
Key Substitution in the Symbolic Analysis of

Cryptographic Protocols (extended version)

Yannick Chevalier, Mounira Kourjieh

To cite this version:

Yannick Chevalier, Mounira Kourjieh. Key Substitution in the Symbolic Analysis of Crypto-
graphic Protocols (extended version). 2007. <hal-00183337>

HAL Id: hal-00183337

https://hal.archives-ouvertes.fr/hal-00183337

Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50544958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00183337

ha
l-

00
18

33
37

, v
er

si
on

 1
 -

 3
0

O
ct

 2
00

7

Key Substitution in the Symbolic Analysis of

Cryptographic Protocols (extended version)

Yannick Chevalier and Mounira Kourjieh

IRIT, Université de Toulouse, France
email: {ychevali,kourjieh}@irit.fr

Abstract. Key substitution vulnerable signature schemes are signature
schemes that permit an intruder, given a public verification key and a
signed message, to compute a pair of signature and verification keys
such that the message appears to be signed with the new signature key.
Schemes vulnerable to this attack thus permit an active intruder to claim
to be the issuer of a signed message.
A digital signature scheme is said to be vulnerable to destructive ex-
clusive ownership property (DEO) If it is computationaly feasible for an
intruder, given a public verification key and a pair of message and its
valid signature relatively to the given public key (m, s), to compute a
pair of signature and verification keys and a new message m′ such that
s is a valid signature of m′ relatively to the new verification key.
In this paper, we investigate and solve positively the problem of the de-
cidability of symbolic cryptographic protocol analysis when the signature
schemes employed in the concrete realisation have this two properties.

1 Introduction

According to West’s Encyclopedia of American Law, a signature is

“A mark or sign made by an individual on an instrument or document
to signify knowledge, approval, acceptance, or obligation. . . [Its purpose]
is to authenticate a writing, or provide notice of its source1. . . ”

We will not deal any further with legal considerations, but it is interesting to note
that while digital signatures are primarily employed to authenticate a document,
i.e. ensure that the signer endorses the content of the document, they can also
be employed to prove the origin of a document, i.e. ensure that only one person
could have signed it. Indeed, most of the cryptographic work on digital signatures
has aimed at certifying that no-one could sign a document in the place of someone
else.

The analysis of digital signature primitives has however focused on the for-
mer authentication property. Formally speaking, the yardstick security notion
for assessing the robustness of a digital signature scheme is the existential en-
forceability against adaptative chosen-message attacks (UNF-CCA) [10]. This

1 We have emphasised

notion states that, given a signing key/verification key pair, it is infeasible for
someone ignorant of the signing key to forge a message that can pass the verifica-
tion with the public verification key, and this even when messages devised by the
attacker are signed beforehand. The security goal provided by this property is
the impossibility (within given computing bounds) to impersonate a legitimate
user (i.e. one that does not reveal its signature key) when signing a message.

We note that this robustness does not address the issue of the identification of
a source of a message. However, this latter concept is also pertaining to digital
signatures when they are employed in a non-repudiation protocol. While one
would not differentiate the two properties at first glance, they are different since
the authentication property requires the existence of the participation of the
signer in the creation of the message, while the latter mandates the unicity of a
possible creator of a message.

The two notions of message authentication and source authentication collapse
in the single-user setting when there exists only one pair of signature/verification
keys. They may however be different in a multi-user setting. We believe that the
first work in this direction was the discovery of a flaw on the Station-to-Station
protocol by Blake-Wilson and Menezes [12], where the authors show how it is
possible to confuse a participant into thinking it shares a key with another per-
son than the actual one. The attack consisted in the creation, by the attacker,
of a signature/verification key pair dependent upon messages sent in the proto-
col. Defining a signature scheme to have the Duplicate Signature Key Selection
(DSKS) property if it permits such a construction with non-negligible prob-
ability, they showed that several standard signature schemes (including RSA,
DSA, ECDSA and ElGamal) had this property, but also that a simple counter-
measure (signing the public key along with the message) existed in all cases,
but was rarely implemented. This DSKS property was formally defined as Key
substitution in [2], where it is also discussed, after a review of what could be
called an attack on a signature scheme in the multi-user setting. It was also later
presented independently in [8] as Conservative Exclusive Ownership. The com-
panion property of Destructive Exclusive Ownership by which an intruder may
also change arbitrarily the signed message is also introduced and they showed
that the usual signature algorithms (such as RSA and DSS) have this property.
While the same attacks as in [2] are exhibited, the authors also demonstrate
how this can be used in practice to poison a badly implemented PKI with fake
CRLs (T. Pornin, personal communication).

Automated validation of security protocols. Cryptographic protocols have been
applied to securing communications over an insecure network for many years.
While these protocols rely on the robustness of the employed security primitives,
their design is error-prone. This difficulty is reflected by the repeated discovery
of logical flaws in proposed protocols, even under the assumption that crypto-
graphic primitives were perfect. As an attempt to solve the problem, there has
been a sustained effort to devise formal methods for specifying and verifying the
security goals of protocols. Various symbolic approaches have been proposed to
represent protocols and reason about them, and to attempt to verify security

properties such as confidentiality and authenticity, or to discover bugs. Such
approaches include process algebra, model-checking, equational reasoning, con-
straint solving and resolution theorem-proving (e.g., [14,9,16,1]).

Our goal is to adapt the symbolic model of concrete cryptographic primitives
in order to reflect inasmuch as possible their imperfections that could be used by
an attacker to find a flaw on a protocol. The work described in this paper relies
on the compositionality result obtained in [17] that permits us to abstract from
other primitives and consider protocols that only involve a signature scheme
having DSKS property (resp. vulnerable to DEO property).

Outline. In Section 2 we will present an attack by Baek et al. demonstrating
how an actual intruder can use the DSKS property of a signature scheme to
attack a protocol. We then describe in Section 3 the formalism in which we
will analyse cryptographic protocols. In Section 4 we present how we model
the possible actions of an intruder taking advantage of the DSKS property of
a signature scheme and in section 5, we present how we model the possible
actions of an intruder taking advantage of the vulnerability of signature scheme
to DEO property. We present in Section 7 an algorithm that permits to reduce
the analysis to an analysis in the empty equational theory, and give in Section 8
a decision procedure for the reachability problem in these protocols. We conclude
in Section 9.

2 An example of attack

We do not present here the original attack on the station-to-station protocol, but
one that we believe to be simpler, and given by Baek et al. [3] on the KAP-HY
(Key Agreement protocol, proposed by Hirosi and Yoshida in [11]).

