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Integration of a Normal Field without Boundary Condition

Jean-Denis DUROU and Frédéric COURTEILLE
IRIT, UMR CNRS 5505, Toulouse, France

{durou,courteil}@irit.fr

Abstract

We show how to use two existing methods of integra-
tion of a normal field in the absence of boundary condi-
tion, which makes them more realistic. Moreover, we show
how perspective can be taken into account, in order to ren-
der the 3D-reconstruction more accurate. Finally, the joint
use of both these methods of integration allows us to obtain
very satisfactory results, from the point of view of CPU time
as well as that of the accuracy of the reconstructions. As
an application, we use this new combined method of inte-
gration of a normal field in the framework of photometric
stereo, a technique which aims at computing a normal field
to the surface of a scene from several images of this scene
illuminated from various directions. The performances of
the proposed method are illustrated on synthetic, as well as
on real images.

1. Introduction

Photometric stereo is a computer vision technique which
uses several images of a scene illuminated from various di-
rections. Usually, this technique consists in two stages: the
normal to the surface is first computed in each visible point
[15]; the normal field is then integrated, using either the cal-
culus of variations [6], direct integration [17] or frequency-
domain methods [5]. In this paper, we take an interest in
the second stage. More precisely, we improve two existing
methods of integration in two ways: on the one hand, we
show that the knowledge of the height on the boundary, a
knowledge which is usually not available, is not necessary;
on the other hand, we show how to extend these methods to
perspective projection. This theoretical study is propounded
in Section 2. In Section 3, a new method of normals inte-
gration is designed from this theoretical study, which com-
bines both improved methods. In order to validate this new
method, we test it in the framework of photometric stereo,
on synthetic, as well as on real images (Section 4). In Sec-
tion 5, we summarize the main contributions of the paper.

2. Relation between Normal and Gradient
Due to lack of space, no state-of-the-art on the integra-

tion of a normal field is given here (see e.g. [8, 10, 7, 1]).
Suppose that, in each point Q = (x, y) in the image of a
surface S, we know the unit outgoing normal −→n (x, y) to S:

−→n (x, y) =





nX(x, y)
nY (x, y)
nZ(x, y)



 . (1)

The vectorial function −→n is called a “normal field”. The
problem of integrating a normal field consists in searching
for a shape S i.e., for three functions X , Y and Z (Z is
called the “height”), such that the object point P conjugated
with Q has X(x, y), Y (x, y) and Z(x, y) as coordinates. It
can be solved only if the model of projection is known.

2.1. Orthographic Projection
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Figure 1. Two models of projection: orthographic (points P1 and
Q1) and perspective (points P2 and Q2).

Under the assumption of orthographic projection (cf.
points P1 and Q1 in Fig. 1), X(x, y) and Y (x, y) are worth:

{

X(x, y) = x d/f,

Y (x, y) = y d/f.
(2)

Let us denote g the transverse magnification f/d. The prod-
uct of both partial derivatives ∂x

−→
P and ∂y

−→
P is normal to



the surface (the dependances in (x, y) are omitted, for seek
of simplicity):

∂x

−→
P ∧ ∂y

−→
P =





−Zx/g
−Zy/g
1/g2



 , (3)

where Zx and Zy denote the partial derivatives of function
Z. The product of this vector by −→n (x, y) is null, which
gives us the three following equations:











g nZ Zx = −nX ,

g nZ Zy = −nY ,

nY Zx − nX Zy = 0.

(4)

System (4), which is linear in Zx and Zy, is ill-constrained
if the rank of its matrix is less than 2 i.e., if nZ

2 = 0
and nX nZ = 0 and nY nZ = 0, which occurs only if
nZ = 0. This particular case must be considered care-
fully, since −→n (x, y) is parallel to the image plane Πi in this
case. Under the assumption of orthographic projection, the
image points which lie on an “occluding contour” satisfy
this property. Thus, even if the normal is easy to determine
for the image points which lie on an occluding contour (the
normal is parallel to Πi and is also normal to the occlud-
ing contour), system (4) is ill-constrained and Z cannot be
computed for such points.

