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Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
desterck@irit.fr and dubois@irit.fr

Summary. Several methods for the practical representation of imprecise probabil-
ities exist such as Ferson’s p-boxes, possibility distributions, Neumaier’s clouds, and
random sets . In this paper some relationships existing between the four kinds of
representations are discussed. A cloud as well as a p-box can be modelled as a pair
of possibility distributions. We show that a generalized form of p-box is a special
kind of belief function and also a special kind of cloud.

1 Introduction

Many uncertainty calculi can be viewed as encoding families of probabili-
ties. Representing such families in a practical way can be a real challenge,
and several proposals have been made to do so, under various assumptions.
Among these proposals are p-boxes[6], possibility distributions [3], clouds [8]
and random sets [1].

Possibility theory, P-boxes, and clouds use nested confidence sets with
upper and lower probability bounds. This way of representing imprecise sub-
jective probabilistic knowledge is very natural, and correspond to numerous
situations where an expert is asked for confidence intervals. In this paper,
we investigate or recall various links existing between these representations,
illustrating the fact that they are all closely related.

Section 2 reviews the different kinds of representations considered in this
paper, and generalizes the notion of P-boxes. In section 3, we show that gen-
eralized P-boxes (which encompass usual P-boxes) can be encoded by a belief
function, and we then give a practical method to build it. Finally, section 4
recalls briefly some results on clouds and possibility theory, before examining
the relationship between clouds and generalized P-boxes more closely.
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2 Imprecise probabilities representations

2.1 Upper and lower probabilities

A family P of probabilities on X induces lower and upper probabilities on
sets A [12]. Namely P (A) = infP∈P P (A) and P (A) = supP∈P P (A). We
have PP,P (A) = {P |∀A ⊆ Xmeasurable, P (A) ≤ P (A) ≤ P (A)}. It should
be noted that PP,P is convex and generally larger than the original family P,
since lower and upper probabilities are projections of P on sets A. Represent-
ing either P or PP,P on a computer can be tedious, even for one-dimension
problems. Simpler representations can be very useful, even if it implies a loss
in generality.

2.2 Random sets

Formally, a random set is a set-valued mapping from a (here finite) probability
space to a set X. It induces lower and upper probabilities on X [1]. Here,
we use mass functions [10] to represent random sets. A mass function m
is defined by a mapping from the power set P(X) to the unit interval, s.t.
∑

E⊆X m(E) = 1. A set E with positive mass is called a focal set. Plausibility
and belief measures can then be defined from this mass function :

Bel(A) =
∑

E,E⊆A

m(E) and Pl(A) = 1 − Bel(Ac) =
∑

E,E∩A

m(E).

The set PBel = {P |∀A ⊆ X measurable, Bel(A) ≤ P (A) ≤ Pl(A)} is the
special probability family induced by the belief function.

2.3 Quantitative possibility theory

A possibility distribution π is a mapping from X to the unit interval (hence
a fuzzy set) such that π(x) = 1 for some x ∈ X. Several set-functions can be
defined from them [3]:

• Possibility measures: Π(A) = supx∈A π(x)
• Necessity measures: N(A) = 1 − Π(Ac)
• Guaranteed possibility measures: ∆(A) = infx∈A π(x)

Possibility degrees express the extent to which an event is plausible, i.e., con-
sistent with a possible state of the world, necessity degrees express the cer-
tainty of events and ∆-measures the extent to which all states of the world
where A occurs are plausible. They apply to so-called guaranteed possibility
distributions [3] generally denoted by δ.

A possibility degree can be viewed as an upper bound of a probability
degree [4]. Let Pπ = {P,∀A ⊆ X measurable, P (A) ≤ Π(A)} be the set of
probability measures encoded by π. A necessity measure is a special case of
belief function when the focal sets are nested.
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2.4 Generalized Cumulative Distributions

Let Pr be a probability function on the real line with density p. The cumulative
distribution of Pr is denoted F p and is defined by F p(x) = Pr((−∞, x]).

Interestingly the notion of cumulative distribution is based on the existence
of the natural ordering of numbers. Consider a probability distribution (prob-
ability vector) α = (α1 . . . αn) defined over a finite domain X of cardinality
n; αi denotes the probability Pr(xi) of the i-th element xi, and

∑n
j=1

αj = 1.
Then no obvious notion of cumulative distribution exists. In order to make
sense of this notion over X one must equip it with a complete preordering
≤R, which is a reflexive, complete and transitive relation. An R-downset is of
the form {xi : xi ≤R x}, and denoted (x]R.

Definition 1 The generalized R-cumulative distribution of a probability dis-
tribution on a finite, completely preordered set (X,≤R) is the function F α

R :
X → [0, 1] defined by F α

R(x) = Pr((x]R).

