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Abstract

Global sensitivity analysis of complex numerical models can be performed by calculat-

ing variance-based importance measures of the input variables, such as the Sobol indices.

However, these techniques, requiring a large number of model evaluations, are often un-

acceptable for time expensive computer codes. A well known and widely used decision

consists in replacing the computer code by a metamodel, predicting the model responses

with a negligible computation time and rending straightforward the estimation of Sobol

indices. In this paper, we discuss about the Gaussian process model which gives analytical

expressions of Sobol indices. Two approaches are studied to compute the Sobol indices:

the first based on the predictor of the Gaussian process model and the second based on

the global stochastic process model. Comparisons between the two estimates, made on

analytical examples, show the superiority of the second approach in terms of convergence

and robustness. Moreover, the second approach allows to integrate the modeling error

of the Gaussian process model by directly giving some confidence intervals on the Sobol

indices. These techniques are finally applied to a real case of hydrogeological modeling.

Keywords: Gaussian process, covariance, metamodel, sensitivity analysis, uncertainty,

computer code.
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1 INTRODUCTION

Environmental risk assessment is often based on complex computer codes, simulating for

instance an atmospheric or hydrogeological pollution transport. These computer mod-

els calculate several output values (scalars or functions) which can depend on a high

number of input parameters and physical variables. To provide guidance to a better un-

derstanding of this kind of modeling and in order to reduce the response uncertainties

most effectively, sensitivity measures of the input importance on the response variability

can be useful (Saltelli et al. [24], Kleijnen [12], Helton et al. [9]). However, the estimation

of these measures (based on Monte-Carlo methods for example) requires a large number

of model evaluations, which is unacceptable for time expensive computer codes. This kind

of problem is of course not limited to environmental modeling and can be applied to any

simulation system.

To avoid the problem of huge calculation time in sensitivity analysis, it can be useful to

replace the complex computer code by a mathematical approximation, called a response

surface or a surrogate model or also a metamodel. The response surface method (Box &

Draper [2]) consists in constructing a function from few experiments, that simulates the

behavior of the real phenomenon in the domain of influential parameters. These methods

have been generalized to develop surrogates for costly computer codes (Sacks et al. [23],

Kleijnen & Sargent [13]). Several metamodels are classically used: polynomials, splines,

generalized linear models, or learning statistical models like neural networks, regression

trees, support vector machines (Chen et al. [3], Fang et al. [8]).

Our attention is focused on the Gaussian process model which can be viewed as an

extension of the kriging principles (Matheron [18], Cressie [6], Sacks et al. [23]). This

metamodel which is characterized by its mean and covariance functions, presents several

advantages: it is an exact interpolator and it is interpretable (not a black-box function).

Moreover, numerous authors (for example, Currin et al. [7], Santner et al. [25], Vazquez et

al. [28], Rasmussen & Williams [22]) have shown how this model can provide a statistical

basis for computing an efficient predictor of code response. In addition to its efficiency, this

model gives an analytical formula which is very useful for sensitivity analysis, especially for

the variance-based importance measures, the so-called Sobol indices (Sobol [26], Saltelli

et al. [24]). To derive analytical expression of Sobol indices, Chen et al. [4] used tensor-

product formulation and Oakley & O’Hagan [20] considered the Bayesian formalism of
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Gaussian processes.

We propose to compare these two analytical formulations of Sobol indices for the

Gaussian process model: the first is obtained considering only the predictor, i.e. the

mean of the Gaussian process model (Chen et al. [4]), while the second is obtained using

all the global stochastic model (Oakley & O’Hagan [20]). In the last case, the estimate

of a Sobol index is itself a random variable. Its standard deviation is available and we

propose an original algorithm to estimate its distribution. Consequently, our method leads

to build confidence intervals for the Sobol indices. To our knowledge, this information

has not been proposed before and can be obtained thanks to the analytical formulation of

the Gaussian process model error. This is particularly interesting in practice, when the

predictive quality of the metamodel is not high (because of small learning sample size for

example), and our confidence on Sobol index estimates via the metamodel is poor.

The next section briefly explains the Gaussian process modeling and the Sobol indices

defined in the two approaches (predictor-only and global model). In section 3, the numer-

ical computation of a Sobol index is presented. In the case of the global stochastic model,

a procedure is developed to simulate its distribution. Section 4 is devoted to applications

on analytical functions. First, comparisons are made between the Sobol indices based

on the predictor and those based on the global model. The pertinence of simulating all

the distribution of Sobol indices is therefore evaluated. Finally, Sobol indices and their

uncertainty are computed for a real data set coming from a hydrogeological transport

model based on waterflow and diffusion dispersion equations. The last section provides

some possible extensions and concluding remarks.