Presentation of the KAP-HY protocol. This protocol relies on a redundant sig-
nature scheme to provide key confirmation at the end of a key exchange. The
signature of a message m by agent A is denoted sA(m). Abstracting the details
of the Diffie-Hellman key construction with messages uA and uB, and of the
signature scheme, the protocol reads as follows:

A→ B : uA, A
B → A : uB, sB(uA), B
A→ B : sA(sB(uA), uB)

An unknown key share (UKS) attack on a key agreement protocol is an attack
whereby two entities A and B participating in a key agreement protocol may
end the protocol successfully, but with a wrong belief on who shares a key with
who. In [3], Baek et al. showed that the redundant signature scheme employed
in the KAP-HY protocol possesses the DSKS property, and elaborate on this
to show that the KAP-HY is vulnerable to a UKS attack. In this attack, the
intruder E waits that A initiates a session with him:
(1) A→ E : uA, A (2) E → A : uB, sB(uA), E
(1′) E → B : uA, A (3) A→ E : sA(sB(uA), uB)
(2′) B → E(A) : uB, sB(uA), B (3′) E → B : sA(sB(uA), uB)

In this attack, the intruder E records, but passes unchanged, the first mes-
sage, and initiates a session as A with B. It then intercepts the second message,
and builds from the public key of B and from the message sB(uA) a signa-
ture/verification key pair, and registers this key pair. E then passes the signa-
ture, but this time accompanied by its identity (2’). The main point is that when
A checks the signature of the incoming message, it accepts it on the ground that
it seems to originate from E. At the end of this execution, A believes that the
key is shared with E whereas it is actually shared with B.

The computation of the new pair of keys (PE , SE) proceeds as follows. At
the end of flow (2), the intruder knows the signature of uA made by Bob using
his public key, then, by using DSKS property of the used signature scheme, he
creates the new pair of keys (PE , SE). The crucial point, common to all DSKS
attacks, is the construction of a new key pair from a public verification key and
from a signed message. We will model this operation with appropriate deduction
rules, and prove that protocol analysis remains decidable.

3 Formal setting

3.1 Basic notions

We consider an infinite set of free constants C and an infinite set of variables
X . For any signature G (i.e. sets of function symbols not in C with arities) we
denote T(G) (resp. T(G,X)) the set of terms over G ∪ C (resp. G ∪ C ∪ X).
The former is called the set of ground terms over G, while the latter is simply
called the set of terms over G. The arity of a function symbol g is denoted
by ar(g). Variables are denoted by x, y, terms are denoted by s, t, u, v, and
finite sets of terms are written E, F, ..., and decorations thereof, respectively. We
abbreviate E ∪ F by E, F , the union E ∪ {t} by E, t and E \ {t} by E \ t. The
subterms of a term t are denoted Sub(t) and are defined recursively as follows.
If t is an atom (i.e. t ∈ X ∪ C) then Sub(t) = {t}. If t = g(t1, . . . , tn) then
Sub(t) = {t} ∪

⋃n

i=1
Sub(ti). The positions in a term t are sequences of integers

defined recursively as follows, ε being the empty sequence representing the root
position in t. We write p ≤ q to denote that the position p is a prefix of position
q. If u is a subterm of t at position p and if u = g(u1, . . . , un) then ui is at
position p · i in t for i ∈ {1, . . . , n}. We write t|p the subterm of t at position p.
We denote t[s] a term t that admits s as subterm. The size ‖t‖ of a term t is the
number of distinct subterms of t. The notation is extended as expected to a set
of terms.

A substitution σ is an involutive mapping from X to T(G,X) such that
Supp(σ) = {x|σ(x) 6= x}, the support of σ, is a finite set. The application of
a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ)
and is equal to the term t (resp. E) where all variables x have been replaced by
the term σ(x). A substitution σ is ground w.r.t. G if the image of Supp(σ) is
included in T(G).

An equational presentation H = (G,A) is defined by a set A of equations
u = v with u, v ∈ T(G,X) and u, v without free constants. For any equational

presentation H the relation =H denotes the equational theory generated by
(G,A) on T(G,X), that is the smallest congruence containing all instances of
axioms of A. Abusively we shall not distinguish between an equational presenta-
tion H over a signature G and a set A of equations presenting it and we denote
both by H. If the equations of A can be oriented from left to right, we write the
equations in A with an arrow, l→ r. The equations can then only be employed
from left to right, and A is called a rewrite system. An equational theory can
in this case be defined by a rewrite system. An equational theory H is said to
be consistent if two free constants are not equal modulo H or, equivalently, if it
has a model with more than one element modulo H.

Let A be a set of rewrite rules l → r. The rewriting relation →A between
terms is defined by t →A t′ if there exists l → r ∈ A and a substitution σ such
that lσ = s and rσ = s′, t = t[s] and t′ = t[s← s′]. A is convergent if and only
if it is terminating and confluent. In this case, all rewriting sequences starting
from t are finite and have the same limit, and this limit is called the normal form
of t. We denote this normal form (t)↓A, or (t)↓ when the considered rewriting
system is clear from the context. A substitution σ is in normal form if for all
x ∈ Supp(σ), the term σ(x) is in normal form.

3.2 Unification systems

In the rest of this section, we let H be an equational theory on T(G,X) and A
be a convergent rewriting system generating H.

Definition 1. (Unification systems) Let H be an equational theory on T(G,X).
A H-unification system S is a finite set of pairs of terms in T(G,X) denoted by

{ui
?
= Hvi}i∈{1,...,n}. It is satisfied by a substitution σ, and we note σ |= HS, if

for all i ∈ {1, . . . , n} we have uiσ =H viσ. In this case we call σ a solution or a
unifier of S.

When H is generated by A, the confluence implies that if σ is a solution
of a H-unification system, then (σ)↓ is also a solution of the same unification
system. Accordingly we will consider in this paper only solutions in normal form
of unification systems. A complete set of unifiers of a H-unification system S is a
set Σ of substitutions such that, for any solution τ of S, there exists σ ∈ Σ and
a substitution τ ′ such that τ =H στ ′. The unifier τ is a most general unifier of
S if the substitution τ ′ in the preceding equation must be a variable renaming.

In the context of unification modulo an equational theory, standard (or syn-
tactic) unification will also be called unification in the empty theory. In this
case, it is well-known that there exists a unique most general unifier of a set of

equations. This unifier is denoted mgu(S), or mgu(s, t) in the case S =
{

s
?
=∅ t

}

.

Unifiability Problem

Input: A H-unification system S.
Output: Sat iff there exists a substitution σ such that σ |=H S.

Let us now introduce the notion of narrowing, that informally permits to
instantiate and rewrite a term in a single step.

Definition 2. (Narrowing) Let s and t be two terms. We say t s iff there
exists l → r ∈ A, a position p such that t|p /∈ X and s = tσ[p ← rσ], where
σ = mgu(t|p, l). We denote by the narrowing relation.

Assume t t′ with a rule l→ r applied at a position p in t. A basic position in
t′ is either a non-variable position of t not under p or a position p · q where q is
a non-variable position in r. Basic narrowing is a restricted form of narrowing
where only terms at basic positions are considered to be narrowed. In the rest
of this paper, we denote t b.n. t′ a basic narrowing step.

3.3 Intruder deduction systems

The notions that we give here have been defined in [17]. These definitions have
since been generalised to consider a wider class of intruder deduction systems
and constraint systems [15]. Although this general class encompasses all intruder
deduction systems and constraint systems given in this paper, we have preferred
to give the simpler definitions from [17] which are sufficient for stating our prob-
lem. We will refer, without further justifications, to the model of [15] as extended
intruder systems and extended constraint systems. The latter correspond to sym-
bolic derivations in which a most general unifier of the unification system has
been applied on the input/output messages.

