
Defining categories to select representative attack

test-cases

Mohammed Gad El Rab, Anas Abou El Kalam, Yves Deswarte

To cite this version:

Mohammed Gad El Rab, Anas Abou El Kalam, Yves Deswarte. Defining categories to select
representative attack test-cases. Rapport LAAS n07282. Rapport LAAS-CNRS. 2007. <hal-
00168602v2>

HAL Id: hal-00168602

https://hal.archives-ouvertes.fr/hal-00168602v2

Submitted on 4 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50545072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00168602v2

Defining Categories to Select Representative
Attack Test-Cases

Mohammed S. Gadelrab
LAAS-CNRS

Université de Toulouse, France
gad-el-rab@laas.fr

Anas Abou El Kalam
IRIT/ENSEEIHT

Université de Toulouse, France
anas.abouelkalam@enseeiht.fr

Yves Deswarte
LAAS-CNRS

Université de Toulouse, France
yves.deswarte@laas.fr

ABSTRACT

To ameliorate the quality of protection provided by intrusion

detection systems (IDS) we strongly need more effective

evaluation and testing procedures. Evaluating an IDS against all

known and unknown attacks is probably impossible. Nevertheless,

a sensible selection of representative attacks is necessary to obtain

an unbiased evaluation of such systems. To help in this selection,

this paper suggests applying the same approach as in software

testing: to overcome the problem of an unmanageably large set of

possible inputs, software testers usually divide the data input

domain into categories (or equivalence classes), and select

representative instances from each category as test cases. We

believe that the same principle could be applied to IDS testing if

we have a reasonable classification. In this paper we make a

thorough analysis of existing attack classifications in order to

determine whether they could be helpful in selecting attack test

cases. Based on our analysis, we construct a new scheme to

classify attacks relying on those attributes that appear to be the

best classification criteria. The proposed classification is mainly

intended to be used for testing and evaluating IDS although it can

be used for other purposes such as incident handling and intrusion

reporting. We also apply the Classification Tree Method (CTM)

to select attack test cases. As far as we know, this is the first time

that this method is applied for this purpose.

General Terms
Security

Keywords
Intrusion Detection Systems, Attack, Evaluation, Test,

classification.

1. INTRODUCTION
Known evaluations of Intrusion Detection Systems (IDS) suffer

important shortcomings and often produce misleading results for

several reasons [1, 2]. These defects are mainly due to (1)

unsystematic approaches, (2) non-representative test cases, (3)

incorrect metrics and (4) absence of sensitivity analysis on test

datasets. It is worth noting that the aforementioned critiques are

globally true whatever the context of the evaluation: as

benchmarking with respect to a specific environment, as

conformance test, as self-assessment of operational IDS, as test

during development cycle, etc.

In order to provide a reasonable, complete solution and to obtain

an unbiased evaluation, these problems should be eliminated or at

least reduced. To resolve the problem of misleading ad-hoc

evaluations, we derived a systematic methodology to evaluate IDS

in [3]. In this paper, we focus on the second problem: the

selection of representative test cases.

Intrusion Detection Systems should aim at detecting all attacks

that either already exist or will be created in the future. In order to

determine the superiority of an IDS and its quality of detection, it

should be evaluated and tested against these classes of attacks.

However, the attack space is too large to be enumerated and used

as a dataset, whatever it is, for practical reasons. With this huge

number of possible inputs to the IDS (i.e., attacks), the challenge

resides in: (1) selecting a reasonably small number of attack test

cases that provide a good representation of all possible inputs; (2)

ensuring a good coverage to activate and exercise the different

parts of the IDS.

In this work we borrowed two important concepts from software

testing: the equivalence classes and the input parameter modeling.

The underlying assumption of these techniques is that input

instances from the same category have similar effects and thus

generate similar outputs or results. Therefore, tests could be

performed against only one or few representative samples from

each equivalence class instead of the whole class.

To achieve that, we have conducted a thorough analysis of

existing attack and vulnerability classifications to figure out their

strengths and weaknesses. We studied the attributes of each

taxonomy to determine how they could be relevant to our purpose

(i.e., to produce an IDS evaluation-oriented classification). We

eliminated the meaningless ones and combined several attributes

from different classifications to produce a new classification.