Now let us consider the image points which do not lie on
an occluding contour. System (4) is well-constrained and
its resolution gives us the gradient of Z:

∇Z = 1/g

[

p
q

]

, (5)

where the usual notations p = −nX/nZ and q = −nY /nZ

have been used. Thus, the problem of integrating a normal
field has been reformulated as a problem of integrating the
gradient of a function of two variables, whose solution is
straightforward:

Z(x, y) = Z(x0, y0)+

(x,y)
∫

(x0,y0)

p(u, v)du + q(u, v)dv

g
. (6)

It results from this expression that Z is computed up to an
additive constant. Thus, the Root Mean Square Error in Z,
denoted |∆Z|2, depends on this constant. In the tests, as
we will see, no boundary condition is imposed, thus this
constant is computed so that |∆Z|2 be minimal.

2.2. Perspective Projection
Under the assumption of perspective projection (cf.

points P2 and Q2 in Fig. 1), X(x, y) and Y (x, y) are worth:
{

X(x, y) = xZ(x, y)/f,

Y (x, y) = y Z(x, y)/f.
(7)

The product of ∂x

−→
P and ∂y

−→
P is a little more complicated

than in the orthographic case:

∂x

−→
P ∧ ∂y

−→
P = Z/f





−f Zx

−f Zy

Z + xZx + y Zy



 . (8)

Knowing that this vector is parallel to −→n (x, y), this gives us
the three following equations:











f nZ Zx + nX [Z + xZx + y Zy] = 0,

f nZ Zy + nY [Z + xZx + y Zy] = 0,

nY Zx − nX Zy = 0.

(9)

System (9) is not linear in Zx and Zy, but homogeneous in
Z. Thus, it is useful to introduce a change in the unknown:

T = ln |Z|. (10)

We obtain a new system which is linear in Tx and Ty:










[f nZ + xnX ]Tx + y nX Ty = −nX ,

x nY Tx + [f nZ + y nY ]Ty = −nY ,

nY Tx − nX Ty = 0.

(11)

This system is ill-constrained if the rank of its matrix is less
than 2 i.e., if:











f nZ [xnX + y nY + f nZ ] = 0,

−nX [xnX + y nY + f nZ ] = 0,

−nY [xnX + y nY + f nZ ] = 0.

(12)

As nX , nY and nZ cannot simultaneously be equal to 0,
since −→n is a unit vector, system (12) holds only if xnX +

y nY +f nZ = 0. Moreover, xnX+y nY +f nZ =
−−→
CQ·−→n ,

then system (12) holds only if the image point Q lies on an
occluding contour, as in the orthographic case.

Now let us consider the image points which do not lie on
an occluding contour. System (11) is well-constrained and
its resolution gives us the gradient of T :

∇T =

[

r
s

]

, (13)

where the following notations are used:






r = −
nX

xnX + y nY + f nZ

,

s = −
nY

xnX + y nY + f nZ

.
(14)

Once again, the problem of integrating a normal field has
been reformulated as a problem of integrating the gradient
of a function of two variables, whose solution is straightfor-
ward:

T (x, y) = T (x0, y0) +

(x,y)
∫

(x0,y0)

[r(u, v)du + s(u, v)dv] .

(15)



From (15) and (10), we deduce:

Z(x, y) = Z(x0, y0) exp











(x,y)
∫

(x0,y0)

[r(u, v)du + s(u, v)dv]











.

(16)
It results from this expression that Z is computed up to a
multiplicative constant. It is also noticeable that (16) re-
quires the knowledge of the focal distance f , as well as the
location of the principal point O (since the coordinates x
and y depend on it).

2.3. Integrability of a Normal Field
In order to ensure that the normal field is integrable i.e.,

that Eqs. (6) or (16) are independent of the integration path,
it is necessary and sufficient that p and q (in the ortho-
graphic case) or r and s (in the perspective case) satisfy the
Schwartz equations ∂p/∂y = ∂q/∂x or ∂r/∂y = ∂s/∂x.
In practice, a normal field is never rigorously integrable.
There are two answers to this problem. The first one con-
sists in using several integration paths between (x0, y0) and
(x, y), and to mean the integrals, as Wu and Li do (see [17]
and Section 3.1). The second answer considers that Eqs.
(5) or (13) are least square problems, as Horn and Brooks
do (see [6] and Section 3.2). Now let us give the continuous
formulation of this second answer, which uses the calculus
of variations.

