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On Gaussian Brunn-Minkowski inequalities

Franck Barthe and Nolwen Huet

July 30, 2008

Abstract

In this paper, we are interested in Gaussian versions of the clas-

sical Brunn-Minkowski inequality. We prove in a streamlined way

a semigroup version of the Ehrard inequality for m Borel or convex

sets based on a previous work by Borell. Our method also allows us

to have semigroup proofs of the geometric Brascamp-Lieb inequality

and of the reverse one which follow exactly the same lines.

2000 Mathematics Subject Classification: 60E15, 60G15, 52A40, 35K05.
Keywords: Brunn-Minkowski, Gaussian measure, Heat equation, Brascamp-
Lieb inequalities.

1 Introduction

In this paper, we are interested in Gaussian versions of the classical Brunn-
Minkowski inequality on the Lebesgue measure of sum-sets (see e.g. [19,
20]). On R

n with its canonical Euclidean structure (〈· , ·〉, | · |) we consider
the standard Gaussian measure γn(dx) = (2π)−n/2 exp(−|x|2/2) dx, x ∈
R

n. Given α, β ∈ R and sets A, B ⊂ R
n, we recall that their Minkowski

combination is defined by

αA + βB = {αa + βb; (a, b) ∈ A × B}.

Using symmetrization techniques, Ehrhard [15] proved a sharp lower bound
on the Gaussian measure of a convex combination of convex sets. Namely:
if α, β ≥ 0 satisfy α + β = 1 and if A, B ⊂ R

n are convex, then

Φ−1 ◦ γn(αA + βB) ≥ αΦ−1 ◦ γn(A) + βΦ−1 ◦ γn(B),
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where Φ is the cumulative distribution function of γ1. This inequality be-
comes an equality when A and B are parallel half-spaces or the same convex
set. Lata la [17] showed that the inequality remains valid when A is convex
and B is an arbitrary Borel set. In the remarkable paper [9], Borell was
able to remove the remaining convexity assumption. He actually derived
a functional version of the inequality (in the spirit of the Prékopa-Leindler
inequality) by a wonderful interpolation technique based on the heat equa-
tion. In a series of papers, Borell extended the inequality to more general
combinations:

Theorem (Borell [11]). Let α1, . . . , αm > 0. The inequality

Φ−1 ◦ γn

(

∑

αiAi

)

≥
∑

αiΦ
−1 ◦ γn(Ai) (1)

holds for all Borel sets A1, . . . , Am in R
n if and only if

∑

αi ≥ 1 and ∀j, αj −
∑

i6=j

αi ≤ 1.

Moreover, it holds for all convex sets A1, . . . , Am in R
n if and only if

∑

αi ≥ 1.

Borell established the case m = 2 for Borel sets in [10] thanks to his
semigroup argument. His proof in [11] of the general case relies on a tricky
and somewhat complicated induction. Remark that a linear combination of
Borel sets need not be a Borel set; however it is analytic or Suslin, hence
universally measurable, see e.g. [16].

In this note we give a slight extension of the above statement (which
can actually be derived directly from the theorem of Borell, as pointed
out by the referee). More importantly we propose a streamlined version
of the semigroup argument for m functions directly, which allows to take
advantage of convexity type assumptions. This better understanding of the
semigroup technique also allows to study more general situations. The main
result is stated next. It involves the heat semigroup, for which we recall the
definition: given a Borel nonnegative function f on R

n, its evolute at time
t ≥ 0 is the function Ptf given by

Ptf(x) =

∫

f
(

x +
√

t y
)

γn(dy) = E
(

f(x + Bt)
)
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where B is an n-dimensional Brownian motion. By convention ∞ −∞ =
−∞ so that inequalities like Inequality (1), or the one introduced in the
next theorem, make sense.

Theorem 1. Let Iconv ⊂ {1, . . . , m}, α1, . . . , αm > 0. The following asser-
tions are equivalent:

1. The parameter α satisfies
∑

αi ≥ 1 and ∀j /∈ Iconv, αj −
∑

i6=j

αi ≤ 1. (2)

2. For all Borel sets A1, . . . , Am in R
n such that Ai is convex when i ∈

Iconv,

Φ−1 ◦ γ
(

∑

αiAi

)

≥
∑

αiΦ
−1 ◦ γ(Ai)

3. For all Borel functions h, f1, . . . , fm from R
n to [0, 1] such that Φ−1◦fi

is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi),

then

Φ−1

(
∫

h dγ

)

≥
∑

αiΦ
−1

(
∫

fi dγ

)

.

4. For all Borel functions h, f1, . . . , fm from R
n to [0, 1] such that Φ−1◦fi

is concave when i ∈ Iconv, if

∀x1, . . . , xm ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi),

then for all t ≥ 0

∀x1, . . . , xm ∈ R
n, Φ−1 ◦ Pth

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ Ptfi(xi).

Remark. Condition (2) can be rephrased as

∑

αi ≥ max
(

1, max{2αj − 1; j 6∈ Iconv}
)

.

Actually the condition will come up in our argument in the following geo-
metric form: there exist vectors u1, . . . , um ∈ R

m such that for all i ∈ Iconv,
|ui| ≤ 1, for all i 6∈ Iconv, |ui| = 1, and |

∑

αiui| = 1.
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In the next section we show that the condition on α implies the fourth
(and formally strongest) assumption in the latter theorem, when restricted
to smooth enough functions. The third section completes the proof of the
theorem. In the final section we discuss related problems.

Before going further, let us introduce some notation.

• We consider functions depending on a time variable t and a space
variable x. The time derivative is denoted by ∂t, while the gradi-
ent, Hessian, and Laplacian in x are denoted by ∇x, Hess x, and ∆x,
omitting the index x when there is no ambiguity.

• The unit Euclidean (closed) ball and sphere of R
d are denoted respec-

tively by B
d and S

d−1.

• For A ⊂ R
d, we set Aε = A + εB

d. The notation Aε
i means (Ai)

ε.