In the context of a security protocol (see e.g. [5] for a brief overview), we
model messages as ground terms and intruder deduction rules as rewrite rules
on sets of messages representing the knowledge of an intruder. The intruder
derives new messages from a given (finite) set of messages by applying deduction
rules. Since we assume some equational axioms H are satisfied by the function
symbols in the signature, all these derivations have to be considered modulo the
equational congruence =H generated by these axioms. In the setting of [17] an
intruder deduction rule is specified by a term t in some signature G. Given values
for the variables of t the intruder is able to generate the corresponding instance
of t.

Definition 3. An intruder system I is given by a triple 〈G, S,H〉 where G is a
signature, S ⊆ T(G,X) and H is a set of equations between terms in T(G,X).
To each t ∈ S we associate a deduction rule Lt : Var(t) ։ t . The set of rules
LI is defined as the union of Lt for all t ∈ S.

Each rule l ։ r in LI defines an intruder deduction relation ։l։r between
finite sets of terms. Given two finite sets of terms E and F we define E ։l։r F
if and only if there exits a substitution σ, such that lσ =H l′, rσ =H r′, l′ ⊆ E
and F = E ∪ {r′}. We denote ։I the union of the relations ։l։r for all l ։ r
in LI and by ։∗

I the transitive closure of ։I . Note that by definition, given
sets of terms E, E′, F and F ′ such that E =H E′ and F =H F ′ by definition

we have E ։I F iff E′ ։I F ′. We simply denote by ։ the relation ։I when
there is no ambiguity about I.

A derivation D of length n, n ≥ 0, is a sequence of steps of the form E0 ։I

E0, t1 ։I · · · ։I En with finite sets of terms E0, . . . En, and terms t1, . . . , tn,
such that Ei = Ei−1 ∪ {ti} for every i ∈ {1, . . . , n}. The term tn is called the

goal of the derivation. We define E
I

to be equal to the set of terms that can be
derived from E. If there is no ambiguity on the intruder deduction system I we

write E instead of E
I
.

3.4 Simultaneous constraint satisfaction problems

We now introduce the constraint systems to be solved for checking protocols. It is
presented in [17] how these constraint systems permit to express the reachability
of a state in a protocol execution.

Definition 4. (I-Constraint systems) Let I = 〈G, S,H〉 be an intruder system.
An I-constraint system C is denoted ((Ei ⊲ vi)i∈{1,...,n},S) and is defined by a
sequence of pairs (Ei, vi)i∈{1,...,n} with vi ∈ X , Ei ⊆ T(G,X) for i ∈ {1, . . . , n},
and Ei−1 ⊆ Ei for i ∈ {2, . . . , n}, and Var(Ei) ⊆ {v1, . . . , vi−1} and by an
H-unification system S.

An I-Constraint system C is satisfied by a substitution σ if for all i ∈

{1, . . . , n} we have viσ ∈ Eiσ
I

and if σ |=H S. We denote that a substitution σ
satisfies a constraint system C by σ |=I C.

Constraint systems are denoted by C and decorations thereof. Note that if a
substitution σ is a solution of a constraint system C, by definition of deduction
rules and unification systems the substitution (σ)↓ is also a solution of C. In
the context of cryptographic protocols the inclusion Ei−1 ⊆ Ei means that the
knowledge of an intruder does not decrease as the protocol progresses: after
receiving a message a honest agent will respond to it, this response can then
be added to the knowledge of the intruder who listens to all communications.
The condition on variables stems from the fact that a message sent at some
step i must be built from previously received messages recorded in the variables
vj , j < i, and from the ground initial knowledge of the honest agents.

Our goal will be to solve the following decision problem for the intruder
deduction system modelling a signature scheme having the DSKS property.

I-Reachability Problem

Input: An I-constraint system C.
Output: Sat iff there exists a substitution σ such that σ |=I C.

4 Symbolic model for key substitution attacks

A digital signature scheme is defined by three algorithms: the signing algorithm,
the verification algorithm and the key generation algorithm. The last algorithm

generates for each user a pair of keys, one of them will be used as signing key and
will be kept secret, while the other is public and will be used as a verifying key.
We abstract the key generation algorithm with two functions, PK() and SK()
denoting respectively the verification and signature keys of an agent. We assume
it is not possible, given an agent’s name A, to compute PK(A) or SK(A). The
signature of a message m with signature key k is a public algorithm Sig(,),
and the resulting signed message is denoted Sig(m, k). We consider signatures
with appendix, where the verification algorithm Ver(, ,) –which is available to
everyone– takes in its input a message m, a signature s and the public verification
key k. The application of the algorithm is denoted Ver(m, s, k), and its outcome
can be 0 (s is not the signature of m with the signature key associated with the
verification key k) or 1 (s is a valid signature).

In addition to these functions, we add two new functions, P’K(,) and
S’K(,), which are public and take as argument a signed message s and a ver-
ification key k corresponding to this signed message, and output respectively a
verification and a signature key denoted P’K(s, k) and S’K(s, k). The verification
of s with the verification key P’K(s, k) succeeds.

Given this informal description, the equational theory HDSKS to which these
operations abide by is presented by the following set ADSKS of equations:

ADSKS =

Ver(x, Sig(x, SK(y)), PK(y)) = 1
Ver(x, Sig(x, S’K(y1, y2)), P’K(y1, y2)) = 1
Sig(x, S’K(PK(y), Sig(x, SK(y)))) = Sig(x, SK(y))

The public operations defined above are now translated into an intruder
system IDSKS = 〈GDSKS ,LDSKS ,HDSKS〉 with:

{

GDSKS = {Sig, Ver, S’K(,), P’K(,), 0, 1, SK, PK}
LDSKS = {Sig(x, y), Ver(x, y, z), S’K(x, y), P’K(x, y), 0, 1}

Note that the presentation ADSKS is not convergent, and thus we cannot
apply results on basic narrowing as is. To this end we introduce a rewriting sys-
tem RDSKS which is convergent and obtained by Knuth-Bendix [6] completion
on ADSKS , and such that two terms have the same normal form for RDSKS iff
they are equal modulo HDSKS .

Lemma 1. HDSKS is generated by the convergent rewriting system:

RDSKS =

Ver(x, Sig(x, SK(y)), PK(y))→ 1
Ver(x, Sig(x, S’K(y1, y2)), P’K(y1, y2))→ 1
Ver(x, Sig(x, SK(y)), P’K(PK(y), Sig(x, SK(y))))→ 1
Sig(x, S’K(PK(y), Sig(x, SK(y))))→ Sig(x, SK(y))

Proof. The application of the Knuth-Bendix completion procedure [6] to
HDSKS gives us the convergent rewriting system RDSKS . This rewriting sys-
tem generates HDSKS , this conclude the proof.