Moreover, based on this classification scheme, we applied the

Classification Tree Method (CTM) [4, 17] in order to get an easy,

semi-automatic selection of attack test cases. For this purpose, we

initially used a tool called CTE [4], which can be used for generic

application of the classification tree method. Then we began the

development of a security specific tool similar to CTE which is

also aware of existing attacks and exploits.

Such work should produce several benefits: first, it will reduce the

attack test cases included in test datasets and make the test process

more manageable. Second, it enhances the test dataset coverage of

the attack domain space, as we can know those attack types

against which the IDS is tested or not tested. Third, it yields a

better knowledge of the domain as well as it enhances the

understanding of new attack instances.

The paper is organized as follows: In Section 2 we analyze

different attack taxonomies and then discuss the reasons that make

these classifications helpless for the selection of attack test cases,

in Section 3. We introduce our classification which is intended to

be used for IDS evaluation and testing in Section 4. Then, we

propose a complementary approach for selecting attack test cases

in Section 5. Finally, Section 6 draws a conclusion.

2. ANALYSIS OF AVAILABLE
CLASSIFICATIONS
The problem of attack classification has attracted many

researchers in the domain. However, they did not share the same

objective. In order to not re-invent the wheel, we firstly examined

the existing taxonomies. In the next two sections, we analyze

several of them to see if one can match our needs and can be

employed for IDS evaluation and testing. The detailed description

of each taxonomy is out of the scope of this paper (refer to the [5]

for more details).

We begin by Bishop’s Vulnerability taxonomy [6]: Although this

taxonomy is intended for classifying vulnerabilities, it might be

useful to present it briefly because of its useful attributes (or

axes). It has six axes: The nature of the flaw, the time of

introduction of the vulnerability, the exploitation domain (i.e., the

consequences of exploitation), the effect domain (what is

affected?), the minimum number of components essential to

exploit the vulnerability and the source of identification of the

vulnerability.

Another interesting work is the two-dimension taxonomy that was

introduced in [7]. It extends Neuman and Parker’s taxonomy that

have only the technique dimension [8] by adding the result

dimension. It was built around attacks experimented by internal

users (students of computer science class). The weak point of this

classification is that it considers attacks launched by students in

an undergraduate class. Therefore it ignores an important part of

the attack domain space which consists of more sophisticated

techniques by more experienced attackers.

Kumar had classified attacks according to four attributes of

pattern or signature: existence, sequence, interval and duration

[9].

Weber’s taxonomy is based on three dimensions: the required

level of privilege to conduct the attack, the mean by which the

attack proceeded (e.g., exploiting a software bug) and the

intended effect (e.g., a denial of service) [10].

DARPA’s taxonomy is a reduced version of Weber’s taxonomy. It

considers only the effect dimension. Attacks were divided into

five categories: Remote to Local, (R2L), User to Root (U2R),

probe or scan and Denial of Service (DoS), [11], [12].

Howard’s taxonomy [13] is based on the attack process rather

than the attack itself. The attack process was divided into stages:

1. attacker (who is she/he? a simple hacker or a terrorist),

2. tool (what the attacker uses; a script kiddy or a specialized

tool),

3. vulnerability (through implementation, configuration or

design vulnerability),

4. access (what access is obtained; unauthorized access to files,

objects or processes),

5. results of attack (exposure or corruption of data) and

6. attack objectives (e.g., destroy data, obtain information).

Simon Hansman’s taxonomy [14] has four dimensions: attack

vector (i.e., attack type: virus, worm, DoS, etc.), attack target

(e.g., OS, application, network protocol), exploited vulnerability

and effects of attack. The attack vector consists of the means by

which the attack reaches its target.

The so called defense-centric taxonomy was introduced in [15] to

serve network administrators in defending their own systems. It

classifies attacks according to attack manifestations in system

calls as seen by anomaly HIDS (i.e., anomaly host based intrusion

detection systems). The four features, or dimensions, of interest

are: (1) foreign symbol: the system call that appears when an

attack is executed and never appears in normal operation. (2)

Minimal formal sequence: the manifestations sequence that

appears in the attack and do not appear in the normal operation,

albeit all its subsequences appear in the normal operation. (3)

Dormant sequence: the manifestations that partially matches a

subsequence in the normal operation. (4) Non-anomalous

sequence: manifestations that fully match sequences in the normal

operation.