Consider another probability distribution β = (β1 . . . βn) on X. The cor-
responding R-dominance relation of α over β can be defined by the pointwise
inequality F α

R < F β
R. In other words, a generalized cumulative distribution

can always be considered as a simple one, up to a reordering of elements.
In fact any generalized cumulative distribution F α

R with respect to a weak
order >R on X, of a probability measure Pr, with distribution α on X, can be
viewed as a possibility distribution πR whose associated measure dominates
Pr, i.e. maxx∈A Fα

R(x) ≥ Pr(A),∀A ⊆ X. This is because a (generalized)
cumulative distribution is constructed by computing the probabilities of events
Pr(A) in a nested sequence of downsets (xi]R. [2].

2.5 Generalized p-box

A P-box [6] is defined by a pair of cumulative distributions F ≤ F on the real
line bounding the cumulative distribution of an imprecisely known probability
function with density p. Using the results of section 2.4, we define a generalized
p-box as follow

Definition 2 A R-P-box on a finite, completely preordered set (X,≤R) is a

pair of R-cumulative distributions F α
R(x) and F β

R(x), s.t. F α
R(x) ≤ FR(x) ≤

F β
R(x) with β a probability distribution R-dominated by α

The probability family induced by a R-P-box is Pp−box = {P |∀x, F α
R(x) ≤

FR(x) ≤ F β
R(x)} If we choose R and consider the sets Ai = (xi]R,∀xi ∈ X

with xi ≤R xj iff i < j, we define a family of nested confidence sets ∅ ⊆ A1 ⊆
A2 ⊆ . . . ⊆ An ⊂ X. The family Pp−box can be encoded by the constraints

αi ≤ P (Ai) ≤ βi i = 1, . . . , n (1)

with α1 ≤ α2 ≤ . . . ≤ αn ≤ 1 and β1 ≤ β2 ≤ . . . ≤ βn ≤ 1. If we take X = <
and Ai = (−∞, xi], it is easy to see that we find back the usual definition of
P-boxes.
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2.6 Clouds

This section recalls basic definitions and results due to Neumaier [8], cast in
the terminology of fuzzy sets and possibility theory. A cloud is an Interval-
Valued Fuzzy Set F such that (0, 1) ⊆ ∪x∈XF (x) ⊆ [0, 1], where F (x) is an
interval [δ(x), π(x)]. In the following it is defined on a finite set X or it is
an interval-valued fuzzy interval (IVFI) on the real line (then called a cloudy
number). In the latter case each fuzzy set has cuts that are intervals. When
the upper membership function coincides with the lower one, (δ = π) the
cloud is called thin. When the lower membership function is identically 0, the
cloud is said to be fuzzy.

A random variable x with values in X is said to belong to a cloud F if
and only if ∀α ∈ [0, 1]:

P (δ(x) ≥ α) ≤ 1 − α ≤ P (π(x) > α) (2)

under all suitable measurability assumptions.
If X is a finite set of cardinality n, a cloud can be defined by the following

constraints :

P (Bi) ≤ 1 − αi+1 ≤ P (Ai) and Bi ⊆ Ai i = 1, . . . , n (3)

Where 1 = α1 > α2 > . . . > αn = 0 and A1 ⊆ A2 ⊆ . . . ⊆ An;B1 ⊆ B2 ⊆
. . . ⊆ Bn. The confidence sets Ai and Bi are respectively the α-cut of fuzzy
sets π and δ (Ai = {xi, π(xi) > αi+1} and Bi = {xi, δ(xi) ≥ αi+1}).

3 Generalized p-boxes are belief functions

In this section, we show that Pp−box, the probability family described in sec-
tion 2.5 can be encoded by a belief function. In order to achieve this, we
reformulate the constraints given by equations (1).
Consider the following partition : E1 = A1, E2 = A2 \ A1, . . . , En = An \
An−1, En+1 = X \ An

The constraints on the confidence sets Ai can be rewritten

αi ≤
i

∑

k=1

P (Ei) ≤ βi i = 1, . . . , n (4)

The proof that a belief function encoding Pp−box exists follows in four points

1. The family Pp−box is always non-empty

2. Constraints induce P (
⋃j

k=i Ek) = max(0, αj − βi−1)

3. Construction of a belief function s.t. Bel(
⋃j

k=i Ek) = P (
⋃j

k=i Ek)
4. For any subset A of X, Bel(A) = P (A), then Pp−box = PBel follows.
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3.1 P is non-empty

Consider the case where αi = βi, i = 1, . . . , n in equation (4). Any prob-
ability distribution s.t. P (E1) = α1;P (E2) = α2 − α1; . . . ;P (En) = αn −
αn−1;P (En+1) = 1 − αn always exists and is in Pp−box. Hence, Pp−box 6= ∅.
Every other cases being a relaxation of this one, Pp−box always contains at
least one probability.