�

5 Symbolic model for DEO attacks

A digital signature scheme is vulnerable against destructive exclusive owner-
ship (DEO) if it is computationaly feasible for the intruder, given Kpub and a
pair (m, s) such that Ver(Kpub, m, s) = 1, to produce values K ′

pub, K ′
priv, m′

and s′ such that K ′
pub 6= Kpub, K ′

priv matches K ′
pub, s′ = s, m′ 6= m and

Ver(K ′
pub, m

′, s) = 1.
A digital signature scheme is defined by three algorithms: the signing al-

gorithm, the verification algorithm and the key generation algorithm. These
algorithms have the same properties as above (section 4). We abstract the sig-
nature scheme with the following functions symbols: PK(), SK(), Sig(,) and
Ver(, ,). In order to model DEO attacks, we introduce three functions sym-
bols, P”K(,), S”K(,) and f(,) which are public and take as argument a
signed message s and a public verification key kpub corresponding to this signed
message, and output respectively a new verification key, a new signature key and
a new message denoted P”K(s, k), S”K(s, kpub) and f(s, kpub). The verification
of s with the new public key P”K(s, kpub) and the message f(s, kpub) succeeds.

Given this informal description, the equational theory HDEO to which these
operations abide by is presented by the following set ADEO of equations:

ADEO =

Ver(x, Sig(x, SK(y)), PK(y)) = 1
Ver(x, Sig(x, S”K(y1, y2)), P”K(y1, y2)) = 1
Sig(f(PK(y), Sig(x, SK(y))), S”K(PK(y), Sig(x, SK(y)))) = Sig(x, SK(y))

The public operations defined above are now translated into an intruder
system IDEO = 〈GDEO,LDEO,HDEO〉 with:

{

GDEO = {Sig, Ver, S”K(,), P”K(,), f, 0, 1, SK, PK}
LDEO = {Sig(x, y), Ver(x, y, z), S”K(x, y), P”K(x, y), f(x, y), 0, 1}

Note that the presentationADEO is not convergent, and thus we cannot apply
results on basic narrowing as is. To this end we introduce a rewriting system
RDEO which is convergent and obtained by Knuth-Bendix [6] completion on
ADEO, and such that two terms have the same normal form for RDEO iff they
are equal modulo HDEO.

Lemma 2. HDEO is generated by the convergent rewriting system:

RDEO =

Ver(x, Sig(x, SK(y)), PK(y))→ 1
Ver(x, Sig(x, S”K(y1, y2)), P”K(y1, y2))→ 1
Ver(f(PK(y), Sig(x, SK(y))), Sig(x, SK(y)), P”K(PK(y), Sig(x, SK(y))))→ 1
Sig(f(PK(y), Sig(x, SK(y))), S”K(PK(y), Sig(x, SK(y))))→ Sig(x, SK(y))

6 Decidability of unifiability

It can easily be shown, using the criterion of termination of basic narrowing
on the right-hand side of rules of RDSKS (resp. RDEO), that basic narrowing

terminates when applied with the rules ofRDSKS (resp. the rules ofRDEO). The
main result of [7] then implies the following proposition, when applying basic
narrowing with RDSKS (resp. RDEO) non-deterministically on the two sides
of an equation modulo RDSKS (resp. RDEO) and terminates with unification
modulo the empty theory.

Proposition 1. Basic narrowing is a sound, complete and terminating proce-
dure for finding a complete set of most general HDSKS-unifiers (resp. HDEO

unifiers).

One can actually be more precise, and we will need the following direct
consequence of Hullot’s unification procedure, that states that applying basic
narrowing permits one to “guess” partially the normal form of a term t.

Lemma 3. Let t be any term and σ be a normalised substitution. There exists a
term t′ and a substitution σ′ in normal form such that t ∗

b.n.
t′ and t′σ′ = (tσ)↓

where b.n. represent a basic narrowing relation modulo HDSKS (resp. modulo
HDEO).

While this presentation by a convergent rewrite system ensures the decidabil-
ity of unification modulo HDSKS (resp. modulo HDEO), we prove bellow that
the unifiability problem, as well as the partial guess of a normal form, is in fact
in NPTIME.

Complexity of unification

Theorem 1. Let t be a term and (D) be a basic narrowing derivation modulo
HDSKS (resp. modulo HDEO) starting from t. Then, the length of (D) in bounded
by ‖t‖.

Proof. Let us prove the theorem for the basic narrowing derivations modulo
HDSKS . Let t be a term and D be a basic narrowing derivation starting from
t, D : t = t0 b.n t1 b.n . . . b.n tn. RDSKS is convergent and any basic
narrowing derivation starting from the right members of the rules of RDSKS

terminates, then, by [7], (D) terminates. Let us prove that ‖D‖ ≤ ‖t‖. Let
P0 = P(t0) be the number of distinct subterms of t0 where we can apply the
basic narrowing. We note that if the basic narrowing can be applied on a term
s at a position p and if there exists another subterm of s at position q such that
t|p = t|q, we apply the basic narrowing at the positions p and q at the same
time. Let ti b.n ti+1 be a step in (D) and let li → ri ∈ RDSKS be the applied
rule. For any l → r ∈ RDSKS , r is not narrowable. By the fact that ri is not
narrowable and by the definition of basic narrowing [7], we have Pi+1 < Pi. We
deduce that ‖D‖ ≤ P0, but P0 ≤ ‖t0‖ then ‖D‖ ≤ ‖t‖.

The case of derivations modulo HDEO is analogoes. �

Corollary 1. The HDSKS-unifiability (resp. HDEO-unifiability) can be decided
in NPTIME.

Proof. Let us prove the corollary for HDSKS-unifiability. Let P and Q be
two terms. RDSKS is convergent and any basic narrowing derivation starting
from the right members of the rules of RDSKS terminates then, there exists an
HDSKS-unification algorithm (proposition 1). Let us prove that this algorithm
runs in NPtime. Suppose M = H(P, Q), (H is a new function symbol repre-
senting the cartesian product), and m = ‖M‖ = ‖P‖ + ‖Q‖+ 1. For any basic
narrowing derivation D starting from M, we have ‖D‖ ≤ m (Theorem 1). Sup-
pose that our algorithm always explore the right branch, then, starting from any
term M , the algorithm will be perform at most ‖M‖ steps before halting. Then,
we have the corollary.

By the same reasoning, we prove that HDEO-unifiability can be decided in
NPTIME. �

7 Saturation

7.1 Construction

Let H be an equational theory presented by a convergent rewrite system R. The
saturation of the set of deduction rules L defined modulo the equational theory
H is the output of the application of the saturation rules of Figure 1 starting
with L′ = L until any added rule is subsumed by a rule already present in L′.

Subsumption :
l1 ։ r ∈ L′ l2 ։ r ∈ L′

L′ ← L′ \ {l2 ։ r}
l1 ⊆ l2

Closure :

l1 ։ r1 ∈ L
′, (t, l2)։ r2 ∈ L

′

L′ ← L′ ∪ {(l1, l2 ։ r2)σ}

t /∈ X
σ = mgu∅(r1, t)

Narrow :
l։ r ∈ L′ (l, r) b.n. (l′, r′)

L′ ← L′ ∪ {l′ ։ r′}

Fig. 1. System of saturation rules.