The taxonomy found in [16] was created for the purpose of

analyzing IDS. It classifies activities that could be relevant to IDS

instead of classifying attacks directly. An analytic evaluation of

IDS was later established on it to determine its detection

capabilities in front of attack classes. The underlying model of the

observable manifestations distinguishes dynamic characteristics

from static characteristics of activities. Static characteristics are

split further to separate the characteristics related to interface

objects and those related to affected objects. Similarly, dynamic

characteristics are developed into three sub-characteristics:

communication features, method invocation characteristics and

other additional attributes. Then, an attack could be described by

five parameters: interface object, affected object, communication,

invocation method and other minor attributes. In total, it contains

24 interface objects, 10 affected objects, 2 communication

characteristics, 5 method invocations and 4 minor attributes.

Before presenting our own classification in section 5, we will

discuss in the next section the limitations of the previous

classifications and analyze their attributes in order to select only

the evaluation-relevant ones.

3. DISCUSSION
The previous attack taxonomies may have different viewpoints.

One can notice that they are generally based on attributes of attack

and/or vulnerability. Although using inconsistent attribute names,

we can distinguish and cite the following ones amongst the used

attributes:

1. Type of attack: virus, worm, trojan horse, DoS (Denial of

Service), etc.;

2. Detection technique: pattern matching, statistical approach,

etc.;

3. Signature: observed attack pattern, attack sequence pattern;

4. Tool: physical, user command, script, tool kit, etc.;

5. Target : OS, network protocol, application, service, process;

6. Results: Data corruption, exposure of information, denial of

service;

7. Gained Access: root access, user access;

8. Preconditions: existence of particular versions of software by

example;

9. Vulnerability: buffer overflow, weak password, inappropriate

configuration,

10. Objective : terrorism, political gain, financial gain, self

proving;

11. Attacker location: external, internal;

12. Security property: confidentiality, integrity, availability.

Taxonomies could be established upon a single attribute. Then the

resulting categories will contain attacks that are widely different

and share neither clear features nor strong relationships. For this

reason, multi-dimension taxonomies have been formed by

combining several attributes to obtain more distinctive categories

that regroup more similar attacks. Almost all attack taxonomies

suffer from the problem of mutual exclusivity. It was interpreted

by the nature of sophisticated attacks as being composed of

several blended attacks. However, this interpretation overlooked

the real cause. If we examine classifications’

attributes/dimensions, they are often not clearly defined and hence

properties of attacks are not clearly separated. By example,

putting both buffer overflow and DoS as classes bellow the same

attribute will inevitably lead to a mutual exclusive problem

because a buffer overflow attack may cause a DoS.

We also noticed that most of the aforementioned classifications

are attacker-centric where they take the attacker viewpoint. Thus,

they usually ignore or mask significant attack features, as seen by

an IDS itself or system owners. By contrast, both the taxonomies

of [15] and [16] are IDS-centric or defense-centric.

The categorization found in [16] was principally created for the

analysis of IDS. It considers more details about attacks in terms of

IDS characteristics. Although it seems to be more adapted for use

in IDS evaluation and testing, it has some limitations. First, it has

been uniquely focused on the manifestations of attack activities

that could be observable by the IDS while ignoring completely

other descriptive attributes that could be operationally so

important such as: the consequences, the privileges required or

obtained and the source of attacks. Such attributes are necessary

for the configuration of evaluation platform and also to determine

where/how the generated attack test cases will be injected.

Second, it contains very fine grained dimensions even though the

level of detail attained has minor significance for the tested IDS.

For instance, the dimension interface object –that contains 24

types- considers 5 distinctive types related to the application

layer:

App. layer-connectionless;

App. layer-single connection-single transaction;

App. layer-single connection-multiple transaction;

App. layer-multiple connection-single transaction;

App. layer-multiple connection-multiple transaction.

As a result of this fine granularity, it is not amazing to find classes

with one or two attacks. We can relax this attribute by considering

that an IDS is whether aware of and can analyze the activities at

the application layer or not and whatever it is a multiple

connection or single transaction. The worst case that this might

affect the number of generated alerts. This could be treated when

we analyze the evaluation results. Thus it does not worth to be

included in the classification scheme with the advantage of much

less classes. To explain this, we can theoretically obtain about

9600 test cases (i.e., all possible combinations), since any

arbitrary combination of activity characteristic can be used. The

number could be reduced to 8000 if we merged the classes related

to the application layer into one class.