2 SOBOL INDICES WITH GAUSSIAN PROCESS

MODEL

2.1 Gaussian process model

Let us consider n realizations of a computer code. Each realization y(x) of the computer

code output corresponds to a d-dimensional input vector x = (x1, ..., xd). The n input

points corresponding to the code runs are called an experimental design and are denoted

as Xs = (x(1), ..., x(n)). The outputs will be denoted as Ys = (y(1), ..., y(n)) with y(i) =

y(x(i)), i = 1, ..., n. Gaussian process (Gp) modeling treats the deterministic response y(x)
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as a realization of a random function Y (x), including a regression part and a centered

stochastic process. The sample space Ω denotes the space of all possible outcomes ω,

which is usually the Lebesgue-measurable set of real numbers. The Gp is defined on

Rd × Ω and can be written as:

Y (x, ω) = f(x) + Z(x, ω). (1)

In the following, we use indifferently the terms Gp model and Gp metamodel.

The deterministic function f(x) provides the mean approximation of the computer

code. Our study is limited to the parametric case where the function f is a linear combi-

nation of elementary functions. Under this assumption, f(x) can be written as follows:

f(x) =

k
∑

j=0

βjfj(x) = F (x)β,

where β = [β0, . . . , βk]t is the regression parameter vector, fj (j = 1, . . . , k) are basis

functions and F (x) = [f0(x), . . . , fk(x)] is the corresponding regression matrix. In the

case of the one-degree polynomial regression, (d + 1) basis functions are used:







f0(x) = 1,

fi(x) = xi for i = 1, . . . , d.

In our applications, we use this one-degree polynomial as the regression part in or-

der to simplify all the analytical numerical computation of sensitivity indices. This can

be extended to other bases of regression functions. Without prior information on the

relationship between the output and the inputs, a basis of one-dimensional functions is

recommended to simplify the computations in sensitivity analysis and to keep one of the

most advantages of Gp model (Martin & Simpson [17]).

The stochastic part Z(x, ω) is a Gaussian centered process fully characterized by its

covariance function: CovΩ(Z(x, ω), Z(u, ω)) = σ2R(x, u), where σ2 denotes the variance

of Z and R is the correlation function that provides interpolation and spatial correlation

properties. To simplify, a stationary process (Z(x, ω)) is considered, which means that

the correlation between Z(x, ω) and Z(u, ω) is a function of the difference between x

and u. Moreover, our study is restricted to a family of correlation functions that can be
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written as a product of one-dimensional correlation functions:

CovΩ(Z(x, ω), Z(u, ω)) = σ2R(x − u) = σ2
d

∏

l=1

Rl(xl − ul). (2)

This form of correlation function is particularly well adapted to get some simplifications

of the integrals in the future analytical developments: in the case of independent inputs,

it implies the computation of only one or two-dimensional integrals to compute the Sobol

indices. Indeed, as described in section 3.2, the application and the computation of the

Sobol index formulae are simplified when the correlation function has the form of a one-

dimensional product (Santner et al. [25]).

Among other authors, Chilès & Delfiner [5] and Rasmussen & Williams [22] give a list

of correlation functions with their advantages and drawbacks. Among all these functions,

our attention is devoted to the generalized exponential correlation function:

Rθ,p(x − u) =

d
∏

l=1

exp(−θl|xl − ul|
pl) with θl ≥ 0 and 0 < pl ≤ 2,

where θ = [θ1, . . . , θd]
t and p = [p1, . . . , pd]

t are the correlation parameters. This choice is

motivated by the derivation and regularity properties of this function. Moreover, within

the range of covariance parameters values, a wide spectrum of shapes are possible: for

example p = 1 gives the exponential correlation function while p = 2 gives the Gaussian

correlation function.

2.2 Joint and conditional distributions

Under the hypothesis of a Gp model, the learning sample Ys follows a multivariate normal

distribution pΩ(Ys |Xs):

pΩ(Ys, ω|Xs) = N (Fsβ,Σs) ,

where Fs = [F (x(1))t, . . . , F (x(n)t)] is the regression matrix and

Σs = σ2Rθ,p

(

x(i) − x(j)
)

i,j=1...n

is the covariance matrix.

If a new point x∗ = (x∗
1, ..., x

∗
d) is considered, the joint probability distribution of
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(Ys, Y (x∗, ω)) is:

pΩ(Ys, Y (x∗, ω)|Xs, x
∗, β, σ, θ, p) = N









Fs

F (x∗)



β,





Σs k(x∗)

k(x∗)t σ2







 , (3)

with

k(x∗) = ( CovΩ(y(1), Y (x∗, ω)), . . . , CovΩ(y(n), Y (x∗, ω)) )t

= σ2( Rθ,p(x(1), x∗), . . . , Rθ,p(x(n), x∗) )t.
(4)

By conditioning this joint distribution on the learning sample, we can readily obtain

the conditional distribution of Y (x∗, ω) which is Gaussian (von Mises [30]):

pΩ(Y (x∗, ω)|Ys, Xs, x
∗, β, σ, θ, p)

= N (IEΩ[Y (x∗, ω)|Ys, Xs, x
∗, β, σ, θ, p], VarΩ[Y (x∗, ω)|Ys, Xs, x

∗, β, σ, θ, p]) ,
(5)

with

IEΩ[Y (x∗, ω)|Ys, Xs, x
∗, β, σ, θ, p] = F (x∗)β + k(x∗)tΣ−1

s (Ys − Fsβ), (6)

