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Typeset in Palatino and Euler by TEX and LATEX 2ε .



Institut de Recherche en Informatique de Toulouse
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Université Toulouse 1

Mme. Marie-Christine Rousset Professeur

LSR-IMAG Grenoble (Rapportrice)

M. Michael Thielscher Professeur

Dresden University (Rapporteur)

of Technology



iv



To Sihem



vi



Acknowledgments

Nobody is so much his own buddy

that he does not need anybody.

— Anonymous

First of all I want to thank Andreas Herzig, not only for accepting me in his group,

but also for his extremely valuable supervision and for the unequal human support

and life example. Definitely, the process of becoming a researcher goes very far be-

yond technical discussions.

Special thanks to Marcos Castilho, a great bridge between the far away Contenda

and the ville rose.

I am grateful to the examiners of the text of this thesis: Guilherme Bittencourt,

Marie-Christine Rousset and Michael Thielscher. Their remarks and suggestions

helped me a lot in improving the final version of the manuscript. I also would like

to thank the other members of the jury for the honor of having them all there.

I want to express my gratitude to the LILaC team and all its members for the very

nice environment I could share during these years.

Thanks to Robert Demolombe for interesting discussions on some of the subjects

of this thesis, and special thanks to Luis Fariñas del Cerro for his human support and
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Abstract

Traditionally, consistency is the only criterion for the quality of a theory in logic-based

approaches to reasoning about actions. This work goes beyond that and contributes to

the meta-theory of actions by investigating what other properties a good domain de-

scription should satisfy. Having Propositional Dynamic Logic (PDL) as background,

we state some meta-theoretical postulates concerning this sore spot. When all pos-

tulates are satisfied, we call the action theory modular. We point out the problems

that arise when the postulates about modularity are violated, and propose algorith-

mic checks that can help the designer of an action theory to overcome them. Besides

being easier to understand and more elaboration tolerant in McCarthy’s sense, mod-

ular theories have interesting computational properties. Moreover, we also propose

a framework for updating domain descriptions and show the importance modularity

has in action theory change.

Keywords: Reasoning about actions, modularity, dependence, theory change.
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Résumé

Traditionnellement, la consistance est le seul critère pour décider de la qualité d’une

théorie dans les approches logiques pour le raisonnement sur les actions. Ce travail

va au delà de cela et contribue à la méta-théorie de l’action en proposant d’autres pro-

priétés qu’une bonne description de domaine doit satisfaire. En utilisant la logique

dynamique propositionnelle (PDL) comme logique de base, nous énonçons quelques

postulats méta-théoriques. Lorsque ces postulats sont satisfaits, nous disons que la

théorie d’action est modulaire. Nous présentons les problèmes qui surviennent lorsque

nos postulats de modularité sont violés, et proposons des algorithmes pour aider le

concepteur de la théorie à les résoudre. En plus d’être plus faciles à comprendre et

plus tolérantes à l’élaboration au sens de McCarthy, les théories modulaires ont des

propriétés intéressantes d’un point de vue computationel. Dans ce travail, nous pro-

posons également une méthode de mise à jour de descriptions de domaine et mon-

trons l’importance de la modularité pour le changement de théories.

Mots-clés : Raisonnement sur les actions, modularité, dépendance, mise à jour de

théories.
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Resumo

Tradicionalmente, consistência tem sido o único critério de qualidade de teorias em

abordagens lógicas para raciocı́nio sobre ações. O presente trabalho tem por obje-

tivo ir ainda mais longe e contribui com a meta-teoria de ações investigando que out-

ras propriedades uma boa descrição de domı́nio deve satisfazer. Usando a lógica

dinâmica proposicional (PDL) como formalismo de base, enunciamos alguns postu-

lados meta-teóricos. Quando uma dada teoria de ações satisfaz todos os nossos pos-

tulados, chamamo-a modular. Aqui nós mostramos os problemas que podem surgir

quando os postulados de modularidade são violados e igualmente propomos algo-

ritmos que auxiliam o projetista da teoria de ações a solucioná-los. Além de mais

fáceis de entender e mais tolerantes à elaboração, no sentido de McCarthy, teorias

de ações modulares apresentam também propriedades interessantes do ponto de

vista computacional. Além disso, nós aqui também apresentamos operadores para

atualização de descrições de domı́nio, e mostramos a importância da modularidade

na modificação de teorias.

Palavras-chave: Raciocı́nio sobre ações, modularidade, dependência, modificação de

teorias.

xxi





Chapter 1

where we try to convince the reader this work is worth reading

Introduction

“Well,” said Pooh, “what I like best...” and then he had to stop

and think. Because although Eating Honey was a very good thing to do,

there was a moment just before you began to eat it which was better

than when you were, but he didn’t know what it was called.

— A.A. Milne, from The House at Pooh Corner

In logic-based approaches to knowledge representation, knowledge concerning a

given domain is usually described by logical formulas, also called axioms. A set T

of such formulas is called a (non-logical) theory. Theories used in applications are

abstractions modeling observed phenomena with the goal of explaining and making

predictions about them. That is also the case for reasoning about actions, where we

are interested in theories describing the behavior of particular actions on properties of

the world, called fluents. We call such theories action theories (alias domain descriptions).

Following the tradition in the reasoning about actions community, action theories

are collections of statements that have the particular form: “if context, then effect after

every execution of action”; and “if precondition, then action executable”. The first type

of statement is used to express effect laws, i.e., formulas that relates an action with

its outcome, given a particular context. The second kind of statement denotes exe-

cutability laws, those formulas establishing the sufficient conditions under which an

action is executable. Their dual gives us the necessary conditions for an action to be

executable: “if precondition, then action impossible”. (Such statement can also be seen

as a special case of effect laws whose effect is a contradiction.)

Finally, in a representation of a dynamic domain, we also single out statements

mentioning no action at all. These can represent laws about the static part of the

1



2 Introduction

world, i.e., the constraints that determine which states are possible, or represent facts

observed in a given state. We call the former static laws or domain constraints, while

the later are referred to as simple observations.

1.1 What Are Action Theories for?

When describing action theories, the goal is to give a reasoning agent the ability to rea-

son about a dynamic domain and perform rationally in the environment that its action

theory models. Hence, action theories are made essentially to perform reasoning with.

Among the different types of reasoning an agent can perform when interacting with

its environment, we identify:

• Checking consistency of its theory;

• Predicting the effects of actions;

• Explaining the observation of a given effect;

• Establishing a plan to achieve a goal;

• Check the executability or inexecutability of a given action; and

• Revise and update its knowledge about the behavior of an action.

We here briefly discuss about each of such tasks.

Consistency Check

Look at all the sentences which seem true and question them.

— David Reisman

Inconsistent theories are useless outside the realm of paraconsistent logics. Hence,

given a theory, an important task is to check its consistency (Figure 1.1).

?
base

Knowledge ⊥

Figure 1.1: Checking consistency of a theory.
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That is also the case for theories in reasoning about actions: an agent with incon-

sistent beliefs about the behavior of actions can perform unpredictably and be unsafe

in real world applications. For instance, if the knowledge base of an agent conceived

for an on-line flight reservation system becomes inconsistent, the agent may book a

flight for a new passenger even if the flight is already full, producing an overbook for

the company.

Historically, logical consistency is the most used criterion for evaluating how good

a given theory is. Consistency of theories in general has been extensively addressed in

the literature on logic-based knowledge representation. In a more or less tacit way, it

has also been studied for action theories [9, 99, 74, 96]. More recently, different notions

of consistency specific to domain descriptions in reasoning about actions have been

proposed [118, 72].

Our main claim in the present work, however, is that mere consistency is not

enough to evaluate an action theory. We may have consistent domain descriptions

that are not intuitive, and also intuitive theories that, although consistent, may be-

have unpredictably and be difficult to manage and change. In order to capture these

subtleties, something beyond consistency is required. We will come back to this point

in the sequel.

Progression, Regression and Plan Generation

When performing reasoning with an action theory, one is naturally interested in doing

progression, i.e., the prediction of action effects; regression, i.e., explaining the state of

the world before a sequence of actions has taken place; and planning, which amounts

to finding a sequence of actions whose outcome is the intended goal.

Prediction is very difficult, especially about the future.

— Niels Bohr

Progression (Figure 1.2), also known as temporal projection, is the prototypical rea-

soning problem for dynamic systems. Technically, it is the problem of determining

whether a given set of fluents is true after the execution of a sequence of actions. For

example, in an on-line booking system, querying the knowledge base whether the

flight is booked after the customer has executed the action of paying is an instance of

the progression problem.
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actionsInitial
state

Result
state

?

Figure 1.2: Progression: reasoning about the future.

The longer the explanation, the bigger the lie.

— Chinese proverb

Regression (Figure 1.3), also known as temporal explanation, consists in finding the

set of fluents that hold at the initial situation before a sequence of actions were carried

out. In the example above, given that the action of paying has been executed with the

result that the flight is now booked, deducing that the client had a valid credit card

number is an example of regression.1

state
Current

state
Initial actions

?

Figure 1.3: Regression: reasoning about the past.

Nothing happens unless first we dream.

— Carl Sandburg

Plan generation (Figure 1.4) is the task of knowing whether there exists a sequence

of actions leading to an intended state of the world and, if that is the case, what that

sequence is. In our running example, in order to get a flight booked, the agent must

1This is an example of deductive regression [72].
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be able to find the actions necessary to achieve its goal. An associated task is plan vali-

dation: given a sequence of actions and a goal, decide whether the actions constitute a

plan for the goal.

?
actions

state
Current

state
Desired

Figure 1.4: Plan generation: what to do to achieve a goal.

Tests for Executability and Inexecutability

Try not. Do, or do not. There is no try.

— Yoda

All tasks of progression, regression and plan generation depend upon whether the

involved actions are executable or not. Many approaches in the literature [83, 84, 72]

assume that actions are always executable. They follow the so-called “tentativist” ap-

proach, according to which one can always attempt to execute an action, whether its

outcome is the expected one or not. We here prefer to adopt the “effectivist” approach,

in which the execution of an action may fail. This allows us to differentiate action pre-

conditions, i.e., the context in which the occurrence of the action is guaranteed, from

the action’s effect preconditions, i.e., the context in which the action, if executable, pro-

duces the expected effect. For instance, having a gun is a precondition for shooting,

while the gun being loaded is the precondition of the effect that the victim dies.

Then, an important reasoning task in action theories is determining executabil-

ity/inexecutability of an action in a given context. In our example, the agent must be

able to detect that without a credit card number, the action pay is not executable (and

consequently its effects do not apply).

It turns out that such tasks can have a very high complexity when carried out in

formalisms with a minimum of expressivity. One of our goals in this work is to show

that we can simplify such a task if we have a theory satisfying some design principles.
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Revision and Update of Action Theories

When we are no longer able to change a situation,

we are challenged to change ourselves.

— Viktor Frankl

Just being consistent does not mean that the information coded in an action theory

is intuitive. Nor does it mean that even being intuitive it will remain so along the

evolution of the world. It is not difficult to conceive action theories describing laws

about actions that are completely out of line with respect to the intuitive behavior of

the world. In this sense, the agent must be able to revise its beliefs about the behavior

of actions. In the same way, it can be the case that the world has just evolved, and

then the action theory in the agent’s knowledge base is out of date and need thus to

be changed. Such situations are depicted in Figure 1.5.

?
operationsϕ base

Knowledge

Figure 1.5: Theory change: how to accommodate new information in a knowledge base.

For instance, let the agent in the flight reservation system believe that always after

booking a flight to a passenger, this one is confirmed to that flight. Now, if the agent

learns that in the case where the flight is full, after booking it the passenger may go to a

waiting list, it should be able to make this information fit together with its knowledge

about the behavior of booking.

Such cases of theory change are very important when one deals with logical de-

scriptions of dynamic domains: it may always happen that one discovers that an ac-

tion actually has a behavior that is different from that one has always believed it had.

It is important to note, however, that independently of the method to carry out a

change in the theory, deciding on its intuition remains a knowledge engineer’s task.

1.2 Modular Logic Project

The design of theories in knowledge representation has much more in common with

software engineering than one might think. In AI applications, a theory representing a
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knowledge base is a piece of software. Hence in the same way as for software projects,

one can talk about correctness and evolution of domain descriptions.

Besides that, action theories play an important role when integrated into more

complex knowledge representation systems. Those may involve representation and

reasoning ability for e.g. knowledge, beliefs, desires and intentions. In order to the

components of such an heterogeneous knowledge base fit together, some principles of

good design should be considered prior to integrating all those components. Among

the principles of the object-oriented paradigm in software development are the fol-

lowing [108, 98]:

1. Work with modules;

2. Minimize interactions between modules;

3. Organize the modules into well-defined layers to help minimize interactions.

The goal is to have components of one layer using only components from im-

mediate neighbors, wherever possible; and

4. Anticipate what kind of extensions or modifications might be made in the future,

and support this at design time so that one can extend the system with minimal

disruption later.

There seems to be an agreement that such principles for object-oriented program-

ming or design are the same as for knowledge representation in general [38, 22, 110,

59] as in reasoning about actions [2, 57, 64, 77]. All the principles above can be applied

to the design of domain descriptions, too. We argue that a good domain description

should be one whose consistency check and maintenance complexities are minimized,

so that any further modification is localized, with a bounded scope. Moreover, we ex-

pect that good design of a theory should improve its general performance.

With this in mind, one can see the specification of domain descriptions as a task

similar to project development in software engineering: Item 4 above is what has been

called elaboration tolerance [88]. In this way, a representation is elaboration tolerant to

the extent that the effort required to add new information (a new action or effect) to

the representation is proportional to the complexity of that information [105]. Items 1,

2 and 3 reflect the concept of modularity, which means that different modules should

have as few elements as possible in common.

A commonly used guideline in software development is to divide the software

into modules, based on their functionality or on the similarity of the information they
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handle. This means that instead of having a “jack of all trades” program, it is prefer-

able to split it up into specialized subprograms. For instance, a program made of a

module for querying a database and a module for checking its integrity is more mod-

ular than a single module that does these two tasks at the same time.

The major benefits of modular systems are reusability, scalability and better man-

agement of complexity. Among the criteria commonly used for evaluating how mod-

ular a piece of software is are the notions of cohesion and coupling [98, 108]. Roughly,

cohesion is about how well defined a module is, while coupling is about how modules

are interdependent. A common sense maxim in object-oriented design is maximize co-

hesion of modules and diminish their coupling, and this paradigm can also be applied

to reasoning about actions [3, 56, 57].

1.3 Objectives and thesis organization

A priori consistency is the only criterion that formal logic provides to check the quality

of action theories. Our objective in this work is to go beyond that, and argue that we

should require more than the mere existence of a model for a given theory.

Here we claim that all the approaches that are put forward in the literature are

too liberal in the sense that we can have satisfiable action theories that are intuitively

incorrect. We argue that something beyond the consistency notion is required in order

to help us in evaluating a given theory.

Our starting point is the fact that in reasoning about actions one usually distin-

guishes several kinds of logical formulas. Among these are effect axioms, precondi-

tion axioms, and domain constraints. In order to distinguish such non-logical axioms

from logical axioms, we prefer to speak of effect laws, executability laws, and static

laws, respectively. Moreover we single out those effect laws whose effect is ⊥ (the

contradiction), and call them inexecutability laws.

Given these types of laws, suppose that the language is powerful enough to state

conditional effects of actions. For example, suppose that some action a is inexecutable

in contexts where ϕ1 holds, and executable in contexts where ϕ2 holds. It follows

that there can be no context where ϕ1 ∧ ϕ2 holds. Now ¬(ϕ1 ∧ ϕ2) is a static law

that does not mention a. It is natural to expect that ¬(ϕ1 ∧ ϕ2) follows from the set

of static laws alone. By means of examples we show that when this is not the case,

then unexpected conclusions might follow from the theory T , even in the case that T

is logically consistent.
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This motivates postulates requiring that the different laws of an action theory

should be arranged modularly, i.e., in separated components, and in such a way that

interactions between them are limited and controlled. In essence, we argue that static

laws may entail new effects of actions (that cannot be inferred from the effect laws

alone), while effect laws and executability laws should never entail new static laws

that do not follow from the set of static laws alone. We formulate postulates that

make these requirements precise. It will turn out that in all existing accounts that al-

low for these four kinds of laws [78, 83, 112, 23, 14, 119], consistent action theories can

be written that violate these postulates.

We here give algorithms that allow one to check whether an action theory satisfies

the postulates we state. With such algorithms, the task of correcting flawed action

theories can be made easier.

The ideas we are going to develop in this thesis are not intended as the final word

on how action theories should be formalized in reasoning about actions; indeed, they

hardly constitute the initial word on how to do that!

The present work is structured as follows: in Chapter 2, we establish the formal

background needed to the core of the thesis. Chapter 3 makes a systematic analysis of

some modularity approaches when applied to the case of reasoning about actions. In

Chapter 4, we propose another view of decomposing a theory into modules, present-

ing it in a simple framework that abstracts from the frame problem. We then present

the solution to the frame problem we will rely on in the rest of this work and shows

that it subsumes Reiter’s regression technique (Chapter 5). After that, we investigate

the behavior of existing solutions to the frame problem, including ours, in more com-

plex scenarios (Chapter 6). In Chapter 7, we revisit our concept of modularity by

giving a more fine grained account of it with the solution to the frame problem. We

then generalize our modularity principle (Chapter 8) and present the main properties

its satisfaction gives us. In Chapter 9, we make a step toward action theory update

and present operators for contracting action laws. Before concluding, we make some

discussion and address related work in the field (Chapter 10).

Part of the material here presented have appeared earlier elsewhere: Chapter 4 is

a joint work with Andreas Herzig that was published as [58]. Chapter 5 is the result

of a joint collaboration with Robert Demolombe and Andreas Herzig that appeared

in [25, 26]. A preliminary version of Chapter 6 appeared as [55]. Parts of Chapter 7 are

an improvement of the preliminary works published in [56]. Chapter 9 is the result of

a joint work with Andreas Herzig and Laurent Perrussel appeared in [52] and [51].
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Chapter 2

where we get acquainted with the formal

Describing Action Theories

Let these describe the indescribable.

— Lord Byron

In this chapter, we present the logical foundations which will serve as the basis

for developing the central ideas of this work. As our base formalism, we have chosen

modal logics [60, 16], and we describe action theories in ∗-free PDL, i.e., PDL without

the iteration operator ∗. We here establish the ontology of dynamic domains and

formally define what an action theory is. For more details on PDL, see [49, 50]; for the

benefits of dynamic logic as a formalism for reasoning about actions, see [14, 43, 121].

2.1 Dynamic Logic

Let Act = {a1, a2, . . .} be the set of all atomic action constants of a given domain (Act 6= ∅).

Our main running example is in terms of the Walking Turkey Scenario [112], depicted

in Figure 2.1. There, the atomic actions are load, shoot and tease. We use a as a variable

for atomic actions. To each atomic action a there is an associated modal operator [a].

This gives us a multimodal logic [97]. Here we suppose that the underlying multi-

modal logic is independently axiomatized (i.e., the logic is a fusion and there is no

interaction between the modal operators [69, 70]).

Let Prop = {p1, p2, . . .} denote the set of all propositional constants, also called fluents

or atoms. Examples of those are loaded, alive and walking. We use p as a variable for

propositional constants.

We suppose from now on that both sets Act and Prop are finite.

11
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Figure 2.1: The Walking Turkey Scenario.

We use small Greek letters ϕ,ψ, . . . to denote classical formulas, also called boolean

formulas. They are recursively defined in the following way:

ϕ ::= p | ⊤ | ⊥ | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | ϕ→ ϕ | ϕ↔ ϕ

The set of all classical formulas will be denoted by Fml.

Examples of classical formulas are walking→ alive and ¬(bachelor ∧ married).

Given ϕ ∈ Fml, by valuations(ϕ) we denote the set of all propositional valua-

tions making ϕ true. We view a valuation as a maximally-consistent set of literals.

For instance, if Prop = {alive,walking}, then there are four valuations: {alive,walking},

{alive,¬walking}, {¬alive,walking} and {¬alive,¬walking}. A classical formula ϕ is clas-

sically consistent if and only if valuations(ϕ) 6= ∅, i.e., there is at least one valuation in

classical propositional logic that makes it true. We denote |=
CPL

the standard logical

consequence in classical propositional logic.

The set of all literals is Lit = Prop ∪ {¬p : p ∈ Prop}. Examples of literals are alive

and ¬walking. We will use ℓ as a variable for literals. If ℓ = ¬p, then we identify ¬ℓ

with p.

A clause χ is a disjunction of literals. We say that a literal ℓ appears in a clause χ,

written ℓ ∈ χ, if ℓ is a disjunct of χ.

We denote complex formulas (possibly with modal operators) by capital Greek

lettersΦ1,Φ2, . . . They are recursively defined in the following way:

Φ ::= ϕ | [a]Φ | 〈a〉Φ | ¬Φ | Φ∧Φ |Φ∨Φ |Φ→ Φ |Φ↔ Φ
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whereΦ denotes a complex formula. The dual operator of [a] is 〈a〉 and it is defined by:

〈a〉Φ =def ¬[a]¬Φ. Sequential composition of actions is defined by the abbreviation

[a1; a2]Φ =def [a1][a2]Φ. Examples of complex formulas are loaded → [shoot]¬alive and

hasGun→ 〈load; shoot〉(¬alive ∧ ¬loaded).

If T is a set of formulas (modal or classical), atm(T ) returns the set of all atoms

occurring in T . For instance, atm({¬¬¬p1, [a]p2}) = {p1, p2}.

For parsimony’s sake, whenever there is no confusion we identify a set of formulas

with the conjunction of its elements. The semantics is that for multimodal K [97, 10].

Definition 2.1 (PDL-model)

A PDL-model is a tuple M = 〈W,R〉 where W is a set of valuations (alias possible

worlds), and R : Act −→ 2W×W a function mapping action constants a to accessibility

relations Ra ⊆ W × W.

As an example, for Act = {a1, a2} and Prop = {p1, p2}, we have the PDL-model

M = 〈W,R〉, where

W = {{p1, p2}, {p1,¬p2}, {¬p1, p2}},

R(a1) =

{
({p1, p2}, {p1,¬p2}), ({p1, p2}, {¬p1, p2}),

({¬p1, p2}, {¬p1, p2}), ({¬p1, p2}, {p1,¬p2})

}

R(a2) = {({p1, p2}, {p1,¬p2}), ({p1,¬p2}, {p1,¬p2})}

Figure 2.2 gives a graphical representation of M .

M :

p1, p2 ¬p1, p2

p1,¬p2

a1

a1

a2
a1

a1

a2

Figure 2.2: Example of a PDL-model for Act = {a1, a2}, and Prop = {p
1
, p
2
}.

Given M = 〈W,R〉, a ∈ Act, and w,w ′ ∈ W, we write Ra instead of R(a), and

wRaw
′ instead of w ′ ∈ Ra(w).
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Definition 2.2 (PDL truth conditions)

Given a PDL-model M = 〈W,R〉, the satisfaction relation is defined as the smallest

relation satisfying:

• |=
M

w
p (p is true at world w of model M ) if p ∈ w;

• |=
M

w
[a]Φ if for everyw ′ such that wRaw

′, |=
M

w′
Φ; and

• the usual truth conditions for the other connectives.

Definition 2.3 (Model of formulas)

A PDL-model M is a model ofΦ (noted |=
M
Φ) if and only if for all w ∈ W, |=

M

w
Φ. M is

a model of a set of formulas T (noted |=
M
T ) if and only if |=

M
Φ for everyΦ ∈ T .

In the model depicted in Figure 2.2, we have |=
M

p1→ [a2]¬p2 and |=
M

p1∨ p2.

Definition 2.4 (Global consequence)

A formula Φ is a consequence of the set of global axioms T in the class of all PDL-

models (noted T |=
PDL

Φ) if and only if for every PDL-model M , if |=
M
T , then |=

M
Φ.1

We suppose that the logic under consideration is compact [33].

Having established the formal substratum our presentation will rely on, we

present in the next section the different types of formulas we will henceforth use to

describe dynamic domains.

2.2 Describing the Behavior of Actions in PDL

Before elaborating a theory, we need to specify what we are about to describe, i.e.,

what the formulas are supposed to interpret. Following the tradition in the literature,

we identify a domain (alias scenario) with the actions we take into account and the

fluents they can change. More formally, we have:

Definition 2.5 (Domain signature)

A domain signature is a tuple 〈Act,Prop〉.

An example of a domain signature (domain, for short) is the well-known Yale

Shooting Scenario [47], whose signature comprises the actions load, wait and shoot,

and fluents loaded and alive.

1Instead of global consequence, in [14] local consequence is considered. For that reason, a further
modal operator 2 had to be introduced, resulting in a logic which is multimodal K plus monomodal S4

for 2, and where axiom schema 2Φ → [a]Φ holds.
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The beginning of wisdom is to call things by their right names.

— Chinese proverb

Given a domain 〈Act,Prop〉, we are interested in theories whose statements de-

scribe the behavior of actions of Act on the fluents of Prop. PDL allows for the rep-

resentation of such statements, that we here call action laws. We distinguish several

types of them. We call effect laws formulas relating an action to its effects. Statements

of conditions under which an action cannot be executed are called inexecutability laws.

Executability laws in turn stipulate the context where an action is guaranteed to be ex-

ecutable. Finally, static laws are formulas that do not mention actions. They express

constraints that must hold in every possible state. These four types of laws are our

fundamental entities and we introduce them more formally in the sequel.

Static Laws

Frameworks which allow for indirect effects of actions make use of logical formulas

that state invariant propositions about the world. Such formulas delimit the set of pos-

sible states. They do not refer to actions, and we suppose here that they are expressed

as formulas of classical propositional logic.

Definition 2.6 (Static law)

A static law2 is a formula ϕ ∈ Fml.

In our running example, the static law walking → alive says that if a turkey is

walking, then it must be alive. Another one is saved ↔ (mbox1∨ mbox2), which states

that an e-mail message is saved if and only if it is in mailbox 1 or in mailbox 2 or in

both [15].

In some action languages, such as AR [65, 44] for example, we would write the

statement always alive → walking, and in a Situation Calculus [90] variant, it would be

the first-order formula

∀s.(Holds(walking, s)→ Holds(alive, s)).

2In the literature, static laws are often called domain constraints or integrity constraints. Because the
different laws for actions that we shall introduce in the sequel could in principle also be called like that,
we avoid these terms.
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At first glance, no requirement concerning consistency of the static laws is made.

Of course, we want them to be consistent, otherwise the whole theory is inconsistent.

As we are going to see in the sequel, however, consistency of the static laws alone is

not enough to guarantee the consistency and even the intuitiveness of an action theory

as a whole.

Effect Laws

Logical frameworks for reasoning about actions contain expressions linking actions

and their effects. We suppose that such effects might be conditional, and thus get a

third component of such laws.

In PDL, the formula [a]Φ states that formulaΦ is true after every possible execution

of action a.

Definition 2.7 (Effect law)

An effect law3 for action a is of the form ϕ → [a]ψ, where ϕ,ψ ∈ Fml, with ψ classi-

cally consistent.

The consequentψ is the effect which obtains when action a is executed in a state where

the antecedent ϕ holds. An example of an effect law is loaded → [shoot]¬alive, saying

that whenever the gun is loaded, after shooting, the turkey is dead. Another one is

⊤→ [tease]walking: in every circumstance, the result of teasing is that the turkey starts

walking. For parsimony’s sake, the latter effect law will be written [tease]walking.

Note that the consistency requirement for ψmakes sense: if ψ is inconsistent, then

we have an inexecutability law, that we consider as a separate entity and which we

are about to introduce formally in the sequel. On the other hand, if ϕ is inconsistent,

then the effect law is obviously superfluous.

For the first example above, in action languages one would write the statement

shoot causes ¬alive if loaded,

and in the Situation Calculus formalism one would write the first-order formula

∀s.(Holds(loaded, s)→ ¬Holds(alive, do(shoot, s))).

3Effect laws are often called action laws, but we prefer not to use that term here because it would also
apply to executability laws that are to be introduced in the sequel.
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Inexecutability Laws

We consider effect laws with inconsistent consequents as a particular kind of law

which we call inexecutability laws. (Such laws are sometimes called qualifica-

tions [85].) This allows us to avoid mixing things that are conceptually different: for an

action a, an effect law mainly associates it with a consequentψ, while an inexecutabil-

ity law only associates it with an antecedent ϕ, viz. the context which precludes the

execution of a.

Definition 2.8 (Inexecutability law)

An inexecutability law for action a is of the form ϕ→ [a]⊥, where ϕ ∈ Fml.

For example, ¬hasGun → [shoot]⊥ expresses that action shoot cannot be executed

if the agent has no gun. Another example is dead → [tease]⊥: a dead turkey cannot

be teased.

In AR we would write the statement

impossible shoot if ¬hasGun,

and in the Situation Calculus, our example would be

∀s.(¬Holds(hasGun, s)→ ¬Poss(shoot, s)).

Executability Laws

With only static and effect laws one cannot guarantee that the action shoot can be

executed whenever the agent has a gun. We need thus a way to state such conditions.

In dynamic logic, the dual 〈a〉ϕ, defined as ¬[a]¬ϕ, can be used to express exe-

cutability. The formula 〈a〉⊤ thus reads “execution of action a is possible”.

Definition 2.9 (Executability law)

An executability law for action a is of the form ϕ→ 〈a〉⊤, where ϕ ∈ Fml.

For instance, hasGun→ 〈shoot〉⊤ says that shooting can be executed whenever the

agent has a gun, and ⊤ → 〈tease〉⊤, also written 〈tease〉⊤, establishes that the turkey

can always be teased.

Some approaches (most prominently Reiter’s [99, 100]) use biconditionals of the

form ϕ ↔ 〈a〉⊤, called precondition axioms. This is equivalent to ¬ϕ ↔ [a]⊥, which

highlights that they merge information about inexecutability with information about

executability. Here we consider these entities to be different and keep them separate.
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In action languages in general, such laws are not represented, they are rather im-

plicitly inferred from inexecutability statements (cf. Section 8.2). In the Situation Cal-

culus, our example would be stated as

∀s.(Holds(hasGun, s)→ Poss(shoot, s)).

Whereas all the extant approaches in the literature that allow for indirect effects of

actions contain static and effect laws, and provide a way for representing inexecutabil-

ities (in the form of implicit qualifications [42, 78, 112]), the status of executability laws

is less consensual. Some authors [102, 28, 83, 112] more or less tacitly consider that

executability laws should not be made explicit but rather inferred by the reasoning

mechanism. Others [78, 23, 14, 119] have executability laws as first class objects one

can reason about.

