
A Montague-based model of Generative Lexical

Semantics

Bruno Mery, Christian Bassac, Christian Retoré

To cite this version:

Bruno Mery, Christian Bassac, Christian Retoré. A Montague-based model of Generative
Lexical Semantics. R. Muskens. Workshop on New Directions in Type-theoretic Grammars
(NDTTG 2007), Aug 2007, Dublin, Ireland. pp.90-97, 2007. <inria-00287343>

HAL Id: inria-00287343

https://hal.inria.fr/inria-00287343

Submitted on 11 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50543872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00287343

A Montague-based model

of Generative Lexical Semantics

Workshop on New Directions in Type-Theoretic Grammars

NDTTG – part of ESSLLI 2007, Dublin (EI)

Bruno Mery Christian Bassac Christian Retoré

SIGNES group, LaBRI, INRIA, ERSS

Université de Bordeaux

351 cours de la Libération

F-33405 Talence Cédex, France

Abstract. Computational semantics has long relied upon the Montague corre-

spondance between syntax and semantics, which is not by itself well suited for

the computing of some phenomena, such as logical polysemy, addressed by recent

advances in lexical semantics. Our aim is to integrate the results of lexical seman-

tics studies such as the Generative Lexicon Theory in a straightforward way with

the existing computing of logical forms, in order to form a Montagovian frame-

work for lexical semantics. In addition, we will outline a way to integrate other

kinds of semantic information.

Computational semantics has long relied upon Montague’s logical syntax to semantics

system, or its variants. While the computing of logical forms from syntax is well known

and has recently been formalized in type theory (e.g., by [Ranta, 2004]), the process is

not fine-grained enough for a large part of language. Specifically, the Generative Lex-

icon Theory detailed in [Pustejovsky, 1995] and Transfers of Meanings introduced in

[Nunberg, 1993] both present convincing data in favor of co-compositionality of mean-

ing, the fact that the same lexical items often convey different yet related senses de-

pending upon what other terms they are applied to. [Pustejovsky, 1995] also provides a

complete description of the mechanisms of lexical semantics, sufficient to express the

processes behind composition and co-composition.

Our goal is to present an efficient way to express those principles in a generic

Montagovian computational semantics framework. In this paper, we first introduce the

Generative Lexicon Theory, and explore the assumed link with Montague-style logical

forms. We then detail our model and its variants, including how to extend it to other

theories and phenomena, and finish with a discussion of the generality and possibilities

of use of such a system.

1 The Generative Lexicon Theory

Pustejovsky’s Generative Lexicon Theory (GL) gives a strongly-motivated model

for many cases of logical polysemy, together with a rich structuration of the meaning

of concepts. It uses an inheritance-based hierarchy of types, each corresponding to a

lexical concept. Each lexical entry (associated with each type) also includes:

– the number and types of arguments needed (for a predicate),

– the characterization of the event structure associated with the concept, if any, and

– the associated qualia, or modes of explanation of the concept: what its properties

are (formal), what it is made of / part of (constitutive), what it can be used for

(telic), what can cause it to come into being (agentive). . . the idea being that a word

can, under certain conditions, refer to any of its qualia (e.g., “ship” can be derived

from “sail”).

Some of this type of information might be underspecified, i.e. not defined in the

lexicon, and filled in during the computation of the meaning of an utterance.

In addition, some lexical entries are of a so-called complex (or dot) type, expressing

two or more aspects of different, hierarchically not comparable types (none is the sub-

type of the other). For instance, if one supposes that there are physical objects of type P

and informational contents of type I, then the lexical item book would be of type I •P.

2 Linking GL with Montague semantics

2.1 Compositional semantics

The compositional and co-compositional mechanisms introduced by GL presup-

poses that a very basic kind of structure is available, such as a syntactic tree. This

structure indicates which terms are actually applied to which in an utterance, i.e., which

are the arguments of which predicates.

The basic Montagovian notion of application and abstraction then applies, consid-

ering that the lexicon is responsible for the typing of the term (the argument structures

defining types for the term and its arguments).