The conclusion of our analysis and discussion is that the currently

existing attack classifications and taxonomies are not appropriate

for the evaluation and testing of IDS for several reasons. First,

they often take the attacker not the IDS (the defense) viewpoint

and have attributes out of the scope of the IDS. Second, they have

ambiguous, inconsistently defined attributes and hence problem of

mutual exclusion. Third, they have a huge number of classes.

Fourth, there is no accompanying scheme for test case selection.

 In the rest of the paper we will present a new classification of

attacks that aims to avoid the previous shortcomings. It builds on

the previous work by keeping only the attributes judged to be

relevant for IDS testing, giving them meaningful names and

consistent definitions. We also avoided the ambiguous attributes

and eliminated the attributes that are out of the IDS scope.

Finally, we combined the new classification with a simple scheme

for test case selection (i.e., the classification tree method) to get

relevant test cases of representative attacks.

4. TOWARDS A NEW CLASSIFICATION
Amongst the critiques of DARPA's evaluations, which hold also

for almost all subsequent IDS-evaluations, was the criteria

according to which attacks was selected as test cases [1].

In this section we state the required characteristics of good

classifications followed by a suggestion of a new taxonomy of

attacks. Having a good classification of attacks that takes the

evaluator’s viewpoint will be extremely useful for several reasons:

First, it will reduce drastically the number of necessary test cases.

Second, more comprehensive evaluation could be obtained

because selective generation of test-cases according to a good

classification will provide better coverage of attacks. To explain

that, let us consider the random selection of attack test-cases.

Evaluators usually test their systems in an ad-hoc manner using

few attack scripts available in their hands or on security mailing

lists. However, the available attack scripts do not reflect the attack

distributions or even do not cover some critical attack types. Some

IDS evaluations such as [11] and [18] were accompanied by some

kind of taxonomy but they are either superficial or reporting-

centric taxonomies that are less suitable for IDS evaluations.

Third, expressing the results of the evaluation in terms of attack

types will provide a more precise image of results with respect to

particular types of attacks. For example, a misunderstanding could

arise from the generalization of conclusions when expressing the

results for all attacks included in test-cases whereas the tested IDS

is weak in detecting certain type of attacks and strong in detecting

another.

Before proceeding, it is worth to mention here that we use the

terms: class, type and category as synonyms. The terms: attribute,

axe and dimension are used interchangeably to signify the feature

or the criteria of classification.

4.1 Classification Requirements
In order to obtain a good classification, there are some general

requirements that should be satisfied. Such requirements of a

reasonable classification were stated in [7], [14], and [16]. The

most important ones are:

1. Completeness/exhaustive: it means that a categorization

scheme should take into account all possible attacks (e.g.,

known and unknown).

2. Clear and unambiguous criteria: if each dimension has a

number of distinct classes, an attack can be classified by

picking up one and only one distinct class from each

dimension.

3. Mutually exclusive: to ensure that an attack is placed at most

in one category, a dimension has only mutual exclusive

distinct classes.

4. Repeatable: The clear steps followed to classify an attack

ensure that it should be placed always in the same category.

5. Compliance with existing standards and terminology: since

vulnerability databases and dictionaries had become de facto

standard in security, it was included in our taxonomy. This

dimension has a great importance because vulnerabilities

have a tight relation with attacks.

6. Extensible: when new attack classes appear, the

categorization scheme should be able to classify them. In our

scheme, new dimensions can be added and existing

dimensions can be extended. For instance, the target and the

carrier dimensions could be widened to contain more targets

and more carriers respectively. Therefore, even theoretical

attacks, that do not exist yet or not known yet could be

considered.

Knowledge about attacks is continuously increasing, but it still

practically insufficient to establish such taxonomy that satisfies all

the aforementioned requirements. In this regard, we follow a

pragmatic approach to do so and assign it a moderate priority in

our interest. On the other hand, our classification is fully

supporting the following requirements.