It seems a matter of debate whether one can always do without executabilities. In

principle, it seems to be strange to just state information about necessary conditions

for action execution (inexecutabilities) without saying anything about its sufficient

conditions. This is the reason why we think that we need executability laws. Indeed,

in several domains one wants to explicitly state under which conditions a given action

is guaranteed to be executable, e.g. that a robot never gets stuck and is always able to

execute a move action. And if we have a plan such as load; shoot (load followed by

shoot) of which we know that it achieves the goal ¬alive, then we would like to be sure

that it is executable in the first place!4 In any case, allowing for executability laws

gives us more flexibility and expressive power.

2.3 Action Theories

An ounce of action is worth a ton of theory.

— Ralph Waldo Emerson

Given a domain 〈Act,Prop〉, let L denote the language of our formalism, i.e., all

well formed sentences of the logic under consideration built upon the objects in the

signature and the logical connectives. Let T be the theory (set of non-logical axioms)

describing the behavior of the actions of the domain, i.e., T is a set of global axioms in

4Of course, this would require a solution to the qualification problem [85].
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Fitting’s sense [33] of the types defined above. Let |≈ be a consequence relation (possibly

nonmonotonic) defined on L. We thus define action theories:

Definition 2.10 (Action theory)

An action theory (alias domain description) is a tuple D = 〈L, |≈,T 〉, where L is a

language, T a set of formulas of L, and |≈ a consequence relation defined on L.

As an example of an action theory, consider Dwts = 〈LPDL, |=PDL
,T 〉, where LPDL is

the set of all PDL-formulas, |=
PDL

is the consequence relation in PDL (cf. Definition 2.4),

and the theory T is given by:

T =






walking→ alive,¬loaded → [load]loaded,

loaded→ [shoot]¬alive, hasGun→ 〈shoot〉⊤,

¬hasGun→ [shoot]⊥, [tease]walking,

〈tease〉⊤, 〈load〉⊤






Then Dwts is an action theory in PDL formalizing the Walking Turkey Scenario [112].

Figure 2.3 below shows a PDL-model for the theory component of the domain de-

scription above.
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Figure 2.3: A model for the Walking Turkey Scenario: l, w, a, and h stand for, respectively,

loaded, walking, alive and hasGun. Actions shoot, tease and load were abbreviated, respectively,

to s, t and l.
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Definition 2.11 (Action theory entailment)

Let D = 〈L, |≈,T 〉 be an action theory, and Φ ∈ L. D entails Φ (noted D |= Φ) if and

only if T |≈ Φ.

(To avoid confusion, we remember that we denote entailment in classical proposi-

tional logic by |=
CPL

.)

In our action theory example, we have Dwts |= loaded → [shoot]¬walking and Dwts |=

[tease]alive.

Let Cn(D) = {Φ : D |= Φ} denote the set of all consequences of action theory D .

We define when two action theories are equivalent:

Definition 2.12 (Action theory equivalence)

Action theories D1 and D2 are equivalent if and only if Cn(D1) = Cn(D2).

In the rest of this work, we analyze the design of action theories as defined here

and see how difficult it can be to achieve the desired intuition.



Chapter 3

where we take a look at the grass in the neighbors’ garden

Modularity in

Reasoning about Actions

To know the road ahead, ask those coming back.

— Chinese proverb

We here identify two main trends on modularity of descriptions: one pragmatic,

programming language driven, and one logical theoretic driven. We point out that

both proposals are inadequate as accounts of modularity when applied to theories in

reasoning about actions. We show that they are either too weak or too strong and

do not completely avoid unwanted interactions between modules. We also claim that

modules designed following their directives may be as complex as whole theories.

3.1 The Need for Modules

Modularity has become one of the words of order in many areas of software devel-

opment. That is also the case for knowledge representation and reasoning, where

monolithic descriptions have shown to be of high complexity for dealing with.

The last years have seen the flourish of plenties of papers [2, 46, 68, 57, 64] that

in a more or less tacit way talk about concepts as modules, reusability, intelligibility,

evaluation, maintainability, independence and self-content, elaboration tolerance and

many others. Most of these terms are borrowed from software engineering, sometimes

without a clear notion of the impacts that they can have when transplanted to domains

where their use is not a matter of intuition, but rather they have to accommodate with

21



22 Modularity in Reasoning about Actions

well established formal settings. Here we point out that this is not a simple task,

especially when logic is the formal substratum in which knowledge is represented.

Despite the apparent fragility of the well-known toy scenarios commonly used in

this domain to illustrate typical problems in the area, things get more serious when we

move to the “real” world. One can expect that action theories describing the behavior

of actions for applications of real interest will be of very high complexity. By this we

mean amount of information being represented, the internal relationship among data,

the feasibility of inferences in a huge set of formulas, as well as the difficulty for future

amendments.

Thus, the question that naturally arises is “how can we ease the knowledge en-

gineer’s task in describing a domain”? One answer, of course, following the divide-

and-conquer trend, is “modularizing the action theory”. But what does it really mean

to modularize an action theory? For that we give a (general) definition of a module

prototype.

Definition 3.1 (Module prototype)

A module prototype of an action theory D = 〈L, |≈,T 〉 is a description D ′ =

〈L ′, |≈
′
,T ′〉 such that L ′ ⊆ L, |≈

′ ⊆ |≈ and T ′ ⊆ T .1

A module prototype is just a syntactic-based fragment of a description D . Like in

structural and object-oriented programming, to modularize an action theory is not just

a matter of cutting the description in a whole bunch of slices. Such a decoupling must

be done so that the resulting theory has interesting properties regarding the above

requirements. We are going to see in the rest of this work that to be really considered

as a module, pieces of descriptions are usually required to satisfy some desiderata.

We can find in the literature several proposals on modularization of action the-

ories that are quite close to software engineering and object-oriented programming.

Some examples are the object-oriented first-order logic (OOFOL [1]) and its Situation

Calculus variant [2], Gustafsson and Kvarnström’s framework for elaboration toler-

ance [46], and Lifschitz and Ren’s modular action description language [77]. Despite

the well developed formal background, such approaches are more focused on the

implementation level (which is of course important) and either do not take into ac-

count or make too restrictive assumptions about in order to get rid of an important

issue when describing a domain: unforeseen interactions between modules, or even

between components of a single module.

1Module prototypes are thus seen as sub-descriptions, and action theories in our sense are themselves
module prototypes.
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In the same way, we see good work in the logician’s community concerning modu-

larity (or similar notions) of logical theories in general [38], and of theories in descrip-

tion logics [22]. However, as we are going to see, when bringing such definitions to

the case of reasoning about actions, we get a too restrictive notion of modularity with

which either there is no way to modularize a description or the modules are difficult

to understand.

3.2 OO-driven Logical Modularity

Regarding the titles of this and the next section, we do not want to say that the ap-

proaches we analyze here are not logical. We just have put them apart because they

are more engineering-oriented, in the sense that their respective formalisms have been

mainly developed with the aim of serving as engineer tools.

There are several proposals on modularization of action theories that are quite

close to software engineering and object-oriented programming [2, 46, 77]. The main

feature of these approaches is the decomposition of descriptions in a way similar to

that programmers usually do in decomposing software applications. Given a domain,

their parts are associated with sub-domains. Action theories are thus composed of

sub-descriptions that interact in some way, e.g. by sharing common information, in-

heriting properties [46, 77], or message passing [5, 6].

We here take the OOFOL formalism [1] and its Situation Calculus flavor [2] as

our guiding paradigm in this section. The reason is that it is representative of this

category, and the fact of being oriented to reasoning about actions will ease further

comparisons.

Amir [2, 4] focuses on design and maintainability of domain descriptions applying

many of the concepts of the object-oriented paradigm in the Situation Calculus. In that

work, guidelines for a partitioned representation of a given theory are presented, with

which the inference task can also be optimized [5, 4, 6], as it is restricted to the part of

the theory that is relevant to a given query. This is observed specially when different

agents are involved: the design of an agent’s theory can be done with no regard to

others’, and after the integration of multiple agents, queries about an agent’s beliefs

do not take into account the belief state of other agents. Such a feature of a description

is called conditional independence [2].

The original approach is first-order, but we here present it using the syntax of PDL,

which has no harm on its basic intuitions.
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In the OOFOL approach, an action theory 〈L, |≈,T 〉 is decomposed in module

prototypes 〈L1, |≈,T1〉, . . . , 〈Ln, |≈,Tn〉 such that

• Li ⊆ L is a PDL language ;

• for every 1 ≤ i ≤ n, Ti = 〈Ai, Ii〉, where Ai is a set of formulas (axioms) such

that L(Ai) = Li (Li contains only the symbols appearing in formulas ofAi), and

Ii ⊆ {ℓ : ℓ ∈ Li} is the module’s interface, i.e., the literals it shares with other

modules; and

• T =
⋃
1≤i≤nAi.

Sub-descriptions are thus seen as objects in the object-oriented sense2, each one

having its own data (the set of axioms Ai) and a communication link with other ob-

jects (its interface Ii). Two distinct objects do not necessarily need to have distinct

languages, unless they are completely disconnected, i.e., atoms or actions in one of

them are never taken into account in the others’ inference. Given two distinct objects

that are supposed to interact, their interface links establish (semantical) equality or

equivalence between symbols in their respective languages and are restricted to only

the symbols appearing in the interface (see below).

For the case of reasoning about actions, each Ti is designed so that the respectiveAi

component contains formulas of a specific type, i.e., descriptions are partitioned into

a module for effect laws, a module for static laws, etc. As an example, the action the-

ory Dwts = 〈LPDL, |=PDL
,T 〉 formalizing the Walking Turkey Scenario (cf. Section 2.3)

would be decomposed in

Dwts1 = 〈L1, |=CPL
, 〈{walking1→ alive1}, {walking1, alive1}〉〉

Dwts2 = 〈L2, |=PDL
, 〈

{
⊤↔ 〈tease2〉⊤,

hasGun2↔ 〈shoot2〉⊤

}

, ∅〉〉

Dwts3 = 〈L3, |=PDL
, 〈






¬loaded3→ [load3]loaded3,

loaded3→ [shoot3]¬alive3,

[tease3]walking3





, {walking3, alive3}〉〉

together with the equivalences |=
CPL

walking1 ↔ walking3, and |=
CPL

alive1 ↔ alive3,

and the equalities tease2 = tease3 and shoot2 = shoot3. These say, e.g. that walking1

2Do not confound with objects in the domain signature. In object-oriented programming, an object,
roughly speaking, is an instance of a class that models an entity of the world [108, 98].
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in object Dwts1 should be understood as having the same semantics as walking3 in

object Dwts3, and action shoot2 in object Dwts2 should be interpreted as shoot3 in ob-

ject Dwts3. This means, for example, that inferences regarding walking1 in Dwts1 also

concern Dwts3. (For more details on how reasoning is carried out in descriptions that

are decomposed that way, see [5, 6]. We here concentrate only in the modeling aspect

and the impact it has on what we expect from modules.)

Notice the modifications that we had to carry out with respect to the original

formulas in Dwts in order to decompose it with the method defined in [2]. Exe-

cutability laws and inexecutability laws are mixed together: hasGun → 〈shoot〉⊤ and

¬hasGun → [shoot]⊥ have been combined in the biconditional hasGun ↔ 〈shoot〉⊤.

This is reminiscent of the principle of maximization of executabilities commonly used

in the literature [78, 44]. We argue (cf. Section 8.2) that such assumption gives us less

flexibility in the design of dynamical systems.

If we want a better decomposed description, we should rather have defined

Dwts1′ = 〈L1, |=CPL
, 〈{walking1→ alive1}, {walking1, alive1}〉〉

Dwts2′ = 〈L2, |=
PDL

, 〈

{
〈tease2〉⊤,

hasGun2→ 〈shoot2〉⊤

}

, ∅〉〉

Dwts3′ = 〈L3, |=PDL
, 〈






¬loaded3→ [load3]loaded3,

loaded3→ [shoot3]¬alive3,

[tease3]walking3





, {walking3, alive3}〉〉

Dwts4′ = 〈L4, |=PDL
, 〈{¬hasGun4→ [shoot4]⊥}, ∅〉〉

with |=
CPL

walking1 ↔ walking3 and |=
CPL

alive1 ↔ alive3, and the equalities tease2 =

tease3 and shoot2 = shoot3 = shoot4.

In order to correctly make inferences in such a description, it has to take into ac-

count a solution to the frame problem [90] (cf. Chapter 4). In [2] this is done by pro-

viding another object containing Successor State Axioms [99] connected with the mod-

ules above. We do not show this explicitly here and just assume the above description

together with such a solution provides a way for deriving all frame axioms. Then,

because the tease action does not change the status of literal ¬alive, from the above the-

ory with its respective solution to the frame problem, we are able to derive the frame

axiom ¬alive → [tease]¬alive. Because we have [tease]walking and walking → alive, we

also conclude [tease]alive. Joining these results gives us the implicit inexecutability [42]
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¬alive→ [tease]⊥. That is an intuitive result. However, with this and the executability

〈tease〉⊤, we conclude alive: the turkey never dies (Figure 3.1)!
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¬l, ¬w
a, h

¬l, w
a, ¬h

l, w
a, ¬h

¬l, ¬w
a, ¬h

l, ¬w
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s

t

t t

t

l

Figure 3.1: A model of the immortal turkey.

The way the proposal in [2] gets rid of such a problem is by imposing a syntactical

condition on the antecedents of executabilities and effect laws in order to preclude

them of getting in conflict. Roughly speaking, whenever there is an inexecutability

ϕ → [a]⊥ and an executability ϕ ′ → 〈a〉⊤, then ϕ∧ϕ ′ is inconsistent. So, in order to

have a safe description, we should change Dwts2 in the following way:

Dwts2′′ = 〈L2, |=PDL
, 〈

{
alive2↔ 〈tease2〉⊤,

hasGun2↔ 〈shoot2〉⊤

}

, {alive2}〉〉

That is to say, decomposing the description in its more elementary entities like we did

above is not allowed.

3.3 Strong Logic-driven Modularity

Some researchers have tried to capture what modularity in formal logic means [38,

115, 114, 22] at an elementary level. Here we focus on the works of Garson [38] and

Cuenca Grau and colleagues [22].

Inspired by Fodor’s claims [34], Garson seems to have been the precursor of

proposing a notion of modularity in logical systems. In his work, he has given an

account of modularity motivated especially by issues as correctness and efficiency of

a reasoning system.
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In Garson’s approach, in order to be a module, a module prototype (alias sub-

description) must satisfy two properties:

1. Local correctness: every formula entailed by the sub-description is also entailed

by the whole description.

2. Local completeness: every formula in the scope of the sub-description that is

entailed by the whole description is also entailed in the sub-description alone.

(A formulaΦ is in the scope of the module Di = 〈Li, |≈,Ti〉 if Φ ∈ Li.)

Local correctness requires the module prototypes to be “smaller” than the original

description, i.e., given D = 〈L, |≈,T 〉 and D ′ = 〈L ′, |≈
′
,T ′〉 a module prototype of D ,

we must have L ′ ⊆ L, |≈
′ ⊆ |≈ and T ′ ⊆ T . (This is indeed our definition of module

prototype, cf. Definition 3.1. In practice, we should claim for the strict inclusion ⊂,

since in modularizing a description we generally do not expect to get the original

description as a result.) To see the need for such a property and the motivation behind

our definition, if at least one of these inclusions does not hold, then the sub-description

can prove more things than the whole description, contradicting the intuition of the

concept of module.

Let D = 〈L, |≈,T 〉 be an action theory and D1 = 〈L1, |≈,T1〉, . . . , Dn = 〈Ln, |≈,Tn〉

be module prototypes of D . Local completeness states that

T = T1 ∪ . . . ∪ Tn, such that Cn(D) =
⋃

1≤i≤n

Cn(Di)

and

Cn(Di) ∩ Cn(Dj) = ∅,∀i, j, i 6= j

In other words, the collection of all logical modules should be a kind of ‘partition’ of

the original logical theory.

It is not difficult to see that such a notion of modularity in its own is too strong.

First, because each module’s theory Ti by definition entails all logical tautologies. Sec-

ond, because it holds only for consistent descriptions: it may be the case that an incon-

sistent domain description has no module that is itself inconsistent, and then there can

be formulas entailed by the whole description that are not entailed in their respective

module, violating local completeness.

Both these problems have been addressed in [38] and [22]. We can relax local

completeness by considering only substantive entailments of the theory, i.e., non-
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tautological ones. In what concerns consistency, Garson argues that classical logic

is not a good setting for an account of modularity. Besides the complexity of consis-

tency check, the very main reason for that, he says, is the principle of explosion:3 in

classical logic, a contradiction entails any sentence, which makes consistency check

very costly. As a manner of overcoming that and guaranteeing local completeness

even for inconsistent descriptions, Garson proposes to use relevant logic [30] instead

of classical logic. Cuenca Grau and colleagues, on the other hand, rely on the tractable

consistency check methods for description logics [8] and do not care about the princi-

ple of explosion.

Nevertheless, even relaxing local completeness, if we apply such a notion of mod-

ularity to domain descriptions in reasoning about actions, we can have some annoy-

ances. To witness, consider the following example (we illustrate with PDL, but it

could also be adapted to other frameworks in the literature that allow for the four

types of laws that we use to describe dynamic domains): suppose a domain with,

say, two actions a1 and a2, and only one atom p. Let D = 〈LPDL, |=PDL
,T 〉, with

T = {p → [a1]⊥, p → 〈a1〉⊤, 〈a2〉⊤}. Notice that D is consistent. So, because actions a1

and a2 are independent, i.e., they do not interact one with the other, it is reasonable

to start by requiring that the laws describing the sub-domain of a1 to be in a separate

module than those describing the domain of a2. Lets suppose that is the case, i.e., we

have D1 = 〈LPDL, |=PDL
,T1〉 and D2 = 〈LPDL, |=PDL

,T2〉, with

T1 =

{
p→ [a1]⊥,

p→ 〈a1〉⊤

}

, T2 = {〈a2〉⊤}

(Note that the description is still consistent.) We point out that such a modularization

does not satisfy the principle of modularity above: there is a formula, viz. [a2]¬p that

is entailed by the whole description but is not entailed by the module D2 alone. This

means our decomposition of D in D1 and D2 is not good. But where is the problem?

We said that a1 and a2 play no role together. So why D2 alone is not enough to derive

all conclusions in the domain of a2? Because there is an implicit logical interaction be-

tween laws for a1 and a2 that cannot be avoided. Zooming in inside T1, we see that

it entails ¬p, i.e., ¬p is a static law (hence, valid in every possible state of the world),

and, because the same happens in T , we have T |=
PDL

¬p and then T |=
PDL

[a2]¬p. Such

a global implicit entailment “gets lost” when we decompose the description, and that

3Ex falso sequitur quodlibet, the law of classical logic according to which “anything follows from a
contradiction.”
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is what makes the result to violate modularity. In order to overcome the problem, we

should rather join both modules. However, this gives exactly D as result!

Here we argue that formulas in reasoning about actions are so coupled, so related

that it is infeasible to have at once local completeness and intelligibility with scala-

bility. For applications of real interest, modules have to be so huge that we will find

inside the module the original problem about the initial description: it is big, diffi-

cult to understand and whose pretended independence from the other modules falls

down if a change in some other module forces an implicit law.

To summarize, either sub-domains are put together, giving us huge modules, with

lots of different types of formulas mixed and whose intelligibility is doubtful, or we

redefine modularity, probably relaxing it, to allow the (natural and unavoidable) cou-

pling among different formulas. Here we chose the second way and that is the issue

we henceforth address.
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Chapter 4

where we show how we cut the grass in our garden

The Modularity’s New Clothes

Take what you can use and let the rest go by.

— Ken Kesey

In this chapter, we make a step further through the notion of modularity of an

action theory and analyze some of its properties. We propose a way to overcome the

problem of implicit laws that we saw in the last chapter. For the sake of simplicity,

we suppose that no solution to the frame problem is given. We propose algorithms

to check whether a given action theory has implicit laws and that also catch them.

Completeness, correctness and termination results are demonstrated.

4.1 A Natural Decomposition

We start by observing that it is often the case that a set of axioms T containing multiple

modalities a1, a2, . . . can be naturally partitioned into a union of theories T ∅ ∪ T a1 ∪

T a2 ∪ . . . such that T ∅ contains no modal operators, and the only modality appearing

in each T ai is ai.

For example, consider an action theory Dmarriage = 〈LPDL, |=PDL
,T 〉 such that:

T =






¬(married ∧ bachelor),

¬married→ 〈marry〉⊤,

[marry]married






We can see such a theory as composed of two modules, one for expressing the dynamic

part of the theory, and another one to formalize the static constraints of the domain.

31
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The module

Dmarriage1 = 〈LPDL, |=PDL
,

{
¬married→ 〈marry〉⊤,

[marry]married

}

〉

formalizes the behavior of the action of getting married, in this case the precondition

for executing marry (viz. ¬married) and the effect that obtains after its execution (viz.

married). The module

Dmarriage2 = 〈LPDL, |=PDL
, {¬(married ∧ bachelor)}〉

formalizes the static law according to which it is not possible to be married and bach-

elor at the same time.

Let the underlying multimodal logic be independently axiomatized (cf. Sec-

tion 2.1), and suppose we want to know whether D |= Φ, i.e., whether a formula Φ

follows from the action theory D = 〈LPDL, |=
PDL

,T 〉. Then it is natural to expect that

we only have to consider those elements of T which concern the modal operators oc-

curring in Φ. For instance, the proof of some consequences of action a1 should not

involve laws for other actions a2. Note that this is not the case if the logic is not inde-

pendently axiomatized and there are interaction axioms such as [a1]Φ→ [a2]Φ.

Here we propose a modality-based decomposition of an action theory D .

Let act(Φ) return the set of modal operators (actions) occurring in formula Φ,

and, for given D = 〈LPDL, |=PDL
,T 〉, let act(T ) =

⋃
Φ∈T act(Φ). For instance,

act([a1](p1→ [a2]p2)) = {a1, a2}. For given a ∈ Act, we define

T a = {Φ ∈ T : act(Φ) = {a}}

For formulas with no modality, we define

T ∅ = {Φ ∈ T : act(Φ) = ∅}

For example, if

T =






¬(married ∧ bachelor),

¬married → 〈marry〉⊤, [marry]married,

married → 〈divorce〉⊤, [divorce]¬married
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then

T divorce =

{
married → 〈divorce〉⊤,

[divorce]¬married

}

and

T ∅ = {¬(married ∧ bachelor)}

We henceforth make the following hypothesis:

{T ∅} ∪ {T ai : ai ∈ Act} partitions1 T (H)

We thus exclude T ai containing more than one modal operator.

Given this, we are now able to formally define modularity of a theory.

4.2 Modularity

We are interested in the following principle of modularity:

Definition 4.1 (Modularity)

An action theory D = 〈LPDL, |=PDL
,T 〉 is modular if and only if for every formula Φ,

D |= Φ implies 〈LPDL, |=PDL
,T ∅ ∪ T act(Φ)〉 |= Φ.

Our notion of modularity means that when investigating whether Φ is a conse-

quence of D , the only formulas of D that are relevant are those whose modal operators

occur in Φ and the classical formulas in T ∅.

This is reminiscent of interpolation [21], which more or less2 says:

Definition 4.2 (Interpolation property)

An action theory D = 〈LPDL, |=PDL
,T 〉 has the interpolation property if and only if for

every formulaΦ, if D |= Φ, then there is a module DΦ = 〈LPDL, |=PDL
,TΦ〉 such that

• act(TΦ) ⊆ act(T ) ∩ act(Φ);

• D |= Φ ′ for everyΦ ′ ∈ TΦ; and

• DΦ |= Φ.

1{T ∅} ∪ {T ai : ai ∈ Act} partitions T if and only if T = T ∅ ∪
S

ai∈Act T
ai , and T ∅ ∩ T ai = ∅, and

T ai ∩ T aj = ∅, if ai 6= aj . Note that T ∅ and each T ai might be empty.
2We here present a version in terms of global consequence, as opposed to local consequence or mate-

rial implication versions that can be found in the literature [69, 70]. We were unable to find such global
versions in the literature.
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Our definition of modularity is a strengthening of interpolation because it requires TΦ

to be a subset of T . Properties similar to interpolation for reasoning about actions in

PDL have also been investigated in [120].

Contrary to interpolation, modularity does not generally hold. Clearly if the

Hypothesis (H) is not satisfied, then modularity fails. To witness, consider D =

〈LPDL, |=PDL
,T 〉 such that

T = {p1→ [a1][a2]p2, [a1][a2]p2→ p3}

Then D |= p1→ p3, but 〈LPDL, |=PDL
,T ∅ ∪ T act(p

1
→p

3
)〉 6|= p1→ p3.

Nevertheless, even under our hypothesis, modularity may fail to hold. For exam-

ple, let D = 〈LPDL, |=PDL
,T 〉 be such that

T = {¬p→ [a]⊥,¬p→ 〈a〉⊤}

Then T ∅ = ∅, and T a = T . Now D |= p, but clearly 〈LPDL, |=PDL
,T ∅ ∪ T act(p)〉 6|= p.

How can we know whether a given action theory D is modular? The following

criterion is simpler:

Definition 4.3 (Propositional modularity)

An action theory D is propositionally modular if and only if for every propositional

formula ϕ,

D |= ϕ implies 〈LPDL, |=PDL
,T ∅〉 |= ϕ

And that suffices to guarantee modularity:

Theorem 4.1

Let the underlying logic be a fusion, and let D = 〈LPDL, |=PDL
,T 〉 be such that T is

partitioned. If D is propositionally modular, then D is modular.

Proof:

See Appendix A.

In the rest of the chapter, we investigate how it can be automatically checked

whether a given action theory D is modular or not, and how to make it modular,

if needed.
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4.3 Deciding Modularity

How can we check whether a given action theory D is modular? Following Theo-

rem 4.1, it is enough to check for propositional modularity.

Definition 4.4 (Implicit static law)

ϕ ∈ Fml is an implicit static law of an action theory D if and only if D |= ϕ and

〈LCPL, |=CPL
,T ∅〉 6|= ϕ.

Let Dtrans = 〈LPDL, |=PDL
,T 〉 formalize a transaction domain such that:

T =

{
¬adult→ ¬obligedPay, [order]obligedPay,

¬adult→ [order]¬adult, 〈order〉⊤

}

Observe that by the fact that Dtrans |= ¬adult → [order]⊥, we have Dtrans |= adult. But

T ∅ 6|=
CPL

adult, hence adult is an example of an implicit static law . Moreover, Dtrans is

also an example of an action theory that is not modular in our sense.

Theorem 4.1 tells us that an action theory is modular if and only if it has no implicit

static law. Hence, checking the existence of such laws provides us a way to decide

modularity of a given action theory. Assuming the theory component T of an action

theory is finite, with Algorithm 4.1 below we can check whether an action theory

has such implicit laws. The idea is as follows: for each pair of laws ϕ1 → 〈a〉⊤ and

ϕ2→ [a]⊥ in T , if ϕ1∧ϕ2 is satisfiable and T ∅ 6|=
CPL

¬(ϕ1∧ϕ2), mark ¬(ϕ1∧ϕ2) as

an implicit static law.

Algorithm 4.1 Deciding existence of implicit static laws

input: D = 〈LPDL, |=PDL
,T 〉

output: a set of implicit static laws Simp

Simp:= ∅
for all a ∈ act(T ) do

for all ϕ ′ → 〈a〉⊤ ∈ T do

for all {ϕ1→ [a]ψ1, . . . , ϕn→ [a]ψn} ⊆ T a do

if T ∅ ∪ {ϕ ′, ϕ1, . . . , ϕn} 6|=
CPL

⊥ and T ∅ ∪ {ψ1, . . . , ψn} |=
CPL

⊥ then

Simp:= Simp ∪ {¬(ϕ ′ ∧ϕ1∧ . . . ∧ϕn)}

Theorem 4.2 (Decidability)

Algorithm 4.1 terminates.

Proof:

Straightforward from finiteness of T .
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Theorem 4.3 (Soundness)

Let Simp be the output of Algorithm 4.1 on input D = 〈LPDL, |=PDL
,T 〉. Then every

ϕ ∈ Simp is an implicit static law of D .

Proof:

Letϕ ∈ Fml be such that ϕ ∈ Simp and D |= ϕ. ϕ is of the form ¬(ϕ ′ ∧ϕ1∧ . . .∧ϕn),

for some ϕ ′, ϕ1, . . . , ϕn, and T ∅ ∪ {ϕ ′ ∧ ϕ1 ∧ . . . ∧ ϕn} 6|=
CPL

⊥ is the case. Hence,

T ∅ ∪ {¬ϕ} 6|=
CPL

⊥, which means that T ∅ 6|=
CPL

ϕ. Thereforeϕ is an implicit static law.

Remark 4.1 The converse of Theorem 4.3 does not hold: consider the quite simple

action theory D = 〈LPDL, |=PDL
,T 〉 such that

T =

{
¬pn, 〈a〉⊤,

pi−1→ [a]pi, 1 ≤ i ≤ n

}

Thus, D |= ¬pi, for 0 ≤ i ≤ n, but running Algorithm 4.1 returns only Simp = {¬pn−1}.

This suggests that it is necessary to iterate the algorithm in order to find all implicit

static laws. We shall do this in the sequel, and now just observe that:

Theorem 4.4

An action theory D = 〈LPDL, |=PDL
,T 〉 is modular if and only if Simp = ∅.

Proof:

See Appendix A.

Considering the action theory in Remark 4.1, we see that running Algorithm 4.1

on 〈LPDL, |=PDL
,T ∪ {¬pn−1}〉 gives us Simp = {¬pn−2}. This means some of the implicit

static laws may be needed in order to derive others. Hence, Algorithm 4.1 should be

iterated to get D modular. This is achieved with Algorithm 4.2, which iteratively feeds

the set of static laws considered into the if-test of Algorithm 4.1.

Algorithm 4.2 Finding all implicit static laws

input: D = 〈LPDL, |=PDL
,T 〉

output: Simp*, the set of all implicit static laws of D
Simp*:= ∅
repeat

Simp:= find imp stat(〈LPDL, |=PDL
,T ∪ Simp*〉) {a call to Algorithm 4.1}

Simp*:= Simp* ∪ Simp

until Simp = ∅
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Theorem 4.5 (Decidability)

Algorithm 4.2 terminates.