VarΩ[Y (x∗, ω)|Ys, Xs, x
∗, β, σ, θ, p] = σ2 − k(x∗)tΣ−1

s k(x∗). (7)

The conditional mean of Eq. (6) is used as a predictor. The conditional variance

formula of Eq. (7) corresponds to the mean squared error (MSE) of this predictor and

is also known as the kriging variance. As we obtained the distribution for a new point

conditionally to the learning sample, we can consider the covariance between two new

sites. A Gp conditional to the learning sample is obtained and denoted as follows:

(Y |Ys, Xs, β, σ, θ, p) ∼ Gp( IEΩ[Y (x∗, ω)|Ys, Xs, β, σ, θ, p],

CovΩ(Y (x∗, ω), Y (u∗, ω)|Ys, Xs, x
∗, β, σ, θ, p))

(8)

with the same expression for the conditional mean than Eq. (6) and

CovΩ (Y (x∗, ω), Y (u∗, ω)|Ys, Xs, β, σ, θ, p) = σ2
(

Rθ,p(x∗, u∗) − k(x∗)tΣ−1
s k(u∗)

)

.

(9)

The conditional Gp model (8) provides an analytical formula which can be directly

used for sensitivity analysis, and more precisely to compute the Sobol indices. To simplify

the notations, the conditional Gp (Y |Ys, Xs, β, σ, θ, p) will now be written in a simplified
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form: YGp|Ys,Xs
(X, ω).

2.3 Sobol indices

Methods based on variance decomposition aim at determining the part of the variance of

the output Y (x) resulting from each variable xi, i = 1, . . . , d. A global measure of the

sensitivity of Y (x) to each input xi is given by the first order Sobol index (Sobol [26],

Saltelli et al. [24]):

Si =
VarXi

[IEX1,...,Xd
Y |Xi]

VarX1,...,Xd
[Y ]

for i = 1, . . . , d.

These indices have been defined for deterministic functions Y of the inputs X1, . . . , Xd

but, in the case of the conditional Gp model, we have a stochastic function of the inputs.

A first solution is applying the Sobol index formula to the predictor, i.e. the mean of

the conditional Gp (Eq. (6)) which is a deterministic function of the inputs. Analytical

calculations are developed by Chen et al. [4]. The second approach that we consider

consists in using the whole global conditional Gp by taking into account not only the

mean of conditional Gp model but also its covariance structure as Oakley & O’Hagan [20]

did. In this case, when the Sobol definition is applied to the global Gp model, a random

variable is obtained and constitutes a new sensitivity measure. Its expectation can be

then considered as a sensitivity index. Its variance and more generally its distribution

can then be used as an indicator of sensitivity index accuracy.

To sum up, the two approaches can be defined as follows:

• Approach 1: Sobol indices computed with the predictor-only

Si =
VarXi

IEX1,...,Xd
[IEΩ[YGp|Ys,Xs

(X, ω)]|Xi]

VarX1,...,Xd
IEΩ[YGp|Ys,Xs

(X, ω)]
for i = 1, . . . , d. (10)

• Approach 2: Sobol indices computed with the global Gp model

S̃i(ω) =
VarXi

IEX1,...,Xd
[YGp|Ys,Xs

(X, ω)|Xi]

IEΩVarX1,...,Xd
[YGp|Ys,Xs

(X, ω)]
for i = 1, . . . , d. (11)

S̃i(ω) is then a random variable; its mean can be considered as a sensitivity index
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and its variance as an indicator of its accuracy:































µS̃i
=

IEΩVarXi
IEX1,...,Xd

[YGp|Ys,Xs
(X, ω)|Xi]

IEΩVarX1,...,Xd
[YGp|Ys,Xs

(X, ω)]
for i = 1, . . . , d.

σ2
S̃i

=
VarΩVarXi

IEX1,...,Xd
[YGp|Ys,Xs

(X, ω)|Xi]

(IEΩVarX1,...,Xd
[YGp|Ys,Xs

(X, ω)])2
for i = 1, . . . , d.

(12)

Our work focuses on the computation and the study of the sensitivity indices defined

following the two approaches, respectively Si and µS̃i
. We will also propose a methodology

to numerically simulate the probability distribution of S̃i. Then, a study to compare the

accuracy and the robustness of the two indices is made on several test functions and the

use of the distribution of S̃i is illustrated to build confidence intervals.

3 IMPLEMENTATION OF SOBOL INDICES

3.1 Estimation of Gp parameters

First of all, to build the conditional Gp defined by Eq. (8), regression and correlation

parameters (often called hyperparameters) have to be determined. Indeed, the Gp model

is characterized by the regression parameter vector β, the correlation parameters (θ, p)

and the variance parameter σ2. The maximum likelihood method is commonly used to

estimate these parameters from the learning sample (Xs, Ys).