Evaluation-related requirements: In addition to the general

requirements, we can identify two more requirements that are

important from the evaluation perspective:

1. It should have a complementary scheme for attack selection

because multidimensional classifications are more

complicated and usually have thousands of classes.

Therefore, a classification scheme should be complemented

by a clear approach for wise selection of attacks.

2. It should consider attack generation aspects: It should be

kept in mind that attacks are classified and consequently test

cases are selected in order to be generated during the

evaluation process.

4.2 Suggesting New Classification
As stated previously, the purpose of this classification is to be

used in the evaluation and testing of IDS. Therefore, attacks are

viewed from the perspective of the IDS itself. We examined

carefully the attributes mentioned in section 3 to determine which

attributes are significant. Issues that are invisible for IDS or

meaningless for it should be discarded. For example, dimensions

such as attacker’s objective (intention) will not be treated

anymore within this classification since it is both hard and useless

to reveal attackers intention. Beside that, we see any attack

attempt or intrusion as a serious threat, whatever the objectives

behind. Similarly, both the type and detection technique

dimensions do not provide precise, clear cut categories.

While the results and security property (security threat)

dimensions give an indication about the expected damage, it is out

of the IDS scope according to the assumptions stated below. It can

be investigated later by correlation and forensic tools.

Furthermore, once attackers have hands over your system

(especially if they managed to have root/administrative access),

they can do what they like; they can steal, modify or destroy

information and hence having a serious threat to the

confidentiality, the integrity and the availability respectively.

Based on the analysis that we made in the previous sections and

regarding the stated requirements, we have adopted a new

classification inspired from the previous classifications [7], [12],

[13], [14], [16].

Our taxonomy relies on two main assumptions. First, we define

the task of an IDS as "to detect and to identify any attack or

intrusion attempt, whether the attack was successful or not". The

second assumption is that IDS is concerned mainly with atomic

attacks. Composite and multi-stage attacks could be detected but

in terms of individual attacks that comprise it. The correlation

between alerts corresponding to the atomic attacks is supposed to

signal a composite one or a scenario of attack.

Figure 1 shows our five-dimension taxonomy. The dimensions are

selected carefully to cover attack manifestations, sources and

origins. The dimensions are:

1. firing source that indicates the place from which the attacks

are launched. It has two distinct classes: remote and local.

This will determine the place from which an attack test case

will be launched. It can help to decide which the placement

and type of IDS is appropriate (e.g., which network segment,

host-based or network-based). It is also important to evaluate

the capacity of the evaluated IDS to detect remote as well as

local attacks.

2. privilege escalation: regarding whether the attack results in

promoting the access level. The distinct class root means that

the attacker has gained a root/administration access. The

distinct class user implies that the access level gained after

the attack is a user access. System is the third distinct class

for attacks that enables the execution of processes with

system rights. The distinct class none covers attacks that do

not need or do not result in any access to the system. This

includes most of remote DoS attacks and reconnaissance or

scanning attacks.

3. vulnerability dimension: was particularly added to express

the relationship between attacks and vulnerability

databases/dictionary and to precise the exploited

vulnerability. It can point to the specific vulnerability that is

exploited by the attacks that belong to this class. But for

now, we precise only whether the vulnerability is due to

configuration or design/ implementation flaws.

4. the carrier dimension explains the means by which the attack

was carried out: either via network traffic or through an

action performed directly on the machine and does not

appear on the network interface.

5. the last dimension is the targeted object. Attackers may

target the memory, the operating system, the network stack, a

file system object or a process (which represent the distinct

classes of the target dimension).

Our taxonomy do not focus only on the observable characteristics

of attacks like did the defense-centric [15] and the IDS-centric

[16] taxonomies. The added value of this taxonomy is that it

allows the classification of attacks regarding their characteristics

observable by IDS while keeping the eye on the operational issues

important for administrators. For example, the severity of attacks

is reflected implicitly by privilege escalation dimension. Also, the

source of danger (i.e., the firing source and the vulnerability

types) could suggest how the danger could be alleviated by which

counter measure (e.g., modify firewall rules to block a remote

source or search a missed patch). Moreover, it does not ignore the

evaluators’ needs where it provides essential information for the

generation of attacks and the analysis of test data. For example,

the firing source dimension gives an idea about the place from

which an attack should be generated, and the vulnerability

dimension tells whether a particular configuration should be

set/unset.