Proof:

First, for given a the set of candidates to be an implicit static law is

{¬(ϕ∧
∧

ϕi→[a]ψi∈T̂ a

ϕi) : ϕ→ 〈a〉⊤ ∈ T a and T̂ a ⊆ T a}

This set is finite.

In each step, either the algorithm ends because Simp = ∅, or at least one of the

candidates is put into Simp (by a call to Algorithm 4.1, which terminates). Such a can-

didate is not going to be put into Simp in future steps, because once added to Simp*, it

will be in the set of laws of all subsequent calls to Algorithm 4.1, falsifying its respec-

tive if-test for such a candidate. Hence the repeat-loop is bounded by the number of

candidates, and therefore Algorithm 4.2 terminates.

Theorem 4.6

Let Simp* be the output of Algorithm 4.2 on input D = 〈LPDL, |=PDL
,T 〉. Then

1. 〈LPDL, |=PDL
,T ∪ Simp*〉 is modular.

2. D |=
∧

Simp*.

Proof:

Item 1. is straightforward from the termination of Algorithm 4.2 and Theorem 4.4.

Item 2. follows from the fact that by the if-test in Algorithm 4.1, the only formulas

that are put in Simp* at each execution of the loop are exactly those that are implicit

static laws of the original theory.

Corollary 4.1

Let D = 〈LPDL, |=PDL
,T 〉. For all ϕ ∈ Fml, D |= ϕ if and only if T ∅ ∪ Simp* |=

CPL
ϕ.

Proof:

For the left-to-right direction, let ϕ ∈ Fml be such that D |= ϕ. Then T |=
PDL

ϕ, and

hence T ∪ Simp* |=
PDL

ϕ, by monotonicity. By Theorem 4.6-1., 〈LPDL, |=PDL
,T ∪ Simp*〉 is

modular, hence T ∅ ∪ Simp* |=
CPL

ϕ.

The right-to-left direction is straightforward by Theorem 4.6-2.

This establishes that Algorithm 4.2 finds all implicit static laws of an action the-

ory D . Adding such laws to the theory component T of D guarantees, hence, modu-

larity of D .
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4.4 What about the Frame Problem?

As the reader might have already expected, the formalism of PDL alone does not solve

the frame problem [90]. For instance, if Dwts describes our shooting domain (cf. Sec-

tion 2.3), then

Dwts 6|= hasGun→ [load]hasGun.

The reason is that there are some anomalous models in which hasGun is not preserved

after the execution of action load. The model in Figure 2.3 is an example of an anoma-

lous model for such a scenario. Figure 4.1 highlights one of its problematic transitions.
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Figure 4.1: Anomalous model in the Walking Turkey Scenario.

The formula hasGun → [load]hasGun is an example of a frame axiom. Following

the tradition in the reasoning about actions community, we do not want to state such

a kind of axioms in the action theory. In order to satisfy this requirement, given an

action theory D , we need a consequence relation powerful enough to deal with the

frame problem. This means that the deductive power of PDL has to be augmented in

order to ensure that the non-effects of actions follow from the theory. We here opt for

the dependence-based approach presented in [14]. There, meta-logical information,

given in the form of a dependence relation, is added to PDL.
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Definition 4.5 (Dependence relation [14])

A dependence relation is a binary relation ; ⊆ Act × Lit.

The expression a ; ℓ denotes that the execution of action a may make the literal ℓ

true. In our example, we have

; =

{
〈shoot,¬loaded〉, 〈shoot,¬alive〉,

〈shoot,¬walking〉, 〈tease,walking〉

}

,

which means that action shoot may make the literals ¬loaded, ¬alive and ¬walking true,

and action tease may make walking true.

Semantically, the dependence-based approach relies on the explanation closure

assumption [102], and its solution to the frame problem consists in a kind of negation

as failure: because 〈load,¬hasGun〉 /∈ ;, we have load 6; ¬hasGun, i.e., ¬hasGun is

never caused by load. Thus, in a context where hasGun is true, after every execution

of load, hasGun still remains true. We also have tease 6; alive and tease 6; ¬alive. The

meaning of all these independences is that the frame axioms hasGun → [load]hasGun,

¬alive→ [tease]¬alive and alive→ [tease]alive hold.

We assume that ; is finite.

A dependence relation ; defines a class of possible worlds models:

Definition 4.6 (; truth conditions)

A PDL-model M = 〈W,R〉 is a ;-model if and only if wheneverwRaw
′ then:

• if a 6; p, then 6|=
M

w
p implies 6|=

M

w′
p; and

• if a 6; ¬p, then |=
M

w
p implies |=

M

w′
p.

Figure 4.2 depicts the dependence-based condition on models.

Given a ;-model M ,Φ and T , |=
M
Φ and |=

M
T are defined as in Definition 2.3.

Definition 4.7 (;-based logical consequence)

A formulaΦ is a ;-based consequence of the set of global axioms T in the class of all

;-models (noted T |=
;

Φ) if and only if for every ;-model M , if |=
M
T , then |=

M
Φ.

Thus, if in our example we replace in Dwts the consequence relation |=
;

, with its

associated dependence relation above, for |=
PDL

, it holds:

Dwts |= hasGun→ [load]hasGun.

In this way, the dependence-based approach solves the frame problem.
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Figure 4.2: Dependence-based condition: preservation of literal ¬p under hypothesis a 6; p.

Henceforth we consider |=
;

as the consequence relation component of our PDL

domain descriptions.

Definition 4.8 (Action theory model)

Let D = 〈LPDL, |=
;

,T 〉 be a domain description. A PDL-model M is a model of D if

and only if M is a ;-model and |=
M
T .

All the definitions we have given in this chapter shall then be adapted to fit to-

gether with our new consequence relation. We will develop this issue later on in this

work. Before doing that, in the next two chapters we investigate interesting properties

that justify our choice for the dependence-based approach.



Chapter 5

where we show we can do as simple as others

Recasting Reiter’s Solution

Almost all absurdity of conduct arises from the

imitation of those whom we cannot resemble.

— Samuel Johnson

In this chapter, we propose an encoding of Reiter’s Situation Calculus solution to

the frame problem into the framework of our multimodal logic of actions. In par-

ticular, we show that with the dependence-based solution to the frame problem we

achieve that without quantification, and present the modal counterpart of the regres-

sion technique. This gives us a theorem proving method for a relevant fragment of

our dynamic logic.

5.1 Deterministic PDL with Quantification and Equality

In the reasoning about actions field, most approaches use the Situation Calculus for-

malism [90]. Among those, Reiter’s [99] has turned out to be most fruitful. His basic

formalism is restricted to deterministic actions without static laws. In order to solve

the frame problem, he makes use of so-called Successor State Axioms (SSAs). The

latter enable regression [99], which has interesting computational properties.

The Situation Calculus is a dialect of predicate logic, having situations and actions

as objects, and where actions are viewed as mappings on the set of situations. At first

glance, this is very close to possible worlds semantics for deterministic PDL [49]. But

the precise relation between Reiter’s approach and dynamic logic is not as obvious

as that. One of the reasons why his formalism cannot be translated straightforwardly

41



42 Recasting Reiter’s Solution

into modal logics of action such as PDL is that the Situation Calculus allows quantify-

ing over actions. Worse, such quantifications are central to Reiter’s approach.

In [24] there has been presented a technique to translate Reiter’s framework into

dynamic logic. In this chapter we present a different approach. We solve the problem

using the dependence-based extension to PDL that we saw in the previous chapter.

Having such a result provides some degree of optimization in doing inference tasks

for some important classes of problems in the area.

In this chapter, we will concentrate only on deterministic PDL, i.e., the logic we

have defined in Chapter 2 restricted to the case where each Ra is deterministic: for each

action a and each world w, there is at most one world w ′ such that wRaw
′. Moreover,

we here slightly extend such a logic in order to allow for quantification over actions

and the equality predicate. This will serve as the basis for developing the ideas in this

chapter.

We here will use ~a as a meta-variable ranging over action constants and vari-

ables. Here Φ will also denote complex formulas possibly involving quantification

and equality between actions.

The nonstandard feature of the logic we are going to use here is that we allow

for quantification over actions, and for equality between actions. Hence, in this version of

dynamic logic, we allow for formulas of the form ∀a.Φ, withΦ a complex formula. In

the Yale shooting scenario (YSS) [47], one can e.g. write

∀a.(alive ∧ ¬[a]alive → (a = shoot ∧ hasGun ∧ loaded)).

This is an explanation closure axiom [102] expressing that the only way to make alive

false is by the shoot action under preconditions hasGun and loaded.

We call our version of deterministic PDL with quantification and equality DPDL+.

Once added these features to deterministic PDL, it remains to redefine what its

models are.

Definition 5.1 (DPDL+-model)

A DPDL+-model is a triple M = 〈W,R, I〉 where W and R are as in Definition 2.1,

and I is an interpretation function mapping propositional constants to subsets of W,

and action constants and variables to elements of R.

We will sometimes write w ′ ∈ (I(~a))(w) instead of wI(~a)w ′, and similarly for vari-

ables a.
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Definition 5.2 (Interpretation agreement)

Let I and I ′ be interpretations. I agrees with I ′ except possibly on a if and only if

• I(p) = I ′(p), for every propositional constant p;

• I(~a) = I ′(~a), for every action constant ~a; and

• I(a ′) = I ′(a ′), for every action variable a ′ different from a.

For a DPDL+-model M = 〈W,R, I〉, |=
M

w
∀a.Φ if and only if for every I ′ such that I

agrees with I ′ except possibly on a, |=
〈W,R,I ′〉

w
Φ. |=

M

w
[~a]Φ if and only if for every w ′ ∈

(I(~a))(w), |=
M

w′
Φ. |=

M

w
[a]Φ if and only if for every w ′ ∈ (I(a))(w), |=

M

w′
Φ. The other truth

conditions, truth in a model and logical consequence are as defined in Section 2.1.

Actions being deterministic, i.e., (I(~a))(w) is either a singleton or empty, we have

that for every action constant ~a and every formulaΦ

|=
DPDL

+ 〈~a〉Φ→ [~a]Φ (5.1)

If all actions are deterministic, then every formula without quantification can be

brought into a normal form where there are neither conjunctions nor disjunctions in

the scope of modal operators. Apart from classical equivalences, this uses the follow-

ing ones from the left to the right:

|=
DPDL

+ [~a](Φ ∧Φ ′)↔ ([~a]Φ∧ [~a]Φ ′) (5.2)

|=
DPDL

+ [~a](Φ ∨Φ ′)↔ ([~a]Φ∨ [~a]Φ ′) (5.3)

In the next section, we introduce the basic hypotheses concerning the knowledge

we have about actions.

5.2 Describing Actions Like Reiter

In describing an action theory, it is more or less explicitly supposed that the following

pieces of information are given. (Some assumptions of complete information are made

about them.)

For each action constant~a, there is a classical formula Poss(~a) describing the action

precondition of ~a, i.e., the condition under which ~a can be executed. For example,

Poss(shoot) = hasGun, and Poss(strangle) = ⊤.
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It is supposed that action preconditions are complete: ~a is executable if and only if

Poss(~a) is true. In terms of dynamic logic, completeness of action preconditions means

that for every ~a ∈ Act, we have a global axiom:

Poss(~a)↔ ¬[~a]⊥ (5.4)

For each propositional constant p, there are two finite sets of action constants

causes+(p) and causes−(p), describing, respectively, the positive and negative causes

of p. The set causes+(p) contains the actions in Act which in some circumstances

might cause p to become true, while causes−(p) contains those actions that may

cause p false. For example, causes+(alive) = ∅ (no action makes an agent alive),

causes−(alive) = {shoot, strangle}, and causes−(loaded) = {shoot}.1

It is also supposed that causes+(p) and causes−(p) are small, in the sense that

causes+(p) and causes−(p) are much smaller than Act.

Moreover, we suppose that these two sets are complete: whenever ~a /∈ causes+(p),

then the execution of~a can never make p true. In terms of dynamic logic, causal com-

pleteness means that we have a global axiom ¬p→ [~a]¬p in that case. Similarly, for ev-

ery ~a ′ such that ~a ′
/∈ causes−(p) we have a global axiom p→ [~a ′

]p. These are frame ax-

ioms. In our example, as strangle 6∈ causes−(loaded), we have loaded → [strangle]loaded.

This corresponds to the explanation closure assumption [102, 103].

For all propositional constant p ∈ Prop and every action constant ~a ∈ causes+(p),

there is a classical formula Cond+(~a, p) describing the positive effect precondition of ac-

tion ~a. As an example, Cond+(toggle,up) = ¬up, and Cond+(load, loaded) = ⊤. Simi-

larly, for every~a ∈ causes−(p), there is a Cond−(~a, p) describing its negative effect precon-

dition. For example, Cond−(strangle, alive) = ⊤, and Cond−(shoot, alive) = loaded.2

It is supposed that effect preconditions are complete: in situations where the for-

mula Cond+(~a, p) does not hold, the execution of ~a can never make p true. Symmetri-

cally, when Cond−(~a, p) does not hold, then the execution of~a can never make p false.

In terms of dynamic logic, to every effect precondition Cond+(a, p), one can asso-

ciate a global axiom Cond+(~a, p) → [~a]p, and to every effect precondition Cond−(a, p),

one can associate a global axiom Cond−(a, p) → [~a]¬p. As an example, we have the

formula loaded→ [shoot]¬alive.

Completeness of effect preconditions means that we moreover have a global axiom

(¬Cond+(~a, p) ∧ ¬p) → [~a]¬p for every ~a ∈ causes+(p). Symmetrically, for every ~a ′

1In Reiter’s presentation, these functions can be retrieved from his functions γ+ and γ− [100].
2These functions correspond to Reiter’s γ+ and γ− .
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such that ~a ′ ∈ causes−(p), we have a global axiom (¬Cond−(~a ′
, p) ∧ p) → [~a ′

]p. This

expresses in dynamic logic what Reiter calls the application of Clark completion [18].

For example, we have (¬loaded ∧ alive) → [shoot]alive. In [14], axioms of this form

are called conditional frame axioms. There they are needed to complete the dependence

relation so that we can capture context-dependent effects of actions.

The three pieces of information together with the completeness assumptions guar-

antee that the possible world resulting from the execution of action ~a in a possible

world w is completely determined: for every model M = 〈W,R, I〉 and every world

w ∈ W, if 6|=
M

w
Poss(~a), then (I(~a))(w) = ∅. Else, the truth value of every p in every w ′

accessible from w via I(~a) is as follows. Suppose w.l.o.g. that |=
M

w
p. Then:

• if~a /∈ causes−(p), then |=
M

w′
p;

• if~a ∈ causes−(p) and 6|=
M

w
Cond−(~a, p), then |=

M

w′
p; and

• if~a ∈ causes−(p) and |=
M

w
Cond−(~a, p), then 6|=

M

w′
p.

As all truth values are thus determined, it follows that the set of worlds accessible

via I(~a) is either empty, or it can be considered to be a singleton. This fits with the

assumption that all actions are deterministic.

As we have noted, the action preconditions and effect preconditions appear ex-

plicitly in Reiter’s formalization, while the sets of possible causes causes+(p) and

causes−(p) only appear implicitly there.

Note that in Reiter’s Situation Calculus it is supposed that actions always lead to

some state: even in states where the agent has no gun in his hands, the state resulting

from the execution of shoot exists. The technical reason is that just as every function

in predicate logic, his successor function do(.) is total. This means that the logic of

each action operator [~a] should be KD [16]. We have nevertheless decided to follow

the dynamic logic tradition and suppose that the set of worlds accessible via some

action a might be empty. Therefore the logic of each [~a] is just K.

In fact, inexecutability of the action shoot is expressed in Situation Calculus by stat-

ing Poss(shoot) ↔ hasGun, where Poss(shoot) is a particular propositional constant. In

our formulation, Poss(.) is a function associating a classical formula to every action ~a.

Poss(~a) can be seen as an abbreviation, such as Poss(shoot) = hasGun. Given a domain

description in Reiter’s style, we obtain a description in our style if we

• Define our Poss(~a)-function from Reiter’s preconditions Poss(~a)↔ ϕ; and
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• Replace Reiter’s constants Poss(~a) by our 〈~a〉⊤.

The other way round, our version can be translated to Reiter’s by

• Defining his preconditions Poss(~a)↔ ϕ from our Poss(~a)-function; and

• Recursively replacing [~a]ϕ by Poss(~a)→ [~a]ϕ.

Observe that the latter is nothing but the well-known translation from modal logic K

to KD [93, 94].

All this sounds as if action theories could be described in DPDL+ in a satisfactory

manner, but, in such a framework, we have not solved the frame problem yet: as by

hypothesis causes+(p) and causes−(p) are small, it follows that the size of the set of

frame axioms that we have to state is close to card(Prop) × card(Act). This is usually

considered to be too big, and a central element in the research program of the reason-

ing about actions community was to design mechanisms allowing to infer such frame

axioms without stating them explicitly.

There was a 20-years-long debate about semantics and theorem proving methods

allowing such inferences. Reiter’s proposal seems to have closed the debate at least in

what concerns deterministic actions and no static laws. This is going to be presented

in the sequel.

5.3 Reiter’s Solution to the Frame Problem

Based on a particular class of models, Reiter proposes to incorporate the basic ingre-

dients of action theories that we have presented in the preceding section into what he

calls Successor State Axioms (SSA) [99]. These are special formulas that, given a state

and an action, completely determine the next state.

Reiter requires that all object names in the domain signature are unique and that

models are trees.

Definition 5.3 (Reiter model)

A DPDL+-model M = 〈W,R, I〉 is a Reiter-model if and only if 〈W,
⋃

a∈Act Ra〉 is a tree,

and if I(~ai) = I(~aj), then i = j.

Figure 5.1 illustrates the tree-like structure of a Reiter model.

Definition 5.4 (Reiter’s logical consequence)

A formula Φ is a Reiter consequence of the global axioms T in the class of all Reiter-

models (noted T |=
R
Φ) if and only if for every Reiter-model M , if |=

M
T , then |=

M
Φ.
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M : . . .

. . . . . . . . .

a1
a2

an

a1 a2 an a1 a2 an a1 a2 an

Figure 5.1: Structure of a Reiter-model.

Successor State Axioms

Suppose that all the Poss(.), causes+(.), causes−(.), Cond+(.) and Cond−(.) are given,

and that the completeness assumptions are made. We then can associate with that

an action theory D
R

= 〈LDPDL
+ , |=

R
,T

R
〉 from which the relevant frame axioms will

follow. According to Reiter’s approach, the component T
R

of the description is made

up of the following axioms:

• for every ~a ∈ Act, there is an executability axiom Poss(~a)↔ ¬[~a]⊥; and

• for every p ∈ Prop, if causes+(p) = {a1, . . . , an} and causes−(p) = {a ′
1, . . . , a

′
m},

then there is a Successor State Axiom

∀a.([a]p↔

(¬Poss(a) ∨

(a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . . ∧ ¬(a = a ′
m∧ Cond−(a ′

m, p)))))

Note that the Successor State Axiom above is well defined because we have supposed

that causes+(~a) and causes−(~a) are finite.

For the cases where n = 0 or m = 0, conjunction of the elements of an empty set

is identified with ⊤, and disjunction with ⊥. The latter can be illustrated with our

running example, where causes+(alive) = ∅. The Successor State Axiom for alive is:

∀a.([a]alive↔

(¬Poss(a) ∨ ⊥ ∨ (alive ∧ ¬(a = shoot ∧ loaded) ∧ ¬(a = strangle ∧ ⊤))))

We abbreviate reg(a, p) the right hand side of such an equivalence. The Successor

State Axiom for p therefore has the form ∀a.([a]p↔ reg(a, p)).
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Successor State Axioms can be equivalently stated for negative literals as:

∀a.([a]¬p↔

(¬Poss(a) ∨ (a = a ′
1∧ Cond−(a ′

1, p)) ∨ . . .∨ (a = a ′
m∧ Cond−(am, p)) ∨

(¬p ∧ ¬(a = a1∧ Cond+(a1, p)) ∧ . . .∧ ¬(a = an∧ Cond+(an, p)))))

We abbreviate reg(a,¬p) the right hand side of this equivalence. For example the Suc-

cessor State Axiom for ¬alive is:

∀a.([a]¬alive ↔

(¬Poss(a) ∨ (a = shoot ∧ loaded) ∨ (a = strangle ∧ ⊤) ∨ (¬alive ∧ ¬⊥)))

Reiter’s original Successor State Axiom [99] is slightly different from ours:

∀a.(Poss(a)→ ([a]p↔

((a = a1∧ Cond+(a1, p)) ∨ . . . ∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . .∧ ¬(a = a ′
m∧ Cond−(a ′

m, p)))))

Our version can be proved to be equivalent to his:

Theorem 5.1

Let T be the set of global axioms (5.4)–(5.8). Then

T |=
DPDL

+ (∀a.(Poss(a)→ ([a]p↔

((a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . . ∧ ¬(a = a ′
m∧ Cond−(a ′

m, p)))))))

↔

(∀a.([a]p↔

(¬Poss(a) ∨

(a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . . ∧ ¬(a = a ′
m∧ Cond−(a ′

m, p))))))

Proof:

See Appendix B.

In [100], Reiter excluded the precondition Poss(a) from SSAs, and then just writes

∀a.([a]p↔

((a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . .∧ ¬(a = a ′
m∧ Cond−(a ′

m, p))))

Therefore we would have e.g. [shoot]¬alive ↔ (loaded ∨ (¬alive ∧ ¬⊥)), from which

it follows by classical principles that (¬hasGun ∧ alive ∧ [shoot]¬alive) → loaded.
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This means that such SSAs do not take into account inexecutability: this issue must

be managed “by hand” by introducing Poss(shoot) atoms in the right places when

proving consequences of SSAs in their recent version.

Finally, we note that Reiter’s presentation also contains precondition axioms of

the form Poss(~a) ↔ ϕ. This is not needed here because we view Poss(.) as a function

returning a classical formula ϕ, which is directly integrated into our Successor State

Axiom (cf. Section 5.2).

Reiter’s Regression

Successor State Axioms are crucial when it comes to the reasoning aspect of the frame

problem, to which we turn now.

Given a Reiter’s style action theory D
R

, what can be deduced from it? Suppose

that Φ is a complex formula without quantification, action variables, and equality,

such as, for example, hasGun → [load][shoot]¬alive. In order to decide whether D
R

|=

Φ, Reiter proposes to rewrite Φ using the Successor State Axioms from the left to

the right. This is what he calls regression, and it consists in syntactical substitutions

whose iteration reduces a given formula with action symbols into another one with

just propositional constants. The whole procedure is given in Algorithm 5.1.

At each regression step, we have to put formulas in normal form such that there are

neither conjunctions nor disjunctions in the scope of modal operators (using the hy-

pothesis that all actions are deterministic). Hence the innermost modal operators have

just literals in their scope. For the above example,Φ gets ¬hasGun∨ [load][shoot]¬alive.

Algorithm 5.1 Reiter’s regression

input: a DPDL+ formula Φ with no variables, Poss(.), causes+(.), causes−(.), Cond+(.)

and Cond−(.)

output: a classical formula regression(Φ)

whileΦ is not classical do

putΦ in normal form
choose a subformula [a]ℓ
if ℓ = p then

replace [a]p by reg(a, p)

else

replace [a]¬p by reg(a,¬p)

Notice that the action variable a of the Successor State Axiom is instantiated by the

constant denoted by ~a.
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In our example, the regression of the subformula [shoot]¬alive is

¬hasGun ∨ (shoot = shoot ∧ loaded)∨

(shoot = strangle ∧ ⊤) ∨ (¬alive ∧ ¬⊥)

This can be simplified to ¬hasGun ∨ loaded ∨ ¬alive. Hence the result of a one step

regression of Φ is ¬hasGun ∨ [load](¬hasGun ∨ loaded ∨ ¬alive).

Each rewriting step thus eliminates a modal operator, and iterated application re-

sults in a formula without modal operators. If we iterate regression in our example,

we first put the formula

¬hasGun ∨ [load](¬hasGun ∨ loaded ∨ ¬alive)

into normal form, obtaining

¬hasGun ∨ [load]¬hasGun ∨ [load]loaded ∨ [load]¬alive.

The regression of subformula [load]¬hasGun is equivalent to ¬hasGun, that of subfor-

mula [load]loaded to ⊤, and that of [load]¬alive to ¬alive. We therefore obtain

¬hasGun ∨ ¬hasGun ∨ ⊤ ∨ ¬alive,

which is valid in classical propositional logic. This means that the original formula

hasGun→ [load][shoot]¬alive is entailed by D
R

.

As regression is proved to be sound [100, Theorem 4.5.2], checking validity of the

original formula amounts to checking satisfiability of the regressed one in the initial

state of the world:

Theorem 5.2 ([100])

Let D
R

be a Reiter style domain description, and Φ be a formula without variables.

Then D
R

|= Φ↔ regression(Φ).

Corollary 5.1

D
R

|= Φ if and only if |=
CPL

regression(Φ).

In the rest of this chapter, we explore whether regression can be performed in a

simpler framework, in particular without quantifying over actions.
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5.4 Solving the Frame Problem without Quantification

The venue of Reiter’s Situation Calculus-based solution has raised the natural ques-

tion of at what extent it could be possible to do the same in dynamic logic. Given

the expressivity limitations of the latter w.r.t. first-order logic (originally it did not al-

low for quantification over actions), many researchers [119, 120] have turned to other

ways of facing the problems in the area. There has been others [23], however, who

have tried on the first steps in that direction.

We here give DPDL+ up and consider just deterministic PDL and possible exten-

sions of it in order to encode Reiter’s solution to the frame problem.

De Giacomo and Lenzerini’s Encoding into PDL

De Giacomo and Lenzerini [23] have expressed Reiter’s solution in a slightly modified

version of PDL that avoids quantification over actions. For the sake of presentation,

here we simplify their account a bit. Basically, their approach can be said to have the

following ingredients (α denotes a complex action, i.e., an action built up on atomic

actions and PDL classical action composition operators):

• nondeterministic choice α ∪ α ′;

• converse α−;

• a particular nondeterministic atomic action any, thought of as the nondetermin-

istic composition of all atomic actions of Act: any = a1 ∪ a2 ∪ . . . ∪ an; and

• complement ¬α w.r.t. any, where α = a1 ∪ . . . ∪ am, for some a1, . . . , am ∈ Act.

Moreover, it is supposed that the past is deterministic, as expressed by the logical

axiom ¬[any−]¬Φ→ [any−]Φ.

Considering our running example, its formalization in De Giacomo and Lenz-

erini’s framework would be:

[any](¬alive → 〈any−〉¬alive ∨ 〈shoot−〉loaded ∨ 〈strangle−〉⊤)

[any](alive → 〈any−〉alive)

Just as for PDL, reasoning in De Giacomo and Lenzerini’s logical framework is

EXPTIME-complete [23]. While their encoding certainly preserves the spirit of Re-

iter’s Successor State Axioms, they did not give the counterpart of Reiter’s regression,
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and hence did not investigate whether reasoning for syntactically restricted theories is

“cheaper” than EXPTIME. In what follows, we show how this can be simulated with-

out quantification in the dependence-based framework we introduced in Chapter 4.

Regression in PDL plus Dependence

We start by observing that stating a ; p in the dependence-based framework is just

another way of writing down that a ∈ causes+(p), and a ; ¬p that a ∈ causes−(p).

Suppose all the ingredients Poss(.), causes+(.), causes−(.), Cond+(.), Cond−(.) are

given, and let us make the completeness assumptions as introduced in Section 5.2.

We construct a dependence relation and a set of global axioms T as follows:

• for each p ∈ Prop: for every a ∈ causes+(p), we put a ; p; and for every a ′ ∈

causes−(p), we put a ′
; ¬p;

• for every a ∈ Act, add the executability axiom Poss(a)↔ ¬[a]⊥ to T

• for every p ∈ Prop and every a ∈ causes+(p), add two effect axioms to T :

Cond+(a, p)→ [a]p (5.5)

(¬Cond+(a, p) ∧ ¬p)→ [a]¬p (5.6)

• for every p ∈ Prop and every a ′ ∈ causes−(p), add two effect axioms to T :

Cond−(a ′, p)→ [a ′]¬p (5.7)

(¬Cond−(a ′, p) ∧ p)→ [a ′]p (5.8)

Note that these axioms do not resemble Successor State Axioms. They nevertheless

validate the same regression principle as in Reiter’s framework, as it will be shown in

the sequel.

A point that bears noting is that our representation indeed counts as a solution to

the frame problem: the sets ; and T are both “small” (in the sense that we can expect

they are much smaller than card(Prop) × card(Act)), and contain no frame axioms.

Now we turn to an important result:
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Theorem 5.3

Let the underlying logic be deterministic PDL, ; be a dependence relation obtained

from sets causes+(.) and causes−(.), and let T be the set of global axioms (5.4)–(5.8).

Then

(1) T |=
;

[a]p↔ ¬Poss(a) ∨ p, if a 6; p and a 6; ¬p;

(2) T |=
;

[a]p↔ ¬Poss(a) ∨ (p ∧ ¬Cond−(a, p)), if a 6; p and a ; ¬p;

(3) T |=
;

[a]p↔ ¬Poss(a) ∨ Cond+(a, p) ∨ p, if a ; p and a 6; ¬p; and

(4) T |=
;

[a]p↔ ¬Poss(a)∨ Cond+(a, p)∨ (p ∧¬Cond−(a, p)), if a ; p and a ; ¬p.

Proof:

See Appendix B.

Based on this result, with Algorithm 5.2 we give a regression method for deter-

ministic PDL with a dependence relation. (Let us consider Cond(a, ℓ) = Cond+(a, p), if

ℓ = p, and Cond(a, ℓ) = Cond−(a, p), if ℓ = ¬p.)

Algorithm 5.2 Regression with dependence

input: a PDL formula Φ, Poss(.), causes+(.), causes−(.), Cond+(.) and Cond−(.)

output: a classical formula regression(Φ)

whileΦ is not classical do

putΦ in normal form
choose some subformula [a]ℓ
case a 6; ℓ and a 6; ¬ℓ

replace [a]ℓ by ¬Poss(a) ∨ ℓ

case a 6; ℓ and a ; ¬ℓ

replace [a]ℓ by ¬Poss(a) ∨ (ℓ∧ ¬Cond(a,¬ℓ))
case a ; ℓ and a 6; ¬ℓ

replace [a]ℓ by ¬Poss(a) ∨ Cond(a, ℓ) ∨ ℓ

case a ; ℓ and a ; ¬ℓ

replace [a]ℓ by ¬Poss(a) ∨ Cond(a, ℓ) ∨ (ℓ∧ ¬Cond(a,¬ℓ))

Suppose Φ is a complex formula without quantification and equality, such as

hasGun → [load][shoot]¬alive. Then, running Algorithm 5.2 on Φ, the regression of

[shoot]¬alive is ¬hasGun ∨ loaded ∨ ¬alive. Hence the result of this regression step is

hasGun → [load](¬hasGun ∨ loaded ∨ ¬alive). Putting this into normal form using ax-

iom (5.3), we obtain the formula hasGun→ ([load]¬hasGun∨ [load]loaded∨ [load]¬alive).