Several algorithms have been proposed in previous papers to numerically solve the

maximization of likelihood. Welch at al. [31] use the simplex search method and introduce

a kind of forward selection algorithm in which correlation parameters are added step

by step to increase the log-likelihood function. In Kennedy and O’Hagan’s GEM-SA

software (O’Hagan [21]), which uses the Bayesian formalism, the posterior distribution

of hyperparameters is maximized, using a conjugate gradient method (the Powel method

is used as the numerical recipe). The DACE Matlab free toolbox (Lophaven et al. [14])

uses a powerful stochastic algorithm based on the Hooke & Jeeves method (Bazaraa et al.

[1]), which requires a starting point and some bounds to constrain the optimization. In

complex applications, Welch’s algorithm reveals some limitations and for complex model

with high dimensional input, GEM-SA and DACE software cannot be applied directly on

data including all the input variables. To solve this problem, we use a sequential version
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(inspired by Welch’s algorithm) of the DACE algorithm. It is based on the step by step

inclusion of input variables (previously sorted). This methodology, described in details

in Marrel et al. [15], allows progressive parameter estimation by input variables selection

both in the regression part and in the covariance function.

3.2 Computation of Sobol indices for the two approaches

To perform a variance-based sensitivity analysis for time consuming computer models,

some authors propose to approximate the computer code by a metamodel (neural networks

in Martin & Simpson [16], polynomials in Iooss et al. [10], boosting regression trees in

Volkova et al. [29]). For metamodels with sufficient prediction capabilities, the bias due

to the use of the metamodel instead of the true model is negligible (Jacques [11]). The

metamodel’s predictor have to be evaluated a large number of times to compute Sobol

indices via Monte Carlo methods. Recent works based on polynomial chaos expansions

(Sudret [27]) have used the special form of this orthogonal functions expansion to derive

analytical estimation of Sobol indices. However, the modeling error of this metamodel is

not available and then has not been integrated inside the Sobol index estimates.

The conditional Gp metamodel provides an analytic formula which can be easily used

for sensitivity analysis in an analytical way. Moreover, in the case of independent inputs

and with a covariance which is a product of one-dimensional covariances (Eq. (2)), the

analytical formulae of Si and µS̃i
(respectively Eqs. (10) and (12)) lead to numerical

integrals, more precisely to respectively one-dimensional and two-dimensional integrals.

The accuracy of these numerical integrations can be easily controlled and are less computer

time expensive than Monte Carlo simulations. Few analytical developments of Sobol

indices computation (for Si, µS̃i
and σ2

S̃i
) can be found in Oakley & O’Hagan [20].

3.3 Simulation of the distribution of S̃i

For the second approach where S̃i is a random variable, the distribution of S̃i is not

directly available. By taking the mean related to all the inputs except Xi, the main effect

of Xi is defined and denoted A(Xi, ω):

A(Xi, ω) = IEX1,...,Xd
[YGp|Ys,Xs

(X, ω)|Xi].
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A(Xi, ω) is still a Gaussian process defined on R × Ω and characterized by its mean and

covariance which can be determined in an analytical way by integrating the Gp model

over all the inputs except Xi. In the case of independent inputs, one-dimensional integrals

are obtained and can be numerically computed. Then, to obtain the Sobol indices, we

consider the variance related to Xi of the Gaussian process defined by the centered main

effect. This variance is written

∫ bi

ai

(

A(xi, ω) −

∫

A(xi, ω)dηxi

)2

dηxi

with dηxi
the probability density function of the input Xi defined on [ai ; bi]. This last

expression is a one-dimensional random integral which has to be discretized and approxi-

mated by simulations.

The discretization of this random integral over the space of Xi leads to a Gaussian

vector of ndis elements:

Vndis
(ω) =

(

A(ai, ω), A(ai +
(bi − ai)

ndis

, ω), . . . , A(ai +
(ndis − 1)

ndis

(bi − ai), ω), A(bi, ω)

)

t.

The mean and covariance matrix of this vector are computed using those of the Gaussian

process A(Xi, ω). The random vector Vndis
is then multiplied by the matrix related

to the numerical scheme used to compute the integral (rectangle or trapeze method,

Simpson’s formula ...). The Gaussian vector obtained from this multiplication is denoted

Ṽndis
. To simulate it, we use the well known simulation method based on the Cholesky

factorisation of the covariance matrix (Cressie [6]). We simulate a ndis-size centered and

reduced Gaussian vector and multiply it by the triangular matrix from the Cholesky

decomposition. Then, an evaluation of the random integral which constitutes a realization

of S̃i is computed from the simulation of the vector Ṽndis
. This operation is done ksim

times to obtain a probability distribution for S̃i. It can be noted, that only one Cholesky

factorization of the covariance matrix of the ndis-size vector is necessary, and used for all

the ksim simulations of S̃i. To determine if the discretization number ndis and the number

of simulations ksim are sufficient, the convergence of the mean and variance of S̃i can be

studied. Indeed, their values can be easily computed following their analytical expressions

(11).

