T ), we have |X| ≥ 3 and T (X) is critically CCF-indecomposable.

We now denote by P1(T ) = {X ∈ P (T ), |X| = 1}. Propositions 8 and 9 lead us to
associate with each critically CCF-indecomposable tournament T , such that |V (T )| ≥ 3,
the family p(T ) of the strong intervals X of T satisfying: |X| ≥ 2 and P1(T (X)) 6= ∅. It
follows from Proposition 8 that for every X ∈ p(T ), T (X) is strongly connected because

P1(T (X)) 6= ∅. Now, by Proposition 9, we obtain that T (X) is isomorphic to
−→
Ck, where

|X| = 2k + 1. Consequently, p(T ) constitutes an interval partition of T and theorem 2
follows.
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indicates the possibility of using the Gallai decomposition to obtain another demonstra-
tion of the theorem 2; that is what we explain in the discussion.
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