2 Functional and semigroup approach

As already mentioned we follow Borell’s semigroup approach of the Gaussian
Brunn-Minkowski inequalities (see [9] and [10]): for parameters α verifying
(2), the plan is two show the functional version of the inequality (the third
assertion of Theorem 1), by means of the heat semigroup. Note that the
fourth assertion implies the third one when choosing t = 1 and xi = 0 in
the last equation. So our aim is to establish the fourth assumption. More
precisely, given Borel functions h, f1, . . . , fm from R

n taking into (0, 1), we
define C on [0, T ] × (Rn)m by

C(t, x) = C(t, x1, . . . , xm) = Φ−1 ◦ Pth
(
∑

αixi

)

−
∑

αiΦ
−1 ◦ Ptfi(xi).

Since P0f = f the assumption

∀xi ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi) (3)

translates as C(0, . ) ≥ 0. Our task is to prove

C(0, . ) ≥ 0 =⇒ ∀t ≥ 0, C(t, . ) ≥ 0.
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2.1 Preliminaries

When the functions h and fi are smooth enough, the time evolution of
Pth and Ptfi is described by the heat equation. This yields a differential
equation satisfied by C. Our problem boils down to determine whether this
evolution equation preserves nonnegative functions. This is clearly related
to the maximum principle for parabolic equations (see e.g. [13]). We will
use the following lemma.

Lemma 1. Assume that C is twice differentiable. If






Hess(C) ≥ 0
∇C = 0
C ≤ 0

=⇒ ∂tC ≥ 0 (4)

and if for some T > 0

lim inf
|x|→∞

(

inf
0≤t≤T

C(x, t)

)

≥ 0, (5)

then
C(0, . ) ≥ 0 =⇒ ∀t ∈ [0, T ], C(t, . ) ≥ 0.

Proof. For ε > 0, set Cε(t, x) = C(t, x) + εt on [0, T ] × (Rn)m. If Cε < 0 at
some point, then Cε reaches its minimum at a point (t0, x0) where ∇C = 0,
Hess(C) ≥ 0, C < 0, and ∂tC + ε ≤ 0 (= 0 if t0 < T ). By the hypotheses, it
implies ∂tC ≥ 0 which is in contradiction with ∂tC ≤ −ε. So for all ε > 0
and T > 0, Cε is non-negative on [0, T ] × (Rn)m, thus C is non-negative
everywhere.

Property (5) is true under mild assumptions on h and fi which are
related to the initial condition C(0, . ) ≥ 0 in the large:

Lemma 2. If there exist a1, . . . , am ∈ R such that

• lim sup
|x|→∞

fi(x) ≤ Φ(ai)

• h ≥ Φ
(
∑

αiai

)

then for all T > 0,

lim inf
|x|→∞

(

inf
0≤t≤T

C(x, t)

)

≥ 0.
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Proof. Let δ > 0. By continuity of Φ−1, there exists ε > 0 such that

Φ−1
(

Φ(ai) + 2ε
)

≤ ai +
δ

∑

αj
.

Let r > 0 be such that γn (rB
n) = 1 − ε. Then, for 0 ≤ t ≤ T ,

Ptfi(xi) =

∫

rBn

fi(xi +
√

t y) γn(dy) +

∫

(rBn)∁

fi(xi +
√

t y) γn(dy)

≤ (1 − ε) sup
xi+r

√
t Bn

fi + ε sup fi

≤ sup
xi+r

√
T Bn

fi + ε

≤ Φ(ai) + 2ε for |xi| large enough.

Moreover Pth ≥ Φ
(
∑

αiai

)

so for |x| large enough and for 0 ≤ t ≤ T , it
holds C(t, x) ≥ −δ. As δ > 0 was arbitrary, the proof is complete.

Checking Property (4) of Lemma 1 requires the following lemma:

Lemma 3. Let d ≥ 2, α1, . . . , αm > 0. Let k be an integer with 0 ≤ k ≤ m
and

ϕ : (Sd−1)k × (Bd)m−k → R+

(v1, . . . , vm) 7→ |
∑

αivi|
.

Then the image of ϕ is the interval

J :=

[

max

(

{

0
}

∪
{

αj −
∑

i6=j

αi, 1 ≤ j ≤ k
}

)

,
∑

αi

]

.

Proof. As ϕ is continuous on a compact connected set, Im(ϕ) = [min ϕ, max ϕ].
Plainly |

∑

αivi| ≤
∑

αi, with equality if v1 = · · · = vm is a unit vector. So
max ϕ =

∑

i αi. For all j ≤ k, since |vj| = 1, the triangle inequality gives

∣

∣

∣

∑

αivi

∣

∣

∣
≥ αj|vj | −

∑

i6=j

αi|vi| ≥ αj −
∑

i6=j

αi.

Hence Im(ϕ) ⊂ J and these two segments have the same upper bound.
Next we deal with the lower bound. Let us consider a point (v1, . . . , vm)
where ϕ achieves its minimum, and differentiate:
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For j ≤ k, vj lies in the unit sphere. Applying Lagrange multipliers
theorem to ϕ2 with respect to vj gives a real number λj such that,

αj

∑

i

αivi = λjvj. (6)

For j > k, the j-th variable lives in B
d. If |vj | < 1 the minimum is

achieved at an interior point and the full gradient on ϕ2 with respect to
the j-th variable is zero. Hence

∑

i αivi = 0. On the other hand if at the
minimum |vj| = 1, differentiating in the j-th variable only along the unit
sphere gives again the existence of λj ∈ R such that (6) is verified.

Eventually, we face 2 cases:

1. Either
∑

αivi = 0 and min ϕ = 0. In this case, the triangle inequality
gives 0 = |∑αivi| ≥ αj −

∑

i6=j αi whenever j ≤ k.

2. Or the vi’s are colinear unit vectors and there exists a partition S+ ∪
S− = {1, . . . , m} and a unit vector v such that

min ϕ =
∣

∣

∣

∑

S+

αiv −
∑

S−

αiv
∣

∣

∣
=
∑

S+

αi −
∑

S−

αi > 0.