In certain situations where normal applications would result in a type clash, though,

the other mechanisms of GL are employed, and it is understood that a certain number

of type coercion operations are licensed :

– if a predicate needs an argument of a type α , and the actually selected argument is

of type α ′, with α and α ′ compatible (i.e., one is a subtype of the other in the type

hierarchy), then the application is valid by type accommodation;

– if a predicate needs an argument of a type α , and the actually selected argument is

of type β , with α being part of a certain quale of β , then the application is valid by

exploitation over said quale;

– if a predicate needs an argument of a type α , and the actually selected argument is

of type α •β , then the application is valid by •-exploitation.

2.2 Current formulations

Type-theoritical formalizations of these semantics, however, are far from trivial. The

original theory, as well as more recent formalisms such as [Asher and Pustejovsky, 2005]

or [Pustejovsky, 2006], fails to remain within a standard logical calculus.

This does not mean that these formulations are inadequate, but the fact is that the

level of detail for some phenomena is such that it looks difficult to integrate literally

all constraints expressed in any logic type system and keep it yet simple and sound.

Therefore, those formalisms struggle with the necessity of expressing the results of

long studies in lexical semantics and the need for actually useable logical rules.

2.3 Our approach

We do not want to model the entirety of GL in our typing system and logical rules.

Our main concern being economy, we have thought that we might keep the information

present in types as simple as possible, and add the necessary data carried by the lexicon

on a term-to-term basis.

Thus, we take as a basis the already complete and sound Montague logic system,

with simple types, and keep the same application and abstraction rules. The one excep-

tion is that, in addition of the classical logical term, each variable will be able to convey

additional lexical information by providing additional, optional terms (involving addi-

tional logical constants)that might be used when type coercion is required. We shall

detail this model in the next section. . .

3 A model with optional terms

3.1 Basic assumptions

Our model is based upon classical Montague semantics with simple types. It sup-

poses a hierarchy similar to an ontology, such as described in [Pustejovsky, 2006],

where ⊤ is the universal type with three main subtypes, Entity, Event, Property, the

various subtypes of which form the complete type lattice.

We shall use the standard simply-typed λ -calculus with a slightly different use of

the lexicon that enhances the application of a term to another in two different ways :

– self-adaptation: a lexical item might provide a number of optional terms that allow

a type change when the classical application would yield a type error, and

– selection-projection: a predicate may select for an argument of an unspecified type

and attempt afterwards to project a certain type upon it, using a distinct set of terms

that the predicate and argument might both contribute to.

This system is derived from the idea, expressed in both [Nunberg, 1993] and

[Pustejovsky, 1995], that each lexical entry can licence some type shifts or coercions. It

does not change overmuch the general rules for Montague semantics – as the increase

in expressive power is due to extra terms, rather than extra data in the typing system

that would have to be captured by adequate rules.

The main point is that each lexical item contributes at least a term, that must be

consumed (as per usual), plus a (finite) number of optional terms that might be used.

Each use of such a term might:

– change the type of the non-optional term, in order to solve some typing mismatch;

– change the associated structure of the term, for example by specifying a quale;

– change the term itself (number of arguments, etc.);

– enable future reference for the (newly created) concept in the discourse.

In the following, type accommodation is supposed, i.e., any given type shall share

the property of its supertypes, including type-coercing terms.

3.2 Self-adaptation

Each instance x of some lexically-defined type τ might provide some additional

terms. Operators f1 . . . fk are defined within τ , together with the main term (in GL terms,

within the argument structure), and are of type τ → σi for some σi 6= τ . Thus, when

needed, any fi(x) might be substituted to x.