Under the assumption of orthographic projection, the
resolution of Eq. (5) in the least square sense amounts min-
imizing the following functional:

F(Z) =

∫∫

(x,y)∈Ω

F (x, y, Z, Zx, Zy) dx dy, (17)

where Ω denotes the “domain of reconstruction”, and:

F (x, y, Z, Zx, Zy) = [Zx − p/g]
2

+ [Zy − q/g]
2
, (18)

which measures the departure of the normal field from inte-
grability. The calculus of variations tells us that searching
for a function Z that minimizes F(Z) is equivalent to the
resolution of the associated Euler equation [6]:

∂F

∂Z
−

∂

∂x

[

∂F

∂Zx

]

−
∂

∂y

[

∂F

∂Zy

]

= 0. (19)

From (18) and (19), we deduce:

∇2Z = 1/g [px + qy] . (20)

This is a Poisson equation, which is not particularly difficult
to solve, even analytically [11]. More precisely, solving Eq.
(20) is really equivalent to the search for an extremum of
F(Z) only if Z is constrained on the boundary ∂Ω of Ω.

Otherwise, Eq. (20) has to be complemented with the “nat-
ural boundary equation” (see [6] and Section 3.2.2).

Under the assumption of perspective projection, the res-
olution of Eq. (13) in the least square sense amounts mini-
mizing the following functional:

G(T ) =

∫∫

(x,y)∈Ω

G(x, y, T, Tx, Ty) dx dy, (21)

where:

G(x, y, T, Tx, Ty) = [Tx − r]
2

+ [Ty − s]
2
. (22)

The associated Euler equation is:

∇2T = rx + sy, (23)

which is a Poisson equation again. This equation must also
be complemented with the natural boundary equation if T
is unconstrained on ∂Ω.

3. A New Method of Normals Integration
In this section, which makes up the algorithmic contribu-

tion of the paper, we extend and combine two existing meth-
ods of normals integration. On the one hand, we show that
the knowledge of the height on ∂Ω is not necessary. Since
such a knowledge is usually not available, the need for a
boundary knowledge could lead us to use erroneous data.
On the other hand, we show how to extend both these meth-
ods to perspective projection. Finally, we combine them, in
order to design a new method of normals integration which
is fast and accurate at the same time.

3.1. Improvement of Wu and Li’s Method
Propagation methods of integration consist in computing

the height from starting points, where the height is known.
Such points are usually located on ∂Ω. These methods are
fast but work well only if the normal field is integrable. Let
us focus on Wu and Li’s method [17].

3.1.1 Wu and Li’s Method

Wu and Li make a discrete approximation of the integral in
Eq. (6). They compute the means of the discrete integrals
that are computed along the two paths that are displayed in
Fig. 2 and they show that the accuracy is optimal if (x0, y0)
and (x, y) lie on the same diagonal. Suppose for seek of
simplicity that the pixels are squared. The image points
(x0, y0) and (x, y) can thus coincide with pixels (i0, j0) and
(i, j). From now on, we will use the subscripted notation,
e.g. ui,j for u(i, j). Between two neighbouring pixels (i, j)
and (i + 1, j + 1), a discrete approximation of (6) is:

Zi+1,j+1 ≈ Zi,j + δ/(2 g) [I1+2 + I3+4] , (24)



1

(x, y0) (x, y)2

(x0, y0) (x0, y)3
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x

y

Figure 2. The two paths used by Wu and Li: 1 followed by 2; 3
followed by 4.

where δ denotes the pixel size (δ = 0.05 in the tests), and:
{

I1+2 = pi,j + pi+1,j + qi+1,j + qi+1,j+1,

I3+4 = qi,j + qi,j+1 + pi,j+1 + pi+1,j+1.
(25)

Obviously, the knowledge of Z on ∂Ω is not required for
the implementation of (24).

3.1.2 First Improvement

Since the shape can be computed only up to an additive
constant, we arbitrarily fix the height at a starting point
Q0. Then, in order not to privilege a direction compared
to another, we treat the pixels in spiral (cf. Fig. 3-a). The
shape computed using the true normals of a synthetic vase is
shown in Fig. 3-b: error |∆Z|2 is equal to 0.03, but would
be equal to 0.22 if we had imposed the true values of the
height on ∂Ω and computed Z from the boundary to the
center of the image.