Assume that S+ contains 2 indices j and ℓ. Let e1 and e2 be 2 or-
thonormal vectors of R

d and let us denote by R(θ) the rotation in the
plane Vect(e1, e2) of angle θ. The length of the vector αjR(θ)e1 +αℓe1

is a decreasing and continuous function of θ ∈ [0, π]. Denote by
U(θ) the rotation in the plane Vect(e1, e2) which maps this vector
to |αjR(θ)e1 + αℓe1|e1. Then

αjU(θ)R(θ)e1 + αℓU(θ)e1 +
∑

S+\{j,ℓ}
αie1 −

∑

S−

αie1 = λ(θ)e1,

where λ(0) =
∑

S+
αi −

∑

S−
αi = min ϕ > 0 and λ is continuous and

decreasing in θ ∈ [0, π]. This contradicts the minimality of min ϕ. So
S+ contains a single index j and

min ϕ =
∣

∣

∣
αjv −

∑

i6=j

αiv
∣

∣

∣
= αj −

∑

i6=j

αi > 0.

Note that necessarily j ≤ k, otherwise one could get a shorter vector
by replacing vj = v by (1−ε)v. Besides, the condition αj−

∑

i6=j αi > 0

7



ensures that αj > αℓ for ℓ 6= j. This implies that for ℓ 6= j,

αℓ −
∑

i6=ℓ

αi ≤ αℓ − αj < 0 < αj −
∑

i6=j

αi.

So min ϕ = max

(

{

0
}

∪
{

αj −
∑

i6=j αi, 1 ≤ j ≤ k
}

)

as claimed.

2.2 Semigroup proof for smooth functions

We deal with smooth functions first, in order to ensure that Ptfi and Pth
verify the heat equation. This restrictive assumption will be removed in
Section 3 where the proof of Theorem 1 is completed.

Theorem 2. Let fi, i = 1, . . . , m, and h be twice continuously differentiable
functions from R

n to (0, 1) satisfying the hypotheses of Lemma 2. Assume
moreover that for f = fi or h,

∀t > 0, ∀x ∈ R
n,

∣

∣

∣
∇f(x +

√
t y)
∣

∣

∣
e−

|y|2

2 −−−−→
|y|→∞

0.

Let α1, . . . , αm be positive real numbers such that

∑

αi ≥ 1 and ∀j, αj −
∑

i6=j

αi ≤ 1.

If

∀xi ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi),

then

∀t ≥ 0, ∀xi ∈ R
n, Φ−1 ◦ Pth

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ Ptfi(xi).

Proof. Let us recall that C is defined by

C(t, x) = C(t, x1, . . . , xm) = H
(

t,
∑

αixi

)

−
∑

αiFi(t, xi)

where we have set

H(t, y) = Φ−1 ◦ Pth(y) and Fi(t, y) = Φ−1 ◦ Ptfi(y).

8



In what follows, we omit the variables and write H for H
(

t,
∑

αixi

)

and Fi

instead of Fi(t, xi). With this simplified notation,

C = H −
∑

αiFi,

∇xi
C = αi(∇H −∇Fi),

∇xi
∇∗

xj
C = αiαjHess(H) − δijαiHess(Fi).

Moreover, one can use the property of heat kernel to derive a differential
equation for Fi and H . Indeed, for any f satisfying hypotheses of the
theorem, we can perform an integration by parts so that it holds

∂tPtf =
1

2
∆Ptf.

Then we set F = Φ−1 ◦ Ptf and use the identity (1/Φ′(x))′ = x/Φ′(x) to
show

∂tF =
∂tPtf

Φ′(F )
=

∆Ptf

2 Φ′(F )
,

∇F =
∇Ptf

Φ′(F )
,

∆F =
∆Ptf

Φ′(F )
+ F

|∇Ptf |2
(Φ′(F ))2

.

We put all together to get

∂tF =
1

2

(

∆F − F |∇F |2
)

and to deduce the following differential equation for C:

∂tC =
1

2
(S + P)

where the second order part is

S = ∆H −
∑

αi∆Fi

and the terms of lower order are

P = −
(

H |∇H|2 −
∑

αiFi |∇Fi|2
)

.

9



We will conclude using Lemma 1. So we need to check Condition (4). First
we note that P is non-negative when ∇C = 0 and C ≤ 0, regardless of α.
Indeed, ∇C = 0 implies that ∇Fi = ∇H for all i. So P = − |∇H|2 C which
is non-negative if C ≤ 0.

It remains to deal with the second order part. It is enough to express S
as EC for some elliptic operator E , since then Hess(C) ≥ 0 implies S ≥ 0.
Such a second order operator can be written as E = ∇∗A∇ where A is
a symmetric matrix nm × nm. Moreover E is elliptic if and only if A is
positive semi-definite. In view of the structure of the problem, it is natural
to look for matrices of the following block form

A = B ⊗ In = (bijIn)1≤i,j≤m ,

where In is the identity n×n matrix and B is a positive semi-definite matrix
of size m. Denoting xi = (xi,1, . . . , xi,n),

EC =
m
∑

i,j=1

bi,j

(

n
∑

k=1

∂2

∂xi,k∂xj,k

C

)

=
m
∑

i,j=1

bi,j

(

αiαj∆H − δi,jαi∆Fi

)

= 〈α , Bα〉∆H −
m
∑

i=1

bi,iαi∆Fi.

Hence there exists an elliptic operator E of the above form such that EC =
S = ∆H −∑m

i=1 αi∆Fi if there exits a positive semi-definite matrix B of
size m such that

〈α , Bα〉 = 〈e1 , Be1〉 = · · · = 〈em , Bem〉 = 1

where (ei)i is the canonical basis of R
m. Now a positive semi-definite matrix

B can be decomposed into B = V ∗V where V is a square matrix of size m.
Calling v1, . . . , vm ∈ R

m the columns of V , we can translate the latter into
conditions on vectors vi. Actually, we are looking for vectors v1, . . . , vm ∈
R

m with
|v1| = · · · = |vm| =

∣

∣

∣

∑

αivi

∣

∣

∣
= 1.

By Lemma 3 for k = m, this is possible exactly when α satisfies the claimed
condition:

∑

αi ≥ 1 and ∀j, αj −
∑

i6=j

αi ≤ 1.
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The following corollary will be useful in the next section.