10



4 APPLICATIONS

4.1 Comparison of Si and µS̃i

To compare and study the behavior of the two sensitivity indices Si and µS̃i
, we consider

several test functions where the true values of Sobol indices are known. Comparisons be-

tween the two approaches are performed in terms of metamodel predictivity, i.e. relatively

to the accuracy of the Gp model, constructed from a learning sample. This accuracy is

represented by the predictivity coefficient Q2. It corresponds to the classical coefficient of

determination R2 for a test sample, i.e. for prediction residuals:

Q2(Y, Ŷ ) = 1 −

∑ntest
i=1

(

Yi − Ŷi

)2

∑ntest
i=1

(

Ȳ − Yi

)2 ,

where Y denotes the ntest true observations of the test set and Ȳ is their empirical mean.

Ŷ represents the Gp model predicted values. To obtain different values of Q2, we simulate

different learning samples with varying size n. For each size n, a Latin Hypercube Sample

of the inputs is simulated (McKay et al. [19]) to give the matrix Xs (n rows, d columns).

Then, the test function is evaluated on the n data points to constitute (Xs, Ys) and a

conditional Gp model is built on each learning sample. For each Gp model built, the

predictivity coefficient Q2 is estimated on a new test sample of size 10000 and the two

sensitivity indices Si and µS̃i
are computed. For each value of the learning sample size

n, all this procedure, i.e. Gp modeling and estimation of sensitivity indices, is done 100

times. Consequently, the empirical mean, 0.05-quantile and 0.95-quantile of Si and µS̃i

are computed for same values of learning sample size n, and similar approximate values

of Q2.

4.2 Test on the g-function of Sobol

First, an analytical function called the g-function of Sobol is used to compare the Sobol

indices Si based on the predictor and the Sobol indices µS̃i
based on the global Gp model.

The g-function of Sobol is defined for d inputs (X1, . . . , Xd) uniformly distributed on

[0, 1]
d
:

gSobol(X1, . . . , Xd) =
d

∏

k=1

gk(Xk) where gk(Xk) =
|4Xk − 2| + ak

1 + ak

and ak ≥ 0.
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Because of its complexity (considerable nonlinear and non-monotonic relationships) and

to the availability of analytical sensitivity indices, it is a well known test example in the

studies of global sensitivity analysis algorithms (Saltelli et al. [24]). The importance of

each input Xk is represented by the coefficient ak. The lower this coefficient ak, the more

significant the variable Xk. The theoretical values of first order Sobol indices are known:

Si =

1
3(1+ai)2

∏d

k=1
1

3(1+ak)2

for i = 1, . . . , d.

For our analytical test, we choose d = 5 and ak = k for k = 1, . . . , 5..

Let us recall that we study only first order sensitivity indices. For each input Xi, the

convergence of Si and µS̃i
in function of the predictivity coefficient Q2 is illustrated in

figure 1. The convergence of sensitivity index estimates to their exact values in function

of the metamodel predictivity is verified. In practical situations, a metamodel with a

predictivity lower than 0.7 is often considered as a poor approximation of the computer

code. Table 1 shows the connection between the learning sample size n and the predictivity

coefficient Q2. As the simulation of a learning sample and its Gp modeling are done 100

times for each value of n, the mean and the standard deviation of Q2 are indicated.

[Table 1 about here.]

Figure 1 also shows how the global Gp model outperforms the predictor-only model by

showing smaller confidence intervals for the five sensitivity indices.

[Figure 1 about here.]

To sum up the convergence of the indices for the different inputs, it can be useful to

consider the error between the theoretical values of Sobol indices Stheo
i and the estimated

ones in L2 norm:

errL2
=

d
∑

i=1

(Stheo
i − Ŝi)

2 (13)

where Ŝi denotes the indices estimated with one of the two methods (Ŝi = Si or Ŝi = µS̃i
).

Figure 2 illustrates this convergence in function of the learning sample size n and in

function of the predictivity coefficient Q2.

[Figure 2 about here.]

From Figure 2, we conclude that the sensitivity indices defined using the global Gp

model (µS̃i
) are better in mean than the one estimated with the predictor only (Si). This
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difference between the two approaches is especially significant for high values of Sobol

indices like the indices related to the first input (S1 and µS̃1
). For lower indices, these

two approaches give in mean the same results. Even if the two sensitivity indices seem

to have the same rate of convergence in function of n or Q2, it is important to notice

that the second approach is more robust. Indeed, µS̃i
has a lower sampling deviation and

variability than Si. Besides, this higher robustness is more significant when the accuracy

of the metamodel is weak (Q2 < 0.8). So, taking into account the covariance structure of

the Gp model appears useful to reduce the variability of the estimation of the sensitivity

index.

4.3 Test on Ishigami function

We now consider another analytical function currently used in sensitivity studies (Saltelli

et al. [24]), the Ishigami function, where each of the three input random variables

(X1, X2, X3) follows a uniform probability distribution on [−π, +π]:

fIshig(X1, X2, X3) = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1)

The theoretical values of first order Sobol indices are known:



















S1 = 0.3139

S2 = 0.4424

S3 = 0

Like for the g-function of Sobol, the error with the theoretical values of Sobol indices

in L2 norm is computed for the two approaches for different learning sample size n and

consequently for different values of Q2. As before (Eq. (13)), the diagrams of convergence

are shown in figure 3.