The application of the saturation rules on LDSKS (resp. on LDEO) termi-
nates, and yields the following sets of rules:
LDSKS

′ = LDSKS ∪ x, SK(y)։ Sig(x, SK(y)) ∪ x, S’K(PK(y), Sig(x, SK(y)))։
Sig(x, SK(y)) and
LDEO

′ = LDEO ∪ f(PK(y), Sig(x, SK(y))), S”K(PK(y), Sig(x, SK(y))) ։

Sig(x, SK(y))

We define four new extended intruder systems: I ′
DSKS

=
〈

GDSKS ,LDSKS
′,HDSKS

〉

, I∅1 =
〈

GDSKS ,LDSKS
′, ∅

〉

, I ′
DEO

=
〈

GDEO,LDEO
′,HDEO

〉

and I∅2 =
〈

GDEO,LDEO
′, ∅

〉

. These intruder sys-
tems do not satisfy the requirements that the left-hand side of deduction rules
have to be variables. The deduction relation, the derivations and the set of
reachable terms are defined as usual from ground instances of deduction rules.

7.2 Properties of a saturated system

In the rest of this paper, we suppose H, R, L, L’, I = 〈G,L,H〉, I ′ = 〈G,L′,H〉
and I∅ = 〈G,L′, ∅〉 to be either respectively HDSKS , RDSKS , LDSKS , L′DSKS ,
IDSKS, I ′DSKS

or respectively HDEO, RDEO, LDEO, L′DEO, IDEO, I ′
DEO

.
Let us first prove that the deduction system obtained after saturation gives

exactly the same deductive power to an intruder.

Lemma 4. For any set of normal ground terms E and any normal ground term
t we have: E ։∗

I t if and only if E ։∗
I′ t.

Proof. First, let us assume that t ∈ E
I
, that is, there exists a I-derivation

(D) starting from E of goal t, and let us prove that there exists a I ′-derivation
starting from E of goal t. If there exists a step in the derivation D which uses a
rule l ։ r ∈ L but not in L′, then, by construction of L′, there exists another
rule l1 ։ r in L′ such that l1 ⊆ l and thus that can be applied instead of l։ r.
We conclude that E ։∗

I′ t.

For the reciprocal, let us assume that there exists a I ′-derivation starting
from E of goal t, and let us prove that there exists a I-derivation starting from
E of goal t. We begin by defining an arbitrary order on the rules of L, and we
extend this order to the rules of L′ \L as follows: the rules of L are smaller than
the rules of L′ \ L and the rules of L′ \ L are ordered according to the order of
their construction during the saturation. Let M(D) be the multiset of deduction

rules applied in D. Let Ω(E, t) = {D | D : E ։∗ t}. Since t ∈ E
I′

, Ω(E, t) 6= ∅.
Let D be a derivation in Ω(E, t) having the minimal M(D), and let us prove
that D does not use rules in L′ \L. By contradiction, suppose that D uses a rule
l ։ r ∈ L′ \ L. Since l ։ r /∈ L, it has been constructed according to the rules
of saturation. Let us review the possible cases:

– If l ։ r has been constructed by the third rule of saturation, there exists a
rule l1 ։ r1 ∈ L′ such that (l1, r1)

∗
b.n (l, r). By definition of deductions,

l1 ։ r1 can be applied instead of l ։ r. Let (D′) be the derivation where
l′ ։ r′ replaces l ։ r, (D′) is in Ω(E, t). Since l1 ։ r1 has an order smaller
than the order of l ։ r, we have M(D′) < M(D), which contradicts the
minimality of M(D).

– If l ։ r has been constructed by the second rule of saturation, there exists
two rules l1 ։ r1 and s, l2 ։ r2 in L′ such that µ = mgu(r1, s), s /∈ X , l =
((l1, l2)µ)↓ and r = (r2µ)↓. suppose that l։ r is applied on the set of terms
F , F ։l։r F, g. Since (lσ)↓ ⊆ F and (rσ)↓ = g for a substitution σ, we
have (l1µσ)↓ ⊆ F and ((s, l2)µσ)↓ ⊆ F ∪(r1µσ)↓, this implies that F ։l1→r1

F, (r1µσ)↓ ։l2,s→r2
F, (r1µσ)↓, g. Let (D′) be the derivation where l1 ։ r1

and s, l2 ։ r2 replace l։ r. (D′) is in Ω(E, t). Since l1 ։ r1 and s, l2 ։ r2

have an order smaller than the order of l։ r, we have M(D′) < M(D) which
contradicts the minimality of M(D).

We conclude that (D) does not use rules in L′ \ L, then, we have the reciprocal
of the lemma. �

Moreover, we can prove that when considering only deductions on terms
in normal form and yielding terms in normal form, it is sufficient to consider
derivations modulo the empty theory (Corollary 2).

Lemma 5. Let E (resp. t) be a set of terms (resp. a term) in normal form. We
have: E ։I′ E, t if and only if E ։I∅

E, t.

Proof. Assume first E ։I′ E, t. There exists a rule l ։ r ∈ L′ and a sub-
stitution σ in normal form such that (lσ)↓ ⊆ E and t = (rσ)↓. By Lemma 3,
there exists a set of terms l′, r′, and a substitution σ′ in normal form such that
l ∗

b.n. l′, r ∗
b.n. r′, and (lσ)↓ = l′σ′, and (rσ)↓ = r′σ′. By the saturation, we

have added at some point l′ ։ r′ to L′. Either this rule is present in the final L’
and can be applied, or it is subsumed by a rule that can be applied on E. The
converse is left to the reader. �

Corollary 2. Let E (resp. t) be a set of terms (resp. a term) in normal form.
We have: E ։∗

I′ E, t if and only if E ։∗
I∅

E, t.

Next lemma states that if a term in the left-hand side of a deduction rule of
the saturated system is not a variable, then we can assume it is not the result
of another saturated deduction rule.

Lemma 6. Let E (resp. t) be a set of terms (resp. a term) in normal form. If

t ∈ E
I∅

, then there exists a I∅-derivation starting from E of goal t such that:
for all I∅ rules l ։ r applied with substitution σ, for all s ∈ l \ X , we have
sσ ⊆ E.