The regression of [load]¬hasGun is ¬hasGun, that of [load]loaded is ⊤, and that of

[load]¬alive is ¬alive. We therefore obtain hasGun → (¬hasGun ∨ ⊤ ∨ ¬alive), which is

valid in classical propositional logic.
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Theorem 5.4 (Decidability, soundness and completeness)

Let T and ; be obtained from Poss(.), causes+(.), causes−(.), Cond+(.) and Cond−(.),

and let Φ be a complex formula. Then, Algorithm 5.2 terminates returning a classical

formula ϕ and T |=
;

Φ↔ ϕ.

Proof:

Let Φ be an input formula. Termination is straightforward, as each step of the al-

gorithm eliminates exactly one modal operator. Soundness and completeness are

also immediate: after putting formula Φ in normal form, it will be made of conjunc-

tions/disjunctions of modal subformulas. In this case, the equivalence betweenΦ and

ϕ follows from the ones given in Theorem 5.3 together with the rule of substitution of

equivalences (which is valid in PDL).

For our running example, hasGun → [load][shoot]¬alive is a consequence of the

theory T with the dependence relation ; because its regression is classically valid.

Hence, modulo equality, we obtain the same result as for Reiter’s regression in our

example. This generalizes: a close look at both algorithms shows that if both our T

with ; and Reiter’s domain description are obtained from the same Poss(.), causes+(.),

causes−(.), Cond+(.), Cond−(.), then the results are logically equivalent.

It follows thus that whenever Poss(.), causes+(.), causes−(.), Cond+(.), Cond−(.) are

given, and the completeness assumptions can be made, then Reiter’s formulation in

terms of Successor State Axioms and ours in terms of effect axioms and dependence

do the same job in their respective logical basis:

Corollary 5.2

Let the sets Poss(.), causes+(.), causes−(.), Cond+(.), Cond−(.) be given. Let D
R

=

〈LDPDL
+ , |=

R
,T

R
〉 be a Reiter theory obtained from them as described in Section 5.3,

and let D = 〈LPDL, |=
;

,T 〉 be obtained from them as described above. Let Φ be a

complex formula without quantification and equality. Then D
R

|= Φ if and only if

D |= Φ.

Proof:

Straightforward.

5.5 What about the Ramification Problem?

Reiter’s solution supposes that domain descriptions only contain executability and

effect laws. Thus it does not allow for static laws such as walking → alive. Such laws
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augment the effects of the shoot action: shooting not only has the (direct) effect ¬alive,

but also the (indirect) effect ¬walking (Figure 5.2).

Figure 5.2: Indirect effect of shooting: the turkey stops walking.

Because an action can have too many indirect effects, stating all of them in the form

of effect laws may be unfeasible and make the domain description unmanageable.

The problem of being able to derive all indirect effects of an action without explicitly

stating them as axioms is known as the ramification problem [32]. Basically, this one

states that we should not relate actions with their indirect effects (in the base logic).

In the example above, instead of stating the law loaded → [shoot]¬walking in the

theory, we should rather be able to conclude that ramification just from the base ef-

fect laws for shoot and the static law walking → alive. Nevertheless, as extensively

addressed in the literature, static laws alone are not enough to express a notion of

causation and thus cannot cope to avoid the derivation of indirect effects not prop-

erly caused by the action under consideration. For example, from [tease]walking and

walking → alive in our scenario, we conclude that alive is always true after execution

of action tease, which intuitively may not be the case if alive initially does not hold:

teasing a dead turkey does not resurrect it.

This means that the only indirect effects that follow from an action theory should

be those that are really relevant.

In the recent literature on reasoning about actions, the concept of causality has

been studied as a means of overcoming the inadequacy of static laws in tackling the

ramification problem. In this sense, many types of causal notions have been pro-

posed so that causality is then considered in different ways: strong [78, 83, 119, 64] or

weak [112, 14] causality (if we always force or only permit something to be caused); as a

predicate [78], a relation [112, 14] or a modality [84, 45, 43, 35]; and primitive (built in the

logic) [78, 43, 119] or derived (with the aid of some meta-logical information) [112, 14].
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The dependence-based solution to the frame problem we have chosen is an ex-

ample of a meta-logical causal notion expressed as a relation. With it we avoid the

problem of stating indirect effects in the base logic without unintuitive results. In our

example, by stating the dependence shoot ; ¬walking we get shoot’s indirect effect,

and because tease 6; alive, we do not get alive as indirect effect of tease.

Basically, all the extant approaches in the literature perform well in describing

dynamic domains where ramifications have to be dealt with. Nevertheless, things

get more complicated when actions with both indeterminate and indirect effects are

involved. This is what we are going to address in the following chapter.



Chapter 6

where we show what others cannot do

Causality and

Indeterminate Indirect Effects

In the sharp formulation of the law of causality – ‘if we know

the present exactly, we can calculate the future’ – it is not the

conclusion that is wrong, but the premise.

— Heisenberg

In this chapter, we investigate the behavior of the main existing causal approaches

to reasoning about actions that are called fluent-indexed frameworks. In particular,

we analyze how they perform in dealing with domains that have actions with both

nondeterministic and indirect effects. For this, we present an example of such a sce-

nario, give a requirement concerning the interpretation of indeterminate indirect ef-

fects and study it through the chapter.

6.1 The Mailboxes Scenario

Many approaches consider that it is a change in some property that produces (causes)

change of some other property. We call them fluent-indexed approaches, for they relate

pairs of literals or formulas.

We argue here that fluent-indexed approaches are not enough for dealing with the

ramification problem in domains involving actions with both nondeterministic and

indirect effects. We do this by showing an example of this class of action domain that

will lead us through a systematic analysis of such approaches.

We present here the Mailboxes Scenario, which was originally defined in [15].

57
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In essence, it combines Reiter’s famous “dropping a coin on a chessboard” exam-

ple with Sandewall’s argument against causality-based solutions to the ramification

problem [101].

In such a scenario, we reason about the status of a particular e-mail message and

two mailboxes (Figure 6.1).

Figure 6.1: The Mailboxes Scenario.

The domain is as follows: suppose mbox1 means “the message is in mailbox 1”,

and mbox2 “the message is in mailbox 2”. We represent the fact that the e-mail is

saved in mbox1 or in mbox2 or in both by the literal saved. Hence the static law for this

example is

saved ↔ (mbox1∨ mbox2)

in formalisms that are not situation-indexed, and

Holds(saved, s)↔ (Holds(mbox1, s) ∨ Holds(mbox2, s))

in situation-indexed formalisms such as the Situation Calculus. (As usual, we assume

that all free variables denoting situations are universally quantified.)

Consider the actions save1 and save2, whose direct effects are to save an e-mail

message in mbox1 and in mbox2, respectively. Suppose we also have a nondetermin-

istic save action, whose direct effect is saved, i.e., saving the e-mail in one of the two

mailboxes or in both. Hence save has the indirect effect mbox1 ∨ mbox2. This is also

an indeterminate effect. Note that, in particular, after executing save, it is also possible
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to have mbox1 ∧ mbox2. This is just as in Reiter’s “dropping a coin on a chessboard”

example, where drop has the possible effect black ∧ white.1

In order to correctly reason about a nondeterministic action, we have to be able

of properly treating its set of indeterminate effects. This means that we should not

systematically interpret effects described with the inclusive disjunction ‘∨’ as the ex-

clusive one ‘⊕’. For example, in the Mailboxes Scenario, the effect of save should not

be equivalent to mbox1 ⊕ mbox2. The motivation for such a requirement has been

originally suggested by Reiter.

As we will see along this chapter, the Mailboxes Scenario is problematic for all

the existing approaches allowing for the representation of actions with both indirect

and indeterminate effects. In what follows, we discuss the approaches of Lin [78, 79],

McCain and Turner [83, 84], Thielscher [112, 113] and Zhang and Foo [119]. Indeed, it

can be shown that, in all these frameworks, either we have to state a frame axiom, or

to relate an action (in the base logic) with some of its ramifications, or, in order not to

violate our requirement about the interpretation of disjunctions, the action save1 has

the indirect indeterminate effect of changing mbox2, which is clearly counterintuitive.

6.2 Minimization of Causality

We here examine the behavior of Lin’s causal approach [78, 79] in formalizing the

Mailboxes Scenario.

Roughly speaking, Lin proposes to add a new predicate Caused(.) to the Situation

Calculus. Caused(p, v, s) reads as “atom p is caused to have truth value v in situa-

tion s”. Such a predicate is used to describe the appropriate causal relationships be-

tween fluents. In order to solve the frame problem, instances of Caused(.) shall be

minimized via circumscription [86, 87, 76].

In addition, the following axioms are assumed:

Caused(p, true, s)→ Holds(p, s) (6.1)

Caused(p, false, s)→ ¬Holds(p, s) (6.2)

1It is possible as well to rephrase our example in terms of Reiter’s: we can regard action save as drop,
which means putting a pin on a white, a black, or both squares (the pin lying on the region between two
squares). save1 (resp. save2) can be seen as analogous to drop1 (resp. drop2), which means putting the pin
in a black (resp. white) square.



60 Causality and Indeterminate Indirect Effects

which state that something that is caused in a situation smust hold in such a situation,

as well as something that is caused to cease is no longer valid in that situation.

In what follows, we describe the Mailboxes Scenario using this formalism. Fol-

lowing the definitions in the original work, the effect axioms for this scenario are:

Poss(save1, s)→ Caused(mbox1, true, do(save1, s)) (6.3)

Poss(save2, s)→ Caused(mbox2, true, do(save2, s)) (6.4)

Poss(save, s)→ Caused(saved, true, do(save, s)) (6.5)

Then, according to Lin’s method, we have to supplement the static law saved ↔

(mbox1 ∨ mbox2) in the following way: as save1 (resp. save2) has effect mbox1 (resp.

mbox2) and mbox1 (resp. mbox2) being true causes the truth of saved, then we must

causally relate mbox1 (resp. mbox2) and saved. This is done stating the formulas:

Caused(mbox1, true, s)→ Caused(saved, true, s) (6.6)

Caused(mbox2, true, s)→ Caused(saved, true, s) (6.7)

Thus, the way domain constraints and effect axioms are stated defines a fluent-

indexed strong causal notion: an atom being causally related with another, whenever

it becomes true, the other is forced to become true.

The other way round, as an execution of save has the direct effect saved and a

change in saved means a change in mbox1 and/or in mbox2, we are obliged to causally

relate saved with both mbox1 and mbox2. This is done stating the formula:

Caused(saved, true, s)→ Caused(mbox1, true, s) ∨ Caused(mbox2, true, s) (6.8)

Stating just these laws, according to the circumscription-based minimization pro-

cess defined in [79], we would get an exclusive interpretation of the disjunction

in (6.8), i.e., save would have the indirect effect mbox1⊕ mbox2. So, in order to capture

the possibility of save saving the e-mail in both mailboxes, in Lin’s approach we have

also to state the constraints:2

Caused(saved, true, s)→ Caused(mbox1, true, s) ∨ Caused(mbox1, false, s) (6.9)

Caused(saved, true, s)→ Caused(mbox2, true, s) ∨ Caused(mbox2, false, s) (6.10)

2It is worth noting that both consequents of (6.9) and (6.10) are not tautologies (cf. [78]).
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Thus, we have the following:

Proposition 6.1

Formulas (6.3)–(6.10) entail

Poss(save1, s)→ Caused(mbox2, true, do(save1, s))∨

Caused(mbox2, false, do(save1, s))

Proof:

Suppose that Poss(save1, s) is the case. Then, from Formula (6.3) we obtain

Caused(mbox1, true, s ′), where s ′ stands for do(save1, s). From this and Formula (6.6),

we get Caused(saved, true, s ′). Thus, constraint (6.9) gives us Caused(mbox1, true, s ′) ∨

Caused(mbox1, false, s ′). Nevertheless, even with the minimization policy defined

in [79], it is still possible to derive another extension: from Caused(saved, true, s ′) and

constraint (6.10) we conclude Caused(mbox2, true, s ′) ∨ Caused(mbox2, false, s ′).

So, we get that an execution of save1 can produce the indirect effect of changing

mbox2. But we do not want such an indirect effect, for save1would be nondeterminis-

tic. A possible solution for this could be to state

(Poss(save1, s) ∧ ¬Holds(mbox2, s))→ Caused(mbox2, false, do(save1, s))

from which we derive

(Poss(save1, s) ∧ ¬Holds(mbox2, s))→ ¬Holds(mbox2, do(save1, s))

but this is a frame axiom.

Another tentative of tackling the problem is stating

Poss(save1, s)→ Caused(mbox2, false, do(save1, s))

but, this is unintuitive, for in a situation where we already had saved, with the e-mail

in mbox2, saving again with save1would make a change in mbox2.

6.3 Causal Laws Approach

In this section, we formalize the Mailboxes Scenario using the base formalism pro-

posed by McCain and Turner [83]. Their approach considers that background knowl-
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edge about causation should be given in the form of causal laws, which are stated as

sentences in a modal, conditional logic with the aid of a causal modal operator⇒.

A causal law of the form ϕ ⇒ ψ, where ϕ and ψ are classical formulas, is read as

“ϕ causes ψ”, or “the truth of ϕ determines the truth of ψ”. In our terms, this is thus

a fluent-indexed causal approach.

Let Laws be the set of all causal laws concerning a given domain. A set of formu-

las T is closed under Laws if and only if whenever ϕ ⇒ ψ is in Laws and ϕ ∈ T ,

then ψ ∈ T . T ⊢
Laws

ϕ means that formula ϕ belongs to the smallest set of formulas

containing T that is closed w.r.t. propositional logic and also closed under Laws.

In the formalization that follows, a set of literals Facts denotes a knowledge base

(alias state), and Eff a set of direct effects.

With the causal laws approach, the representation of the Mailboxes Scenario is as

follows:

Laws =

{
saved⇒ (mbox1∨ mbox2),

(mbox1∨ mbox2)⇒ saved

}

The causal law saved⇒ (mbox1∨mbox2) is needed because the truth of fluent saved

causes the truth of formula mbox1∨ mbox2. Analogously, (mbox1∨ mbox2)⇒ saved is

necessary because mbox1 ∨ mbox2 being true causes saved also to be true. (Instead of

(mbox1 ∨ mbox2) ⇒ saved one could have as well the causal laws mbox1 ⇒ saved and

mbox2⇒ saved, whose justifications are straightforward. On the other hand, we could

not replace saved⇒ (mbox1∨ mbox2) by saved⇒ mbox1 and saved⇒ mbox2, for in this

case save would always cause mbox1∧ mbox2.)

Completing the domain description, we have a set of initial observations:

Facts0 = {¬mbox1,¬mbox2,¬saved}

and we suppose that saved has been produced as a direct effect:

Eff = {saved}

From this representation and according to McCain and Turner’s approach defined

in [83], after save action we get an exclusive interpretation of the disjunction mbox1 ∨

mbox2. This is shown in the following proposition:
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Proposition 6.2

Let Facts0 = {¬mbox1,¬mbox2,¬saved} and Eff = {saved}. Then the only possible

successor states are: {
{mbox1,¬mbox2, saved},

{¬mbox1,mbox2, saved}

}

Proof:

Following the definitions in [83], for any knowledge base Facts, any direct effects Eff,

and any set Laws of causal laws, the set of possible next states after performing an

action is the set of interpretations Facts ′ such that:

Facts ′ = {ℓ : ℓ ∈ Lit, (Facts ∩ Facts ′) ∪ Eff ⊢
Laws

ℓ}

where ⊢
Laws

is derivability w.r.t. the causal laws defined in Laws.

For the possible next state Facts1 = {mbox1,¬mbox2, saved}, we have Facts0 ∩

Facts1 = {¬mbox2} and {¬mbox2}∪ {saved} ⊢
Laws

mbox1, and this is a possible next state.

For the state Facts2 = {¬mbox1,mbox2, saved}, we have Facts0∩ Facts2 = {¬mbox1} and

{¬mbox1} ∪ {saved} ⊢
Laws

mbox2, and this is a possible next state, too. The interpreta-

tion Facts3 = {¬mbox1,¬mbox2, saved} is not a possible next state as clearly Facts3 is

not closed under Laws. Now, considering the state Facts4 = {mbox1,mbox2, saved}, we

have Facts0∩ Facts4 = ∅ and neither ∅ ∪ {saved} 6⊢
Laws

mbox1 nor ∅∪ {saved} 6⊢
Laws

mbox2,

so Facts4 is not closed under Laws. Thus, the only possible states after performing the

save action are Facts1 and Facts2, and from this the result follows.3

In order to avoid exclusive interpretation of disjunctions, we have to relax inertia

by increasing Laws with the following causal laws

(saved ∧ mbox1)⇒ mbox1

(saved ∧ mbox2)⇒ mbox2

However, with this apparent solution we get that an execution of save1 could make

a change in mbox2: the interpretation {mbox1,mbox2, saved} is a possible next state of

Facts0 w.r.t. Eff = {mbox1}.

In [84] an improved version of the causal laws approach is given. Basically, the

difference is that actions are made explicit and each action, fluent and formula has an

associated time point. For example, save12 means that the action of saving the e-mail

3The reader is invited to verify that with the causal laws mbox1 ⇒ saved and mbox2 ⇒ saved instead
of (mbox1 ∨ mbox2) ⇒ saved one obtains the same result.
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in mailbox 1 is executed at time point 2, and having mbox13means that at time point 3,

the e-mail is saved in mailbox 1 (independently of the action that has been executed

to achieve that).

Besides considering time, the following standard schemas are also assumed (remem-

bering, a stands for action names, p for atom (fluent) names, and ϕ for a formula):

at⇒ at (6.11)

¬at⇒ ¬at (6.12)

p0⇒ p0 (6.13)

¬p0⇒ ¬p0 (6.14)

ϕt∧ϕt+1⇒ ϕt+1 (6.15)

Schema (6.11) (resp. (6.12)) states that the occurrence (resp. non-occurrence) of

action a at time t is caused whenever a occurs (resp. does not occur) at t. The

Schemas (6.13) and (6.14) establish that the initial observations are caused from the

beginning. Schema (6.15) formalizes the common sense law of inertia, representing

the fact that whenever a set of fluents holds at two successive time points, their truth

at the second time point is taken to be caused simply by virtue of its persistence.

Using this variant of the causal laws approach, we formalize the Mailboxes Sce-

nario in the following way (Laws, Facts0 and Eff are as above, except that they are

time-indexed):

Laws =






save1t∧ ¬mbox1t⇒ mbox1t+1,

save2t∧ ¬mbox2t⇒ mbox2t+1,

savet⇒ savedt+1,

savedt⇒ (mbox1t∨ mbox2t),

(mbox1t∨ mbox2t)⇒ savedt






Facts0 = {¬mbox10,¬mbox20,¬saved0}

Again, with such a representation, our requirement about the interpretation of the

disjunction is violated: we get an exclusive interpretation of the nondeterminism of

the save action. As before, if we relax inertia by means of some extra causal laws, we

will also get that save1may cause a change in mbox2.
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6.4 Postprocessing Approach

In this section, we examine the postprocessing generation of ramifications proposed

by Thielscher [112, 113]. The basic idea of this approach consists in admitting states

not satisfying the domain constraints, which are seen as “intermediate states”. “Sta-

ble” states are obtained after successive applications of the so called causal relations.

A causal relation ℓ1 causes ℓ2 if ϕ, where ℓ1, ℓ2 ∈ Lit and ϕ ∈ Fml, is the way a fluent

indexed causal notion is defined in this approach.

In what follows, an action law is a triple 〈C, a, E〉, where a is an action, and C and

E are sets of literals containing, respectively, the action preconditions and effects, and

such that atm(C) = atm(E) (C and E have the same atoms). An influence relation is

a relation between atoms that is used to automatically generate the causal relations.

Saying that a pair (p1, p2), where p1, p2 ∈ Prop, is in the influence relation means that

a change in the truth value of p1 may cause a change in the truth value of p2.

A state of the world (not necessarily satisfying the domain constraints) is a pair

of sets of literals (Facts,Eff), where Facts denotes a knowledge base and Eff a set of

direct effects. An action law 〈C, a, E〉 is applicable to a state (Facts,Eff) if and only

if C ⊆ Facts. Performing an action a in a state of affairs Facts corresponds to ap-

plying its associated action law 〈C, a, E〉 to the pair (Facts,Eff), giving us a new pair

(Facts ′,Eff ′), where Facts ′ = (Facts \ C) ∪ E and Eff ′ = Eff ∪ E.

A causal relation ℓ1 causes ℓ2 if ϕ is applicable to a state (Facts,Eff) if and only if

Facts |=
CPL

ϕ ∧ ¬ℓ2∧ ℓ1 and ℓ1 ∈ Eff. The state resulting from applying such a causal

relation is (Facts ′,Eff ′), where Facts ′ = (Facts\{¬ℓ2})∪{ℓ2} and Eff ′ = (Eff\{¬ℓ2})∪{ℓ2}.

For the Mailboxes Scenario, we define the following action laws:

〈{¬mbox1}, save1, {mbox1}〉 (6.16)

〈{¬mbox2}, save2, {mbox2}〉 (6.17)

〈{¬saved}, save, {saved}〉 (6.18)

Action law (6.16) expresses that “in a state where mbox1 is false, after executing

save1, mbox1will be true”. For action laws (6.17) and (6.18), the reading is analogous.

The set of static laws is the singleton {saved↔ (mbox1∨ mbox2)}.

According to Thielscher’s approach, as for this example a change in mbox1 (resp.

mbox2) may cause a change in saved and vice-versa, we have to define the influence
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relation for this scenario as follows:

{
(mbox1, saved), (mbox2, saved),

(saved,mbox1), (saved,mbox2)

}

From this influence information and Algorithm 1 given in [112], we obtain the

following set of causal relations:






saved causes mbox1 if ¬mbox2,

saved causes mbox2 if ¬mbox1,

¬mbox1 causes ¬saved if ¬mbox2,

¬mbox2 causes ¬saved if ¬mbox1,

mbox1 causes saved if ⊤,

¬saved causes ¬mbox1 if ⊤,

mbox2 causes saved if ⊤,

¬saved causes ¬mbox2 if ⊤






Thus, with this domain description, we get the following:

Proposition 6.3

Let ({¬mbox1,¬mbox2,¬saved}, ∅) be an initial state. Then the only possible succes-

sor states after executing save action are ({mbox1,¬mbox2, saved}, {saved,mbox1}) and

({¬mbox1,mbox2, saved}, {saved,mbox2}).

Proof:

Let ({¬mbox1,¬mbox2,¬saved}, ∅) be the initial state. Then, applying the action

law (6.18) to it, we get the resulting (intermediate) state

({¬mbox1,¬mbox2, saved}, {saved}) (6.19)

As (6.19) is inconsistent w.r.t. the static law saved ↔ (mbox1 ∨ mbox2), we apply the

causal relation saved causes mbox1 if ¬mbox2 to (6.19) and obtain

({mbox1,¬mbox2, saved}, {saved,mbox1})

which is a successor state [112]. In this state, no other causal relation can be applied.

Looking at (6.19) again, we apply the causal relation saved causes mbox2 if ¬mbox1,

and obtain

({¬mbox1,mbox2, saved}, {saved,mbox2})
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which is a successor state, too. Again, in such a state, no other causal relation is

applicable. The same observation holds now for (6.19).

Therefore, there are only two successor states.

Then, we get that with Thielscher’s approach, action save gives an exclusive inter-

pretation of the conjunction in its indirect effects.

6.5 Modal Causality

We now formalize the Mailboxes Scenario using the base logic EPDL, proposed by Foo

and Zhang [119, 35]. Essentially, such a logic is an extension of PDL that allows for

modalities of the form [ϕ], with ϕ ∈ Fml, for specifying the indirect effects of actions.

Given ϕ,ψ ∈ Fml, the causal statement [ϕ]ψ means that formula ψ is caused when-

ever ϕ is the case. The semantical counterpart of such an extension is that models are

of the form 〈W,R〉, where W is as defined in Chapter 2, and R : Act ∪ Fml −→ 2W×W is

a function mapping action constants a to accessibility relations Ra ⊆ W × W, and clas-

sical formulas ϕ to accessibility relations Rϕ ⊆ W × W. Moreover, every EPDL-model

M = 〈W,R〉 must satisfy that for all w ∈ W and every ϕ ∈ Fml, if |=
M

w
ϕ, thenwRϕw.

Therefore in EPDL we are able to write formulas like [mbox1]saved, which states

that in all possible worlds in which mbox1 is true, saved is caused to be true. The

complete domain description for the Mailboxes Scenario in EPDL is given bellow:

T =






[saved](mbox1∨ mbox2), [mbox1∨ mbox2]saved,

〈save〉⊤, 〈save1〉⊤, 〈save2〉⊤,

[save]saved, [save1]mbox1, [save2]mbox2






In Foo and Zhang’s approach, static laws are implicitly derived from the causal

statements. Then, for the theory above, we have T |=
EPDL

saved ↔ (mbox1 ∨ mbox2)

without explicitly stating it.

Proposition 6.4

T |=
EPDL

(¬mbox1∧ ¬mbox2)→ [save1](mbox1∨ mbox2).

Proof:

1. ¬mbox1→ [save1]mbox1, from global axioms T and classical logic

2. ¬mbox2→ [save1]mbox1, from global axioms T and classical logic

3. [mbox1∨ mbox2]saved, from global axioms T
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4. (mbox1∨ mbox2)→ saved, from 3. and EPDL

5. ¬mbox2→ [save1]saved, from 2., 4. and classical logic

6. [saved](mbox1∨ mbox2), from global axioms T

7. saved → (mbox1∨ mbox2), from 6. and EPDL

8. ¬mbox2→ [save1](mbox1∨ mbox2), from 5. and 7.

9. (¬mbox1∧ ¬mbox2)→ [save1](mbox1∧ (mbox1∨ mbox2)), from 1. and 8.

10. (¬mbox1∧ ¬mbox2)→ [save1](mbox1∨ mbox2), from 9. and classical logic

This happens because no specific solution to the frame problem is associated to

EPDL, and then, without considering the frame axiom ¬mbox2 → [save1]¬mbox2, we

still get the above unintuitive result. As a way of avoiding to state frame axioms in the

domain description, Foo and Zhang [120] suggest to generate them “on the fly”, i.e.,

by the time queries are made. This could be achieved based on an interpolation result

stating that the only frame axioms needed are those mentioning actions and atoms

occurring in the vocabulary of the query. With this, according to the authors, it would

be enough to use some method for automatically generating frame axioms from the

effect laws, like, e.g. Pednault’s [95].

The advantage of such an approach to the frame problem is the fact that no infor-

mation about persistence has to be stated in the action theory. The inconvenience is

that frame axioms are still needed and must be computed during the reasoning pro-

cess. This constitutes an overhead that is neatly worse than that produced by checking

the literal preservation condition of the dependence-based approach (cf. Section 4.4).

6.6 The Mailboxes Scenario with Dependences

So far we have seen the difficulties that arise when we try to formalize actions with

both indeterminate and indirect effects in fluent-indexed causal approaches.

The problem with all these formalisms is that in our scenario there is an atom

(saved) that can be caused in two different ways (directly with save or indirectly with

save1 or save2) and that can or cannot cause nondeterministic ramifications depending

on the way it was generated. With fluent-indexed approaches we cannot record this

subtlety and this is the main reason they all fail in formalizing this example. So, with
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all this discussion, we have seen that with the approaches presented in [78, 79, 83, 84,

112, 119, 35] either we get an exclusive interpretation of the nondeterminism, or we

have to state frame axioms in the action theory.

Here we present the formalization of the Mailboxes Scenario in the dependence-

based approach, which is action-indexed. The corresponding action theory for that is

Dmail = 〈LPDL, |=
;

,T 〉, where

T =






saved↔ (mbox1∨ mbox2),

[save]saved, [save1]mbox1, [save2]mbox2,

〈save〉⊤, 〈save1〉⊤, 〈save2〉⊤






;=






〈save1,mbox1〉, 〈save2,mbox2〉,

〈save1, saved〉, 〈save2, saved〉,

〈save, saved〉, 〈save,mbox1〉, 〈save,mbox2〉






Then, we have Dmail |= [save](mbox1∨ mbox2), as intended.

This supports our thesis and others’ [102, 101, 14] according to which causality

must be action indexed, and also justifies our choice for the dependence-based solu-

tion to the frame problem. It is important to observe, however, that with it we do

not entirely solve the ramification problem: while indirect effects such as [save1]saved

can be deduced with |=
;

without explicitly stating that in the set of laws for save1, we

nevertheless still have to state indirect dependences such as save1 ; saved. However,

according to Reiter’s view:

“what counts as a solution to the frame problem . . . is a systematic proce-

dure for generating, from the effect laws, . . . a parsimonious representa-

tion for [all] the frame axioms” [100].

The framework of ; complies with that as the dependence relation can be semi-

automatically generated from the set of static and effect laws [13]. Moreover, as it has

been shown in this chapter and argued in [15, 55], our approach is in line with the

state of the art because none of the existing solutions to the frame and the ramification

problems can handle domains with both indeterminate and indirect effects.



70 Causality and Indeterminate Indirect Effects



Chapter 7

where we open our toolbox

Refining Modularity and

Computing Implicit Laws

So act that your principle of action might

safely be made a law for the whole world.

— Immanuel Kant

In this chapter, we make a step further into the concept of modularity. Besides

considering a solution to the frame and ramification problems integrated in the base

formalism, we develop a more fine grained analysis of modular theories. We achieve

that by investigating some possible arrangements of modules and establishing a set

of postulates that characterize modularity. Moreover, we also define algorithms to

identify the troubled part of a given theory.