Corollary 1. Let f be a function on R
n taking values in (0, 1) and vanishing

at infinity, i.e. lim|x|→∞ f(x) = 0. Assume also that

∀t > 0, ∀x ∈ R
n,

∣

∣

∣
∇f(x +

√
t y)
∣

∣

∣
e−

|y|2

2 −−−−→
|y|→∞

0.

If Φ−1 ◦ f is concave, then Φ−1 ◦ Ptf is concave for all t ≥ 0.

Proof. Let 1 > ε > 0 and αi > 0 with
∑

αi = 1. Choosing h = ε+(1−ε)f ≥
f and fi = f for i ≥ 1, one can check that the latter theorem applies. Hence
for all t ≥ 0 and xi ∈ R

n:

Φ−1 ◦ Pt(ε + (1 − ε)f)
(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ Ptf(xi).

Letting ε go to 0, we get by monotone convergence that Φ−1◦Ptf is concave.

2.3 Φ−1-concave functions

When some of the fi’s are Φ−1-concave, the conditions on the parameters
can be relaxed. Such functions allow to approximate characteristic functions
of convex sets. They will be useful in Section 3.

Theorem 3. Let Iconv ⊂ {1, . . . , m}. Let fi, i = 1, . . . , m, and h be twice
continuously differentiable functions from R

n to (0, 1) satisfying the hypothe-
ses of Lemma 2. Assume also that for f = fi or h,

∀t > 0, ∀x ∈ R
n,

∣

∣

∣
∇f(x +

√
t y)
∣

∣

∣
e−

|y|2

2 −−−−→
|y|→∞

0.

Assume moreover that Φ−1◦fi is concave, decreasing towards −∞ at infinity
for all i ∈ Iconv.

Let α1, . . . , αm be positive numbers satisfying
∑

αi ≥ 1 and ∀j /∈ Iconv, αj −
∑

i6=j

αi ≤ 1.

If

∀xi ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi),

then

∀t ≥ 0, ∀xi ∈ R
n, Φ−1 ◦ Pth

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ Ptfi(xi).

11



Proof. As in the proof of Theorem 2, we try to apply Lemma 1 to the
equation satisfied by C:

∂tC(t, x) =
1

2
(S + P).

We have already shown that P is non-negative when ∇C = 0 and C ≤ 0,
for any α1, . . . , αm. We would like to prove that the conditions on α in the
theorem imply that S is non-negative whenever Hess(C) ≥ 0.

By Corollary 1, for all i ∈ Iconv the function Fi is concave, hence ∆Fi ≤ 0.
So we are done if we can write

S = EC −
∑

i∈Iconv

λi∆Fi,

for some elliptic operator E and some λi ≥ 0 . As in the proof of the
previous theorem, we are looking for operators of the form E = ∇∗A∇ with
A = B ⊗ In = (bijIn)1≤i,j≤m where B is a symmetric positive semi-definite
matrix m×m. Hence our task is to find B ≥ 0 and λi ≥ 0 such that λi = 0
when i /∈ Iconv and

∆H −
∑

αi∆Fi = 〈α , Bα〉∆H −
∑

i

(biiαi + λi)∆Fi.

When i ∈ Iconv, we can find λi ≥ 0 such that biiαi+λi = αi whenever bii ≤ 1.
Consequently, the problem reduces to finding a positive semi-definite matrix
B of size m × m such that







〈ei , Bei〉 ≤ 1, ∀i ∈ Iconv

〈ei , Bei〉 = 1, ∀i /∈ Iconv

〈α , Bα〉 = 1

where (ei)i is the canonical basis of R
m. Equivalently, do there exist v1, . . . , vm ∈

R
m such that







|vi| ≤ 1, ∀i ∈ Iconv

|vi| = 1, ∀i /∈ Iconv

|∑αivi| = 1
?

We conclude with Lemma 3.
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3 Back to sets

This sections explains how to complete the proof of Theorem 1. The main
issue is to get rid of the smoothness assumptions made so far. The plan of
the argument is summed up in the next figure. The key point is that the
conditions on α do not depend on n.

conditions on αi
a

qy jjjjjjjjj

jjjjjjjjj

inequality with Ptfi

for smooth functions on R
n+1

b $,RRRRRRRRRR

RRRRRRRRRR

inequality with Ptfi

for Borel functions on R
n

dem RRRRRRRR

RRRRRRRR

inequality

for sets Ai ⊂ R
n+1

c

2:nnnnnnnnn

nnnnnnnnn

If we can prove the above implications, we will have shown that

assertion 1 ⇐⇒ assertion 2 ⇐⇒ assertion 4

in Theorem 1. Moreover, it is clear that assertion 4 =⇒ assertion 3. To
complete the picture, we can for instance prove assertion 3 =⇒ assertion 1
in the same way we do below for the fourth implication.

a- “Conditions on αi ⇒ inequality with Ptfi for smooth functions on R
n”:

This implication is nothing else than Theorem 3. Equivalently, the first as-
sertion in Theorem 1 implies the fourth one restricted to “smooth” functions
(i.e. verifying all the assumptions of the first paragraph of Theorem 3).

b- “Inequality with Ptfi for smooth functions on R
n ⇒ inequality for sets

Ai ⊂ R
n”: For arbitrary α, let us prove that the fourth assertion in Theo-

rem 1 restricted to smooth functions (in the above-mentioned sense) implies
the second assertion of the theorem, involving sets. Let A1, . . . , Am be Borel
sets in R

n with Ai convex when i ∈ Iconv. By inner regularity of the mea-
sure, we can assume that they are compact. Let ε > 0 and b > a be fixed.
Then,

• for i /∈ Iconv: there exists a smooth function fi such that fi = Φ(b) on
Ai, fi = Φ(a) off Aε

i , and 0 < Φ(a) ≤ fi ≤ Φ(b) < 1.

• for i ∈ Iconv: there exists a smooth function fi such that Fi = Φ−1 ◦ fi

is concave, Fi = b on Ai, Fi ≤ a off Aε
i , and Fi ≤ b on R

n.