Proof. Let us prove by induction on the length n of a derivation D starting
from E of goal t that either D satisfies the property or their exists another I∅-
derivation D′ of length smaller to n starting from E of goal t which satisfies the
property.
The case n = 1 is obvious.
Suppose that the lemma is true for derivations of length ≤ n and let us prove it
for derivations D of length n + 1.
D : E = E0 ։

i−1 Ei−1 ։ Ei−1, ti ։ . . . ։ En ։ En, t. Suppose that D
does not satisfy the property, there exists a step i in D where the rule l ։ r is
applied with the substitution σ, and there exists s ∈ l \ X such that sσ /∈ E.
Since sσ /∈ E, it has been constructed at some step j < i. We have:
D : E ։j−1 Ej−1 ։ Ej−1, sσ ։ . . . ։ Ei ։ Ei, ti ։ . . . ։ En ։ En, t.
Let lj ։ rj ∈ L

′ be the rule applied, with the substitution τ , to construct
sσ. Since rjτ = sσ, rj and s are unifiable with µ = mgu(rj , s). Then the rule
(lj , l \ s։ r)µ has been constructed. Since µ is a substitution most general than
σ, it can be applied on Ei to yield ti. This implies that we can reduce D to:
D′ : E ։j Ej ։ Ej+2 ։ . . . ։ Ei ։ Ei, ti ։ . . . ։ En ։ En, t where the
construction of sσ is spell and the applied rule at the step i is (lj , l \ s)µ։ rµ.
We note that ‖D′‖ < ‖D‖, then ‖D′‖ ≤ n. By induction, either D′ satisfies
the property or there exists another I∅-derivation D′′ starting from E of goal t
which satisfies the property. Then, we have the lemma for derivations of length
n+1 and this concludes the proof. �

8 Decidability of reachability

The main result of this paper is the following theorem.

Theorem 1 The IDSKS-Reachability (resp. IDEO-Reachability) problem is decid-
able.

The rest of this paper is devoted to the presentation of an algorithm for solv-
ing IDSKS-Reachability (resp. IDEO-Reachability) problems and to a proof scheme
of its completeness, correctness and termination. This decision procedure com-
prises three different steps.

Let C be an I-constraint system.

8.1 First step: guess of a normal form

Step 1. Apply non-deterministically basic narrowing steps on all subterms of C.
Let C0 =

{

(E0
i ⊲ v0

i)i∈{1,...,n},S
0
}

be the resulting constraint system.

Remark. Let σ be a solution of the original constraint system, with σ in normal
form. This first step will non-deterministically transform each t ∈ Sub(C) into a
term t′ such that, according to Lemma 3 we will have (tσ)↓ = t′σ′.

8.2 Second step: resolution of unification problems

Step 2. Solve the unification system S0 modulo the empty theory, and apply
the obtained unifier on the deduction constraints to obtain a constraint system
C′ =

{

(E′
i ⊲ t′i)i∈{1,...,n}

}

Remarks. We prove below that if there exists a solution to the original constraint
system, then there exists a solution of C′ for the extended intruder system I∅.
C’ itself is not a constraint system, but an extended constraint system.

Lemma 7. If σ is a substitution in normal form such that σ |=I C, there exists
a C′ at Step 2 and a substitution σ′ in normal form such that C ∗

b.n.
C′ and

σ′ |=I∅
C′.

Proof. By definition σ |=I C implies that for all i ∈ {1, . . . , n} we have σ |=I

(Ei⊲ ti). Thus there exists by Lemma 4 an I ′-derivation starting from (Eiσ)↓ to
(tiσ)↓. Since σ is in normal form, by lemma 3, there exists E′

i, t′i and σ′ in normal
form such that Ei

∗
b.n. E′

i, ti
∗
b.n. t′i, (Eiσ)↓ = E′

iσ
′ and (tiσ)↓ = t′iσ

′ for all
i ∈ {1, . . . , n}. By Lemma 5 (Eiσ)↓ →∗

I′ (tiσ)↓ then implies (Eiσ)↓ →∗
I∅

(tiσ)↓

Since (Eiσ)↓ = E′
iσ

′ and (tiσ)↓ = t′iσ
′ then, σ′ |=I∅

(E′
i⊲t′i) for all i ∈ {1, . . . , n}

and thus we have the lemma. �

Apply :
Cα, E ⊲ t,Cβ

(Cα, (E ⊲ y)y∈lx, Cβ)σ

lx, l1, . . . , ln ։ r ∈ L′ and lx ⊆ X , t /∈ X

e1, . . . , en ∈ E and σ = mgu(
{

(ei
?
= li)i, r

?
= t

}

)

Unif :
Cα, E ⊲ t, Cβ

(Cα, Cβ)σ

u, t /∈ X
u ∈ E, σ = mgu(u, t)

Fig. 2. System of transformation rules.

8.3 Third step: Transformation in solved form

Step 3. To simplify the constraint system, we apply the transformation rules
of Figure 2. Our goal is to transform C’ into a constraint system such that the
right-hand sides of deduction constraints (the ti) are all variables. When this is
the case, we say that the constraint system is in solved form. It is routine to
check that a constraint system in solved form is satisfiable.

Lemma 8. Let C = {Cα, E ⊲ t, Cβ} be such that Cα is in solved form. Then, for
all substitution σ, σ |= C if and only if σ |= {Cα, (E \ X)⊲ t, Cβ} .

Proof. It suffices to prove that if x ∈ E ∩ X and σ is a substitution such that
σ |= C, then we have σ |= {Cα, (E \ {x})⊲ t, Cβ}. Given x ∈ E there exists a
set of terms Ex ⊆ E such that Ex ⊲ x ∈ Cα. Since σ |= C we have σ |= Ex ⊲ x,
and by the fact that Ex ⊆ E \ {x} we have σ |= E \ {x} ⊲ x. Since we also
have σ |= (E ⊲ t) this implies σ |= E \ {x} ⊲ t. The reciprocal is obvious since
E \ {x} ⊆ E. �

It also can be proved that the lazy constraint solving procedure terminates.
This lemma also helps us to prove the completeness of lazy constraint solving
(stated in Lemma 11).

Lemma 9. (DSKS-termination.) Let C be an IDSKS-constraint system. The
application of transformation rules of the algorithm using L′DSKS rules termi-
nates.

Proof. Let nbv(C) = |Var(C)| be the number of variables in C, and M(C)
denote the multiset of the right-hand side of deduction constraints in C. Let us
prove that after any application of a transformation rule on a constraint system
C = (Cα, E ⊲ t) (where Cα is in solved form), either nbv(C) decreases strictly, or
the identity substitution is applied on C during the transformation and M(C)
strictly decreases.

The first point will ensure that after some point in a sequence of transfor-
mations the number of variables will be stable, and thus from this point on
M(C) will strictly decrease. The fact that no more unification will be applied
and that the extension of the subterm ordering on multisets is well-founded will
then imply that there is only a finite sequence of different constraint systems,
and thereby the termination of the constraint solving algorithm.

This fact is obvious if the Unif rule is applied, since it amounts to the uni-
fication of two subterms of C. It is then well-known that if the two subterms

are not syntactically equal, the number of variables in their most general unifier
is strictly less than the union of their variables, which is included in Var(C). If
they are syntactically equal, then no substitution is applied, and thus denoting
C’ the result of the transformation, we have M(C) = M(C′) ∪ {t}, and thus
M(C′) <M(C).