For example, suppose that objects of type “computer”, Ct, have an extensive consti-

tutive quale, including at least an object of type “processing unit”, CPU . Then we have

an operator f : Ct → CPU , which, when used on a computer x, would yield a pointer

to its processor f (x). Thus, supposing clock-related predicates apply only on objects of

type CPU , we would have a derivation1 :

Example 1. A 2-GHz computer

∃x, λyCPU
.Clock(y) [xCt]

∃xCt , λyCPU
.Clock(y) [(f (x))CPU]

That mechanism suffices to licence most cases of qualia-exploitation (with an op-

erator for every exploitation possible on the agent, telic or constituents), as well as

some specific lexical rules such as grinding, where an object is subject to an irrevocable

change, such as herb→food, which is modeled by a type-coercing operator, as in :

Example 2. Freshly prepared lemongrass

∃x,λyF
.Fresh(y)[xH]

∃xH
,λyF

.Fresh(y)[(f (x))F]

As every occurrence of the concerned object is changed, that use of type-coercing

operator might be likened to passing a variable by reference in programming.

1 In the following, arguments are enclosed in square brackets for the sake of clarity.

3.3 Projection after selection

Another group of optional terms might be provided, either by an argument or pred-

icate, in order to modify the argument after its selection. Those operators g1 . . .gl are

also lexically defined.

They might be used when the predicate is on the model of λx⊤.P(Πτ(x)) (that is,

the predicate P selects for an argument of any type and attempts to apply an optional

term gi afterwards, which would yield an output of type τ). One might think of Πτ(x)
as “x viewed as of type τ”, and the construct results in a type clash if it fails.

As the semantic change of the argument is local to its selection by the concerned

predicate, the object in itself remains intact, and thus, that process is like passing a

variable by value in programming.

This mechanism can express the phenomenon known as co-predication: if two or

more predicates select the same lexical item, they may enforce different types upon it.

It happens frequently with complex types, i.e., objects with more than one aspect (such

as book or town, where we would have a select-project operator available for every

alternate type).

Recall that when self-adaptation is required, conversely, the item changes its type

for every occurrence, and co-predication in sentences such as (3) is impossible :

Example 3. ?? The tuna we had yesterday night was lightning fast and delicious

For an exemple of type change after selection in a co-predicative sentence, we might

have a type “town”, T n, a type “people”, Pp, with an operator g : T n→Pp that represent

the relationship between a city and its inhabitants. Then we could have:

Example 4. Boston is a large city that mostly votes Democrat

∃xT n λyT n
.City(y)[x] ∧ λ z⊤.Vote(ΠPp(z))[x]

∃xT n City(x) ∧ Vote(ΠPp(x
T n)

∃xT n City(x) ∧ Vote(g(x))

This change of type after selection, which enables to reference the newly selected aspect

later on in the discourse, can be used to analyze some of the most complex quantifica-

tional puzzles in co-predicative sentences.

4 Expanding the framework beyond the lexicon

We believe our model to be sufficient to take into account most of the phenomena

that are the target of GL. However, some additional areas could be further explored in

the search for actual automated understanding of the language.

In this section, we will explain how our system could be extended in order to include

some of those theoretical and practical points.

4.1 A possible implementation in functional programming

The simple co-compositional logical framework we have described here can very

easily be implemented in functional programming such as Lisp or CaML, as functional

application is the one operation needed, and the addition of optional terms corresponds

to methods attached to the classes associated with the type of the variable in an object-

oriented view. A translation module, which would extract the optional terms from the

definitions of the types in GL, would also be quite straightforward.

4.2 Integrating multiple adjustments

The model outlined here is also quite generic in that it proposes simple adjustments

for co-composition and coercion via the information encoded in each lexical entry, but

can also be adapted to other kinds of linguistic and non-linguistic data. Thus, additional,

optional terms might be deduced from:

– the current discourse (e.g., if someone is defined as a teacher, the associated lexical

operators should be linked to the name of the person for future use),

– the situation (non-verbal signs might trigger transfers),

– some cultural assumption (the lexical definition of village might contain very dif-

ferent constituents depending on the cultural group),

– or additional pragmatic reasoning.

The system in itself remains the same, it is a simple matter of adding optional terms

corresponding to the different aspects wanted, while keeping a reasonable total number

of possible combinations. Of particular interest would be a translation of SDRT and

λ -DRT in that framework.