13



For instance, take a point xi in Ai and define the gauge of A
ε/3
i with

respect to xi by

ρ(x) = inf

{

λ > 0, xi +
1

λ
(x − xi) ∈ A

ε/3
i

}

.

We know that ρ is convex since Ai is convex (see for instance [20]).Then
set

F̃i(x) = b + c
(

1 − max
(

ρ(x) , 1
)

)

where c > 0 is chosen large enough to insure that F̃i ≤ a off A
2ε/3
i .

Now, we can take a smooth function g with compact support small
enough and of integral 1, such that fi = Φ

(

F̃i ∗ g
)

is a smooth Φ−1-
concave function satisfying the required conditions.

• for h: set

a0 = max
ui = a or b

u 6= (b, . . . , b)

∑

αiui and b0 =
∑

αib.

Again, we can choose a smooth function h such that h = Φ(b0) on
∑

αiA
ε
i , h = Φ(a0) off

(
∑

αiA
ε
i

)ε
, and 0 < Φ(a0) ≤ h ≤ Φ(b0) < 1.

From these definitions, the functions h and fi are “smooth” and satisfy

∀xi ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi).

By our hypothesis, the inequality remains valid with Pth and Ptfi for all
t > 0. Choosing t = 1, xi = 0 yields

Φ−1

(
∫

h dγn

)

≥
∑

αiΦ
−1

(
∫

fi dγn

)

.

Remark here that the functions depends actually of a (respectively a0),
b (respectively b0), and ε, possibly in a precise way with a procedure like
described above for fi. We could then write h(a0, b0, ε, .) and fi(a, b, ε, .).

Letting first a → −∞ so that a0 → −∞, we get by dominated conver-
gence

Φ−1

(
∫

h(−∞, b0, ε, .) dγn

)

≥
∑

αiΦ
−1

(
∫

fi(−∞, b, ε, .) dγn

)

.

14



Now let (b, ε) tend to (∞, 0). Notice that fi(−∞,∞, 0, .) and h(−∞,∞, 0, .)
are characteristic functions. Eventually we obtain, again by dominated
convergence, that

Φ−1 ◦ γn

(

∑

αiAi

)

≥
∑

αiΦ
−1 ◦ γn(Ai).

c- “Inequality for sets Ai ⊂ R
n+1 ⇒ inequality with Ptfi for Borel functions

on R
n”. Here we assume that the second assumption of Theorem 1 is valid

for all Borel sets in R
n+1 and we derive the fourth assumption of the theorem

for functions defined on R
n.

For any Borel function f on R
n taking values in [0, 1], t > 0, and x ∈ R

n,
we define

Bt,x
f =

{

(u, y)
∣

∣u ≤ Φ−1 ◦ f
(

x +
√

t y
)

}

⊂ R × R
n.

Then it holds
γn+1

(

Bt,x
f

)

= Ptf(x).

Let h, f1, . . . , fn be Borel functions on R
n with values in [0, 1], such that

Φ−1 ◦ fi is concave when i ∈ Iconv. Assume that

∀xi ∈ R
n, Φ−1 ◦ h

(
∑

αixi

)

≥
∑

αiΦ
−1 ◦ fi(xi).

Then for (ui, yi) in Bt,xi

fi
, we get

∑

αiui ≤
∑

αiΦ
−1 ◦ fi(xi +

√
t yi) ≤ Φ−1 ◦ h

(
∑

αi(xi +
√

t yi)
)

which means that
∑

αiB
t,xi

fi
⊂ B

t,
∑

αixi

h .

The same argument shows that Bt,x
f is convex if Φ−1 ◦ f is concave. Thus,

the result for sets in R
n+1 implies that

Φ−1 ◦ Pth
(
∑

αixi

)

≥ Φ−1 ◦ γn+1

(
∑

αiB
t,xi

fi

)

≥
∑

αiΦ
−1 ◦ Ptfi(xi).

d- “Inequality with Ptfi for Borel functions on R
n ⇒ conditions on αi”: We

will prove the contraposed assertion: if the conditions on αi are violated,
then there exists Borel functions h and fi such that Φ−1 ◦ fi is concave for
i ∈ Iconv, which verify for all xi the relation Φ−1◦h(

∑

αixi) ≥
∑

Φ−1◦fi(xi)

15



but for which this inequality is not preserved by Pt for some t. Actually
since P1f(0) =

∫

f dγ, it will be enough to exhibit functions such that

Φ−1

(
∫

h dγ

)

<
∑

αiΦ
−1

(
∫

fi dγ

)

.

Let f : R
n → (0, 1) be an even Borel function such that

f(0) >
1

2
,

∫

f dγ <
1

2
, and F = Φ−1 ◦ f is concave.

For instance, we may take f(x) = Φ
(

1 − |ax|2
)

for a large enough. Note
that for 0 ≤ t ≤ 1,

F (tx) ≥ tF (x) + (1 − t)F (0) ≥ tF (x). (7)

Assume first that
∑

αi < 1. Then by concavity and the latter bound,
we get for all xi,

Φ−1 ◦ f
(
∑

i αixi

)

= F
(
∑

i αixi

)

≥
∑

i

αi
∑

j αj
F
(

(
∑

j αj

)

xi

)

≥
∑

i

αiF (xi) =
∑

i

αiΦ
−1 ◦ f(xi).

However since 1 >
∑

αi and Φ−1
( ∫

f dγ
)

< 0, it holds

Φ−1

(
∫

f dγ

)

<
∑

i

αiΦ
−1

(
∫

f dγ

)

.

Assume now that there exists j /∈ Iconv such that αj −
∑

i6=j αi > 1.
Then using (7) and concavity again, we obtain for all xi,

αjF (xj) ≥
(

1 +
∑

i6=jαi

)

F

(

αjxj

1 +
∑

i6=j αi

)

≥ F
(

αjxj −
∑

i6=jαixi

)

+
∑

i6=j

αiF (xi).