Let us now consider the case of the Apply rule, and let C’ be the obtained
constraint system. If the underlying intruder deduction rule is in LDSKS , the
fact that t is not a variable implies that the variables of the right-hand side of
the rule will be instantiated by the strict maximal subterms t1, . . . , tk of t. We
will thus have:

M(C′) =M(C) ∪ {t1, . . . , tn} \ {t}

and thus M(C′) <M(C).
It now suffices to prove the Lemma for the two rules in L′DSKS \ LDSKS :

rule x, SK(y)։ Sig(x, SK(y)): The substitution σ applied is the most general

unifier of the unification system
{

Sig(x, SK(y))
?
= t, SK(y)

?
= u

}

for some

u ∈ E. Since this is syntactic unification and since we can assume neither u
(by Lemma 8) nor t (by definition of the Apply rule) are variables, we must
have u = SK(u′) and t = Sig(t1, t2). The second equation thus yields y = u′,
with u′ ∈ Sub(C). Replacing in the first equation, σ is the most general

unifier of the equation Sig(x, SK(u′))
?
= Sig(t1, t2), which reduces into the

set of equations
{

x
?
= t1, SK(u′)

?
= t2

}

. The first equation implies that x is

instantiated by a strict subterm t1 of t. If the second equation is trivial we
haveM(C′) =M(C)∪{t1} \ {t}, and thusM(C′) <M(C). Otherwise, since
Var(SK(u′)) ∪Var(t2) ⊆ Var(C) we have nbv(C′) < nbv(C).

rule x, S’K(PK(y), Sig(x, SK(y)))։ Sig(x, SK(y)): The substitution
σ applied is the most general unifier of the unification system
{

Sig(x, SK(y))
?
= t, S’K(PK(y), Sig(x, SK(y)))

?
= u

}

for some u ∈ E.

Since this is syntactic unification and since we can assume neither u (by
Lemma 8) nor t (by definition of the Apply rule) are variables, we must
have u = S’K(u′

1, u
′
2) and t = Sig(t1, t2). If σ is the identity on C, we are

done, since in this case we have M(C′) = M(C) ∪ {t1} \ {t} and thus
M(C′) < M(C). Otherwise let us examine how the unification system is
solved. It is first transformed into:

{

x
?
= t1, SK(y)

?
= t2, PK(y)

?
= u′

1, Sig(x, SK(y))
?
= u′

2

}

Resolving the first equation yields (note that x /∈ Var(C)):

{

SK(y)
?
= t2, PK(y)

?
= u′

1, Sig(t1, SK(y))
?
= u′

2

}

Let us consider two cases, depending on whether both u′
1 and t2 are variables:

– If they are both variables, then solving the first equation removes t2
from Var(C) but adds a variable y. The second equation will also remove

u′
1, but since the variable y is already present, it will not add another

variable. Since PK(y) and SK(y) are not unifiable, we note that we must
have t2 6= u′

1, and thus we have removed two variables and added one
by solving the two first equations. The remaining equation contains only
variables of the “intermediate” constraint system, and thus will not add
any new variable. In conclusion, in this case, the number of variables of
C decreases by at least 1.

– If say t2 is not a variable, and thus t2 = SK(t′2), with t′2 ∈ Sub(C).
Resolving the first equation and injecting the solution in the remaining
equations yields the unification system:

{

PK(t′2)
?
= u′

1, Sig(t1, SK(t′2))
?
= u′

2

}

Note that up to this point the substitution σ that we built does not
affect any variable of C. If this remaining unification system is trivial,
then the substitution applied on C is the identity, we are done (see above).
Otherwise, since all the variables in this system are in Var(C), it strictly
reduces nbv(C). This terminates the proof of this case.

Thus, if this rule is applied, either no substitution is applied on C andM(C)
strictly decreases, or the number of variables in the resulting constraint sys-
tem C’ is strictly smaller than the number of variables in C.

�

Lemma 10. (DEO-termination.) Let C be an IDEO-constraint system. The ap-
plication of transformation rules of the algorithm using LDEO

′ rules terminates.

Proof. Let C =
{

(Ei ⊲ ti)i∈{1,...,n}

}

be an IDEO-constraint system not in
solved form and let the complexity of C be a couple ordered lexicographically
with the following components:

– nbv(C), the number of distinct variables in C,
– M(C) the multiset of the right-hand side of deduction constraints in C.

We have to show that each rule reduces the complexity. The fact is obvious if
the Unif rule is applied, since it amounts to the unification of two subterms of
C. If is then well-known that if two subterms are not syntactically equal, then the
number of variables in their most general unifier is strictly less than the union of
their variables, which is included in Var(C). If their are syntactically equal, then
no substitution is applied, and thus denoting C’ the result of transformation, we
haveM(C′) <M(C).

Let us now consider the case of Apply rule, and let C’ be the obtained con-
straint system. If the underlying intruder deduction rule is in LDEO, the fact
that t is not a variable implies that the right-hand side of the rule will be
instantiated by the strict maximal subterms t1, . . . , tk of t. we will thus have
M(C′) =M(C) ∪ {t1, . . . , tk} \ {t} and thus M(C′) <M(C).

It is now suffices to prove the Lemma for the rule in LDEO
′ \ LDEO:

the applied rule is: f(PK(y), Sig(x, SK(y))), S”K(PK(y), Sig(x, SK(y))) ։
Sig(x, SK(y)). The substitution σ is the most general unifier of the unification

system
{

t
?
= Sig(x, SK(y)), e1

?
= f(PK(y), Sig(x, SK(y))), e2

?
= S”K(PK(y), Sig(x, SK(y)))

}

for some e1, e2 ∈ E. since it is syntactic unification and since we can assume
neither e1, neither e2 (by Lemma 8) nor t (by definition of the Apply rule) are
variables, we must have t = Sig(t1, t2), e1 = f(v1, v2), and e2 = S”K(v3, v4).

– If t2 ∈ X , we have σ(x) = t1, σ(t2) = SK(y) and the unification system is
then transformed into:
{

v1
?
= PK(y), v2

?
= Sig(t1, SK(y)), v3

?
= PK(y), v4

?
= Sig(t1, SK(y))

}

.

By the fact that t3 is replaced by y, x, y /∈ Var(C), and the number of
variables in σ is strictly less than the union of variables of the unification
system, we deduce that nbv(C′) < nbv(C).

– If t2 /∈ X then t2 = SK(t3). We have σ(x) = t1, σy = t3 and the unification
system is then transformed into:
{

v1
?
= PK(t3), v2

?
= Sig(t1, SK(t3)), v3

?
= PK(t3), v4

?
= Sig(t1, SK(t3))

}

.

If the unification system is obvious, that is σ is the identity substitution,
we have C′ = C \ (E ⊲ t), and then M(C′) = M(C) \ t which implies that
M(C′) <M(C). Else, we have nbv(C′) < nbv(C).

This concludes the proof. �

Lemma 11. If C′ is satisfied by a substitution σ′, it can be transformed into a
system in solved form by the rules of Figure 2.