Q0 |∆Z|2 = 0.03

(a) (b)

Figure 3. First improvement of Wu and Li’s method: (a) treatment
of the pixels in spiral; (b) reconstructed shape of a vase from the
true normals, without boundary condition.

3.1.3 Second Improvement

Using the theoretical study of Section 2, we know that per-
spective integration is very similar to orthographic projec-

tion. From this statement, we deduce the following approx-
imation:

Ti+1,j+1 ≈ Ti,j + δ/2 [J1+2 + J3+4] , (26)

with:
{

J1+2 = ri,j + ri+1,j + si+1,j + si+1,j+1,

J3+4 = si,j + si,j+1 + ri,j+1 + ri+1,j+1.
(27)

The main difference between (24) and (26) is that the focal
length f and the location of the principal point O must be
known to implement (26).

In Fig. 4, the graph of the true height Zt of the vase is
shown i.e., the surface of equation z = Zt(x, y), which is
not the surface of the vase. Contrary to the orthographic
case, Zt is not uniform on ∂Ω (cf. Fig. 4-b). The graph
of the height Z computed by the improved method of Wu
and Li is shown in Fig. 5. It is globally satisfactory, even
if |∆Z|2 = 0.11, which is a little more than in the ortho-
graphic case. It is noticeable that the height on ∂Ω is quali-
tatively right (cf. Fig. 5-b), whereas no boundary condition
is used.

(a) (b)

Figure 4. Graph of the true height Zt of the vase: (a) perspective
view; (b) side view.

|∆Z|2 = 0.11

(a) (b)

Figure 5. Graph of the height Z computed from the true normals
by the improved method of Wu and Li: (a) perspective view; (b)
side view.

3.2. Improvement of Horn and Brooks’ Method
The global methods of integration [6, 5] deeply differ

from the propagation methods. Apart from their slowness,



they have two main advantages: they are more robust to
noise; in the case where the Schwartz equation is not satis-
fied, they provide however an acceptable shape. Let us now
focus on Horn and Brooks’ method.

3.2.1 Horn and Brooks’ Method

Horn and Brooks propose [6] a resolution of the Poisson
equation (20) that comes from the following approximation
of the expression (17) of F(Z):

E(Z) =
∑∑

(i,j)∈Ω1

[

Zi+1,j − Zi,j

δ
−

pi+1,j + pi,j

2 g

]2

+
∑∑

(i,j)∈Ω2

[

Zi,j+1 − Zi,j

δ
−

qi,j+1 + qi,j

2 g

]2

.

(28)
In this expression: Ω1 denotes the set of pixels (i, j) ∈ Ω
such that (i + 1, j) ∈ Ω; Ω2 denotes the set of pixels
(i, j) ∈ Ω such that (i, j + 1) ∈ Ω; Z = (Zi,j)(i,j)∈Ω;
Ω denotes the set of pixels (i, j) ∈ Ω whose four nearest
neighbours are in Ω. The values Zi,j of the pixels lying on
∂Ω are not considered as unknowns, since Horn and Brooks
use a boundary condition of the Dirichlet type. For a pixel
(i, j) ∈ Ω, we get from (28):

∂E

∂Zi,j

=
2

δ

[

−

(

Zi+1,j − Zi,j

δ
−

pi+1,j + pi,j

2 g

)

−

(

Zi,j+1 − Zi,j

δ
−

qi,j+1 + qi,j

2 g

)

+

(

Zi,j − Zi−1,j

δ
−

pi,j + pi−1,j

2 g

)

+

(

Zi,j − Zi,j−1

δ
−

qi,j + qi,j−1

2 g

)]

.

(29)
The characterization ∇E = 0 of an extremum of E can thus
be written [6], for (i, j) ∈ Ω:

4Zi,j − (Zi+1,j + Zi,j+1 + Zi−1,j + Zi,j−1)

+
δ

2 g
(pi+1,j − pi−1,j + qi,j+1 − qi,j−1) = 0.

(30)

This equation is indeed a discrete approximation of the
Poisson equation (20), if centered finite difference approxi-
mations of px and qy are used and if the Laplacian operator
of Z is approximated by:

∇2Z(i, j) ≈
Zi+1,j + Zi,j+1 + Zi−1,j + Zi,j−1 − 4Zi,j

δ2
.