Let g = 1 − f . Since −F = −Φ−1 ◦ f = Φ−1 ◦ (1 − f) = Φ−1 ◦ g and f is
even we may rewrite the latter as

Φ−1 ◦ g
(

αjxj +
∑

i6=jαi(−xi)
)

≥ αjΦ
−1 ◦ g(xj) +

∑

i6=j

αiΦ
−1 ◦ f(−xi).
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However, since Φ−1(
∫

g dγ) = −Φ−1(
∫

f dγ) > 0 and αj −
∑

i6=j αi > 1 it
also holds

Φ−1

(
∫

g dγ

)

< αjΦ
−1

(
∫

g dγ

)

+
∑

i6=j

αiΦ
−1

(
∫

f dγ

)

.

Therefore the proof is complete.

4 Further remarks

4.1 Brascamp-Lieb type inequalities

In the previous papers [7, 8], Borell already used his semigroup approach to
derive variants of the Prékopa-Leindler inequality. The later is a functional
counterpart to the Brunn-Minkowski inequality for the Lebesgue measure
and reads as follows: if λ ∈ (0, 1) and f, g, h : R

n → R
+ are Borel functions

such that for all x, y ∈ R
n,

h
(

λx + (1 − λ)y
)

≥ f(x)λg(y)1−λ

then
∫

h ≥
(∫

f
)λ (∫

g
)1−λ

where the integrals are with respect to Lebesgue’s
measure. Borell actually showed the following stronger fact: for all t > 0
and all x, y ∈ R

n

Pth
(

λx + (1 − λ)y
)

≥ Ptf(x)λPtg(y)1−λ.

Setting H(t, ·) = log Pth and defining F, G similarity, it is proved that
C(t, x, y) := H

(

t, λx + (1 − λ)y
)

− λF (t, x) + (1 − λ)G(t, y) satisfies a
positivity-preserving evolution equation. The argument is simpler than for
Ehrhard’s inequality since the evolution equation of individual functions is
simpler: 2∂tH = ∆H + |∇H|2.

The Brascamp-Lieb [12, 18] inequality is a powerful extension of Hölder’s
inequality. The so-called reverse Brascamp-Lieb inequality, first proved in
[2, 3], appears as an extension of the Prékopa-Leindler inequality. In the pa-
per [4], it was noted that Borell’s semigroup method could be used to derive
the geometric reverse Brascamp-Lieb inequality (which in some sense is a
generic case, see [6]) for functions of one variable. This observation was also
motivated by a proof of the Brascamp-Lieb inequalities based on semigroup
techniques (Carlen Lieb and Loss [14] for functions of one variable, and Ben-
nett Carbery Christ and Tao [6] for general functions). In this subsection,
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we take advantage of our streamlined presentation of Borell’s method, and
quickly reprove the reverse Brascamp-Lieb inequality in geometric form,
but for functions of several variables. More surprisingly we will recover the
Brascamp-Lieb from inequalities which are preserved by the Heat flow. The
result is not new (the inequality for the law of the semigroup appears in the
preprint [5]), but it is interesting to have semigroup proofs of the direct and
of the reverse inequalities which follow exactly the same lines. Recall that
the transportation argument developed in [3] was providing the direct and
the reverse inequality simultaneously.

The setting of the geometric inequalities is as follows: for i = 1, . . . , m
let ci > 0 and let Bi : R

N → R
ni be linear maps such that BiB

∗
i = Ini

and

m
∑

i=1

ciB
∗
i Bi = IN . (8)

These hypotheses were put forward by Ball in connection with volume es-
timates in convex geometry [1]. Note that B∗

i is an isometric embedding
of R

ni into R
N and that B∗

i Bi is the orthogonal projection from R
N to

Ei = Im(B∗
i ). The Brascamp-Lieb inequality asserts that for all Borel func-

tions fi : R
ni → R

+ it holds

∫

RN

m
∏

i=1

fi(Bix)ci dx ≤
m
∏

i=1

(
∫

R
ni

fi

)ci

.

The reverse inequality ensures that

∫ ∗

RN

sup

{

m
∏

i=1

fi(xi)
ci; xi ∈ R

niwith
∑

ciB
∗
i xi = x

}

dx ≥
m
∏

i=1

(
∫

R
ni

fi

)ci

.

Following [4], we will deduce the later from the following result.

Theorem 4. If h : R
N → R

+ and fi : R
ni → R

+ satisfy

∀xi ∈ R
ni, h

(

m
∑

i=1

ciB
∗
i xi

)

≥
m
∏

i=1

fi(xi)
ci

then

∀xi ∈ R
ni, Pth

(

m
∑

i=1

ciB
∗
i xi

)

≥
m
∏

i=1

Ptfi(xi)
ci.
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The reverse inequality is obtained as t → +∞ since for f on R
d, Ptf(x)

is equivalent to (2πt)−d/2
∫

Rd f . To see it, note that:

Ptf(x) = (2πt)−d/2

∫

Rd

f(y) exp

( |x − y|2
2t

)

dy.

Note also that taking traces in the decomposition of the identity map yields
∑

i cini = N .
In order to recover the Brascamp-Lieb inequality, we will show the fol-

lowing theorem.

Theorem 5. If h : R
N → R

+ and fi : R
ni → R

+ satisfy

∀x ∈ R
N , h(x) ≤

m
∏

i=1

fi(Bix)ci ,

then

∀x ∈ R
N , Pth(x) ≤

m
∏

i=1

Ptfi(Bix)ci.

Again, the limit t → +∞ yields the Brascamp-Lieb inequality when
choosing h(x) =

∏m
i=1 fi(Bix)ci. We sketch the proofs the the above two

statements, omitting the truncation arguments needed to ensure Condition
(5).

Proof of Theorem 4. Set H(t, ·) = log Pth(·) and Fi(t, ·) = log Ptfi(·). As
said above, the functions H and Fi satisfy the equation 2∂tU = ∆U +|∇U |2.
Set for (t, x1, . . . , xm) ∈ R

+ × R
n1 × · · · × R

nm

C(t, x1, . . . , xm) := H
(

t,
m
∑

i=1

ciB
∗
i xi

)

−
m
∑

i=1

ciFi(t, xi).