3.2 Lower probabilities on sets (
⋃j

k=i Ek)

Using partition given in section 3, we have P (
⋃j

k=i Ek) =
∑j

k=i P (Ek). Equa-

tions (4) induce the following lower and upper bounds on P (
⋃j

k=i Ek)

Proposition 1 P (
⋃j

k=i Ek) = max(0, αj − βi−1);P (
⋃j

k=i Ek) = βj − αi−1

Proof To obtain P (
⋃j

k=i Ek), we must find min (
∑j

k=i P (Ek)). From equa-
tion (4), we have

αj ≤
i−1
∑

k=1

P (Ek) +

j
∑

k=i

P (Ek) ≤ βj and αi−1 ≤
i−1
∑

k=1

P (Ek) ≤ βi−1

Hence
∑j

k=i P (Ek)) ≥ max(0, αj − βi−1) and this lower bound max(0, αj −

βi−1) is always reachable : if αj > βi−1, take P s.t. P (Ai−1) = βi−1, P (
⋃j

k=i Ek) =

αj − βi−1, P (
⋃n+1

k=j+1
Ek) = 1 − αj . If αj ≤ βi−1, take P s.t. P (Ai−1) =

βi−1, P (
⋃j

k=i Ek) = 0, P (
⋃n+1

k=j+1
Ek) = 1 − βi−1. Proof for P (

⋃j
k=i Ek) =

βj − αi−1 follows the same line.

3.3 Building the belief function

We now build a belief function s.t. Bel(
⋃j

k=i Ek) = P (
⋃j

k=i Ek), and in sec-
tion 3.4, we show that this belief function is equivalent to the lower envelope
of Pp−box. We rank the αi and βi increasingly and rename them as

α0 = β0 = γ0 = 0 ≤ γ1 ≤ . . . ≤ γ2n ≤ 1 = γ2n+1 = βn+1 = αn+1

and the successive focal elements Fl with m(Fl) = γl−γl−1. The construction

of the belief function can be summarized as follow :

If γl−1 = αi, then Fl = Fl−1 ∪ Ei+1 (5)

If γl−1 = βi, then Fl = Fl−1 \ Ei (6)

equation (5) means that element Ei+1 is added to the previous focal set after
reaching αi, and equation (6) means that element Ei is deleted from the
previous focal set after reaching βi.
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3.4 PBel is equivalent to Pp−box

To show that PBel = Pp−box, we show that Bel(A) = P (A) ∀A ⊆ X

Lower probability on sets Ai

Looking at equations (5,6) and taking γl = αi, we see that focal elements
F1, . . . , Fl only contain Ek s.t. k ≤ i, hence we have (F1, . . . , Fl) ⊂ Ai. After
γl, the focal elements Fl+1, . . . , F2n contain at least one element Ek s.t. k > i.
Summing the weights m(F1), . . . ,m(Fl), we have Bel(Ai) = γl = αi.

Sets of the type P (
⋃j

k=i Ek)

From section 3.2, we have P (
⋃j

k=i Ek) = max(0, αj−βi−1). Considering equa-
tions (5,6) and taking γl = αj , we have that focal elements Fl+1, . . . , F2n con-
tain at least one element Ek s.t. k > j, hence the focal elements (Fl+1, . . . , F2n) 6⊂

(
⋃j

k=i Ek). Taking then γm = βi−1, we have that the focal elements F1, . . . , Fm

contain at least one element Ek s.t. k < i, hence the focal elements (F1, . . . , Fm) 6⊂

(
⋃j

k=i Ek).
If m < l (i.e. γl = αj ≥ βi−1 = γm), then the focal elements (Fm+1, . . . , Fl) ⊂

(
⋃j

k=i Ek) and we have Bel(
⋃j

k=i Ek) = γl − γm = αj − βi−1. Otherwise,

there is no focal element Fl, l = 1, . . . , 2n s.t. Fl ⊂ (
⋃j

k=i Ek) and we have

Bel(
⋃j

k=i Ek) = P (
⋃j

k=i Ek) = 0.

Sets made of non-successive Ek

Consider a set of the type A = (
⋃i+l

k=i Ek ∪
⋃j

k=i+l+m Ek) with m > 1 (i.e.
there’s a “hole” in the sequence, since at least Ei+l+1 /∈ A).