7.1 Defining Modules

Remembering our central hypothesis, what we argue for is that the different types

of laws defined in Section 2.2 should be neatly separated in modules. Besides that,

following the ideas in Chapter 4, we want such laws to interfere only in one sense:

static laws together with action laws for a may have consequences that do not follow

from the action laws for a alone (e.g. ramifications). The other way round, action laws

should not allow to infer new static laws, action laws for a should not allow to infer

action laws for a ′, etc. This means that our logical modules should be designed in

such a way that they are as specialized and as little dependent on others as possible.

71



72 Refining Modularity and Computing Implicit Laws

Our first claim is that the distinction made between the types of laws commonly

used in reasoning about actions is not just a matter of syntactical sugar. By identifying

such a distinction and treating different formulas in different ways, we tacitly assume

that they constitute the basic entities in the theory of a domain description. It is not

difficult to see why: to determine the set of possible states, static laws must be dealt

with in a careful manner; in plan generation tasks, executabilities play an important

role; for prediction and regression, the effect laws take their turn; etc.

To simplify the presentation, in this chapter we investigate how this can be accom-

plished when just one action is considered. A generalization of the results we obtain

here is addressed in Chapter 8.

Given that, our first proposal here is to separate laws of different types into dif-

ferent pieces of a theory. Henceforth, the set of all static laws of a domain will be

denoted by S ⊆ Fml. For a ∈ Act, the set of effect laws for a is denoted by Ea; the set

of all executability laws for a will be denoted by X a; and all inexecutability laws for a

is denoted by Ia.

Definition 7.1 (Action theory for a)

An action theory for a is a tuple Da = 〈LPDL, |=
;

,T 〉, where T = S ∪ Ea ∪ X a ∪ Ia.

In our running scenario example, an action theory for tease would comprise

S = {walking→ alive}, E tease = {[tease]walking},

X tease = {〈tease〉⊤}, I tease = {¬alive→ [tease]⊥},

and a dependence ;= {〈tease,walking〉}.

With these basic entities, we address now modularization of action theories. In

what follows, given an action theory Da, we propose and analyze some possible ar-

rangements of the sets S , Ea, X a and Ia into what we call module prototypes (cf.

Section 3.1). The purpose here is to argue backwards from analyzing what modules in

reasoning about actions should be to a definition of modularity that better fits it. As

we cannot cope with local completeness (cf. Section 3.3), what we do in the sequel is

to relax such a principle and allow modules to have some degree of interaction. This

will give us a “coupling-friendly” modularity [57].

Looking at the set S alone, we see that static laws do not mention actions at all,

and then, in our context, they do not contain modal operators. This means that for in-

ferences concerning only static laws, we need neither all expressiveness of PDL nor its
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consequence relation. This suggests that static laws should constitute a module pro-

totype in classical propositional logic. Let 〈LCPL, |=CPL
,S〉 be such a sub-description,

where LCPL is the language of the classical propositional logic, and |=
CPL

is the classical

entailment relation.

Regarding the solution to the frame and ramification problems, it could be rea-

sonable to define a module prototype only for frame axioms. This would give us

〈LPDL, |=
;

, ∅〉. Nevertheless, a solution to the frame problem is global to the theory,

in the sense that its solution is necessary to most reasoning tasks. Moreover, deduc-

tion of frame axioms is mainly important in interacting with effect laws, and not for

just deriving some frame axioms sporadically. Because of this we consider having a

module like that would not really help modularity.

With a similar reasoning, we can expect to have a module prototype built on the

effect laws Ea and |=
PDL

: 〈LPDL, |=PDL
, Ea〉, i.e., a sub-description for deriving effect laws.

Unfortunately, in the presence of the frame and ramification problems, this is not

enough: in all inferences about effect laws, information about frame axioms and in-

direct effects (ruled by a causal notion) must be taken into account. This means that

〈LPDL, |=PDL
, Ea〉 would not be good as a module for reasoning about actions.

By applying the same analysis as in the above paragraphs, we can see that

〈LPDL, |=
PDL

,X a〉 and 〈LPDL, |=
PDL

,Ia〉 are not good as modules either. Even if, a pri-

ori, we do not need frame axioms to infer executabilities, the absence of static laws is

too restrictive. For the case of inexecutabilities, as long as they can be seen as a special

type of effect laws, frame axioms are important, or, as we are going to see in the se-

quel, because of some overlaps between Ea and Ia, we should at least guarantee that

all inexecutabilities entailed by the theory are in Ia (and thus S is mandatory).

Because static laws describe the laws of the universe being represented (and that

must be respected in every reasoning), it is reasonable to consider them as part of

every module.1 One of the reasons for that is the situation illustrated above: with-

out S , it is not possible to derive indirect effects with 〈LPDL, |=PDL
, Ea〉. The same can

be said about the solution to the frame problem: it should be present at least when ef-

fects are under concern. Moreover, there are trivial effect laws that are entailed by Ia:

ϕ → [a]⊥ entails ϕ → [a]ψ for any ψ ∈ Fml.2 In this case, we may also need inex-

1We could also see them as global data with a special status, similarly as done in [64]. For the sake
of presentation, we prefer to keep static laws in the same level as action laws, i.e., seeing them just as
formulas of a theory, so that the difference is just what they are for. Of course, in real implementations
there should be no redundant replications of the set S .

2If we were to argue against the principle of explosion (cf. Section 3.3), this could be a reason.
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ecutabilities to guarantee the module’s completeness. So a module prototype better

than 〈LPDL, |=PDL
, Ea〉 would rather be 〈LPDL, |=

;

,S ∪ Ea ∪ Ia〉. With it, all effects, non-

effects and ramifications of actions should be derived.

As long as action laws other than elements of X a are not necessarily needed to

infer executabilities, we can expect 〈LPDL, |=PDL
,S ∪ X a〉 to be a module prototype

for deriving executability laws. Similarly, and despite the fact that Ea plays a role in

the deduction of inexecutabilities, we shall define 〈LPDL, |=
PDL

,S ∪ Ia〉 as a module

prototype for inexecutability laws.

So, now we have four module prototypes: one for inferring in classical logic,

〈LCPL, |=CPL
,S〉; one for doing prediction and explanation in PDL with a solution to

the frame and ramification problems, 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉; a module prototype for

inferring executability laws 〈LPDL, |=PDL
,S ∪ X a〉; and one for the deduction of inexe-

cutabilities, 〈LPDL, |=PDL
,S ∪ Ia〉. Such sub-descriptions are minimal in the sense that

each one contains the minimum necessary potential interaction inside their data to the

realization of inferences in its domain of application. For instance, as argued above,

weakening 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 may have as consequence that some laws will no

longer be inferable in the module.

With that, we define our version of local completeness that gives us modularity:

Definition 7.2 (a-modularity)

Let Da = 〈LPDL, |=
;

,T 〉 be an action theory for a such that T = S ∪ Ea ∪ X a ∪ Ia. Da is

a-modular if and only if

1. Da |= ϕ implies 〈LCPL, |=CPL
,S〉 |= ϕ

2. Da |= ϕ→ 〈a〉⊤ implies 〈LPDL, |=PDL
,S ∪ X a〉 |= ϕ→ 〈a〉⊤

3. Da |= ϕ→ [a]⊥ implies 〈LPDL, |=PDL
,S ∪ Ia〉 |= ϕ→ [a]⊥

4. Da |= ϕ→ [a]ψ implies 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 |= ϕ→ [a]ψ

The main difference between our definition of local completeness and those of

Garson and Cuenca Grau et al. (cf. Section 3.3) is that we do not require modules to

be disjoint modulo logical consequences. In other words, we allow for a formula of a

given type to be inferred from different modules.

Just having module prototypes defined in our way is not enough to have a-

modularity. This is what we address in the sequel.
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7.2 More Fine Grained Postulates

A first step toward modularity has been the proposed division of our entities into

modules. Recalling the discussion in Chapter 3, in order to accomplish our goal, we

have to diminish interaction among such modules, rendering them the least interwo-

ven we can.

Restricted to the case of one action, in the rest of this chapter we will state and

investigate postulates that guarantee modularity, and give a method to satisfy them.

Although we here use the syntax of PDL, all we shall say applies as well to first-order

formalisms, in particular to the Situation Calculus. All postulates we are going to

present can be stated as well for other frameworks, in particular for action languages

such as A, AR [39, 65, 44] and others, and for Situation Calculus based approaches.

In [57] we have given a Situation Calculus version of our analysis.

Let Da = 〈LPDL, |=
;

,T 〉 be such that T = S ∪ Ea ∪ X a ∪ Ia.

PC (Logical consistency): Da 6|= ⊥

The theory of a given action should be logically consistent.

PS (No implicit static laws): if Da |= ϕ, then 〈LCPL, |=CPL
,S〉 |= ϕ

If a classical formula can be inferred from the action theory, then it should be inferable

from the set of static laws alone.

PI (No implicit inexecutability laws):

if Da |= ϕ→ [a]⊥, then 〈LPDL, |=PDL
,S ∪ Ia〉 |= ϕ→ [a]⊥

If an inexecutability law for a given action a can be inferred from its domain descrip-

tion, then it should be inferable in PDL from the static laws and the set of inexecutabil-

ity laws for a alone.

PX (No implicit executability laws):

if Da |= ϕ→ 〈a〉⊤, then 〈LPDL, |=
PDL

,S ∪ X a〉 |= ϕ→ 〈a〉⊤

If an executability law for a can be inferred from its action theory, then it should al-

ready “be” in X a, in the sense that it should also be inferable in PDL from the set of

static and executability laws for a alone.
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Postulate PC is obvious, for we are interested in consistent theories. Moreover, it

can be shown that PX is a consequence of PS (see Corollary 8.2).

Thus, while PC is obvious and PX can be ensured by PS, things are less obvious

for Postulates PS and PI: it turns out that, for all approaches in the literature, they

are easily violated by action theories that allow to express the four kinds of laws.

We therefore study each of these postulates in the subsequent sections by means of

examples, give algorithms to decide whether they are satisfied, and discuss about

what to do in the case the answer is “no”.

7.3 No Implicit Static Laws

While executability laws increase expressive power, they might conflict with inexe-

cutability laws. Consider, for example, Dtease
wts = 〈LPDL, |=

;

,S ∪ E tease ∪ X tease ∪ I tease〉,

where

S = {walking→ alive}, E tease = {[tease]walking},

X tease = {〈tease〉⊤}, I tease = {¬alive→ [tease]⊥}

and the dependence relation is given by ;= {〈tease,walking〉}.

From this description, we have the unintuitive inference X tease,I tease |=
PDL

alive: the

turkey is immortal (Figure 7.1)! This is an implicit static law (cf. Section 4.3) because

alive does not follow from S alone: Dtease
wts violates Postulate PS.

¬l, w
a, h

¬l, ¬w
a, h

¬l, w
a, ¬h

l, w
a, ¬h

¬l, ¬w
a, ¬h

l, ¬w
a, ¬h

l, ¬w
a, h

l, w
a, h

t

t

t

t

t

t

t

t

Figure 7.1: A ;-model for the theory in Dtease: the turkey is immortal.

Implicit static laws are not a drawback of our underlying logical formalism. They

also appear in Situation Calculus-based approaches and in causal laws theories. To
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witness3, suppose in Lin’s framework we have

Holds(p1, s)→ Caused(p2, true, s) (7.1)

and

Caused(p2, false, s) (7.2)

Then from (7.2) and Axiom (6.2), we get

¬Holds(p2, s) (7.3)

From (7.2) and the contrapositive of Axiom (6.1) it follows

¬Caused(p2, true, s) (7.4)

Finally, from (7.1) and (7.4) we get

¬Holds(p1, s)

which is an implicit static law.

To see how implicit static laws show up in McCain and Turner’s causal laws ap-

proach (cf. Section 6.3), let Laws contain the causal law ϕ ⇒ ψ and T = {¬ψ}. Then

¬ϕ is an implicit static law in such a description.

How can we find out whether an action theory for a satisfies Postulate PS? Before

that, we need a definition.

Definition 7.3 (Big model)

Let Da = 〈LPDL, |=
;

,T 〉 be such that T = S ∪Ea ∪X a ∪Ia. Then M = 〈W,R〉 is the big

(alias maximal/standard) model for Da if and only if:

• M is a ;-model;

• W = valuations(S ) (all valuations of S ); and

• Ra = {(w,w ′) : for all ϕ→ [a]ψ ∈ Ea ∪ Ia, if |=
M

w
ϕ, then |=

M

w′
ψ}.

For an example, consider an action theory whose components are given by

S = ∅, Ea = {p1→ [a]¬p2}, X
a = {〈a〉⊤},

3The examples are from [104].
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Ia = {p2→ [a]⊥}, and ;= {〈a,¬p1〉, 〈a,¬p2〉}

Figure 7.2 depicts one of its models and its associated big model.

M :

p1,¬p2

¬p1,¬p2

a

a

Mbig :

p1,¬p2

¬p1,¬p2

p1, p2 ¬p1, p2
a

a

a

Figure 7.2: A model of Da and the big model Mbig of Da.

Big models contain all valuations consistent with S . Clearly, for a big model M

we have |=
M

S ∧ Ea ∧ Ia. Because M extends the set of possible worlds, it is only X a

which might not be true in M .

Theorem 7.1

Let Da = 〈LPDL, |=
;

,T 〉 be such that T = S ∪ Ea ∪ X a ∪ Ia. Da satisfies Postulate PS if

and only if the big model for Da is a model of Da.

Proof:

Let M = 〈W,R〉 be the big model of Da = 〈LPDL, |=
;

S ∪ Ea ∪ X a ∪ Ia〉.

(⇒): As M is a big model of Da, we have |=
M

S ∧ Ea ∧ Ia. It remains to show that

|=
M

X a. Let ϕi → 〈a〉⊤ ∈ X a, and let w ∈ W be such that |=
M

w
ϕi. Therefore, for

all ϕj ∈ Fml such that S , Ea,X a,Ia |=
;

ϕj → [a]⊥, we must have 6|=
M

w
ϕj, because

S , Ea,X a,Ia |=
;

¬(ϕi ∧ ϕj), and as Da satisfies Postulate PS, S |=
CPL

¬(ϕi ∧ ϕj), and

hence |=
M

¬(ϕi∧ϕj). Then, by the construction of M , there is some w ′ ∈ W such that

|=
M

w′
ψ, for all ϕ → [a]ψ such that S , Ea,Ia |=

;

ϕ → [a]ψ and |=
M

w
ϕ, and wRaw

′. Hence,

|=
M

w
ϕi→ 〈a〉⊤, and thus M is a model of Da.

(⇐): Suppose Da does not satisfy Postulate PS. Then there must be ϕ ∈ Fml such that

Da |= ϕ and 〈LCPL, |=CPL
,S〉 6|= ϕ, i.e., S , Ea,X a,Ia |=

;

ϕ and S 6|=
CPL

ϕ. Hence there

is a valuation val of S that falsifies ϕ. As val ∈ W (because M contains all possible

valuations of S ), M is not a model of Da.
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In the rest of this section, we will characterize when a domain description admits

a big model.

We shall give an algorithm to find a finite characterization of all4 implicit static

laws of a given action theory Da. The idea follows that of Algorithm 4.1 with the

improvement of taking into account dependence information: for each executability

law ϕ → 〈a〉⊤ in the theory, construct from Ea, Ia and ; a set of inexecutabilities

{ϕ1 → [a]⊥, . . . , ϕn → [a]⊥} that potentially conflict with ϕ → 〈a〉⊤. For each i,

1 ≤ i ≤ n, if ϕ∧ ϕi is satisfiable w.r.t. S , mark ¬(ϕ ∧ϕi) as an implicit static law. In

the same way as done in Algorithm 4.2, incrementally repeat this procedure (adding

all the implicit ¬(ϕ∧ϕi) to S ) until no more implicit static law is obtained.

For an example of the execution of the algorithm, consider the action theory for

tease above. For the action tease, we have the executability 〈tease〉⊤. Now, from E tease,

I tease and ;, we try to build an inexecutability for tease. We take [tease]walking and

compute then all indirect effects of tease w.r.t. S . From walking → alive, we get that

alive is an indirect effect of tease, giving us [tease]alive. But 〈tease, alive〉 /∈ ;, which

means the frame axiom ¬alive → [tease]¬alive holds. Together with [tease]alive, this

gives us the inexecutability ¬alive → [tease]⊥. As S ∪ {⊤,¬alive} is satisfiable (⊤ is

the antecedent of the executability 〈tease〉⊤), we get ¬alive → ⊥, i.e., the implicit static

law alive. For this example, no other inexecutability for tease can be derived, so the

computation stops.

Before presenting the pseudo-code of the algorithm, we need some definitions.

Definition 7.4 (Implicate)

Let ϕ ∈ Fml and χ be a clause. χ is an implicate of ϕ if and only if ϕ |=
CPL

χ.

In our running example, walking ∨ alive and ¬walking ∨ alive are implicates of the

set of formulas {walking→ alive,walking}.

Definition 7.5 (Prime implicate)

Let ϕ ∈ Fml and χ be a clause. χ is a prime implicate of ϕ if and only if

• χ is an implicate of ϕ, and

• for every implicate χ ′ of ϕ, χ ′ |=
CPL

χ implies χ |=
CPL

χ ′.

The set of all prime implicates of a formula ϕ is denoted PI(ϕ).

4Actually, what the algorithm does is to find an interpolant of all implicit static laws of the theory.
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For example, the set of prime implicates of p1 is just {p1}, and that of p1∧(¬p1∨p2)∧

(¬p1∨ p3∨ p4) is {p1, p2, p3∨ p4}. In our shooting domain, alive is a prime implicate of

{walking→ alive,walking}. For more on prime implicates and their properties, see [82].

Definition 7.6 (Function NewCons(.))

Let ϕ,ψ ∈ Fml. Then NewCons(ψ,ϕ) = PI(ϕ∧ψ) \ PI(ϕ).

The function NewCons(ψ,ϕ) computes the new consequences of ψw.r.t.ϕ: the set of

strongest clauses that follow from ϕ∧ψ, but do not follow fromϕ alone (cf. e.g. [61]).

It is computed by subtracting the prime implicates of ϕ from those of ϕ ∧ ψ. For

example, NewCons((¬p1 ∨ p2) ∧ (¬p1 ∨ p3 ∨ p4), p1) = {p2, p3 ∨ p4}. And for our

scenario, NewCons(walking,walking→ alive) = {alive,walking}.

The algorithm below improves both Algorithms 4.1 and 4.2 by integrating a so-

lution to the frame problem (via the dependence relation ;). For convenience, we

define Ca = Ea ∪ Ia as the set of all formulas expressing the direct consequences of an

action a, whether they are consistent or not.

Algorithm 7.1 Finding all implicit static laws induced by a

input: Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉
output: Simp*, the set of all implicit static laws of Da

Simp*:= ∅
Ca:= Ea ∪ Ia

repeat

Simp:= ∅
for all ϕ→ 〈a〉⊤ ∈ X a do

for all Ĉa ⊆ Ca such that Ĉa 6= ∅ do

ϕĈa:=
∧

{ϕi : ϕi→ [a]ψi ∈ Ĉa}

ψĈa:=
∧

{ψi : ϕi→ [a]ψi ∈ Ĉa}

for all χ ∈ NewCons(ψĈa ,S ) do

if S ∪ Simp* ∪ {ϕ,ϕĈa ,¬χ} 6|=
CPL

⊥ and ∀ℓi ∈ χ, a 6; ℓi then

Simp:= Simp ∪ {¬(ϕ∧ϕĈa ∧ ¬χ)}

Simp*:= Simp* ∪ Simp

until Simp = ∅

In each step of the algorithm, S ∪Simp* is the updated set of static laws (the original

ones fed with the implicit laws caught up to that point). At the end, Simp* collects all

the implicit static laws.

The following result establishes decidability of the method:

Theorem 7.2 (Decidability)

Algorithm 7.1 terminates.
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Proof:

Let Ca = Ea ∪ Ia. First, the set of candidates to be an implicit static law that might be

due to a and that are examined in the repeat-loop is

{¬(ϕ∧ϕĈa ∧ ¬χ) : Ĉa ⊆ Ca, ϕ→ 〈a〉⊤ ∈ X a and χ ∈ NewCons(ψĈa ,S )}

As Ea, Ia and X a are finite, this set is finite.

In each step, either the algorithm stops because Simp = ∅, or at least one of the

candidates is put into Simp in the outermost for-loop. (This one terminates, because

X a, Ca and NewCons(.) are finite.) Such a candidate is not going to be put into Simp

in future steps, because once added to S ∪ Simp*, it will be in the set of laws S ∪ Simp*

of all subsequent executions of the outermost for-loop, falsifying its respective if-test

for such a candidate. Hence the repeat-loop is bounded by the number of candidates,

and therefore Algorithm 7.1 terminates.

While terminating, our algorithm comes with considerable computational costs:

first, the number of formulas ϕĈa and ψĈa is exponential in the size of Ca, and second,

the computation of NewCons(ψĈa ,S ) might result in exponential growth. While we

might expect Ca to be reasonably small in practice (because Ea and Ia are in general

small), the size of NewCons(ψĈa ,S ) is more difficult to control.

Example 7.1

For Dtease
wts , Algorithm 7.1 returns Simp* = {alive}.

The following theorem establishes soundness and completeness of our method:

Theorem 7.3

Let Simp* be the output of Algorithm 7.1 on input Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉.

Then Da satisfies Postulate PS if and only if Simp* = ∅.

Proof:

See Appendix C.

Corollary 7.1

Let Simp* be the output of Algorithm 7.1 on input Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉.

Then

1. 〈LPDL, |=
;

,S ∪ Simp* ∪ Ea ∪ X a ∪ Ia〉 satisfies PS.

2. Da |=
∧

Simp*.
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Proof:

Item 1. is straightforward from the termination of Algorithm 7.1 and Theorem 7.3.

Item 2. follows from the fact that by the if-test in Algorithm 7.1, the only formulas

that are put in Simp* at each execution of the repeat-loop are exactly those that are

implicit static laws of the current theory, and therefore of the original theory, too.

Corollary 7.2

For all ϕ ∈ Fml, Da |= ϕ if and only if 〈LCPL, |=CPL
,S ∪ Simp*〉 |= ϕ.

Proof:

For the left-to-right direction, let ϕ ∈ Fml be such that Da |= ϕ, i.e., S , Ea,X a,Ia |=
;

ϕ,

and hence S ∪ Simp*, E
a,X a,Ia |=

;

ϕ, by monotonicity. By Corollary 7.1-1., we have

that 〈LPDL, |=
;

,S ∪ Simp* ∪ Ea ∪X a ∪ Ia〉 has no implicit static law. From this it follows

〈LCPL, |=CPL
,S ∪ Simp*〉 |= ϕ.

The right-to-left direction is straightforward by Corollary 7.1-2.

What shall we do once we have discovered an implicit static law?

The presence of implicit static laws may indicate too strong executability laws: in

Example 7.1, we wrongly assumed that tease is always executable. Thus one way of

“repairing” our theory would be to consider the weaker executability alive→ 〈tease〉⊤

instead of 〈tease〉⊤ in X tease.

On the other hand, implicit static laws may also indicate that the inexecutability

laws are too strong:

Example 7.2

Consider Dshoot
wts such that S = ∅, E shoot = {loaded → [shoot]¬alive}, X shoot = {hasGun →

〈shoot〉⊤} and Ishoot = {[shoot]⊥}, with ;= {〈shoot,¬alive〉, 〈shoot,¬walking〉. For this

action theory, Algorithm 7.1 returns Simp* = {¬hasGun}.

In Example 7.2, we discovered that the agent never has a gun. The problem here

can be overcome by weakening [shoot]⊥ in Ishoot with ¬hasGun→ [shoot]⊥.5

We can go further on in this reasoning and also argue that the problem may

be due to a too strong set of effect laws, or even to too strong frame axioms (i.e.,

a too weak dependence relation). To witness, for Example 7.1, if we take off the

inexecutability ¬alive → [tease]⊥ and replace the law [tease]walking by the weaker

alive → [tease]walking, the resulting action theory would satisfy Postulate PS. In the

5Regarding Examples 7.1 and 7.2, one might argue that in practice such silly errors will never be
made. Nevertheless, the examples here given are quite simplistic, and for applications of real interest,
whose complexity will be much higher, we simply cannot rely on the designer’s knowledge about all
side effects the stated formulas can have.



§7.3 No Implicit Static Laws 83

same way, stating the (unintuitive) dependence tease ; alive (which means the frame

axiom ¬alive → [tease]¬alive is no longer valid) guarantees satisfaction of PS. (Note,

however, that this solution becomes intuitive when alive is replaced by awake.)

To finish, implicit static laws of course may also indicate that the static laws them-

selves are too weak:

Example 7.3

Suppose a computer representation of the line of integers, in which we can be at a

strictly positive number, positive, or at a negative one or zero, ¬positive. Let maxInt

and minInt, respectively, be the largest and the smallest representable integer number.

Action goLeft is the action of moving to the biggest integer strictly smaller than the

one at which we are. Consider the action theory D
goLeft
Z

for this scenario such that (ati

means we are at number i):

S = {ati→ positive : 0 < i ≤ maxInt} ∪ {ati→ ¬positive : minInt ≤ i ≤ 0}

EgoLeft = {atminInt → [goLeft]underflow} ∪ {ati→ [goLeft]ati−1 : i > minInt},

X goLeft = {〈goLeft〉⊤}, IgoLeft = ∅

with the dependence relation (minInt ≤ i < maxInt):

; =

{
〈goLeft, ati〉, 〈goLeft, positive〉,

〈goLeft,¬positive〉, 〈goLeft,underflow〉

}

Applying Algorithm 7.1 to this action theory would give us the implicit static law

¬(at1∧ at2), i.e., we cannot be at numbers 1 and 2 at the same time.

To summarize, in order to satisfy Postulate PS, an action theory should contain

a complete set of static laws or, alternatively, should not contain too strong action

laws (executability, inexecutability or effect laws). We will come back to this point in

Chapter 9, where we address action theory change.

Remark 7.1 S ∪ Simp* in general is not intuitive.

Whereas in the latter example the implicit static laws should be added to S , in the

others the implicit static laws are unintuitive and due to an (in)executability law that

is too strong and should be weakened. Of course, how intuitive the modified action

theory will be depends mainly on the knowledge engineer’s choice.
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7.4 No Implicit Inexecutability Laws

Let Dtease
wts be such that S = {walking→ alive}, E tease = {[tease]walking}, X tease = I tease = ∅,

and ;= {〈tease,walking〉}. Dtease
wts in this way satisfies Postulate PS. Now we observe

that from [tease]walking it follows with S that [tease]alive, i.e., in every situation, after

teasing the turkey, it is alive: Dtease
wts |= [tease]alive. Now as tease 6; alive, the status of

alive is not modified by tease, and we have Dtease
wts |= ¬alive → [tease]¬alive. From the

above, it follows

Dtease
wts |= ¬alive → [tease]⊥,

i.e., an inexecutability law stating that a dead turkey cannot be teased. But

S ,I tease 6|=
PDL

¬alive→ [tease]⊥,

and then

〈LPDL, |=PDL
,S ∪ I tease〉 6|= ¬alive→ [tease]⊥

which means that Postulate PI is violated. Here the formula ¬alive → [tease]⊥ is an

example of what we call an implicit inexecutability law.

In the literature, such laws are also known as implicit qualifications [42], and it has

been often supposed, in a more or less tacit way, that it is a positive feature of frame-

works to leave them implicit and provide mechanisms for inferring them [78, 79, 113].

The other way round, one might argue as well that implicit qualifications indicate that

the domain has not been described in an adequate manner: the form of inexecutabil-

ity laws is simpler than that of effect laws, and it might be reasonably expected that

it is easier to exhaustively describe them.6 Thus, all inexecutabilities of a given action

should be explicitly stated, and this is what Postulate PI says.

How can we check whether PI is violated? We can conceive an algorithm to find

implicit inexecutability laws of a given action a. The basic idea is as follows: for every

combination of effect laws of the form (ϕ1∧ . . .∧ϕn)→ [a](ψ1∧ . . .∧ψn), with each

ϕi → [a]ψi ∈ Ea, if ϕ1 ∧ . . . ∧ ϕn is consistent w.r.t. to S , ψ1∧ . . . ∧ ψn inconsistent

w.r.t. S , and S ,Ia 6|=
PDL

(ϕ1∧ . . .∧ϕn)→ [a]⊥, then output (ϕ1∧ . . .∧ϕn)→ [a]⊥ as

an implicit inexecutability law. Our algorithm basically does this, and moreover takes

into account dependence information.

6Note that this concerns the necessary conditions for executability, and thus it is not related to the
qualification problem [85], which basically says that it is difficult to state all the sufficient conditions for
executability of an action.
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For an example of the execution of the algorithm, take Dtease
wts as above. From E tease

we get ⊤ → [tease]walking, whose antecedent is consistent with S . As |=
;

¬alive →

[tease]¬alive and S ∪ {walking} |=
CPL

alive, and because S ,I tease 6|=
PDL

(⊤ ∧ ¬alive) →

[tease]⊥, we caught an implicit inexecutability. As there is no other combination of

effect laws for tease, we end the simulation here.

Algorithm 7.2 below shows the pseudo-code for that (the reason X a is not used in

the computation will be made clear in the sequel).

Algorithm 7.2 Finding implicit inexecutability laws for a

input: Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉
output: Ia

imp , the set of implicit inexecutability laws for a

Ia
imp

:= ∅

for all Êa ⊆ Ea do

ϕÊa:=
∧

{ϕi : ϕi→ [a]ψi ∈ Êa}

ψÊa:=
∧

{ψi : ϕi→ [a]ψi ∈ Êa}

for all χ ∈ NewCons(ψÊa ,S ) do

if ∀ℓi ∈ χ, a 6; ℓi and S ,Ia 6|=
PDL

(ϕÊa ∧ ¬χ)→ [a]⊥ then

Ia
imp

:= Ia
imp ∪ {(ϕÊa ∧ ¬χ)→ [a]⊥}

Theorem 7.4 (Decidability)

Algorithm 7.2 terminates.

Proof:

Straightforward, as we have assumed S , Ea, X a, Ia and ; finite, and NewCons(.) is

finite (because S and ψÊa are finite).

Example 7.4

Consider Dtease
wts as given above. Then Algorithm 7.2 returns I tease

imp = {¬alive → [tease]⊥}.

Nevertheless, applying Algorithm 7.2 is not enough to guarantee Postulate PI, as

illustrated by the following example:

Example 7.5 (Incompleteness of Algorithm 7.2 without PS)

Let Da be such that S = ∅, Ea = {p1 → [a]p2}, X
a = {〈a〉⊤}, Ia = {p2 → [a]⊥}, and

;= ∅. Then we have Da |= p1→ [a]⊥, but after running Algorithm 7.2 on Da we have

〈LPDL, |=PDL
,S ∪ Ia ∪ Ia

imp〉 6|= p1→ [a]⊥.