By hypothesis C(0, ·) ≥ 0 and we want to prove that C(t, ·) is non-negative
as well. As before, we are done if we can show that the three conditions
C ≤ 0, ∇C = 0, and Hess(C) ≥ 0 imply that ∂tC ≥ 0. Actually one can
see that the condition C ≤ 0 will not be used in the following. Omitting
variables,

2∂tC =
(

∆H −
∑

ci∆Fi

)

+
(

|∇H|2 −
∑

ci|∇Fi|2
)

=: S + P.
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Straightforward calculations give

∇xi
C = ciBi∇H − ci∇Fi and

Hessxi,xj
(C) = cicjBiHess(H)B∗

j − δi,jciHess(Fi).

Note that the decomposition (8) implies for all v ∈ R
N

|v|2 = 〈v ,
∑

ciB
∗
i Biv〉 =

∑

ci|Biv|2.

Hence, if ∇C = 0, the above calculation gives ∇Fi = Bi∇H . Consequently
|∇H|2 =

∑

ci|Bi∇H|2 =
∑

ci|∇Fi|2. So ∇C = 0 =⇒ P = 0.
Next, we deal with the second order term. Using (8) again

∆H = Tr
(

Hess(H)
)

= Tr
(

(

∑

i

ciB
∗
i Bi

)

Hess(H)
(

∑

j

cjB
∗
j Bj

)

)

=
∑

i,j

Tr
(

B∗
i

(

cicjBiHess(H)B∗
j

)

Bj

)

.

Also note that
∑

i,j

Tr
(

B∗
i

(

δi,jciHess(Fi)
)

Bj

)

=
∑

i

Tr
(

B∗
i ciHess(Fi)Bi

)

=
∑

i

ciTr
(

Hess(Fi)BiB
∗
i

)

=
∑

i

ci∆Fi,

since BiB
∗
i = Ini

. Combining the former and the later and denoting by Ji

the canonical embedding of R
ni into R

n1+···+nm we get that

S = ∆H −
∑

ci∆Fi =
∑

i,j

Tr
(

B∗
i Hessxi,xj

(C)Bj

)

=
∑

i,j

Tr
(

B∗
i

(

J∗
i Hess(C)Jj

)

Bj

)

= Tr
(

(

∑

i

JiBi

)∗
Hess(C)

(

∑

j

JjBj

)

)

is non-negative when Hess(C) ≥ 0. This is enough to conclude that C
remains non-negative.

Proof of Theorem 5. As before we set H(t, ·) = log Pth(·) and Fi(t, ·) =
log Ptfi(·). For (t, x) ∈ R

+ × R
N

C(t, x) :=

m
∑

i=1

ciFi(t, Bix) − H(t, x).
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Omitting variables, C evolves according to the equation

∂tC =
(

∑

ci∆Fi − ∆H
)

+
(

∑

ci|∇Fi|2 − |∇H|2
)

=: S + P.

Next

∇C =
∑

ciB
∗
i ∇Fi−∇H and Hess(C) =

∑

ciB
∗
i Hess(Fi)Bi−Hess(H).

Taking traces in the later equality and since BiB
∗
i = Ini

we obtain

∆C =
∑

i

ciTr
(

Hess(Fi)BiB
∗
i

)

− ∆H =
∑

i

ci∆Fi − ∆H = S.

Therefore the second order term is clearly elliptic.
It remains to check that ∇C = 0 implies that the first order term P is

non-negative. We will need the following easy consequence of the decom-
position (8): if xi ∈ R

ni, i = 1, . . . , m, then

∣

∣

∣

∑

ciB
∗
i xi

∣

∣

∣

2

≤
∑

ci|xi|2.

The proof is easy: set v =
∑

ciB
∗
i xi. Then by Cauchy-Schwarz

|v|2 = 〈v ,
∑

ciB
∗
i xi〉 =

∑

ci〈Biv , xi〉

≤
(

∑

ci|Biv|2
)

1

2
(

∑

ci|xi|2
)

1

2

.

But (8) ensures that |v|2 =
∑

ci|Biv|2 so after simplification we get the
claim. Finally, note that ∇C = 0 means that ∇H =

∑

ciB
∗
i ∇Fi. Hence

|∇H|2 ≤
∑

ci|∇Fi|2. In other words P ≥ 0. The proof is therefore com-
plete.

4.2 Looking for Gaussian Brascamp-Lieb inequalities

It is natural to ask about Gaussian versions of the Brascamp-Lieb or inverse
Brascamp-Lieb inequalities. For 0 ≤ i ≤ m, take a nonzero real di, a positive
integer ni ≤ N , a linear surjective map Li : R

N → R
ni, and a Borel function

fi on R
ni taking value in (0, 1). Does the inequality

∀x ∈ R
N ,

m
∑

i=0

diΦ
−1 ◦ fi(Lix) ≥ 0
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upgrade for all t ≥ 0 to

∀x ∈ R
N ,

m
∑

i=0

diΦ
−1 ◦ Ptfi(Lix) ≥ 0 ?

This general formulation allows negative di’s and would encompass Gaussian
extensions of Theorem 4 or Theorem 5. It also enables a better understand-
ing of the essential properties in the semigroup argument. Note that from
now the index i goes from 0 to m, the function f0 =: h playing a priori no
particular role anymore.

As before, we define for t ≥ 0 and x ∈ R
N ,

C(t, x) =
∑

diΦ
−1 ◦ Ptfi(Lix) =

∑

diFi(t, Lix)

and we are interested in proving that C(0, . ) ≥ 0 implies C(t, . ) ≥ 0 for
all t ≥ 0. Assume that our functions are smooth enough for the next
calculations. It holds

C =
∑

diFi,

∇C =
∑

diL
∗
i∇Fi,

Hess (C) =
∑

diL
∗
i Hess (Fi)Li,

and thanks to the Heat equation, C satisfies the following differential equa-
tion 2∂tC = (S + P) where

S =
∑

di∆Fi and P = −
∑

di |∇Fi|2 Fi.