[Figure 3 about here.]

As observed for the g-function of Sobol, the indices defined with the global model are

still more robust and less variable particularly for low values of Q2. However, the difference

between the mean of the two indices is not significant. For high values of the Gp model

accuracy (Q2 > 0.8), the two approaches give the same values but the first one (with only

the predictor) remains easier to compute. So, the use of the covariance structure through
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the index S̃i seems to have a significant interest when the Gp metamodel is inaccurate or

when few data are available to avoid too much variability of the estimated indices.

4.4 Construction of confidence intervals for sensitivity indices

As well as being more robust in mean, the index defined with the second approach S̃i

has the advantage to have a variance easy to compute. More generally, it is possible to

build a confidence interval of any level for this sensitivity index, using the methodology

described in section 3.3 to simulate its distribution. This estimation of the uncertainty

on the estimation of Sobol indices is another advantage of using the global Gp model: in

practical cases with small learning sample size, only one Gp model is constructed. The

predictivity coefficient Q2 can be estimated by cross-validation or leave-one-out, and if Q2

shows a low predictivity (typically less than 0.8), we wish to have some confidence in the

estimation of Sobol indices computed from the Gp model. Contrary to Gp model, other

metamodels do not allow to directly estimate the Sobol indices uncertainties due to the

model uncertainties.

To illustrate this, let us consider again the g-function of Sobol. Like in the previous

section 4.2, we consider different sizes of the learning sample (from n = 20 to n = 50). For

each value of n, we build a conditional Gp model and we control its accuracy estimating

the Q2 on a test sample. We simulate the distribution of S̃i to obtain the empirical 0.05

and 0.95-quantiles and consequently an empirical 90%-confidence interval. Then, we check

if the theoretical values of Sobol indices belong to the empirical 90%-confidence interval.

We repeat this procedure 100 times for each size n. Therefore, we are able to estimate the

real level of our confidence interval and compare it to the 90% expected. The real levels

obtained in mean for any size n and each input are presented in Table 2.

[Table 2 about here.]

For the high values of Sobol indices (S1 and S2 for example), the observed levels of

the 90%-confidence interval built from the simulation of the distribution of S̃i are really

satisfactory and close to the expected level. In this case, the use of the global Gp model

which gives confidence intervals for Sobol indices has a significant interest. On the other

hand, for very low indices (close to zero), the Gp metamodel overestimates the Sobol

indices. It explains the inaccuracy of the confidence interval. Indeed, without a procedure

of inputs selection, each variable appears in the Gp metamodel and in its covariance.
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Taking into account the variance leads to give a minimal bound for the influence of all

the variables and consequently to overestimate the lowest Sobol indices. This tendency

is confirmed by the observation of the mean of µS̃i
estimated for the three last inputs in

Table 2.

We can make the same study with the Ishigami function for n = 30 to n = 130

which induces a Q2 varying from 0.5 to 0.95. As all the procedure (i.e. learning sample

simulation, Gp modeling and sensitivity analysis) is repeated 100 times for each size n, the

convergence of the observed level of the empirical 90%-confidence interval can be observed

in function of n. Similarly, we can study this convergence in function of Q2. Figure 4

shows all these diagrams of convergence.

[Figure 4 about here.]

As previously remarked on the g-function of Sobol, the 90%-confidence intervals are ef-

ficient for the high values of Sobol indices (S1 and S2 for example). For these indices,

the observed level of the confidence interval converges to theoretical level 0.9. We can

also notice that the predictivity quality of the Gp modeling which is required to obtain

accurate confidence interval corresponds approximately to Q2 > 0.80. However, we judge

that for Q2 > 0.6, the error is not too strong and the obtained 90%-confidence interval

can be considered as a reliable and useful information. On the other hand, for very low

indices (close to zero), the problem of overestimating the Sobol indices still damages the

accuracy of the interval confidence for any size n and any Q2. This remark is particularly

true when the index is equal to zero (for example S3).

4.5 Application on an hydrogeologic transport code

The two approaches to compute the Sobol indices are now applied to the data obtained

from the modeling of strontium 90 (noted 90Sr) transport in saturated porous media

using the MARTHE software (developed by BRGM, France). The MARTHE computer

code models flow and transport equations in three-dimensional porous formations. In the

context of an environmental impact study, the MARTHE computer code has been applied

to the model of 90Sr transport in saturated media for a radwaste temporary storage site

in Russia (Volkova et al. [29]). One of the final purposes is to determine the short-term

evolution of 90Sr transport in soils in order to help the rehabilitation decision making.

Only a partial characterization of the site has been made and, consequently, values of the
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model input parameters are not known precisely. One of the first goals is to identify the

most influential parameters of the computer code in order to improve the characterization

of the site in a judicious way. To realize this global sensitivity analysis and because of

large computing time of the MARTHE code, a Gp metamodel is built on the basis of a

first learning sample.