4.3 Metaphors and idiomatic expressions

There are two ways to account for idiomatic expressions and metaphors specific to

a given language or dialect.

The most obvious is to list, for each language or fragment, every such expression

and use, and to associate additional terms that would map the entire expression (as a

fixed string) into its logical equivalent. This approach would be costly, both in establish-

ing a complete lexicon containing all such information and in terms of complexity, but it

would probably be useful for complete understanding and necessary for machine-driven

translation.

The other approach, more economic and possibly more efficient in a day-to-day ba-

sis, is to consider that each (valid syntactic-wise) utterance is semantically correct, and

to try and derive a plausible, if incomplete, interpretation. This method would introduce

unspecified operators as a last resort in a type clash, and the resulting sense might later

be clarified through machine-assisted dialogue.

In any case, taking into account idiomatic expressions will prove necessary in order

to grasp the correct meaning of many common sentences.

4.4 Interpretation choice and scoring

During the computation of the actual meaning of a given logical form, when several

operators fi,gi are available for use, several defeasible interpretations might be possi-

ble. A specialized module might have to choose between the possibilities: supposing

a “town” can be either a geographical entity, the set of its inhabitants, the ruling body

(either mayor or council), or the set of its civil servants, then in

Example 5. Philadelphia wants a new bridge, but the mayor is opposing it

the prominent typing (geographical entity) should be rejected, as well as the type change

associated to “mayor”, but any other typing operators associated to subtypes of “people”

can be valid interpretations.

It is also often the case that several interpretations remain available when everything

is taken into account. To help classify interpretations, a notion of “semantic cost” might

be added to each type-coercing operator, and a minimal cost would indicate higher

likeliness of the final logical form (even as any of the other ones could still be considered

as “correct”).

4.5 Generative power and complexity

As this model is a front-end to semantic and pragmatic theories rather than a gen-

erative grammar in itself, it presupposes some kind of syntactic formalism in order to

generate the bare logical form (i.e., what lexical items are arguments of one another).

GL, as well as most other theories that we might model, will not by itself change the

generative capacity of that syntactic formalism, being intended primarily for analysis

and understanding.

The semantic power, i.e., the number of correct interpretations for the same syntac-

tically valid utterances, however, will be greater. The extent of the semantic power of

the overall formalism depends upon the number of choices added by the available op-

tional terms, and this also very much affects the computational complexity of any imple-

mentation: for the process of interpretation to remain feasible, the number of available

operators to any type and, most importantly, of arguments to any predicate, should be

bounded – and tightly so. The general complexity of the computing of interpretations

for any given interpretations should remain, at most, polynomial in space and time in

order to be useful.

In the real world, heuristics shall be employed in order to check only the most

likely derivations and to use presuppositions in order to help ensure the efficiency of the

process. Moreover, some moderate use of underspecification and symbolic synthetical

reasoning (not deriving every ambiguous reading at each step of the calculus) should

be helpful in the establishment of a balanced strategy for actual computing, for which

further research is needed.

Conclusion

The model outlined herein is a simple way to implement both GL and other the-

ories of the modifications to the semantics of lexical items. We think that a complete

formalization is not so difficult to attain, and that it should at the least be an efficient

formulation of GL, with possible practical applications.

References

[Asher and Pustejovsky, 2005] Asher, N. and Pustejovsky, J. (2005). Word Meaning and Com-

monsense Metaphysics. Semantics Archive.

[Nunberg, 1993] Nunberg, G. (1993). Transfers of meaning. In Proceedings of the 31st annual

meeting on Association for Computational Linguistics, pages 191–192, Morristown, NJ, USA.

Association for Computational Linguistics.

[Pustejovsky, 1995] Pustejovsky, J. (1995). The Generative Lexicon. MIT Press.

[Pustejovsky, 2006] Pustejovsky, J. (2006). Type Theory and Lexical Decomposition. Semantics

Archive.

[Ranta, 2004] Ranta, A. (2004). Computational semantics in type theory. Mathématiques et

Sciences Sociales, 165:31–57.