We require that






Hess(C) ≥ 0
∇C = 0
C ≤ 0

=⇒
{

P ≥ 0
S ≥ 0

in order to apply Lemma 1 (the condition at infinity is verified, provided one
restricts to good enough functions fi. We omit the details). This request
will translate in terms of conditions on the data (di, Li). We deal separately
with the condition for each order:

First order terms : note that (Fi,∇Fi)i=0,...,m can be chosen arbitrarily
for fixed x and t; for instance take

fi : x′
i 7→ 〈Φ′(Zi)Yi , x′

i〉 + Φ(Zi) − Ptf̃i(Lix)
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with f̃i : x′
i 7→ 〈Φ′(Zi)Yi , x′

i〉, so that Fi(t, Lix) = Zi and ∇Fi(t, Lix) =
Yi.

Thus the condition (C ≤ 0, ∇C = 0) =⇒ P ≥ 0 boils down to the
following relation between polynomials

{
∑

diZi ≤ 0
∑

diL
∗
i Yi = 0

=⇒
∑

di |Yi|2 Zi ≤ 0

where Zi is a 1−dimensional unknown and Yi is an ni−dimensional
one.

Reasoning for fixed Y ′
i s, and viewing the conditions on Zi as equations

of half-spaces, we easily see that the later condition is equivalent to

∑

diL
∗
i Yi = 0 =⇒ |Y0|2Rn0

= . . . = |Ym|2Rnm . (9)

This condition can be worked out a bit more. Let L : R
∑

nj → R
N be

defined by

L(Y0, . . . , Ym) =
∑

diL
∗
i Yi.

If a = (a0, . . . , am) and b = (b0, . . . , bm) belong to kerL then |ai|2,
|bi|2, and by linearity |ai + bi|2 are independent of i. Expanding the
square of the sum, we deduce that 〈ai , bi〉 is independent of i and
therefore equal to the average over i of these quantities. Hence for
all i, (m + 1)〈ai , bi〉 = 〈a , b〉. This means that ui : kerL → R

ni

defined by ui(a) =
√

m + 1 ai is an isometry. Since ai = ui

(

u−1
0 (a0)

)

,
we conclude that

kerL =
{(

a0, u1

(

u−1
0 (a0)

)

, . . . , um

(

u−1
0 (a0)

)

)

; a0 ∈ Im(u0)
}

.

It is then clear that Condition (9) is equivalent to the following: there
exists a subspace X ⊂ R

n0 and linear isometries Ri : X → R
ni, i ≥ 1

such that
kerL =

{

(x, R1x, . . . , Rmx); x ∈ X
}

. (10)

Second order terms : we are done if we can find an elliptic operator E
such that S = EC. In other words we are looking for a symmetric
positive semi-definite matrix A of size N × N such that the quantity

Tr
(

A Hess(C)
)

=
∑

diTr
(

AL∗
i Hess(Fi)Li

)
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coincides with S =
∑

di∆Fi. As we require this identity for arbitrary
functions Fi, we can conclude that A does the job if and only if for all
0 ≤ i ≤ m,

LiAL∗
i = Ini

.

Eventually, we may look for A in the form A = σ∗σ for some square
matrix σ of size N . For 0 ≤ i ≤ m and 1 ≤ j ≤ ni, denote by uj

i ∈ R
N

the columns of L∗
i . Rewriting the later conditions in terms of σ we may

conclude that: Hess(C) ≥ 0 =⇒ S ≥ 0 holds provided there exits a
matrix σ of size N such that for all 0 ≤ i ≤ m the vectors (σuj

i )
ni

j=1

form an orthonormal system in R
N . Note that the first order condition

requires that the linear relations between the vector uj
i should have a

particular structure.

The above conditions are quite restrictive. We were able to find data
(di, Li) verifying them, but all of them could be reduced to the Borell the-
orem, using the rotation invariance of the Gaussian measure and the fact
that its marginals remain Gaussian. To conclude this section let us briefly
explain why the method does not allow any new Gaussian improvement of
Theorems 4 or 5.

For i = 1, . . . , m, let ci > 0 and Bi : R
n → R

ni be linear surjective maps.
If we look for Gaussian versions of the Brascamp-Lieb inequality, we are led
to apply the previous reasoning to N = n, B0 = IN , d0 = −1, and for i ≥ 1,
Li = Bi and di = ci. Now, with the above notation, (Y0, . . . , Ym) ∈ kerL
is equivalent to Y0 =

∑m
i=1 ciB

∗
i Yi. Since this condition can be verified

even though |Y1| 6= |Y2| we conclude that the first order condition is never
satisfied.

Next, we are looking for inequalities of the reverse Brascamp-Lieb type.
Hence we choose N = n1 + · · · + nm, d0 = 1, L0(x1, . . . , xm) =

∑

ciB
∗
i xi,

and for i ≥ 1, di = −ci, Li(x1, . . . , xm) = xi. For x ∈ R
n, L∗

0(x) =
(c1B1x, . . . , cmBmx). For i ≥ 1 and xi ∈ R

ni, L∗
i (xi) = (0, . . . , 0, xi, 0, . . . , 0)

where xi appears at the i-th place. The condition (Y0, . . . , Ym) ∈ kerL, that
is L∗

0(Y0) =
∑

i≥1 ciL
∗
i (Yi) becomes:

∀i = 1, . . . , m, Yi = BiY0.

Hence kerL =
{

(Y0, B1Y0, . . . , BmY0); Y0 ∈ R
n
}

. So the first order condi-
tion (10) is verified only if the Bi’s are isometries. This forces ni = n and
up to an isometric change of variables, we are back to the setting of the
Gaussian Brunn-Minkowski inequality.
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Remark. To make use of Lemma 1, it should be sufficient to prove (P+S ≥
0) instead of the stronger condition (P ≥ 0 and S ≥ 0) as required page
22. However we were not able to translate this into nice conditions on
coefficients or functions. In this sense, our semi-group approach fails to
extend Theorem 1 into a more general Gaussian Brascamp-Lieb inequality.
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[2] F. Barthe. Inégalités de Brascamp-Lieb et convexité. C. R. Acad. Sci.
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