Proof. Let C be a deterministic constraint system not in solved form and let i
be the smallest integer such that ti /∈ X , then C = {Cα, Ei ⊲ ti, Cβ} where Cα is
in solved form. Let σ be a substitution such that σ |=I∅

C, and let us prove that C
can be reduced to another satisfiable constraint system C′ by applying the trans-
formation rules given in the algorithm. σ |=I∅

C, then σ |=I∅
{Cα, Ei \ X ⊲ ti, Cβ}

(Lemma 8) and then, (Ei \ X)σ →∗
I∅

tiσ. We have two cases:

– If tiσ ∈ (Ei \ X)σ, there exists a term u ∈ (Ei \ X) such that uσ = tiσ. Let
µ be the most general unifier of u and ti, then σ = θµ, and we can simplify
C by applying the first transformation rule Unif, C =⇒ C′ = {Cαµ, Cβµ}. We
have σ |=I∅

Cα and σ |=I∅
Cβ , then θ |=I∅

{Cαµ, Cβµ}.
– If tiσ /∈ (Ei \ X)σ there exists a derivation starting from (Ei \ X)σ of goal

tiσ, and then from Eiσ of goal tiσ. By lemma 6, there exists a derivation
starting from Eiσ of goal tiσ such that for all steps in the derivation such
that l→ r is the applied rule with the substitution σ, for all s ∈ l and s /∈ X ,
we have sσ ⊆ Eiσ. This implies that we can reduce C to C′ by applying the
Apply rule of transformation and θ |=I∅

C′.

We deduce that for all satisfiable constraint systems C such that C is not in solved
form, C can be reduced to another satisfiable constraint system C′ by applying
the transformation rules. When applying the transformation rules to a constraint
system, we reduce its complexity (Lemmas 9 and 10), this implies that when we

reduce C, we will obtain at some step a satisfiable constraint system which can
not be reducible, this constraint system is in solved form. This concludes the
proof. �

Lemma 12. (Correctness.) Let C =
{

(Ei ⊲ ti)i∈{1,...,n}

}

and C′ =
{

(E′
i ⊲ t′i)i∈{1,...,n}

}

such that C′ is obtained by applying the basic-narrowing
on the terms of C. For every substitution σ′ such that σ′ |=I∅

C′, there exists a
substitution σ such that σ |=I C.

Proof. We have C =
{

(Ei ⊲ ti)i∈{1,...,n}

}

, C ∗
b.n C′ and C′ =

{

(E′
i ⊲ t′i)i∈{1,...,n}

}

. Let θ be the composition of substitutions applied in the
basic-narrowing derivation, for all i ∈ {1, . . . , n} we have (Eiθ)↓ = E′

i and
(tiθ)↓ = t′i. Let σ′ be a substitution such that σ′ |=I∅

C′, for all i ∈ {1, . . . , n}

we have t′iσ
′ ∈ E′

iσ
′
I∅

, this implies that for all i ∈ {1, . . . , n} t′iσ
′ ∈ E′

iσ
′
I′

(Corollary 2), and then, for all i ∈ {1, . . . , n} t′iσ
′ ∈ E′

iσ
′
I

(Lemma 4). From the
fact that (Eiθn)↓ = E′

i and (tiθn)↓ = t′i for all i ∈ {1, . . . , n}, we deduce that

tiθσ
′ ∈ Eiθσ′I for all i ∈ {1, . . . , n} and this conclude the proof. �

9 Conclusion

Besides the actual decidability result obtained in this paper, we believe that
the techniques developed to obtain this result, while still at an early stage, are
promising and of equal importance. Several recent work [4,13] have proposed
conditions on intruder systems ensuring the decidability of reachability with
respect to an active or passive intruder. In a future work we plan to research
whether the given conditions imply the termination of the saturation procedure
and the termination of the symbolic resolution.

References

1. Alessandro Armando and Luca Compagna. Automatic SAT-Compilation of Pro-
tocol Insecurity Problems via Reduction to Planning. In Foundation of Computer
Security & Verification Workshops, Copenhagen, Denmark, July 25-26 2002.

2. Alfred Menezes and Nigel P. Smart. Security of Signature Schemes in a Multi-User
Setting. Des. Codes Cryptography, 33(3):261–274, 2004.

3. J. Baek, K. Kim, and T. Matsumoto. On the significance of Unknown Key-Share
Attacks: How to Cope With Them? In Proc. of Symposium on Cryptography and
Information Security (SCIS 2000), January 2000.

4. Mathieu Baudet. Deciding Security of Protocols against Off-line Guessing Attacks.
In Proceedings of the 12th ACM Conference on Computer and Communications
Security (CCS’05), pages 16–25, Alexandria, Virginia, USA, November 2005. ACM
Press.

5. Catherine Meadows. The NRL protocol analyzer: an overview. Journal of Logic
Programming, 26(2):113–131, 1996.

6. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Siekmann and G. Wrightson, editors, Automation of Reasoning 2: Classical
Papers on Computational Logic 1967-1970, pages 342–376. Springer, 1983.

7. Jean-Marie Hullot. Canonical forms and unification. In W. Bibel and R. Kowalski,
editors, Conference on Automated Deduction, volume 87, pages 318–334. Springer-
Verlag, 1980.

8. Thomas Pornin and Julien P. Stern. Digital signatures do not guarantee exclusive
ownership. In John Ioannidis, Angelos D. Keromytis, and Moti Yung, editors,
ACNS, volume 3531 of Lecture Notes in Computer Science, pages 138–150, 2005.

9. Roberto Amadio, Denis Lugiez, and Vincent Vanackère. On the symbolic reduction
of processes with cryptographic functions. Theor. Comput. Sci., 290(1):695–740,
2003.

10. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–
308, 1988.

11. Shouichi Hirose and Susumu Yoshida. An Authenticated Diffie-Hellman Key
Agreement Protocol Secure Against Active Attacks. In Hideki Imai and Yuliang
Zheng, editors, Public Key Cryptography, volume 1431 of Lecture Notes in Com-
puter Science, pages 135–148. Springer, 1998.

12. Simon Blake Wilson and Alfred Menezes. Unknown Key-Share Attacks on the
Station-to-Station (STS) Protocol. In Hideki Imai and Yuliang Zheng, editors,
Public Key Cryptography, volume 1560 of Lecture Notes in Computer Science,
pages 154–170. Springer, 1999.

13. Siva Anantharaman, Paliath Narendran, and Michaeël Rusinowitch. Intruders with
Caps. In Proceeding of RTA 2007, page to appear. Springer Verlag, 2007.

14. C. Weidenbach. Towards an Automatic Analysis of Security Protocols in First-
Order Logic. In 16th International Conference on Automated Deduction, volume
1632 of Lecture Notes in Computer Science, pages 314–328. Springer, 1999.

15. Yannick Chevalier, Denis Lugiez, and Michaël Rusinowitch. Towards an Automatic
Analysis of Web Services Security. In Proceedings of the 6th International Sympo-
sium on the Frontiers of Combining Systems (Frocos’07), LNAI, page to appear.
Springer Verlag, 2007.

16. Yannick Chevalier and Laurent Vigneron. A Tool for Lazy Verification of Secu-
rity Protocols. In Proceedings of the Automated Software Engineering Conference
(ASE’01). IEEE Computer Society Press, 2001.

17. Yannick Chevalier and Michaël Rusinowitch. Combining Intruder Theories. In
Proc. of ICALP, volume 3580 of Lecture Notes in Computer Science, pages 639–
651. Springer, 2005.