Example 7.5 shows that the presence of implicit static laws (induced by executabil-

ities) implies the existence of implicit inexecutabilities that are not caught by Algo-
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rithm 7.2. One possibility of getting rid of this is by considering the weaker version of

Postulate PI:

PI’ (No implicit inexecutability laws – weak version):

if Da |= ϕ→ [a]⊥ and Da 6|= ¬ϕ, then 〈LPDL, |=PDL
,S ∪ Ia〉 |= ϕ→ [a]⊥

If a non-trivial inexecutability law for a given action a can be inferred from its respec-

tive theory, then it should be inferable in PDL from the static and inexecutability laws

for it alone.

With an adaptation of Algorithm 7.2 to support a test for satisfiability of an in-

executability’s antecedent, we could guarantee completeness with respect to Postu-

late PI’. However, such a test has the same complexity as checking whether Postu-

late PS is satisfied. That is the reason we keep abide on PI and require Da to satisfy

Postulate PS prior to running Algorithm 7.2. This gives us the following result:

Theorem 7.5

Let Ia
imp be the output of Algorithm 7.2 on input Da = 〈LPDL, |=

;

,S ∪ Ea ∪ X a ∪ Ia〉. If

Da satisfies Postulate PS, then Da satisfies Postulate PI if and only if Ia
imp = ∅.

Proof:

See Appendix C.

With Algorithm 7.2, not only do we decide whether Postulate PI is satisfied, but

we also get information on how to “repair” the action theory. The set of implicit inex-

ecutabilities so obtained provides logical and meta-logical information concerning the

correction that must be carried out: in the first case, elements of Ia
imp can be added to

Ia; in the second one, Ia
imp helps in properly changing Ea or ;. For instance, to correct

the action theory of our example, the knowledge engineer would have the following

options:

1. Add the qualification ¬alive→ [tease]⊥ to I tease; or

2. Add the (unintuitive) dependence 〈tease, alive〉 to ;; or

3. Weaken the effect law [tease]walking to alive→ [tease]walking in E tease.

It is easy to see that whatever she opts for, the resulting action theory for tease will

satisfy Postulate PI (while still satisfying PS).
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Example 7.6 (Drinking coffee [57])

Suppose a situation in which we reason about the effects of drinking a cup of coffee,

given by the action theory Ddrink
coffee such that:

S = ∅, Edrink =

{
sugar→ [drink]happy,

salt→ [drink]¬happy

}

,

X drink = Idrink = ∅

and the dependence relation is

;= {〈drink, happy〉, 〈drink,¬happy〉}

Observe that Ddrink
coffee satisfies PS. Then, running Algorithm 7.2 on this action theory

will give us Idrink
imp = {(sugar ∧ salt)→ [drink]⊥}.

Remark 7.2 Ia ∪ Ia
imp is not always intuitive.

Whereas in Example 7.4 we have got an inexecutability that could be safely added

to I tease, in Example 7.6 we got an inexecutability that is unintuitive (just the presence

of sugar and salt in the coffee precludes drinking it). In that case, revision of other

parts of the theory should be considered in order to make it intuitive. Anyway, the

problem pointed out in the depicted scenario just illustrates that intuition is beyond

syntax. The scope of this work relies on the syntactical level. Only the knowledge

engineer can judge about how intuitive a formula is.

In the next chapter, we revisit our postulates in order to strengthen them to the

case where more than one action is under concern, and thus get results that can be

applied to whole action theories.
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Chapter 8

where our method becomes a Swiss Army knife

Generalizing

Modularity and Exploiting It

All generalizations are dangerous, even this one.

— Alexandre Dumas

In this chapter, we generalize Postulates PC, PS and PI to action theories as a

whole, i.e., considering all actions of a domain, and prove some results that follow

from that. We also investigate whether our set of postulates can be augmented in

order to get a more refined notion of modularity. We close the chapter showing the

benefits we get from domain descriptions that are modular in our sense.

8.1 Postulates for Multiple Action Theories

Go as far as you can see, and when you get there, you will see farther

— Anonymous

We have seen the importance satisfaction of Postulates PC, PS and PI may have in

describing the action theory of a particular action a. However, in applications of real

interest, more than one action is involved, and thus a natural question that could be

raised is “can we have similar meta-theoretical results for multiple action theories?”

Given a dynamic domain, we define E =
⋃

a∈ActE
a, X =

⋃
a∈ActX

a, and I =
⋃

a∈Act I
a. All these sets are finite, because Act is finite and each of the Ea, X a, Ia is

finite. We here redefine action theories.

89
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As I told earlier, I never repeat anything.

Definition 8.1 (Action theory)

An action theory is a tuple D = 〈LPDL, |=
;

,T 〉, where T = S ∪ E ∪ X ∪ I .

Given that, a generalization of Postulate PC for whole action theories is quite easy

and has no need for justification:

PC* (Logical consistency): D 6|= ⊥

The whole action theory should be logically consistent.

Generalizing Postulate PS will give us the following:

PS* (No implicit static laws): if D |= ϕ, then 〈LCPL, |=CPL
,S〉 |= ϕ

If a classical formula can be inferred from the whole action theory, then it should be

inferable from the set of static laws alone. We have the following results:

Theorem 8.1

D satisfies Postulate PS* if and only if Da satisfies Postulate PS for all a ∈ Act.

Proof:

(⇒): Straightforward: Suppose that for some a ∈ Act Da does not satisfy PS. Then

there is ϕ ∈ Fml such that Da |= ϕ and 〈LCPL, |=CPL
,S〉 6|= ϕ, i.e., S , Ea,X a,Ia |=

;

ϕ

and S 6|= ϕ. Of course S , E ,X ,I |=
;

ϕ, by monotonicity, and then D |= ϕ, but still

〈LCPL, |=CPL
,S〉 6|= ϕ. Hence D does not satisfy PS*.

(⇐): Suppose D does not satisfy PS*. Then there is ϕ ∈ Fml such that D |= ϕ and

〈LCPL, |=CPL
,S〉 6|= ϕ, i.e., S , E ,X ,I |=

;

ϕ and S 6|= ϕ. ϕ is equivalent to ϕ1 ∧ . . . ∧

ϕn, with ϕ1, . . . , ϕn ∈ Fml and such that there is at least one ϕi such that S 6|= ϕi

(otherwise S |= ϕ). Because the logic is independently axiomatized, there must be

some a ∈ Act such that S , Ea,X a,Ia |=
;

ϕi. From this and 〈LCPL, |=CPL
,S〉 6|= ϕi it

follows that Da does not satisfy PS.

Corollary 8.1

D satisfies Postulate PS* if and only if the big model for D is a model of D .

Proof:

The proof follows from Theorems 7.1 and 8.1.
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Theorem 8.2

If D satisfies PS*, then D satisfies PC* if and only if Da satisfies PC for all a ∈ Act.

Proof:

Let D satisfy PS*.

(⇒): Suppose that Da does not satisfy PC, for some a ∈ Act. Because D satisfies PS*,

Da satisfies Postulate PS (Theorem 8.1), and then 〈LCPL, |=CPL
,S〉 |= ⊥. From this it

follows that D |= ⊥ (by monotonicity) and then D does not satisfy Postulate PC*.

(⇐): Suppose D does not satisfy PC*. Then D |= ⊥. Because D satisfies Postulate PS*,

〈LCPL, |=CPL
,S〉 |= ⊥. Since Act 6= ∅, there is some a ∈ Act such that Da |= ⊥.

A more general form of Postulate PI can also be stated:

PI* (No implicit inexecutability laws):

if D |= ϕ→ [a]⊥, then 〈LPDL, |=PDL
,S ∪ I〉 |= ϕ→ [a]⊥

If an inexecutability law can be inferred from the whole action theory, then it should

be inferable in PDL from the static and inexecutability laws alone.

Note that having that Da satisfies PI for all a ∈ Act is not enough to D satisfy PI*

if there are implicit static laws. To witness, let S = Ea1 = ∅, X a1 = {〈a1〉⊤}, and

Ia1 = {ϕ→ [a1]⊥}. Let also Ea2 = X a2 = Ia2 = ∅, and let ;= ∅. Observe that both Da1

and Da2 satisfy PI, but D |= ϕ→ [a2]⊥ and 〈LPDL, |=PDL
,S ∪ I〉 6|= ϕ→ [a2]⊥.

Nevertheless, under PS* the result follows:

Theorem 8.3

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfy Postulate PS*. D satisfies Postulate PI* if

and only if Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉 satisfies Postulate PI for all a ∈ Act.

Proof:

See Appendix D.

In the next section we make a step toward an attempt of amending our modularity

criteria by investigating possible extensions of our set of postulates.

8.2 Can We Ask for More?

Can we augment our set of postulates to take into account other modules of action

theories, or even other meta-theoretical issues in reasoning about actions? That is the

topic we discuss in what follows.
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Postulates about Action Effects

It seems to be in line with our postulates to require action theories not to allow for the

deduction of new effect laws: if an effect law can be inferred from an action theory

(and no inexecutability for the same action in the same context can be derived), then

it should be inferable from the set of static and effect laws alone. This means that we

should have:

PE (No implicit effect laws):

if D |= ϕ→ [a]ψ and D 6|= ϕ→ [a]⊥, then 〈LPDL, |=
;

,S ∪ E〉 |= ϕ→ [a]ψ

But consider the action theory D = 〈LPDL, |=
;

,T 〉 such that:

S = ∅, E =

{
loaded→ [shoot]¬alive,

(¬loaded ∧ alive)→ [shoot]alive

}

X = {hasGun→ 〈shoot〉⊤}, I = {¬hasGun→ [shoot]⊥},

;= {〈shoot,¬alive〉}

Such a domain description satisfies Postulates PS* and PI*, but does not satisfy PE.

Indeed:

D |= ¬hasGun ∨ loaded→ [shoot]¬alive

and

D 6|= ¬hasGun ∨ loaded→ [shoot]⊥,

but

〈LPDL, |=
;

,S ∪ E〉 6|= ¬hasGun ∨ loaded → [shoot]¬alive

So, Postulate PE would not help us to deliver the goods.

Another possibility of improving our modularity criteria could be:

P⊥ (No unattainable effects):

if ϕ→ [a]ψ ∈ E , then D 6|= ϕ→ [a]⊥

This expresses that if we have explicitly stated an effect law for a in some context,

then there should be no inexecutability law for the same action in the same context.
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It is straightforward to design an algorithm which checks whether this postulate is

satisfied. We do not investigate this further here, but just observe that the slightly

stronger version below leads to unintuitive consequences:

P⊥’ (No unattainable effects – strong version):

if 〈LPDL, |=
;

,S ∪ E〉 |= ϕ→ [a]ψ, then D 6|= ϕ→ [a]⊥

Indeed, for the above action theory we have

E |=
;

(¬hasGun ∧ loaded)→ [shoot]¬alive,

but

D |= (¬hasGun ∧ loaded)→ [shoot]⊥.

This is certainly too strong. Our example also illustrates that it is sometimes natural

to have some “redundancies” or “overlaps” between E and I . Indeed, as we have

pointed out, inexecutability laws are a particular kind of effect laws, and the distinc-

tion here made is conventional. The decision of considering them as strictly different

entities or not depends mainly on the context. At a representational level, in the most

part of this work, we preferred to keep them separated, while in Algorithm 7.1 we

have mixed them together in order to compute all the consequences of an action (cf.

Chapters 4 and 9).

In what follows we address the problem of completing the set of executability laws

of an action theory.

Maximizing Executability

As we have seen, implicit static laws only show up when there are executability laws.

So, a question that naturally raises is “which executability laws can be consistently

added to a given action theory?”

A hypothesis usually made in the literature is that of maximization of executabili-

ties: in the absence of a proof that an action is inexecutable in a given context, assume

its executability for that context. Such a hypothesis is formally captured by the fol-

lowing postulate:
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PX+ (Maximal executability laws):

if D 6|= ϕ→ [a]⊥, then 〈LPDL, |=PDL
,S ∪ X 〉 |= ϕ→ 〈a〉⊤

Such a postulate expresses that if in context ϕ no inexecutability for a can be inferred,

then the respective executability should follow in PDL from the executability and

static laws.

Postulate PX+ generally holds in nonmonotonic frameworks, and can be enforced

in monotonic approaches such as ours by maximizing X . We nevertheless would like

to point out that maximizing executability is not always intuitive. To witness, suppose

we know that if we have the ignition key, the tank is full, . . ., and the battery tension

is beyond 10V, then the car (necessarily) will start. Suppose we also know that if the

tension is below 8V, then the car will not start. What should we conclude in situations

where we know that the tension is 9V? Maximizing executabilities makes us infer that

it will start, but such reasoning is not what we want if we would like to be sure that

all possible executions lead to the goal (cf. Section 1.1).

We do not investigate this further here, and in the rest of the chapter we emphasize

the main results that we obtain when our modularity principle is satisfied.

8.3 The Role of Modularity in Reasoning

We start by generalizing the definition of modularity for multiple action theories.

Oh, déjà vu!

— Neo, in Matrix

Definition 8.2 (Modularity)

Let D = 〈LPDL, |=
;

,T 〉 be an action theory such that T = S ∪ E ∪X ∪ I . D is modular

if and only if

1. D |= ϕ implies 〈LCPL, |=CPL
,S〉 |= ϕ

2. D |= ϕ→ 〈a〉⊤ implies 〈LPDL, |=PDL
,S ∪ X 〉 |= ϕ→ 〈a〉⊤

3. D |= ϕ→ [a]⊥ implies 〈LPDL, |=PDL
,S ∪ I〉 |= ϕ→ [a]⊥

4. D |= ϕ→ [a]ψ implies 〈LPDL, |=
;

,S ∪ E ∪ I〉 |= ϕ→ [a]ψ
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In what follows, we see how modularity can be reduced to our base postulates.

Theorem 8.4

If D satisfies Postulate PS*, then D |= ⊥ if and only if 〈LCPL, |=
CPL
,S〉 |= ⊥.

This theorem says that if there are no implicit static laws, then consistency of an action

theory can be checked by just checking consistency of S . An immediate consequence

is that consistency of a new learned information ϕ w.r.t. the whole description can be

checked by just checking consistency of S ∪ {ϕ}.

Progress isn’t made by early risers. It’s made by lazy

men trying to find easier ways to do something.

— Robert Heinlein

Theorem 8.5

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → [a]ψ if and

only if 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 |= ϕ→ [a]ψ.

Proof:

See Appendix D.

This means that under PS* we have modularity inside E , too: when deducing the

effects of a, we need not consider the action laws for other actions.

Versions of Theorem 8.5 for executability and inexecutability can be stated as well:

Theorem 8.6

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → 〈a〉⊤ if and

only if 〈LPDL, |=PDL
,S ∪ X a〉 |= ϕ→ 〈a〉⊤.

Proof:

See Appendix D.

Corollary 8.2

Postulate PX is a consequence of PS.

Proof:

Straightforward.

Hence, Item 2 in Definition 8.2 is subsumed by Item 1. With this and Theorem 8.5

above we get that modularity of action theories in reasoning about actions amounts

to having neither implicit static laws nor implicit inexecutability laws in the theory.
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Theorem 8.7

If D is modular, then D |= ϕ→ [a]⊥ if and only if 〈LPDL, |=PDL
,S ∪ Ia〉 |= ϕ→ [a]⊥.

Proof:

(⇒): If D |= ϕ → [a]⊥, then S , E ,X ,I |=
;

ϕ → [a]⊥, and from PS* and Theorem 8.5

we have S , Ea,Ia |=
;

ϕ → [a]⊥. From this and PI* we get S ,Ia |=
PDL

ϕ → [a]⊥, from

what the result follows.

(⇐): Suppose D 6|= ϕ → [a]⊥, i.e., S , E ,X ,I 6|=
;

ϕ → [a]⊥. Then there is a ;-

model M such that |=
M

S ∧ E ∧ X ∧ I and 6|=
M
ϕ → [a]⊥. Then, given a, we have

|=
M
S ∧ Ea ∧ X a ∧ Ia, and then |=

M
S ∧ Ia. Moreover, by definition, M is a PDL-model.

Hence S ,Ia 6|=
PDL

ϕ→ [a]⊥, and then 〈LPDL, |=PDL
,S ∪ Ia〉 6|= ϕ→ [a]⊥.

In Theorems 8.6 and 8.7, modularity guarantees that no dependence is needed to

derive, respectively, executabilities and inexecutabilities.

Remark 8.1 There exist action theories D not satisfying Postulate PS* such that both

D |= ϕ→ [a]ψ and 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 6|= ϕ→ [a]ψ.

As an example, for Dwts such that

S = {walking→ alive}, E =

{
[tease]walking,

loaded → [shoot]¬alive,

}

,

X = {〈tease〉⊤}, I = {¬alive → [tease]⊥}

and

;=

{
〈shoot,¬loaded〉, 〈shoot,¬alive〉,

〈shoot,¬walking〉, 〈tease,walking〉

}

we have that

D |= ¬alive→ [shoot]alive,

but

〈LPDL, |=
;

,S ∪ E shoot ∪ Ishoot〉 6|= ¬alive → [shoot]alive.

Let Ea1,...,an =
⋃
1≤i≤nE

ai , X a1,...,an =
⋃
1≤i≤nX

ai , and Ia1,...,an =
⋃
1≤i≤nI

ai . Un-

der Postulate PS*, deduction of an effect of a sequence of actions a1; . . . ; an (prediction)

needs neither the effect and inexecutability laws for actions other than a1, . . . , an, nor

the executability laws of the domain:
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Theorem 8.8

If D = 〈LPDL, |=
;

,S ∪ E ∪X ∪I〉 satisfies Postulate PS*, then D |= ϕ→ [a1; . . . ; an]ψ if

and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ Ia1,...,an 〉 |= ϕ→ [a1; . . . ; an]ψ.

Proof:

See Appendix D

The same result holds for testing inexecutability of a sequence of actions:

Corollary 8.3

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → [a1; . . . ; an]⊥

if and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ Ia1,...,an〉 |= ϕ→ [a1; . . . ; an]⊥.

Proof:

Straightforward, as a special case of Theorem 8.8.

The next theorem shows that our notion of modularity is also fruitful in plan vali-

dation:

Theorem 8.9

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → 〈a1; . . . ; an〉ψ

if and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ X a1,...,an ∪ Ia1,...,an 〉 |= ϕ→ 〈a1; . . . ; an〉ψ.

Proof:

See Appendix D.

And as a consequence, we also optimize testing executability of a plan:

Corollary 8.4

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → 〈a1; . . . ; an〉⊤

if and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ X a1,...,an ∪ Ia1,...,an 〉 |= ϕ→ 〈a1; . . . ; an〉⊤.

Proof:

Straightforward, as a special case of Theorem 8.9.

Theorems 8.8 and 8.9 together with Corollaries 8.3 and 8.4 suggest that we can

simulate modularization by sub-domains [77]: If 〈{a1, . . . , an},Prop ′〉 is a sub-domain

for some Prop ′ ⊆ Prop, then 〈LPDL, |=
;

,S ∪Ea1,...,an ∪X a1,...,an ∪Ia1,...,an〉 corresponds

to the module for 〈{a1, . . . , an},Prop ′〉 in Lifschitz and Ren’s sense (cf. Section 10.2).

In the following chapter, we investigate the role modularity plays when the do-

main description has to be changed.
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Chapter 9

where we cut, crop and paste with our Swiss Army knife

Towards Action Theory Change

Education consists mainly in what we have unlearned.

— Mark Twain

We here address the problem of changing action theories and define a general

method based on contraction of formulas. We present the semantics of our theory

change and define syntactical operators for contracting a domain description. We

establish soundness and completeness of the operators w.r.t. the semantics for de-

scriptions that satisfy our principle of modularity. We also investigate an example of

changing non-modular domain descriptions.

9.1 Motivation

Suppose a situation where an agent has always believed that if the light switch is up,

then there is light in the room. Suppose now that someday she observes that even

if the switch is in the upper position, the light is off. In such a case, the agent must

change her beliefs about the relation between the propositions “the switch is up” and

“the light is on”. This example is an instance of the problem of changing propositional

belief bases and is largely addressed in the literature about belief revision [37] and

belief update [67].

Next, let our agent believe that whenever the switch is down, after toggling it,

there is light in the room. This means that if the light is off, in every state of the world

that follows the execution of toggling the switch, the room is lit up. Then, during a

blackout, the agent toggles the switch and surprisingly the room is still dark.

Imagine now that the agent never worried about the relation between toggling

99
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the switch and the material it is made of, in the sense that she ever believed that just

toggling the switch does not break it. Nevertheless, in a stressful day, she toggles the

switch and then observes that she had broken it.

Completing the wayside cross our agent experiments in discovering the world’s

behavior, suppose she ever believed it is always possible to toggle the switch, pro-

vided some conditions like being close enough to it, having a free hand, that the switch

is not broken, etc, are satisfied. Then, in a beautiful April fool’s day, she discovers that

someone has glued the switch and consequently it is no longer possible to toggle it.

The last three examples illustrate situations where changing the beliefs about the

behavior of the action of toggling the switch is mandatory. In the first one, toggling

the switch, once believed to be deterministic, has now to be seen as nondeterministic,

or, alternatively, to have a different outcome in a specific context (e.g. if the power

station is overloaded). In the second example, toggling the switch is known to have

side-effects (ramifications) one was not aware of. In the last example, the executability

of the action under concern is questioned in the light of new information showing a

context that was not known to preclude its execution.

Such cases of theory change are very important when one deals with logical de-

scriptions of dynamic domains: it may always happen that one discovers that an ac-

tion actually has a behavior that is different from that one has always believed it had.

Up to now, theory change has been studied mainly for knowledge bases in classi-

cal logics, both in terms of revision and update. Only in a few recent works it has been

considered in modal logics, viz. in epistemic logic [48], and in action languages [31].

Recently, some works [106, 62] have investigated revision of beliefs about facts of the

world. In our examples, this would concern e.g. the current status of the switch: the

agent believes it is up, but is wrong about this and might subsequently be forced to

revise her beliefs about the current state of affairs. Such revision operations do not

modify the agent’s beliefs about action laws. In opposition to that, here we are inter-

ested exactly in such modifications. Our aim in this chapter is to make a step toward

that issue and propose a framework that deals with contraction of action theories.

9.2 Models of Contraction

When a domain description has to be changed, the basic operation is that of contrac-

tion. (In belief-base update [116, 67] it has also been called erasure.) In this section, we

define its semantics.
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For the sake of presentation, as in Chapter 4 we here consider inexecutability laws

as special cases of effect laws (those whose effect is ⊥). It can be seen that doing things

this way does no harm to the theoretical results we have obtained so far.

In general, we might contract by any formula Φ. Here we focus on contraction

by one of the three kinds of laws. We therefore suppose that Φ is either ϕ, where ϕ

is classical, or ϕ → [a]ψ, or ϕ → 〈a〉⊤. The contraction of a model M = 〈W,R〉 by

Φ results in a set of models each of which is a minimal modification of M that is no

longer a model of Φ.

For the case of contracting static laws, we resort to existing approaches in order to

change the set of static laws. In the following, we consider any belief change operator

such as Forbus’ update method [36], or the possible models approach [116, 117], or

WSS [53] or MPMA [27].

Contraction by ϕ corresponds to adding new possible worlds to W. Let ⊖ be a

contraction operator for classical logic.

Definition 9.1 (Semantics of classical contraction)

Let M = 〈W,R〉 be a PDL-model and ϕ a classical formula. The set of mod-

els resulting from contracting M by ϕ is the singleton M −
ϕ = {〈W ′,R〉} such that

W ′ = W ⊖ valuations(ϕ).

For example, consider the model M in Figure 9.1 (note that |=
M

p1 → p2) and

suppose that we want to contract M by the static law p1→ p2. The result is depicted

by M ′ in Figure 9.1, with M ′ ∈ M −
p1→p2

.

M :
p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

a

M ′ :
p1, p2

¬p1, p2

¬p1,¬p2

p1,¬p2

a

a

a

a

Figure 9.1: Contraction of a model by a static law.

Observe that the accessibility relation R should, a priori, change as well. Figure 9.2

shows two models resulting from contracting M in Figure 9.1 by the static law p1→ p2
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in which R has been changed so that we have arrows leaving the world just added.

M ′
1 :

p1, p2

¬p1, p2

¬p1,¬p2

p1,¬p2

a

a

a

a

a

M ′
2 :

p1, p2

¬p1, p2

¬p1,¬p2

p1,¬p2

a

a

a

a

a

a

Figure 9.2: Contraction of a static law: adding leaving arrows to the new world.

The reason for changing R is that otherwise contracting a classical formula may

conflict with X . For instance, if ¬ϕ → 〈a〉⊤ ∈ X and we contract by ϕ, the result

may make X untrue. However, given the amount of information we have at hand,

we think that whatever we do with R (adding or removing edges), we will always be

able to find a counter-example to the intuitiveness of the operation, since it is domain

dependent. For instance, adding edges for a deterministic action may render it non-

deterministic. Deciding on what changes to carry out on R when contracting static

laws depends on the user’s intuition, and unfortunately this information cannot be

generalized and established once for all. We here opt for a priori doing nothing with

R and postponing correction of executability laws.

Action theories being defined in terms of effect and executability laws, changing

an action theory will mainly involve changing one of these two sets of laws. Let us

consider now both these cases.

Suppose the knowledge engineer acquires new information regarding the effect of

action a. Then it means that the law under consideration is probably too strong, i.e.,

the expected effect may not occur and thus the law has to be weakened. Consider e.g.

¬up → [toggle]light, and suppose it has to be weakened to the more specific (¬up ∧

¬blackout) → [toggle]light.1 In order to carry out such a weakening, first the designer

has to contract the set of effect laws and second to expand the resulting set with the

weakened law.

1The other possibility of weakening the law, i.e., replacing it by ¬up → [toggle](light ∨ ¬light) looks
silly. We were not able to find examples where changing the consequent could give a more intuitive
result. In this sense, we prefer to always weaken a given law by strengthening its antecedent.
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Contraction byϕ→ [a]ψ amounts to adding some “counter-example” arrows from

ϕ-worlds to ¬ψ-worlds.

Definition 9.2 (Semantics of effect contraction)

Let M = 〈W,R〉 be a PDL-model and ϕ → [a]ψ an effect law. The models resulting

from contracting M by ϕ→ [a]ψ is M
−
ϕ→[a]ψ = {〈W,R ∪ R ′

a〉 : R ′
a ⊆ {(w,w ′) : |=

M

w
ϕ}}.

Figure 9.3 depicts the three resulting models of contracting ¬p2 → [a]p2 in the

model M of Figure 9.1.

M ′
1 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

a

a

M ′
2 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

a

a

M ′
3 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

a

a

a

Figure 9.3: Contraction of model M in Figure 9.1 by an effect law.

Suppose now the knowledge engineer learns new information about the exe-

cutability of a. This usually occurs when there are executability laws that are too

strong, i.e., the condition in the theory guaranteeing the executability of a is too weak

and has to be made more restrictive. Let e.g. 〈toggle〉⊤ be the law to be contracted,

and suppose it has to be weakened to the more specific ¬broken → 〈toggle〉⊤. To im-

plement such a weakening, the designer has to first contract the set of executability

laws and then to expand the resulting set with the weakened law.

Contraction by ϕ → 〈a〉⊤ corresponds to removing some arrows leaving worlds

where ϕ holds. Removing such arrows has as consequence that a is no longer always

executable in context ϕ.

Definition 9.3 (Semantics of executability contraction)

Let M = 〈W,R〉 be a PDL-model and ϕ → 〈a〉⊤ an executability law. The set of

models resulting from contracting M by ϕ→ 〈a〉⊤ is M
−
ϕ→〈a〉⊤

= {〈W,R \ R ′
a〉 : R ′

a ⊆

{(w,w ′) : wRaw
′ and |=

M

w
ϕ}}.
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Figure 9.4 illustrates contraction of model M in Figure 9.1 by the executability

p1→ 〈a〉⊤. (Observe that, in this example, p1→ [a]⊥ has not become true in M
−
p
1
→〈a〉⊤,

but it is not hard to imagine examples where an inexecutability becomes valid when

contracting an executability law.)

M ′
1 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

M ′
2 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

a

M ′
3 :

p1, p2

¬p1, p2

¬p1,¬p2

a

a

Figure 9.4: Contraction of model M in Figure 9.1 by an executability law.

In the next section, we make a step toward syntactical operators that reflect the

semantic foundations for contraction.

9.3 Contracting an Action Theory

Having established the semantics of action theory contraction, we can turn to its syn-

tactical counterpart.

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 be an action theory and Φ a PDL-formula. By D−
Φ

we denote the action theory resulting from the contraction of D by Φ.

Contracting a theory by a static law ϕ amounts to using any existing contraction

operator for classical logic. Let ⊖ be such an operator. Moreover, we also need to

guarantee that ϕ will not continue to follow from E , X and ;, i.e., in the case ϕ is

an implicit static law (cf. Sections 7.3 and 9.4). We define contraction of a domain

description by a static law as follows:

Definition 9.4 (Contraction of a static law)

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉. D−
ϕ = 〈LPDL, |=

;

,S− ∪ E ∪ X−〉, where S− = S ⊖ ϕ

and X− = (X \ X a) ∪ {(ϕi∧ϕ)→ 〈a〉⊤ : ϕi→ 〈a〉⊤ ∈ X a}.

For example, contracting the law up → light in our running scenario, besides

changing S , would give us X− = {(¬up ∨ light) → 〈toggle〉⊤}, so that the old exe-
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cutabilities are still satisfied in the new possible state {up,¬light} that is intended to be

added at the semantical level.

To contract a theory by ϕ→ [a]ψ, for every effect law in D , we must ensure that a

still has effect ψ whenever ϕ does not hold, and change ; so that a may have ¬ψ as

outcome. This is enough to guarantee that the law has been contracted. The operator

below formalizes this:

Definition 9.5 (Contraction of an effect law)

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉. D−
ϕ→[a]ψ = 〈LPDL, |=

;
′ ,S ∪ E− ∪ X 〉, where E− =

(E \ Ea) ∪ {(ϕi∧ ¬ϕ)→ [a]ψi : ϕi→ [a]ψi ∈ Ea}, and ;
′= ; ∪({a} × Lit).