(31)

3.2.2 First Improvement

In order to avoid the need for Z on the boundary, it suffices
to consider that all the values Zi,j , for (i, j) ∈ Ω, are un-
knowns. This implies that the equations ∂E/∂Zi,j = 0, for

(i, j) ∈ Ω, are not all written under the form (30). For ex-
ample, if two neighbours (i + 1, j) and (i, j + 1) of (i, j)
only are in Ω, then ∂E/∂Zi,j = 0 is written:

2Zi,j−(Zi+1,j+Zi,j+1) =
−δ

2 g
(pi+1,j+pi,j+qi,j+1+qi,j).

(32)
The pixels which require a particular treatment all lie on
∂Ω. In fact, equations such as (32) are nothing else than the
discrete version of the “natural boundary equation” that has
already been cited in Section 2. The results of Fig. 6 do not
use any boundary condition.

|∆Z|2 = 0.56 |∆Z|2 = 0.20

(a) (b)

Figure 6. Improvement of Horn and Brooks’ method: recon-
structed shapes from the true normals, without boundary condi-
tion, at iterations (a) 500 and (b) 8000.

3.2.3 Second Improvement

In the perspective case, we saw in Section 2.3 that F(Z)
must be replaced by G(T ). The generalization of Horn and
Brooks’ method for perspective projection is thus straight-
forward and provide the results of Fig. 7.

|∆Z|2 = 1.11 |∆Z|2 = 0.82

(a) (b)

Figure 7. Graphs of the heights Z computed from the true normals
by the improved method of Horn and Brooks, at iterations (a) 500
and (b) 8000.

3.3. A New Method of Normals Integration
In order to take advantage of both them, we combine

Wu and Li’s and Horn and Brooks’ methods. Wu and Li’s
method is fast and provides shapes of good quality, which
consequently allows us to reduce the number of iterations



(a) (b)

Figure 8. True shape of the vase: (a) perspective view; (b) side
view.

(a) (b)

Figure 9. Reconstructed shape from the true normals by our new
method of integration: (a) perspective view; (b) side view.

of Horn and Brooks’ method from 8000 to 500. Thus, the
reconstruction is of good quality, even if the normal field is
not integrable.

Contrary to orthographic integration, perspective inte-
gration does not allow us to directly compute the scene
surface, since the graph z = Z(x, y) of the computed
height Z is not the scene surface. But, knowing that an
image point Q = (x, y) is conjugated with the object point
P = (xZ(x, y)/f, y Z(x, y)/f, Z(x, y)), it is easy to com-
pute the scene surface from Z. In Fig. 8, the surface of the
vase after resampling of the object points corresponding to
the true height Zt is shown. Obviously, the bottom and the
top of the vase are contained in two planes parallel to Cyz.
The computed shape from the true normals of the vase using
our new method of normals integration, after resampling, is
shown in Fig. 9. This shape is visually similar to the true
shape of the vase.

4. Application to Photometric Stereo

Among the computer vision techniques for 3D-
reconstruction, the photometric methods use the relation be-
tween the greylevel and the normal to the surface. Thus,
they are appropriate to test the new method of integration of
a normal field described in Section 3.

4.1. Photometric Methods for 3D-reconstruction
4.1.1 Image Irradiance Equation

The image irradiance equation is the basic equation of the
photometric methods for 3D-reconstruction, namely shape-
from-shading and photometric stereo. This equation, which
expresses the conservation of light energy, is particularly
simple for a Lambertian surface illuminated by a homoge-
neous parallel beam [15]:

− ρ(P )
−→
L · −→n (P ) = I(Q). (33)

In (33), an object point P is characterized by its albedo
ρ(P ) and its unit outgoing normal −→n (P ), whereas its con-
jugated image point Q is characterized by its greylevel
I(Q). Note that, for a colour image, I(Q) as well as
ρ(P ) must be considered as vectors in R

3, and no longer
as scalars. The light beam is characterized, in direction and
density, by a vector −→L . Note that both members of Eq. (33)
are not homogeneous: in fact, rather than an equality, (33)
is a relation of proportionality. Finally, it is noticeable that
the resolution of (33) is possible only if the relation between
P and Q is known i.e., if the model of projection is known.