4.5.1 Data presentation

The 20 uncertain model parameters are permeability of different geological layers compos-

ing the simulated field (parameters 1 to 7), longitudinal dispersivity coefficients (parame-

ters 8 to 10), transverse dispersivity coefficients (parameters 11 to 13), sorption coefficients

(parameters 14 to 16), porosity (parameter 17) and meteoric water infiltration intensities

(parameters 18 to 20). To study sensitivity of the MARTHE code to these parameters,

300 simulations of these 20 parameters have been made by the LHS method. For each

simulated set of parameters, MARTHE code computes transport equations of 90Sr and

predicts the evolution of 90Sr concentration for year 2010. For each simulation, the output

we consider is the value of 90Sr concentration, predicted for year 2010, in a piezometer

located on the waste repository site.

4.5.2 Gp modeling and computation of Sobol indices

To model the concentration in the piezometer predicted by MARTHE code in 2010 in func-

tion of the 20 input parameters, we fit a Gp metamodel conditionally to 300 simulations

of the code. The regression and correlation parameters of the Gp model are estimated

by maximum likelihood and a procedure of input selection is used. The input variables

introduced in the metamodel are the sorption coefficient of the upper layer (parameter 14

denoted kd1), an infiltration intensity (parameter 20 denoted i3) and the permeability of

the upper layer (parameter 1 denoted per1). The accuracy of the Gp model is checked

with the estimation of Q2 by a cross validation on the learning sample. The predictivity

coefficient estimated is: Q2 = 0.92. From previous study (Marrel et al. [15]), we have

found that the linear regression gives a Q2 = 0.69 and the metamodel based on boosting

of regression trees gives a Q2 = 0.83. From laboratory measures and bibliographical infor-

mation, prior distributions have been determined for the inputs kd1, i3 and per1 and are

respectively a Weibull, a trapezoidal and a uniform distributions. The parameters of these
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distributions has been estimated or fixed a priori. Then, using the global Gp model, the

Sobol indices defined by µS̃i
are computed (Eq. (12)) as well as the standard deviation

σS̃i
and the 90%-confidence interval associated (cf. methodology 3.3). The results are

presented in Table 3, with the Sobol indices obtained with the predictor-only approach

and with the boosting predictor.

[Table 3 about here.]

The use of Gp model gives a better predictivity than the boosting of regression trees

(respectively Q2 = 0.92 and Q2 = 0.83) and consequently a more accurate estimation of

Sobol indices. Besides, the Sobol indices estimated with the boosting model do not even

belong to the confidence intervals given by the Gp model. Even if the sensitivity indices

based on the predictor only and the ones estimated with the whole Gp model are very

close, the second approach has the advantage to give confidence intervals and consequently

to have a more rigorous analysis.

Without considering their interactions, the 3 inputs kd1, i3 and per1 explained nearly

90% of the total variance of the output and the most influent input is clearly kd1, followed

by i3 and per1. So, kd1 is the most important parameter to be characterized in order to

reduce the variability of the concentration predicted by MARTHE code. Using the whole

Gp model, we also have an indication of the accuracy of Sobol indices. The standard

deviation of the indices are small and increase the confidence in the value estimated

(µS̃kd1
, µS̃i3

and µS̃per1
). Moreover, the very small overlap of the 90%-confidence interval

of the 3 indices indicates that the order of influence of the inputs is well determined and

strongly confirms the predominance of kd1. So, the confidence intervals and the standard

deviation obtained with the whole Gp model give more confidence in the interpretation

of Sobol indices.

Taking into account the variability of the Gp model via its covariance structure gives

more robustness to the results and their analysis. However, this increase of precision and

confidence has a numerical cost. Indeed, the number of numerical integrals being com-

puted is of order O(dn2) where d is the number of inputs and n the number of simulations,

i.e. the learning sample size. The numerical cost depends also on the numerical preci-

sion required for the approximation of the integrals. Moreover, a high precision is often

essential to provide the robustness of the computation of Sobol indices, especially when

the distribution of the inputs is narrow and far from the uniform distribution (like the
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Weibull distribution of kd1). In this last case, it can be judicious to adapt the numerical

scheme in order to increase the precision in the region of high density.

5 CONCLUSION

We have studied the Gaussian process metamodel to perform sensitivity analysis, by esti-

mating Sobol indices, of complex computer codes. This metamodel is built conditionally

to a learning sample, i.e. to n simulations of the computer code. The Gp model proposes

an analytical formula which can be directly used to derive analytical expressions of Sobol

indices. Indeed, in the case of independent inputs and with our choice of regression and

covariance functions, the formula of Gp model leads to one and two-dimensional numeri-

cal integrals, avoiding a large number of metamodel predictor evaluations in Monte Carlo

methods. The use of Gp model instead of other metamodel is therefore highly efficient.

Another advantage of Gp metamodel stands in using its covariance structure to compute

Sobol indices and to build associated confidence intervals, by using the global stochastic

model including its covariance.