Ideally, an IDS should behave (i.,e., detect, undetect) in the same

way against attacks of the same class. Thus, it will be sufficient to

include a single attack from each class in the test case suite. To

check this “strong” assumption, two cases can be distinguished.

First: assuming that our classification is perfect: when we inject

attacks of the same class (i.e., they have the same attributes,

manifestations, etc.), the IDS will ideally behave similarly for all

attack instances. Otherwise, if the IDS behave differently, we can

conclude that the IDS has a problem of implementation and/or

configuration. Consider signature-based IDS, by example, it may

lack the corresponding signature of some attacks. The second

case: assuming that neither the IDS nor the classification are

perfect. As this is likely the case, we should search a compromise.

To ensure the representativity of attacks in the test suite, we need

to extend it with several instances of attacks of the same type and

then make statistics on the detection /non-detection results. This

will increase the number of test cases but at the same time it will

enhance the quality and certainty of results.

Finally, there might be some empty classes, but we do not

consider it as a limitation. Contrarily, this may demonstrates the

extensibility of the classification as future attacks can fit into the

empty classes.

5. A SCHEME FOR TEST-CASE
SELECTION
Having presented the evaluation-oriented classification, how

could it be employed for the evaluation and test of IDS? In this

section we present an approach by which evaluators can select

relevant test cases.

5.1 Classification Tree Method
The classification-tree method (CTM) was developed by

Grotchamann and Grimm in [17]. By means of the CTM, the

input domain of a test object is regarded under various aspects

that are assessed to be relevant for the test. For each aspect,

disjoint and complete classifications are formed. Classes resulting

from these classifications may be further classified. The stepwise

partition of the input domain by means of classifications is

represented graphically in the form of a tree. Subsequently, test

cases are formed by combining classes of different dimensions.

To construct the test-cases, a grid is drawn below the tree. The

columns of the grid result from vertical lines that correspond to

the leaves of the classification tree. A tester can construct a test

case by selecting a single child class of each top-level

classification. Each row of the grid indicates a distinct category of

test case. However, not all test cases are legal or valid. Therefore,

the tester should identify all valid test cases and eliminate invalid

ones. This often could be done by applying the constraints stated

explicitly or implicitly in system specifications.

A major advantage of the classification-tree method is that it turns

test case selection and generation into a systematic process and

making it easy to handle. Moreover, the systematic generation and

analysis of test cases prevents the overlook that might occur for

some areas of input. Thanks to its graphical representation, it

allows the visualization of ideas and could be a good mean of

communication between testers and developers.

In order to generate the possible test cases we used a tool called

CTE (Classification Tree Editor) [4] which enables the automatic

generation of test cases.

5.2 Generation of Attack Test Cases Using
CTM
Given the attack classification tree and using the classification tree

method (CTM), the CTE tool can produce all the possible

combinations of the distinct subclasses from all the dimensions.

Figure 1. The suggested new taxonomy

Attack Firing Source

Pivilege Escalation

Vulnerability

Carrier

Target

Remote

Local

None

System

User

Root

Implementation

Configuration

Network Traffic

Native Action

D. Link Layer

Network Layer

Transport Layer

Application Layer

System Call

Environment

Command Execute/

Function Call

Process

File System

Socket

Communication

Operating System

Memory

Network Stack

Process

File System Object

These combinations represent possible attack test cases.

The number of combinations may be in the range of thousands

(more precisely 1920 test cases compared to 9600 in [16]) and

exhaustively covers the attack space. However, the test cases can

be reduced, regrouped and reordered to get only relevant test

cases by applying constraints or generation rules in CTE.

The syntax for expressing the constraints within the program CTE

is straight forward. In addition to the dimension or the attribute

name, it uses the logic operators (AND (*), OR (+) and NOT) and

the parentheses. For example, the following generation rule (i.e.,

constraint):

Remote * (root +system) * configuration vul * Network traffic * (

FS object + OS)

will result in 16 test case categories, which represent remote

attacks that provide root or system access by exploiting

configuration vulnerability and could be observed in network

traffic targeting the files system or the operating system (see

appendix A).