If Dlight denotes our running example such that

S = {up→ light}, E =

{
¬up→ [toggle]up,

up→ [toggle]¬up

}

,

X = {〈toggle〉⊤}, ; =

{
〈toggle, light〉, 〈toggle,¬light〉,

〈toggle,up〉, 〈toggle,¬up〉

}

then contracting the law blackout→ [toggle]light from Dlight would give us

E− =

{
(¬up ∧ ¬blackout)→ [toggle]up,

(up ∧ ¬blackout)→ [toggle]¬up

}

,

;
′ =






〈toggle, light〉, 〈toggle,¬light〉,

〈toggle,up〉, 〈toggle,¬up〉,

〈toggle, blackout〉, 〈toggle,¬blackout〉






Finally, we consider the case of contracting an action theory by an executability

law ϕ→ 〈a〉⊤. For every executability in D , we ensure that action a is executable only

in contexts where ¬ϕ is the case. The following operator does the job.

Definition 9.6 (Contraction of an executability law)

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉. D−
ϕ→〈a〉⊤ = 〈LPDL, |=

;

,S ∪ E ∪ X−〉, where X− =

(X \ X a) ∪ {(ϕi∧ ¬ϕ)→ 〈a〉⊤ : ϕi→ 〈a〉⊤ ∈ X a}.

For instance, contracting the executability glued → 〈toggle〉⊤ from Dlight would

give us X− = {¬glued→ 〈toggle〉⊤}.

Now we establish that our operators are correct w.r.t. the semantics. Our first
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theorem establishes that the semantical contraction of the models of D byΦ produces

models of the contracted theory D−
Φ.

Theorem 9.1

Let Φ be a formula that has the form of one of the three laws. For all models M ′, if

M ′ ∈ M
−
Φ for some M = 〈W,R〉 such that |=

M
D , then |=

M ′

D−
Φ.

Proof:

See Appendix E.

It remains to prove that the other way round, the models of D−
Φ result from

the semantical contraction of models of D by Φ. This does not hold in general, as

shown by the following example: suppose there is only one atom p and one ac-

tion a, and consider the action theory D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 such that S = ∅,

E = {p → [a]⊥}, X = {〈a〉⊤}, and ;= ∅. The only model of that action theory is

M = 〈{{¬p}}, {({¬p}, {¬p})}〉 in Figure 9.5. By definition, M
−
p→〈a〉⊤ = {M }. On the other

hand, D−
p→〈a〉⊤

is such that S = ; = ∅, E = {p → [a]⊥}, and X = {¬p → 〈a〉⊤}. The

contracted theory has two models: M and M ′ = 〈{{p}, {¬p}}, ({¬p}, {¬p})〉 in Figure 9.5.

While ¬p is valid in the contraction of the models of D , it is not valid in the models of

D−
p→〈a〉⊤.

M :
¬p

a

M ′ :
¬p p

a

Figure 9.5: Incompleteness of contraction.

Fortunately, we can establish a result for those action theories that are modular.

The proof requires three lemmas. The first one says that for a modular theory we can

restrict our attention to its big models.

Lemma 9.1

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 be modular. Then D |= Φ if and only if |=
M
Φ for every

model M = 〈W,R〉 of D such that W = valuations(S ).

Proof:

(⇒): Because D is modular, D satisfies Postulate PS*. By Corollary 8.2, for every

M = 〈W,R〉 such that W = valuations(S ), |=
M

D . From the hypothesis D |= Φ, it

follows |=
M
Φ.
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(⇐): Suppose D 6|= Φ. Then there is a model M = 〈W,R〉 such that |=
M

D and 6|=
M
Φ.

We can augment M to a big model M ′ = 〈valuations(S ),R〉. Because D is modular,

by Corollary 8.2, it follows |=
M ′

D . Clearly 6|=
M ′

Φ.

Note that the lemma does not hold for non-modular theories (because the set

{〈W,R〉 : W = valuations(S )} is empty then).

The second lemma says that modularity is preserved under contraction.

Lemma 9.2

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 be modular, and let Φ be a formula of the form of one

of the three laws. Then D−
Φ is modular.

Proof:

See Appendix E.

The third one establishes the required link between the contraction operators and

contraction of big models.

Lemma 9.3

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 be modular, let Φ be a formula of the form of one of

the three laws, and D−
Φ = 〈LPDL, |=

;
′ ,S

′ ∪ E ′ ∪ X ′〉. If M ′ = 〈valuations(S ′),R ′〉 is a

model of D−
Φ, then there is a model M of D such that M ′ ∈ M

−
Φ.

Proof:

Let M ′ = 〈valuations(S ′),R ′〉 be such that |=
M ′

D−
Φ. We analyze each case.

Let Φ be ϕ, for some propositional ϕ ∈ Fml. Because D is modular, Lemma 9.1

gives us that there is a model M = 〈valuations(S ),R〉 such that |=
M

D . Clearly, M ′ ∈

M −
ϕ , from soundness of ⊖.

Suppose now Φ has the form ϕ → [a]ψ, for ϕ,ψ ∈ Fml. D being modular,

Lemma 9.1 gives us that M = 〈valuations(S ),R〉 is such that |=
M

D . Because, when

contracting effect laws, S ′ = S , it suffices to choose R and R ′′
a such that R ′ = R ∪ R ′′

a ,

for some R ′′
a ⊆ {(w,w ′) : |=

M

w
ϕ}, and then M ′ ∈ M

−
ϕ→[a]ψ.

Now let Φ have the form ϕ → 〈a〉⊤, for some ϕ ∈ Fml. From D modular and

Lemma 9.1, there is M = 〈valuations(S ),R〉 such that |=
M

D . When contracting exe-

cutabilities, S ′ = S , hence taking the right R and R ′′
a such that R ′ = R \ R ′′

a , for some

Ra" ⊆ {(w,w ′) : wRaw
′ and |=

M

w
ϕ}, we get M ′ ∈ M

−
ϕ→〈a〉⊤.

Putting the three above lemmas together we get:
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Theorem 9.2

Let D = 〈LPDL, |=
;

,S ∪E ∪X 〉 be modular, letΦ be a formula of the form of one of the

three laws, and D−
Φ = 〈LPDL, |=

;
′ ,S

′ ∪ E ′ ∪ X ′〉. For all models M ′, if |=
M ′

D−
Φ, then

M ′ ∈ M
−
Φ, for some M = 〈W,R〉 such that |=

M
D .

Proof:

From the hypothesis that D is modular and Lemma 9.2, D−
Φ is modular. Then, M ′ =

〈valuations(S ′),R ′〉 is such that |=
M ′

D−
Φ, by Lemma 9.1. From this and Lemma 9.3, the

result follows.

Our two theorems together establish correctness of the operators:

Corollary 9.1

Let D = 〈LPDL, |=
;

,S ∪E ∪X 〉 be modular, letΦ be a formula of the form of one of the

three laws, and D−
Φ = 〈LPDL, |=

;
′ ,S

′ ∪ E ′ ∪ X ′〉. Then D−
Φ |= Ψ if and only if for every

model M ′ such that M ′ ∈ M
−
Φ for some M such that |=

M
D , |=

M ′

Ψ.

Proof:

(⇒): Let M ′ be such that |=
M ′

D−
Φ. By Theorem 9.2, M ′ ∈ M

−
Φ for some M such that

|=
M
D . From the hypothesis D−

Φ |= Ψ, we have |=
M ′

Ψ.

(⇐): Suppose that D−
Φ 6|= Ψ. Then there is a model M = 〈W,R〉 such that |=

M
D−
Φ and

6|=
M
Ψ. Because D is modular, by Lemma 9.2, D−

Φ is modular, too. By Lemma 9.1, M

can be augmented to a big model M ′ = 〈valuations(S ′),R〉 such that |=
M ′

D−
Φ. Clearly,

we have 6|=
M ′

Ψ.

We also give a sufficient condition for the success of a contraction.

Theorem 9.3

Let Φ be an effect or an executability law such that S 6|=
PDL

Φ. If D is modular, then

D−
Φ 6|= Φ.

Proof:

Suppose D−
Φ |= Φ. From the fact that D is modular, Corollary 9.1 gives us that |=

M ′

Φ

for all M ′ ∈ M
−
Φ, for some M such that |=

M
D .

Let Φ be of the form ϕ → [a]ψ, for ϕ,ψ ∈ Fml. If |=
M ′

ϕ → [a]ψ for every M ′ ∈

M
−
ϕ→[a]ψ, then even for M ′′ = 〈W,R ∪ R ′

a〉 such that R ′
a = {(w,w ′) : |=

M

w
ϕ}, we have

|=
M ′′

ϕ → [a]ψ. By our semantics, this is the case only if W = valuations(ψ), in which

case S |=
PDL

ϕ→ [a]ψ.
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Let now Φ have the form ϕ → 〈a〉⊤, for some ϕ ∈ Fml. If |=
M ′

ϕ → 〈a〉⊤ for every

M ′ ∈ M
−
ϕ→〈a〉⊤, then even for M ′′ = 〈W, ∅〉 ∈ M

−
ϕ→〈a〉⊤, we have |=

M ′′

ϕ → 〈a〉⊤. But

this is true only if W = valuations(¬ϕ), in which case S |=
PDL

ϕ→ 〈a〉⊤.

What is the status of the AGM-postulates for contraction in our framework? First,

contraction of static laws satisfies all the postulates, as soon as the underlying classical

contraction operator ⊖ satisfies all of them.

In the general case, however, our constructions do not satisfy the central postulate

of preservation D−
Φ = D if D 6|= Φ. Indeed, suppose we have a language with only

one atom p, and a model M with two worldsw = {p} andw ′ = {¬p} such that wRaw
′,

w ′Raw, andw ′Raw
′ (Figure 9.6). Then |=

M
p→ [a]¬p and 6|=

M
[a]¬p, i.e., M is a model of

the effect law p→ [a]¬p, but not of [a]¬p. Now the contraction M
−
[a]¬p yields the model

M ′ such that Ra = W × W. Then 6|=
M ′

p → [a]¬p, i.e., the effect law p → [a]¬p is not

preserved. Our contraction operation thus behaves rather like an update operation.

M :
p ¬p

a

a

a

Figure 9.6: Counter-example to preservation.

Now let us focus on the other postulates. Since our operator has a behavior which

is close to the update postulate, we focus on the following basic erasure postulates

introduced in [66].

KM1 Cn(D−
Φ) ⊆ Cn(D)

Postulate KM1 does not always hold because it is possible to make the formula ϕ →

[a]⊥ valid in the resulting theory by removing elements of Ra (cf. Definition 9.3).

KM2Φ /∈ Cn(D−
Φ)

Under the condition that D is modular, Postulate KM2 is satisfied (cf. Theorem 9.3).

KM3 If Cn(D1) = Cn(D2) and |=
PDL

Φ1↔ Φ2, then Cn(D1
−
Φ2

) = Cn(D2
−
Φ1

).

Theorem 9.4

If D1 and D2 are modular and the propositional contraction operator ⊖ satisfies Pos-

tulate KM3, then Postulate KM3 is satisfied for every PDL-formulas Φ1,Φ2.
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Proof:

The proof follows straightforwardly from our results: since Cn(D1) = Cn(D2) and

|=
PDL

Φ1 ↔ Φ2, they have, pairwise, the same models. Hence, given M such that

|=
M

D1 and |=
M

D2, M
−
Φ1

and M
−
Φ2

have the same semantical operations. Because D1

and D2 are modular, Corollary 9.1 guarantees we get the same syntactical results.

Moreover, as the classical contraction operation ⊖ satisfies Postulate KM3, it follows

that Cn(D1
−
Φ2

) = Cn(D2
−
Φ1

).

9.4 Contracting Implicit Static Laws

There can be many reasons why a theory should be changed. Following the discussion

in Chapter 7, here we focus on the case where it has some classical consequenceϕ the

designer is not aware of.

Ifϕ is taken as intuitive, then, normally, no change has to be done at all, unless we

want to keep abide on the modularity principle and thus make ϕ explicit by adding it

to S . In the scenario example of Section 9.3, if the knowledge engineer’s universe has

immortal turkeys, then she would add the static law alive to S .

The other way round, if ϕ is not intuitive, as long as ϕ is entailed by D , the goal is

to avoid such an entailment, i.e., what we want is D−
ϕ 6|= ϕ. In the mentioned scenario,

the knowledge engineer considers that having immortal turkeys is not reasonable and

thus decides to change the domain description.

This means that action theories that are not modular need to be changed, too.

Such a changing process is driven by the problematic part of the theory detected by

Algorithm 7.1.

It seems that in general implicit static laws are not intuitive. Therefore their con-

traction is more likely to happen than their addition.2 In the example above, the ac-

tion theory has to be contracted by alive.3 In order to contract the action theory, the

designer has several choices:

• Contract the set S . (In this case, such an operation is not enough, since alive is a

consequence of the rest of the theory.)

2In all the examples in which we have found implicit static laws that are intuitive they are so evident
that the only explanation for not having them explicitly stated is that they have been forgotten by the
theory’s designer (cf. Section 7.3).

3Here the change operation is a revision-based operation rather than an update-based operation since
we mainly “fix” the theory.
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• Weaken the effect law [tease]walking to alive → [tease]walking, since the original

effect law is too strong. This means that in a first stage the designer has to con-

tract the theory and in a second one expand the effect laws with the weaker law.

The designer will usually choose this option if she focuses on the effect precon-

ditions of actions.

• Weaken the executability law 〈tease〉⊤ by rephrasing it as alive → 〈tease〉⊤: first

the executability is contracted and then the weaker one is added to the resulting

set of executability laws. The designer will choose this option if she focuses on

preconditions for action execution.

The analysis of this example shows that the choice of what change has to be car-

ried out is up to the knowledge engineer. Such a task can get more complicated

when ramifications are involved. To witness, suppose our scenario has been for-

malized as follows: S = {walking → alive}, E = {[shoot]¬alive}, X = {〈shoot〉⊤}, and

;= {〈shoot,¬alive〉}. From the corresponding action theory, we can derive the inexe-

cutability walking → [shoot]⊥ and thus the implicit static law ¬walking. In this case,

we have to change the theory by contracting the frame axiom walking→ [shoot]walking

(which amounts to adding the missing indirect dependence shoot ; ¬walking).

For an account of how elaboration tolerant our theory change method is, we refer

the reader to the next chapter, where we also discuss about related work on modular-

ity and update of domain descriptions.
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Chapter 10

where we have a small talk with our neighbors

Discussion and Related Work

I am a part of all that I have seen.

— Alfred Lord Tennyson

In this chapter, we analyze whether our modularity paradigm is in line with the

requirements that logical modules are expected to satisfy, and also address existing

work in the literature about the meta-theory of actions. We then investigate the prin-

ciple of elaboration tolerance in our theory change framework and discuss about other

techniques for changing a domain description.

10.1 How Modular our Modules Are

Here we comment on the properties logical modules should have by assessing how

our notion of modularity behaves with respect to them. The following criteria were

compiled by Fodor [34] and Garson [38]. They also correspond to most of the design

principles commonly found in software engineering.

Domain specificity: A module is domain specific if it is designed to draw conclusions

over a limited domain of expertise [38]. Since with our modules we can reason in a set

of laws concerning only the actions and fluents describing a sub-domain, regardless

of the rest of the description, we can say that our modules are domain specific.

Accuracy: A module is accurate if it proves all sentences in its domain of application.

Our modules are accurate for by satisfying the principle of modularity they can prove

any formula in their respective domain that also follows from the whole theory.

Auto-sufficiency: A module should contain all the data it needs to solve problems in

its domain, so that the only input it needs is the question to be answered [38]. This

113
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also relates to accuracy and modularity. Clearly, by guaranteeing that there are no

implicit laws, our modules possess all the data they need for answering a query.

Performance: Inferences in the module should be faster than in the whole description.

First, because the module may use an inference relation less complex than the global

one (e.g., our module of static laws uses the classical consequence relation |=
CPL

). Sec-

ond, the number of formulas of a module is supposed to be significantly smaller than

that of the whole description, then even if algorithms with exponential complexity are

used, the size of the problem is small enough to ensure practical response times [38].

With the results of Section 8.3, we achieve such an improvement in performance.

Encapsulation: We achieve encapsulation if modules do not need to access global in-

formation concerning the problem to be solved. As we have seen along this work,

static laws are (by definition) laws of the world and (by definition) they must be ac-

cessed by all modules. Here we got rid of this by putting them inside each module.

The price to pay is the replication of the same set of static laws in all modules.

Independence: Modules should be independent in the sense that further modifica-

tions (elaborations) of the description are carried out with as little disruption as possi-

ble. This means that additions or removals of modules should not affect the behavior

of the rest of the system. This relates to the principle of elaboration tolerance [88, 89]

in reasoning about actions. Despite some attempts of quantifying such an indepen-

dence [3], that remains an open issue of research. Regarding our modules, we can

easily see that they depend one upon the others: first, as already expected, because

of the static laws. Second, because changing laws of one type is very likely to affect

laws of other types, too (e.g. if we replace hasGun → 〈shoot〉⊤ in our example by just

〈shoot〉⊤, there would be a new static law, viz. hasGun). Third, since changing a mod-

ule may add implicit laws into the theory, modularity may have to be checked again.

Fortunately, with the results of Section 8.3, we can guarantee independence of action

laws for actions a1, . . . , an from action laws that mention actions other than a1, . . . , an,

under the condition that the added module is also itself modular [54].

10.2 Other Modularity and Consistency Notions

A Meta-theory of the Situation Calculus

Pirri and Reiter have investigated the meta-theory of the Situation Calculus [96]. In a

spirit similar to ours, they use executability laws and effect laws. Contrarily to us,
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their executability laws are equivalences and are thus at the same time inexecutability

laws. As they restrict themselves to domains without ramifications, there are no static

laws, i.e., S = ∅. For this setting, they give a syntactical condition on effect laws

guaranteeing that they do not interact with the executability laws in the sense that

they do not entail implicit static laws. Basically, the condition says that when there

are effect laws ϕ1 → [a]ψ and ϕ2 → [a]¬ψ, then ϕ1 and ϕ2 are inconsistent (which

essentially amounts to having in their theories a kind of “implicit static law schema”

of the form ¬(ϕ1∧ϕ2)).

This then allows them to show that such theories are always consistent. More-

over, they thus simplify the entailment problem for this calculus, and show for several

problems such as consistency or regression that only some of the modules of an action

theory are necessary.

In the object-oriented Situation Calculus [2, 4], executabilities are as in [96] and the

same condition on effect laws is assumed, which syntactically precludes the existence

of implicit static laws. The frame problem is solved using Reiter’s solution [100] and

then is also restricted to domains without static laws. Ramifications are dealt with

by compiling them away à la Reiter and Lin [80] based on the method given in [91],

which takes into account only some restricted state constraints.

In spite of using many of the object-oriented paradigm tools and techniques, no

mention is made to the concepts of cohesion and coupling [98], which are closely re-

lated to modularity [57]. In the approach presented in [2], even if modules are individ-

ually highly cohesive, they are not necessarily lowly coupled, due to the dependence

between objects in the reasoning phase. We do not investigate this further here, but

conjecture that this could be done there by, during the reasoning process defined for

that approach, avoiding passing to a module a formula of a type different from those

it contains (cf. Chapter 3).

The present work generalizes and extends Pirri and Reiter’s result to the case

where S 6= ∅ and both these works where the syntactical restriction on effect laws

is not made. It also constitutes a better approach for domains with ramifications as

we do not impose any restriction on the domain constraints we can deal with.

Moreover, by guaranteeing satisfaction of modularity, our domain descriptions

can be decomposed according to the ideas in [2]. We illustrate this with the example

from Section 3.2:

D1 = 〈L1, |=CPL
, 〈{walking1→ alive1}, {walking1, alive1}〉〉
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D2 = 〈L2, |=PDL
, 〈

{
alive2→ 〈tease2〉⊤,

hasGun2→ 〈shoot2〉⊤

}

, {alive2}〉〉

D3 = 〈L3, |=
;

, 〈






¬loaded3→ [load3]loaded3,

loaded3→ [shoot3]¬alive3,

[tease3]walking3





, {walking3, alive3}〉〉

D4 = 〈L4, |=PDL
, 〈

{
¬hasGun4→ [shoot4]⊥,

¬alive4→ [tease4]⊥

}

, {alive4}〉〉

(For this example, we assume we have detected all implicit laws of the description in

Section 3.2 with Algorithm 7.1 and then contracted the theory by the unintuitive static

law alive.)

Hence with our approach we have the advantage of a more expressive power, as

we can reason about inexecutabilities, and a better modularity in the sense that we

do not combine formulas that are conceptually different (viz. executabilities and inex-

ecutabilities). Moreover, by guaranteeing nonexistence of implicit laws, many of the

results presented in the referred work, e.g., conditional independence (cf. Section 3.2),

transfer to ours.

Consistency in the Presence of Ramifications

Zhang et al. [118] have also proposed an assessment of what a good action theory

should look like. They develop the ideas in the framework of EPDL [119], an extended

version of PDL which allows for propositions as modalities to represent a causal con-

nection between literals (cf. Section 6.5). We do not present the details of that, but

concentrate on the main meta-theoretical results.

Zhang et al. propose a normal form for describing action theories,1 and investigate

three levels of consistency. Roughly speaking, a set of laws T is uniformly consistent if

it is globally consistent (i.e., T 6|=
EPDL

⊥); a formula Φ is T -consistent if T 6|=
EPDL

¬Φ,

for T a uniformly consistent theory; T is universally consistent if (in our terms) every

logically possible world is accessible.

Furthermore, two assumptions are made to preclude the existence of implicit qual-

ifications. Satisfaction of such assumptions means the theory under consideration is

1But not as expressive as one might think: For instance, in modeling the nondeterministic action of
dropping a coin on a chessboard, we are not able to state [drop](black ∨ white). Instead, we should write
something like [dropblack]black, [dropwhite]white, [dropblack,white]black and [dropblack,white]white, where dropblack is
the action of dropping the coin on a black square (analogously for the others) and drop = dropblack ∪
dropwhite ∪ dropblack,white, with “∪” the nondeterministic composition of actions.
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safe, i.e., it is uniformly consistent. Such a normal form justifies the two assumptions

made and on which their notion of good theories relies.

Given this, they propose algorithms to test the different versions of consistency for

a theory T that is in normal form. This test essentially amounts to checking whether

T is safe, i.e., whether T |=
EPDL

〈a〉⊤, for every action a. Success of this check should

mean that the theory under analysis satisfies the consistency requirements.

Although they are concerned with the same kind of problems that have been dis-

cussed in this work, they take an overall view of the subject, in the sense that all prob-

lems are dealt with together. This means that in their approach no special attention

(in our sense) is given to the different components of the theory, and then every time

something is wrong with it this is taken as a global problem inherent to the theory as

a whole. Whereas such a “systemic” view of action theories is not necessarily a draw-

back (we have just seen the strong interaction that exists between the different sets

of laws composing an action theory), being modular in our sense allows us to better

identify the “problematic” laws and take care of them. Moreover, the advantage of al-

lowing to find the set of laws which must be modified in order to achieve the desired

consistency is made evident by the algorithms we have proposed (while their results

only allow to decide whether a given theory satisfies some consistency requirement).

Consistency and Executability

Lang et al. [72] address consistency of action theories in a version of the causal laws

approach [83], focusing on the computational aspects.

To solve the frame problem, they suppose an abstract notion of completion. Given

a theory T a containing logical information about a’s direct effects as well as the in-

direct effects that may follow (expressed in the form of causal laws), the completion

of T a, roughly speaking, is the original theory T a amended of some axioms stating

the persistence of all non-affected (directly nor indirectly) literals. (Note that such

a notion of completion is close to the underlying semantics of the dependence rela-

tion used throughout the present work, which essentially amounts to the explanation

closure assumption [102].)

Their EXECUTABILITY problem is to check whether action a is executable in all

possible initial states (Zhang et al.’s safety property). This amounts to testing whether

every possible state w has a successor w ′ reachable by a such that w and w ′ both

satisfy the completion of T a. For the Walking Turkey Scenario, the formalization of

action tease with causal laws is given by:
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T tease =

{
⊤

tease⇒ walking,

¬alive⇒ ¬walking

}

where the first formula is a conditional effect law for tease, and the latter a causal

law in McCain and Turner’s sense (cf. Section 6.3). We will not dive in the technical

details, and just note that the executability check will return “no” for this example as

tease cannot be executed in a state satisfying ¬alive.

In the mentioned work, the authors are more concerned with the complexity anal-

ysis of the problem of doing such a consistency test and no algorithm for performing it

is given, however. In spite of the fact their motivation is the same as ours, again what

is presented is a kind of “yes-no tool” which can help in doing a meta-theoretical

analysis of a given action theory, and many of the comments concerning Zhang et al.’s

approach could be repeated here.

Another criticism that could be made about both these approaches concerns the

assumption of full executability they rely on. We find it too strong to require all actions

to be always executable (cf. Section 8.2), and to reject as bad an action theory admitting

situations where some action cannot be executed at all. As an example, consider a very

simple action theory D = 〈LPDL, |=
;

,S ∪ E ∪X ∪I〉, where S = {walking→ alive}, E =

{[tease]walking}, X = {〈tease〉⊤}, I = ∅, and ;= {〈tease,walking〉}. Observe that, with

our approach, it suffices to derive the implicit inexecutability law ¬alive → [tease]⊥,

change I , and the system will properly run in situations where ¬alive is the case.

On the other hand, if we consider the equivalent representation of such an action

theory in the approach of Lang et al., after computing the completion of T tease, if we

test its executability, we will get the answer “no”, the reason being that tease is not

executable in the possible state where ¬alive holds. Such an answer is correct, but note

that with only this as guideline we have no idea about where a possible modification

in the action theory should be carried out in order to achieve full executability for

tease. The same observation holds for Zhang et al.’s proposal.

Just to see how things can be even worse, let D ′ be the same action theory as

above, but with X = {alive → 〈tease〉⊤}, obtained by the correction of D above with

the algorithms we proposed. Observe that D ′ satisfies all our postulates. It is not

hard to see, however, that the representation of such an action theory in the above

frameworks, when checked by their respective consistency tests, is still considered to

have a problem.

This problem arises because Lang et al.’s proposal do not allow for executability
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laws, thus one cannot make the distinction between X = {〈tease〉⊤}, X = {alive →

〈tease〉⊤} and X = ∅. By their turn, Zhang et al.’s allows for specifying executabilities,

however their consistency definitions do not distinguish the cases alive → 〈tease〉⊤

and 〈tease〉⊤.

Modular Action Languages

Lifschitz and Ren [77] propose an action description language derived from C+ [45] in

which action theories can also be decomposed in modules. Contrarily to our setting,

in theirs a module is not a set of formulas for given action a, but rather a description

of a subsystem of the theory, i.e., each module describes a set of interrelated fluents

and actions (cf. Section 3.2). As an example, a module describing Lin’s suitcase sce-

nario [78] should contain all causal laws in the sense of C+ that are relevant to the sce-

nario. Actions or fluents having nothing to do, neither directly nor indirectly, with the

suitcase should be described in different modules. This feature makes such a decom-

position somewhat domain-dependent, while here we have proposed a type-oriented

modularization of the formulas, which does not depend on the domain.

In the referred work, modules can be defined in order to specialize other modules.

This is done by making the new module to inherit and then specialize other modules’

components. This is an important feature when elaborations are involved. In the suit-

case example, adding a new action relevant to the suitcase description can be achieved

by defining a new module inheriting all properties of the old one and containing the

causal laws needed for the new action. Such ideas are interesting from the stand-

point of software and knowledge engineering: reusability is an intrinsic property of

the framework, and easy scalability promotes elaboration tolerance.

Consistency of a given theory and how to prevent (independent or inherited) con-

flicts between modules however is not addressed.

Other Logics

A concept similar to that of implicit static laws was firstly addressed, as far as we are

concerned, in the realm of regulation consistency with deontic logic [17]. Indeed, the

notions of regulation consistency given in the mentioned work and that of modularity

presented in [58] and used here can be proved to be equivalent. The main difference

between the mentioned work and the approach in [58] relies on the fact that in [17]

some syntactical restrictions on the formulas have to be made in order to make the

algorithm that is proposed to work.
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In [22] an algorithm is proposed to, given a monolithic description of a web ontol-

ogy in description logic [7], find a good modularization according to criteria similar

to Garson’s. As we have seen, those are stronger than our notion of modularity in

the sense that a given formula should be derivable only from a single module (cf.

Section 3.3). This means that applying the method in [22] to reasoning about actions

would preclude the natural overlapping between modules, that is inherent in reason-

ing about actions theories. Moreover, modules defined in that way are sub-domain

oriented and may have any type of formula, what can still difficult the module’s main-

tainability.

A different approach of the work we presented here can be found in [57], where

modularity of action theories is assessed from a software engineering perspective in

the Situation Calculus.

Based on the results we have seen in Chapter 4, in [59] we have defined a modu-

larity approach for description logic [7]. Such a notion of modularity we present there

is related to uniform interpolation for TBoxes [41]. Let concepts(T ) denote the concept

names and roles(T ) the role names occurring in a TBox T . Given T and a signature

S ⊆ concepts(T ) ∪ roles(T ), a TBox T S over (concepts(T ) ∪ roles(T )) \ S is a uniform

interpolant of T outside S if and only if:

• T |= T S;

• T S |= C ⊑ D for every C ⊑ D that has no occurrences of symbols from S.

(Here, |= denotes the entailment for description logics.) It is not difficult to see that

a partition {T ∅} ∪ {T Ri : Ri ∈ roles(T )} is modular if and only if every T Ri is a

uniform interpolant of T outside roles(T ) \ {Ri}. In [111] there are complexity results

for computing uniform interpolants in ALC.

Still in the realm of description logics, in [41] a notion of conservative extension is

defined that is similar to our modularity. There, T1∪T2 is a conservative extension of T1

if and only if for all concepts C,D built from concepts(T1) ∪ roles(T1), T1 ∪ T2 |= C ⊑ D

implies T1 |= C ⊑ D.

Given our Theorem 4.1, we can show that checking for modularity can be reduced

to checking for conservative extensions of T ∅. Indeed, supposing that the signature

of T ∅ is the set of all concept names, we have that T is modular if and only if for every

role Ri, T
Ri ∪ T ∅ is a conservative extension of T ∅.
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10.3 How Elaboration Tolerant We Are

The principle of elaboration tolerance has been proposed by McCarthy [88]. Roughly,

it states that the effort required to add new information to a given representation (new

laws or entities) should be proportional to the complexity of the information being

added, i.e., it should not require the complete reconstruction of the old theory [105].