On analytical functions, the behavior and convergence of the Sobol index estimates

were studied in function of the learning sample size n and the predictivity of the Gp

metamodel. This analysis reveals the significant interest of the global stochastic model

approach when the Gp metamodel is inaccurate or when few data are available. Indeed,

the use of the covariance structure gives sensitivity indices which are more robust and

less variable. Moreover, all the distribution of the sensitivity index (defined as a random

variable) can be simulated following an original algorithm. Confidence intervals of any

level for the Sobol index can then be built. In our tests, the observed level of the interval

was compared to the expected one on analytical functions. For the highest values of Sobol

indices and under the hypothesis of a Gp metamodel with a predictivity coefficient larger

than 60%, the confidence intervals are satisfactory. In this case, the use of the global Gp

model which gives confidence intervals for Sobol indices has a significant interest. The

only drawback is that the use of covariance structure has a tendency to give a minimal

bound for the influence of all the variables and consequently to overestimate the lowest

Sobol indices and to give inaccurate confidence intervals for very low indices (close to

zero).

The use of covariance structure was also illustrated on real data, obtained from a
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complex hydrogeological computer code, simulating radionuclide groundwater transport.

This application confirmed the interest of the second approach and the advantage of Gp

metamodel which, unlike other efficient metamodels (neural networks, regression trees,

polynomial chaos, . . . ), gives confidence intervals for the estimated sensitivity indices.

The same approach based on the use of the global Gp metamodel can be used to make

uncertainty propagation studies and to estimate the distribution of the computer code

output in function of the uncertainties on the inputs.
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sion. We are also grateful to Sébastien da Veiga for helpful discussions.

References

[1] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear programming. John Wiley
& Sons, Inc, 1993.

[2] G.E. Box and N.R. Draper. Empirical model building and response surfaces. Wiley
Series in Probability and Mathematical Statistics. Wiley, 1987.

[3] V.C.P. Chen, K-L. Tsui, R.R. Barton, and M. Meckesheimer. A review on design,
modeling and applications of computer experiments. IIE Transactions, 38:273–291,
2006.

[4] W. Chen, R. Jin, and A. Sudjianto. Analytical metamodel-based global sensitiv-
ity analysis and uncertainty propagation for robust design. Journal of Mechanical

Design, 127:875–886, 2005.

[5] J-P. Chilès and P. Delfiner. Geostatistics: Modeling spatial uncertainty. Wiley, New-
York, 1999.

[6] N.A.C. Cressie. Statistics for spatial data. Wiley Series in Probability and Mathe-
matical Statistics. Wiley, 1993.

[7] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. Bayesian prediction of determin-
istic functions with applications to the design and analysis of computer experiments.
Journal of the American Statistical Association, 86(416):953–963, 1991.

[8] K-T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experiments.
Chapman & Hall/CRC, 2006.

[9] J.C. Helton, J.D. Johnson, C.J. Salaberry, and C.B. Storlie. Survey of sampling-
based methods for uncertainty and sensitivity analysis. Reliability Engineering and

System Safety, 91:1175–1209, 2006.

19



[10] B. Iooss, F. Van Dorpe, and N. Devictor. Response surfaces and sensitivity analyses
for an environmental model of dose calculations. Reliability Engineering and System

Safety, 91:1241–1251, 2006.
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[18] G. Matheron. La Théorie des Variables Régionalisées, et ses Applications. Les
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Figure 1: Convergence of sensitivity indices in function of the predictivity coefficient Q2

(g-Sobol function).
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Figure 2: Error in L2 norm for sensitivity indices in function of n and Q2 (g-Sobol function).
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Figure 3: Error in L2 norm for sensitivity indices in function of n and Q2 (Ishigami function).
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Figure 4: Convergence of the observed level of the empirical 90%-confidence in function of n

and Q2 (Ishigami function).
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Learning sample size n Predictivity coefficient Q2

Mean Standard deviation

25 0.67 0.21

35 0.88 0.09

45 0.96 0.02

55 0.98 0.01

65 0.98 6.10−3

75 0.99 4.10−3

85 0.99 3.10−3

95 0.99 2.10−3

Table 1: Connection between the learning sample size n and the predictivity coefficient Q2

(g-Sobol function).
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Variable Theoretical value Mean of µ
S̃i

Observed level of the empirical

of Sobol index confidence interval

X1 0.7164 0.7341 0.9381

X2 0.1791 0.1574 0.9369

X3 0.0237 0.0242 0.5830

X4 0.0072 0.0156 0.8886

X5 0.0001 0.0160 0.0674

Table 2: Real observed level of the empirical 90%-confidence interval built with the Gp model
for the Sobol index of each input parameter (g-Sobol function).
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input variable Boosting of Predictor only Whole Gp model
regression trees (Gp model)

Si Si µ
S̃i

σ
S̃i

90%-confidence interval

per1 0.03 0.081 0.078 0.020 [ 0.046 ; 0.112 ]

kd1 0.90 0.756 0.687 0.081 [ 0.562 ; 0.825 ]

i3 0.03 0.148 0.132 0.022 [ 0.100 ; 0.170 ]

Table 3: Estimated Sobol indices, associated standard deviation and confidence intervals for
MARTHE data.
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