4.1.2 Shape-from-shading and Photometric Stereo

The knowledge of ρ(P ), −→L and I(Q) does not allow us to
determine −→n (P ) from Eq. (33). There is indeed an infin-
ity of vectors which form the same angle with vector −→

L .
This ambiguity, which is well-known, constitutes the main
difficulty of shape-from-shading. We avoid shape-from-
shading to illustrate our new method of integration, since
it would be difficult to decide on its accuracy, knowing that
a normal field computed through using shape-from-shading
would not be accurate enough, especially in the case of real
images [18, 4]. We prefer to make the tests in the frame-
work of photometric stereo, a problem which is well-posed
in most cases, contrary to shape-from-shading, since sev-
eral images of the same scene, illuminated under various
directions, are available. The photometric stereo technique,
which is due to Woodham [15], has enjoyed some renewal
in the last years [14, 9, 7, 13, 12, 16, 3, 2].

If several images of a scene are available, then in each
image point Q, the equations (33) obtained for each im-
age form a system, whose unknowns are the coordinates of
the vector −→m(P ) = ρ(P )−→n (P ). Three images at least, il-
luminated under directions that are non-coplanar, are thus
necessary to determine −→m(P ). The main difference be-
tween shape-from-shading and photometric stereo is that
the albedo of the surface must be known, at least partially,
so that shape-from-shading may become a sufficiently con-
strained problem, whereas this is not necessary for photo-
metric stereo. If the albedo is known, then photometric



stereo can work with two images only, but if three images
are available, then it is not necessary to know the albedo.

4.2. Tests
4.2.1 Synthetic Images

We simulate five images of the same vase as that of Sec-
tion 3, under perspective projection (cf. Fig. 10). Note that
a coloured texture is warped on the vase. In each image
point, the albedo and the normal are computed by the res-
olution of a system of five equations and three unknowns.
The reconstructed shape using our new method of integra-
tion is displayed in Fig. 11. It is visually satisfactory, but
one may wonder whether this still holds with real images.

4.2.2 Real Images

We test our method of integration on three photographs of
Beethoven’s bust (cf. Fig. 12) that are available on the
web1. The material of the bust seems to be approximately
Lambertian. Moreover, estimates of the directions and den-
sities of the light beams are given. The shape computed
using our new method of integration is visually satisfactory
(cf. Fig. 13).

5. Conclusion and Perspectives
In this paper, after a rigorous theoretical study, we show

how to improve two existing methods of normals integra-
tion. On the one hand, we show how to use them without
boundary condition, in order to make them more realistic.
On the other hand, we extend them to perspective projection
and show that this improves the accuracy of the reconstruc-
tions. Finally, we show that the joint use of both improved
methods provides very satisfactory results.

As an application, we use this new method of integration
in the framework of photometric stereo. The performances
of the method are illustrated on synthetic, as well as on real
images: they are very encouraging. Note that this applica-
tion of our work amounts taking into account perspective
in photometric stereo, a problem which has recently been
pioneered in [13].

As a perspective, we now aim at reconstructing scene
surfaces from images taken under badly-controlled condi-
tions i.e., for non-Lambertian surfaces illuminated by non-
homogeneous or non-parallel beams, a problem which has
already been addressed by Basri et al. [2].
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(a) (b) (c) (d) (e)

Figure 10. Five images of the vase illuminated under various directions. Angles φ (azimuth) and θ (complementary of the elevation) are in
degrees: (a) (φ1; θ1) = (0; 0); (b) (φ2; θ2) = (45; 30); (c) (φ3; θ3) = (135; 30); (d) (φ4; θ4) = (225; 30); (e) (φ5; θ5) = (315; 30).

Figure 11. Reconstructed shape from the five images of Fig. 10: side view (left) and perspective view (right).

(a) (b) (c)

Figure 12. Three photographs of Beethoven’s bust available on the web: (a) (φ6; θ6) = (−72.48; 15.12); (b) (φ7; θ7) = (−4.85; 11.46);
(c) (φ8; θ8) = (69.31; 16.11).

Figure 13. Reconstructed shape from the three photographs of Fig. 12: side view (left) and perspective view (right).