Proposition 2 We have P (
⋃i+l

k=i Ek ∪
⋃j

k=i+l+m Ek) = Bel(
⋃i+l

k=i Ek)) +

Bel(
⋃j

k=i+l+m Ek)

Sketch of proof The following inequalities gives us a lower bound on P

min
(

P (

i+l
⋃

k=i

Ek ∪

j
⋃

k=i+l+m

Ek)
)

≥ min P (

i+l
⋃

k=i

Ek) + min P (

j
⋃

k=i+l+m

Ek)

we then use a reasoning similar to the one of section 3.2 to show that this
lower bound is always reachable. The result can then be easily extended to
a number n of “holes” in the sequence of Ek. This completes the proof and
shows that Bel(A) = P (A) ∀A ∈ X, so PBel = Pp−box.
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4 Clouds and generalized p-boxes

Let us recall the following result regarding possibility measures (see [2]):

Proposition 3 P ∈ Pπ if and only if 1 − α ≤ P (π(x) > α),∀α ∈ (0, 1]

Consider a cloud (δ, π), and define π = 1−δ. Note that P (δ(x) ≥ α) ≤ 1−α is
equivalent to P (π ≥ β) ≥ 1−β, letting β = 1−α. So it is clear from equation
(2) that probability measure P is in the cloud (δ, π) if and only if it is in
Pπ ∩ Pπ. So a cloud is a family of probabilities dominated by two possibility
distributions (see [5]) . It follows that

Proposition 4 A generalized p-box is a cloud

Consider the definition of a generalized p-box and the fact that a gen-
eralized cumulative distribution can be viewed as a possibility distribution
πR dominating the probability distribution Pr (see section 2.4). Then, the
set of constraints (P (Ai) ≥ αi)i=1,n from equation (1) generates a possibility
distribution π1 and the set of constraints (P (Ac

i ) ≥ 1 − βi)i=1,n generates a
possibility distribution π2. Clearly Pp−box = Pπ1

∩ Pπ2
, and corresponds to

the cloud (1 − π2, π1). The converse is not true.

Proposition 5 A cloud is a generalized p-box iff {Ai, Bi, i = 1, . . . , n} form a
nested sequence of sets (i.e. there’s a complete order with respect to inclusion)

Assume the sets Ai and Bj form a globally nested sequence whose current
element is Ck. Then the set of constraints defining a cloud can be rewritten
in the form γk ≤ P (Ck) ≤ βk, where γk = 1 − αi+1 and βk = min{1 − αj+1 :
Ai ⊆ Bj} if Ck = Ai; βk = 1 − αi+1 and γk = max{1 − αj+1 : Aj ⊆ Bi} if
Ck = Bi.

Since 1 = α1 > α2 > . . . > αn = 0, these constraints are equivalent to
those of a generalized p-box. But if ∃ Bj , Ai with j > i s.t. Bj 6⊂ Ai and
Ai 6⊂ Bj , then the cloud is not equivalent to a p-box.

In term of pairs of possibility distributions, a cloud is a p-box iff π1 and
π2 are comonotonic.

When the cloud is thin (δ = π), cloud constraints reduce to P (π(x) ≥
α) = P (π(x) > α) = 1− α. On finite sets these constraints are contradictory.
The closest approximation corresponds to the generalized p-box such that
αi = P (Ai),∀i. It allocates fixed probability weights to elements Ei of the
induced partition. In the continuous case, a thin cloud is non trivial. A cumu-
lative distribution function defines a thin cloud containing the only random
variable having this cumulative distribution. A continuous unimodal possibil-
ity distribution π on the real line induces a thin cloud (δ = π) which can be
viewed as a generalized p-box and is thus a (continuous ) belief function with
uniform mass density, whose focal sets are doubletons of the form {x(α), y(α)}
where {x : π(x) ≥ α} = [x(α), y(α)]. It is defined by the Lebesgue measure on
the unit interval and the multimapping α −→ {x(α), y(α)}. It is indeed clear
that Bel(π(x) ≥ α) = 1 − α.
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5 Conclusions and open problems

There are several concise representations of imprecise probabilities. This pa-
per highlights some links existing between clouds, possibility distributions,
p-boxes and belief functions. We generalize p-boxes and show that they can
be encoded by a belief function (extending results from [7, 9]). Another inter-
esting result is that generalized p-boxes are a particular case of clouds, which
are themselves equivalent to a pair of possibility distributions.

This paper shows that at least some clouds can be represented by a belief
function. Two related open questions are : can a cloud be encoded by a belief
function as well? can a set of probabilities dominated by two possibility mea-
sures be encoded by a belief function ? and if not, can we find inner or outer
approximations following a principle of minimal commitment? Another issue
is to extend these results to the continuous framework of Smets [11].
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