6. CONCLUSION AND FUTURE WORK
This paper argued that an evaluation oriented classification of

attacks is needed. We demonstrated that the existing

classifications and taxonomies do not match all the needs of IDS

evaluation and testing. To fill this gap, we proposed a new

categorization scheme to be used by IDS evaluators and by

network administrators to assess and test their IDS. Based on this

classification and using the classification tree method, we

introduced an approach to wisely select relevant attack test cases.

Therefore, attack selection for IDS evaluation is no longer random

or done blindly from the few attacks at hand. It can now be done

with respect to the whole attack space. The next step is to classify

the existing attacks and exploits in order to populate the test cases

by real attacks. Then, we will proceed toward our ultimate goal as

this enables the unbiased evaluations of Intrusion Detection

Systems. This will be the subject of our next research.

7. REFERENCES
[1] John McHugh, Testing Intrusion Detection Systems: A

Critique of the 1998 and 1999 DARPA Intrusion Detection

System Evaluations as Performed by Lincoln Laboratory,

ACM Trans. on Information and System Security, Vol. 3, No.

4, pp. 262-294, Nov. 2000.

[2] P. Mell, V. Hu, R. Lippmann, J. Haines, M. Zissman, An

Overview of Issues in Testing Intrusion Detection Systems,

NISTIR 7007, National Institute of Standards and

Technology, August 2003.

[3] M. Gad El Rab, A. Abou El Kalam, Testing Intrusion

Detection Systems: An Engineered Approach, IASTED

International Conference on Software Engineering and

Applications, Nov. 2006.

[4] Classification Tree Editor CTE: http://systematic-testing.com

[5] D. Lough, A Taxonomy of Computer Attacks with

Applications to Wireless Networks, PhD thesis, Virginia

Polytechnic Institute and State University, 2001.

[6] M. Bishop, Vulnerabilities Analysis, International

Symposium on Recent Advances in Intrusion Detection

(RAID’99), 1999.

[7] U. Lindqvist and E. Jonsson, How to Systematically Classify

Computer Security Intrusions, IEEE Security and Privacy,

pp 154–163, 1997.

[8] P. G. Neumann and D. B. Parker, A Summary of Computer

Misuse Techniques, presented at 12th National Computer

Security Conference, Baltimore, MD, 1989, pp. 396—407.

[9] S. Kumar, Classification and Detection of Computer

Intrusions, PhD thesis, Purdue, 1995.

[10] D. J. Webar, A Taxonomy of Computer Intrusions, Master

Thesis, Massachusetts Institute of Technology, June 1998.

[11] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K.

Das, Analysis and Results of the 1999 DARPA Off-Line

Intrusion Detection Evaluation, Third Intl. Workshop on

Recent Advances in Intrusion Detection (RAID2000),

Toulouse, France 2000.

[12] K. Kendall, A database of computer attacks for the

evaluation of intrusion detection systems, Master’s Thesis.

Massachusetts Institute of Technology, MA, June 1999.

[13] John D. Howard. An Analysis of Security Incidents on The
Internet 1989-1995, PhD thesis, Carnegie Mellon University,

1997.

[14] Simon Hansmann, A Taxonomy of Network and Computer

Attacks, Diplom Thesis, University of Canterbury, New

Zealand, Nov. 2003.

[15] Kevin S Killourhy; Roy A. Maxion, and Kymie M. C. Tan, A

Defense-Centric Taxonomy Based on Attack Manifestations,

In International Conference on Dependable Systems &

Networks (DSN-04), pp. 102-111, Italy, 28 Jun-01 Jul 2004.

[16] Dominique Alessandri, Attack-Class-Based Analysis of

Intrusion Detection Systems, Ph.D. Thesis, Newcastle upon

Tyne, UK: University of Newcastle upon Tyne, 2004.

[17] M. Grochtmann, J. Wegener, K. Grimm, Test case design

using classification trees and the classification-tree Editor

CTE, In: Proceedings of the 8th International Software

Quality Week, pp. 1-11, 1995.

[18] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath

Mukherjee, and Ronald A. Olsson, A Methodology for

Testing Intrusion Detection Systems, IEEE Trans. on

Software Engineering, vol. 22, pp. 719--29, October 1996.

APPENDIX-A: Test cases produced by the CTE Tool