Since then, many formalisms claim, in a more or less tacit way, to satisfy such a

principle. Nevertheless, for all this time there has been a lack of good formal criteria

allowing for the evaluation of theory change difficulty and, consequently, compar-

isons between different frameworks are carried out in a subjective way.

The proposal by Amir [3] made the first steps in formally answering what diffi-

culty of changing a theory means by formalizing one aspect of elaboration tolerance.

The basic idea is as follows: let D0 be the original domain description and let D1 and

D2 be two equivalent (and different) descriptions such that each one results from D0

by the application of some sequence of operations (additions and/or deletions of for-

mulas). The resulting theory whose transformation from D0 has the shortest length

(number of operations) is taken as the most elaboration tolerant.

Nevertheless, in the referred work only addition/deletion of axioms is considered,

i.e., changes in the logical language or contraction of consequences of the theory not

explicitly stated in the original set of axioms are not taken into account. This means

that even the formal setting given in [3] is not enough to evaluate the difficulty of

theory change in a broad sense. Hence the community still needs formal criteria that

allow for the comparison between more complex changes carried out by frameworks

like ours, for example.

Of course, how elaboration tolerant a given update/revision method is strongly

depends on its underlying formalism for reasoning about actions, i.e., its logical back-

ground, the solution to the frame problem it implements, the hypotheses it relies on,

etc. In what follows, we discuss how the dependence-based approach here used be-

haves when expansion is considered. Most of the comments concerning consequences

of expansion can also be stated for contraction. We do that with respect to some of the

qualitative criteria given in [89]. In all that follows, we suppose that the resulting

theory is consistent.

Adding effect laws: In the dependence-based framework, adding the new effect law

ϕ→ [a]ψ to the theory demands a change in the dependence relation ;, and hence it

means changing the consequence relation in D . In that case, the maximum number of
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statements added to ; is card({ℓ : ℓ ∈ χ, for all χ ∈ NewCons(ψ,S )}) (dependences

for all indirect effects have to be stated, too). This is due to the explanation closure

nature of the reasoning behind dependence (for more details, see [14]). Because of

this, according to Shanahan [105], explanation closure approaches are not elaboration

tolerant when dealing with the ramification problem. In order to achieve that, the

framework should have a mechanism behaving like circumscription that automati-

cally deals with ramifications. This raises the question: “if we had an automatic (or

even semi-automatic) procedure to do the job of generating the indirect dependences,

could we say the framework is elaboration tolerant?”. We think we can answer pos-

itively to such a question, since we can semi-automatically generate the dependence

relation from a set of effect laws with the method in [13].

Adding executability laws: Such a task demands only a change in the set X of exe-

cutabilities, possibly introducing implicit static laws as a side effect.

Adding static laws: Besides expanding the set S , adding new (indirect) dependences

may be required, changing the consequence relation component of the domain de-

scription (see above).

Adding frame axioms: If the frame axiom ¬ℓ → [a]¬ℓ has to be valid in the resulting

theory, expunging the dependence a ; ℓ should do the job, which in our case means

a change in the consequence relation.

Adding a new action name: Without loss of generality we can assume the action in

question was already in the language. In that case, we expect just to add effect or

executability laws for it. For the former, at most card(Lit) dependences will be added

to ;. (We point out nevertheless that the requirement made in [89] that the addition

of an action irrelevant for a given plan in the old theory should not preclude it in the

resulting theory is too strong. Indeed, it is not difficult to imagine a new action forcing

an implicit static law from which an inexecutability for some action in the plan can be

derived. The same holds for the item below.)

Adding a new fluent name: In the same way, we can suppose the fluent was already

in the language. Such a task amounts thus to one or more of the above expansions.

There will be at most 2× card(Act) new elements added to ;.

Because of forcing formulas to be explicitly stated in their respective modules (and

thus possibly making them inferable from two or more different modules at once), in-

tuitively modularity could be seen to diminish elaboration tolerance. For instance,
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when contracting a classical formula ϕ from a non-modular theory, it seems reason-

able to expect not to change the set of static laws S , while the theory being modular

surely forces changing such a module. However it is not difficult to conceive non-

modular theories in which contraction of a formula ϕ may demand a change in S as

well. To witness, let S = {ϕ1 → ϕ2} in an action theory from whose dynamic part

we (implicitly) infer ¬ϕ2. Then, contracting ¬ϕ1 keeping ¬ϕ2 would necessarily ask

for a change in S . We point out nevertheless that, in both cases (modular and non-

modular), the extra work in changing other modules stays in the mechanical level, i.e.,

in the machinery that carries out the theory modification, and does not augment in a

significant way the amount of work the knowledge engineer is expected to do.

10.4 Other Update Methods

Following [73, 75], Eiter et al. [31] have investigated update of action domain descrip-

tions. They define a version of action theory update in an action language and give

complexity results showing how hard such a task can be.

Update of action descriptions in their sense is always relative to some condi-

tions (interpreted as knowledge possibly obtained from earlier observations and that

should be kept). This characterizes a constraint-based update. In the example they

give, change must be carried out preserving the assumption that pushing the button

of the remote control is always executable. Actually, the method is more subtle, as

new effect laws are added constrained by the addition of viz. an executability law for

the new action under concern. In the example, the constraint (executability of push)

was not in the original action description and must figure in the updated theory.

They describe domains of actions in a fragment of the action language C [40]. How-

ever they do not specify which fragment, so it is not clear whether the claimed advan-

tages C has over A really transfer to their framework. At one hand, their approach

deals with indirect effects, but they do not talk about updating a theory by a law with

a nondeterministic action.

Eiter et al. consider a theory T as comprising two main components: Tu, the part of

the theory that must remain unchanged, and Tm, the part concerning the statements

that are allowed to change. The crucial information to the associated solution to the

frame problem is always in Tu.

Given a theory T = Tu ∪ Tm, ((Tu ∪ Tm),T ′, C) is the problem of updating T by

T ′ ⊆ S ∪ E warranting the result satisfies all constraints in C ⊆ S ∪ X .
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Even though they do not explicitly state postulates for their kind of theory up-

date, they establish conditions for the update operator to be successful. Basically, they

claim for consistency of the resulting theory; maintenance of the new knowledge and

the invariable part of the description; satisfaction of the constraints in C; and also

minimal change.

In some examples that they develop, the illustrated “partial solution” does not

satisfy C due to the existence of implicit laws (cf. their Example 1, where there is an

implicit inexecutability law). To achieve a solution, while keeping C, some other laws

must be dropped (in the example, the agent gives up a static law).2

Just to see the link between update by subsumed laws and addition of implicit

static laws, we note that their Proposition 1 is the same as our Corollary 7.1: every

implicit static law in our sense is trivially a subsumed law in Eiter et al.’s sense.

With their method, we can also contract by a static and an effect law. Contraction

of executabilities are not explicitly addressed, and weakening (replacing a law by a

weaker one) is left as future work.

2This does not mean however that the updated theory will necessarily contain no implicit law.
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where we finish to start

Conclusion

Not every end is a goal. The end of a melody is not its

goal; however, if the melody has not reached its end,

it would also not have reached its goal. A parable.

— Nietzsche

Our contribution is twofold: general, as we presented postulates that apply to all

reasoning about actions formalisms; and specific, as we proposed algorithms for a

dependence-based solution to the frame problem.

We have identified and made a critique of the main approaches of logical mod-

ularity for domain descriptions, pointing out their characteristics and showing why

they do not completely assess modularity in the sense descriptions in reasoning about

actions need.

We have argued that modularity as commonly used in programming or defined

in works on formal logic are not appropriate in reasoning about actions. In the first

case because of expressivity restrictions. In the second because modularity of logical

theories are usually too strong and shows to be of no much aid if the theory is a

description of a scenario in reasoning about actions

We have analyzed the principle of modularity for logics in general defined by

Garson. Such a notion of modularity as defined in [38] and adopted in [22] can be

reduced to the concepts of cohesion and coupling [108, 98] in software engineering.

In [57] we have seen the difficulty of requiring a domain description in reasoning

about actions to satisfy these two principles.

The main motivation in the original work by Garson is the intractability of consis-

tency check in classical first-order logic. That is the reason he moves to relevant logic

125
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in order to get rid of the principle of explosion and hence get a formal substratum in

which descriptions fit better with his notion of local completeness.

The principle of explosion is not a reason on its own to abandon classical logic.

We agree with Cuenca Grau and colleagues [22] when they say that we can turn our

attention to consistent theories and give an account of modularity even in the presence

of the principle of explosion. Since our aim is to point out whether a theory is good

or not, if it is inconsistent, then it simply cannot be good. Moreover, we focus on how

to refine modularity, not on how to force modularity to hold for inconsistent theories.

We have shown that, despite the principle of explosion, and with some amendments,

we can have a good account of modularity for theories in reasoning about actions.

We have defined here our concept of modularity of an action theory and pointed

out some of the problems that arise if it is not satisfied. In particular we have ar-

gued that the non-dynamic part of action theories could influence but should not be

influenced by the dynamic one.1

We have put forward some postulates, and in particular tried to demonstrate that

when there are implicit static and inexecutability laws then one has slipped up in

designing the action theory in question. As shown, a possible solution comes into its

own with Algorithms 7.1 and 7.2, which can give us some guidelines in correcting an

action theory if needed. By means of examples, we have seen that there are several

alternatives of correction, and choosing the right module to be modified as well as

providing the intuitive information that must be supplied is a task that is up to the

knowledge engineer.

Given the difficulty of exhaustively enumerating all the preconditions under

which a given action is executable (and also those under which such an action can-

not be executed), it is reasonable to expect that there is always going to be some ex-

ecutability precondition ϕ1 and some inexecutability precondition ϕ2 that together

lead to a contradiction, forcing, thus, an implicit static law ¬(ϕ1 ∧ ϕ2). This is the

reason we propose to state some information about both executabilities and inexe-

cutabilities, and then run the algorithms in order to improve the description.

It could be argued that unintuitive consequences in action theories are mainly due

to badly written axioms and not to the lack of modularity. True enough, but what we

have presented here is the case that making a domain description modular gives us

1It might be objected that it is only by doing experiments that one learns the static laws that govern
the universe. But note that this involves learning, whereas here – as always done in the reasoning about
actions field – the static laws are known once forever, and do not evolve.
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a tool to detect at least some of such problems and correct it. (But note that we do

not claim to correct badly written axioms automatically and once for all). Besides this,

having separate entities in the ontology and controlling their interaction help us to

localize where the problems are, which can be crucial for real world applications.

In this work we have illustrated by some examples what we can do in order to

make a theory intuitive. This involves theory modification. We have presented a gen-

eral method for changing a domain description given a formula we want to contract.

We have defined a semantics for theory contraction and also presented its syntac-

tical counterpart through contraction operators. Soundness and completeness of such

operators with respect to the semantics have been established (Corollary 9.1).

We have also shown that modularity is a sufficient condition for contraction to be

successful (Theorem 9.3). This gives further evidence that the notion of modularity is

fruitful.

Modularity is not necessarily a property of the underlying logical formalism. It is

rather a property of descriptions written in such a formalism. The choice of which log-

ical background to use in formalizing a domain may more or less ease the satisfaction

of modularity.

In this work we used a weak version of PDL, but our notions and results can be

applied to other frameworks as well. It is worth noting however that for first-order

based frameworks the consistency checks of Algorithms 7.1 and 7.2 are undecidable.

We can get rid of this by assuming that D is finite and that there is no function symbol

in the language. In this way, the result of NewCons(.) is finite and the algorithms

terminate.

The dependence-based framework we have used here is a simple yet powerful

account to the frame and ramification problems, within which Reiter’s regression

technique can be applied [26]. We have shown that regression does not necessarily

build on Successor State Axioms as in Reiter’s original theory, which involves quan-

tification. Moreover, the dependence-based framework has the advantage of having a

decision procedure in terms of tableau systems [12, 11] (while the Situation Calculus

contains second-order axioms and is a priori not even semi-decidable).

We have also presented an example of a scenario having actions with both indeter-

minate and indirect effects, which leads to counterintuitive results when formalized

in fluent-indexed approaches. The analysis we have carried out supports the thesis

that causality should be action-indexed.
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The problem with such a causal notion is that one must in some way relate ac-

tions and their indirect effects. Nevertheless, the present work is a step toward a

solution to the problem of indirect dependences: indeed, if the indirect dependence

shoot ; ¬walking is not in ;, then after running Algorithm 7.2 we get an implicit inex-

ecutability (loaded∧walking)→ [shoot]⊥, i.e., shoot cannot be executed if loaded∧walking

holds. Such an unintuitive inexecutability is not in I and thus indicates the missing

indirect dependence. The general case is nevertheless more complex, and it seems

that such indirect dependences cannot be computed automatically in the case of inde-

terminate effects.

A topic for further investigations could be considering the notion of coherence de-

fined in [71] as a guideline for “repairing” a given theory. Roughly, given an action

theory D and an unintuitive implicit static lawϕ, the formulas in T that are most likely

to be revised are exactly those whose utility, in Kwok et al.’s sense, for deriving ϕ are

the highest.

Our postulates do not take into account causality statements linking propositions

such as in [78, 83], nor the qualification problem. This could be a topic for further

investigation.
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2004. http://www.irit.fr/LILaC/.

[56] A. Herzig and I. Varzinczak. Domain descriptions should be modular. In
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Appendix A

Long Proofs of Chapter 4

Proof of Theorem 4.1

Let the underlying logic be a fusion, and let D = 〈LPDL, |=
PDL

,T 〉 be such that T is parti-

tioned. If D is propositionally modular, then D is modular.

Let D = 〈LPDL, |=PDL
,T 〉 be propositionally modular. Suppose that for some Φ

〈LPDL, |=PDL
,T ∅ ∪ T act(Φ)〉 6|= Φ, i.e., T ∅ ∪ T act(Φ) 6|=

PDL
Φ. Hence there is a PDL-model

M = 〈W,R〉 such that |=
M
T act(Φ)∧T ∅, and 6|=

M
Φ. This means that there is somew ∈ W

such that 6|=
M

w
Φ. We prove that D 6|= Φ by constructing from M a model M ′ such that

|=
M ′

T and 6|=
M ′

w
Φ.

First, as our logic is an extension of classical propositional logic and it is compact,

propositional modularity implies that for every propositional valuation val ⊆ 2Lit

which is a model of T ∅, there is a possible worlds model Mval = 〈Wval,Rval〉 such that

|=
Mval T , and val ∈ Wval, i.e., for every propositional valuation of T ∅, there is a model

of T containing that valuation.

Second, taking the disjoint union of all these models, we obtain a model M ′ =

〈W ′,R ′〉 such that |=
M ′

T , and for every propositional valuation val ⊆ 2Lit of T ∅, there

is a possible world w ′ ∈ W ′ such that w ′ = val.

Now, we can use M ′ to adjust those accessibility relations Ra of M whose a does

not appear in Φ, in a way such that the resulting model satisfies the rest of the theory

T \ T act(Φ). Let M ′′ = 〈W ′′,R ′′〉 be such that

• W ′′ = {uv : u ∈ W, v ∈ W ′, and u = v};

• if a ∈ act(Φ), then uvR
′′
a u

′
v′ if and only if uRau

′;

• if a 6∈ act(Φ), then uvR
′′
a u

′
v′ if and only if vRav

′; and

• uv = u = v.
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We have W ′′ 6= ∅ because |=
M

T ∅. M ′′ is a model of the underlying logic because the

latter is a fusion. Then, for the sublanguage constructed from act(Φ), it can be proved

by structural induction that for every formulaΦ ′ of the sublanguage and every u ∈ W

and v ∈ W ′, |=
M

u
Φ ′ if and only if |=

M ′′

uv
Φ ′. The same can be proved for the sublanguage

constructed from Act \ act(Φ). As, by hypothesis, T is partitioned, T ∅ and each T a are

in at least one of these sublanguages, thus we have proved that |=
M ′′

T , and 6|=
M ′′

wv
Φ for

every v. Hence D 6|= Φ.

Proof of Theorem 4.4

An action theory D = 〈LPDL, |=PDL
,T 〉 is modular if and only if Simp = ∅.

(⇒): Suppose Simp = ∅. Therefore, for all subsets {ϕ1 → [a]ψ1, . . . , ϕn→ [a]ψn} of T a

and all ϕ ′ → 〈a〉⊤ ∈ T a, we have that

if T ∅ ∪ {ϕ ′, ϕ1, . . . , ϕn} 6|=CPL
⊥, then T ∅ ∪ {ψ1, . . . , ψn} 6|=CPL

⊥. (A.1)

By Theorem 4.1, it suffices to prove that D is propositionally modular. Therefore,

suppose T ∅ 6|=
CPL

ϕ for some propositional ϕ. Let W be the set of all propositional

valuations satisfying T ∅ that falsify ϕ. As T ∅ 6|=
CPL

ϕ, T ∅ ∪ {¬ϕ} is satisfiable, hence W

must be nonempty. For every w ∈ W let

Ea
ϕ(w) = {ϕi : ϕi→ [a]ψi ∈ T a and w satisfies ϕi}

X a
ϕ(w) = {ϕi : ϕi→ 〈a〉⊤ ∈ X a and w satisfies ϕi}

We define Ra such that wRaw
′ if and only if

• X a
ϕ(w) 6= ∅; and

• w ′ satisfies ψi for every ϕi→ [a]ψi ∈ T a such that ϕi ∈ Ea
ϕ(w).

We then obtain a model M = 〈W,R〉. We have that |=
M

T ∅, by the definition of W.

Moreover, for everyw ∈ W and everyϕi→ [a]ψi ∈ T a, if |=
M

w
ϕi, then, by the definition

of Ra, |=
M

w′
ψi for all w ′ ∈ W such that wRaw

′. We also have that for every w ∈ W and

every ϕi → 〈a〉⊤ ∈ T a, if |=
M

w
ϕi, then from (A.1) and the definition of Ra, there exists

at least one w ′ such that wRaw
′.

Hence, |=
M

T . Clearly 6|=
M
ϕ, by the definition of W. Thus we have T 6|=

PDL
ϕ, and

then D 6|= ϕ.

(⇐): Straightforward, by the soundness result (Theorem 4.3).
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Long Proofs of Chapter 5

Proof of Theorem 5.1

Let T be the set of global axioms (5.4)–(5.8). Then

T |=
DPDL

+ (∀a.(Poss(a)→ ([a]p↔

((a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . . ∧ ¬(a = a ′
m∧ Cond−(a ′

m, p)))))))

↔

(∀a.([a]p↔

(¬Poss(a) ∨

(a = a1∧ Cond+(a1, p)) ∨ . . . ∨ (a = an∧ Cond+(an, p)) ∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . . ∧ ¬(a = a ′
m∧ Cond−(a ′

m, p))))))

Let ϕ denote the formula

(a = a1∧ Cond+(a1, p)) ∨ . . .∨ (a = an∧ Cond+(an, p))∨

(p ∧ ¬(a = a ′
1∧ Cond−(a ′

1, p)) ∧ . . .∧ ¬(a = a ′
m∧ Cond−(a ′

m, p)))

(→): We are going to show that

T |=
DPDL

+ (∀a.(Poss(a)→ ([a]p↔ ϕ)))→ (∀a.([a]p↔ (¬Poss(a) ∨ϕ)))

1. Poss(a)→ ([a]p↔ ϕ), from hypothesis

2. Poss(a)→ ([a]p→ ϕ), from 1. by classical logic

3. (Poss(a) ∧ [a]p)→ ϕ, from 2. by classical logic

4. ([a]p ∧ Poss(a))→ ϕ, from 3. by classical logic
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5. [a]p→ (Poss(a)→ ϕ), from 4. by classical logic

6. Poss(a)↔ ¬[a]⊥, from global axiom (5.4)

7. ¬Poss(a)→ [a]⊥, from 6. and classical logic

8. [a](⊥→ p), RN on ⊥→ p

9. [a]⊥→ [a]p, from K on 8. and modus ponens

10. ¬Poss(a)→ [a]p, from 7. and 9. by classical logic

11. Poss(a)→ (ϕ→ [a]p), from 1. by classical logic

12. (¬Poss(a) ∧ϕ)→ [a]p, from 10. by classical logic

13. ¬Poss(a)→ (ϕ→ [a]p), from 12. by classical logic

14. (Poss(a) ∨ ¬Poss(a))→ (ϕ→ [a]p), from 11. and 13. by classical logic

15. ⊤→ (ϕ→ [a]p), from 14. by classical logic

16. ϕ→ [a]p, from 15. by classical logic

17. (¬Poss(a) ∨ϕ)→ [a]p, from 10. and 16. by classical logic

18. (Poss(a)→ ϕ)→ [a]p, from 17. by classical logic

19. [a]p↔ (Poss(a)→ ϕ), from 5. and 18. by classical logic

20. [a]p↔ (¬Poss(a) ∨ϕ), from 19. by classical logic

(←): We now prove that

T |=
DPDL

+ (∀a.([a]p↔ (¬Poss(a) ∨ϕ)))→ (∀a.(Poss(a)→ ([a]p↔ ϕ)))

1. [a]p↔ (¬Poss(a) ∨ϕ), from hypothesis

2. (¬Poss(a) ∨ϕ)→ [a]p, from 1. by classical logic

3. (Poss(a)→ ϕ)→ [a]p, from 2. by classical logic

4. Poss(a)→ (ϕ→ [a]p), from 3. by classical logic

5. [a]p→ (¬Poss(a) ∨ϕ), from 1. by classical logic
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6. [a]p→ (Poss(a)→ ϕ), from 5. by classical logic

7. ([a]p ∧ Poss(a))→ ϕ, from 6. by classical logic

8. Poss(a)→ ([a]p→ ϕ), from 7. by classical logic

9. Poss(a)→ ([a]p↔ ϕ), from 4. and 8. by classical logic

Proof of Theorem 5.3

Let the underlying logic be deterministic PDL, ; be a dependence relation obtained from sets

causes+(.) and causes−(.), and let T be the set of global axioms (5.4)–(5.8). Then

(1) T |=
;

[a]p↔ ¬Poss(a) ∨ p, if a 6; p and a 6; ¬p;

(2) T |=
;

[a]p↔ ¬Poss(a) ∨ (p ∧ ¬Cond−(a, p)), if a 6; p and a ; ¬p;

(3) T |=
;

[a]p↔ ¬Poss(a) ∨ Cond+(a, p) ∨ p, if a ; p and a 6; ¬p; and

(4) T |=
;

[a]p↔ ¬Poss(a) ∨ Cond+(a, p) ∨ (p ∧ ¬Cond−(a, p)), if a ; p and a ; ¬p.

Proving (1):

(→): We are about to prove ([a]p ∧ ¬p)→ ¬Poss(a).

1. ¬p→ [a]¬p, from the hypothesis a 6; p

2. ([a]p ∧ ¬p)→ ([a]p ∧ [a]¬p), from 1. by classical logic

3. ([a]p ∧ [a]¬p)→ [a](p ∧ ¬p), by K and classical logic

4. ([a]p ∧ [a]¬p)→ [a]⊥, from 3. and classical logic

5. ([a]p ∧ ¬p)→ [a]⊥, from 2. and 4. by classical logic

6. [a]⊥→ ¬Poss(a), from global axiom (5.4)

7. ([a]p ∧ ¬p)→ ¬Poss(a), from 5. and 6. by classical logic

(←): We now prove ¬Poss(a) ∨ p→ [a]p.

1. p→ [a]p, from the hypothesis a 6; ¬p

2. ¬Poss(a)→ [a]⊥, from global axiom (5.4)
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3. [a](⊥→ p), RN on ⊥→ p

4. [a]⊥→ [a]p, from K on 3. and modus ponens

5. ¬Poss(a)→ [a]p, from 2. and 4. by classical logic

6. ¬Poss(a) ∨ p→ [a]p, from 1. and 5. by classical logic

Proving (2):

(→): Let’s show ([a]p ∧ ¬p)→ ¬Poss(a) and ([a]p ∧ Cond−(a, p))→ ¬Poss(a).

1. ¬p→ [a]¬p, from the hypothesis a 6; p

2. ([a]p ∧ ¬p)→ ([a]p ∧ [a]¬p), from 1. by classical logic

3. ([a]p ∧ [a]¬p)→ [a](p ∧ ¬p), by K and classical logic

4. ([a]p ∧ [a]¬p)→ [a]⊥, from 3. and classical logic

5. [a]⊥→ ¬Poss(a), from global axiom (5.4)

6. ([a]p ∧ [a]¬p)→ ¬Poss(a), from 4. and 5. by classical logic

7. ([a]p ∧ ¬p)→ ¬Poss(a), from 2. and 6. by classical logic

8. Cond−(a, p)→ [a]¬p, by global axiom (5.7)

9. ([a]p ∧ Cond−(a, p))→ ([a]p ∧ [a]¬p), from 8. by classical logic

10. ([a]p ∧ Cond−(a, p))→ [a]⊥, from 9. and 4. by classical logic

11. ([a]p ∧ Cond−(a, p)→ ¬Poss(a), from 10. and 5. by classical logic

(←): We are going to prove ¬Poss(a) ∨ (p ∧ ¬Cond−(a, p))→ [a]p.

1. ¬Poss(a)→ [a]⊥, from global axiom (5.4)

2. [a](⊥→ p), RN on ⊥→ p

3. [a]⊥→ [a]p, from K on 2. and modus ponens

4. ¬Poss(a)→ [a]p, from 1. and 3. by classical logic

5. (p ∧ ¬Cond−(a, p))→ [a]p, from global axiom (5.8)

6. ¬Poss(a) ∨ (p ∧ ¬Cond−(a, p))→ [a]p, from 4. and 5. by classical logic
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Proving (3):

(→): We will prove ([a]p ∧ ¬Cond+(a, p) ∧ ¬p)→ ¬Poss(a).

1. (¬Cond+(a, p) ∧ ¬p)→ [a]¬p, by global axiom (5.6)

2. ([a]p ∧ ¬Cond+(a, p) ∧ ¬p)→ ([a]p ∧ [a]¬p), from 1. by classical logic

3. ([a]p ∧ [a]¬p)→ [a](p ∧ ¬p), by K and classical logic

4. ([a]p ∧ [a]¬p)→ [a]⊥, from 3. and classical logic

5. ([a]p ∧ ¬Cond+(a, p) ∧ ¬p)→ [a]⊥, from 2. and 4. by classical logic

6. [a]⊥→ ¬Poss(a), from global axiom (5.4)

7. ([a]p ∧ ¬Cond+(a, p) ∧ ¬p)→ ¬Poss(a), from 5. and 6. by classical logic

(←): We are about to prove ¬Poss(a) ∨ Cond+(a, p) ∨ p→ [a]p

1. ¬Poss(a)→ [a]⊥, from global axiom (5.4)

2. [a](⊥→ p), RN on ⊥→ p

3. [a]⊥→ [a]p, from K on 2. and modus ponens

4. ¬Poss(a)→ [a]p, from 1. and 3. by classical logic

5. p→ [a]p, by hypothesis a 6; ¬p

6. Cond+(a, p)→ [a]p, from global axiom (5.5)

7. ¬Poss(a) ∨ Cond+(a, p) ∨ p→ [a]p, from 4., 5. and 6. by classical logic

Proving (4):

(→): We prove ([a]p ∧ ¬Cond+(a, p) ∧ ¬(p ∧ ¬Cond−(a, p)))→ ¬Poss(a)

1. (¬Cond+(a, p) ∧ ¬p)→ [a]¬p, from global axiom (5.6)

2. ([a]p ∧ ¬Cond+(a, p) ∧ ¬p)→ ([a]p ∧ [a]¬p), from 1. by classical logic

3. Cond−(a, p)→ [a]¬p, by global axiom (5.7)

4. ([a]p ∧ ¬Cond+(a, p) ∧ Cond−(a, p)) → ([a]p ∧ ¬Cond+(a, p) ∧ [a]¬p), from 3. by

classical logic

5. ([a]p ∧ ¬Cond+(a, p) ∧ [a]¬p)→ ([a]p ∧ [a]¬p), by classical logic
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6. ([a]p ∧ ¬Cond+(a, p) ∧ Cond−(a, p)) → ([a]p ∧ [a]¬p), from 4. and 5. by classical

logic

7. [a]p∧¬Cond+(a, p)∧¬p∨ [a]p∧¬Cond+(a, p)∧Cond−(a, p)→ [a]p∧ [a]¬p, from 2.

and 4. by classical logic

8. ([a]p ∧ ¬Cond+(a, p) ∧ ¬(p ∧ ¬Cond−(a, p)))→ ([a]p ∧ [a]¬p), from 7. by classical

logic

9. ([a]p ∧ [a]¬p)→ [a](p ∧ ¬p), by K and classical logic

10. ([a]p ∧ [a]¬p)→ [a]⊥, from 9. and classical logic

11. ([a]p ∧ ¬Cond+(a, p) ∧ ¬(p ∧ ¬Cond−(a, p)))→ [a]⊥, from 8. and 10. by classical

logic

12. [a]⊥→ ¬Poss(a), from global axiom (5.4)

13. ([a]p ∧ ¬Cond+(a, p) ∧ ¬(p ∧ ¬Cond−(a, p))) → ¬Poss(a), from 11. and 12. by

classical logic

(←): We will prove ¬Poss(a) ∨ Cond+(a, p) ∨ (p ∧ ¬Cond−(a, p))→ [a]p

1. ¬Poss(a)→ [a]⊥, from global axiom (5.4)

2. [a](⊥→ p), RN on ⊥→ p

3. [a]⊥→ [a]p, from K on 2. and modus ponens

4. ¬Poss(a)→ [a]p, from 1. and 3. by classical logic

5. Cond+(a, p)→ [a]p, from global axiom (5.5)

6. (p ∧ ¬Cond−(a, p))→ [a]p, by global axiom (5.8)

7. ¬Poss(a) ∨ Cond+(a, p) ∨ (p ∧ ¬Cond−(a, p))→ [a]p, from 4., 5. and 6. by classical

logic



Appendix C

Long Proofs of Chapter 7

We recall that |=
CPL

is logical consequence in classical propositional logic, and PI(T ∅)

is the set of prime implicates of the set T ∅ of classical formulas.

Before giving the proof of the theorems, we recall some properties of prime im-

plicates [81, 82] and of the function NewCons(.) [61] (see Section 7.3). Let ϕ ∈ Fml,

T ∅ ⊆ Fml finite (identified with the conjunction of its formulas), and χ be a clause.

Then

1. |=
CPL

ϕ↔
∧

PI(ϕ) [82, Corollary 3.2].

2. PI(T ∅) ∪ NewCons(ϕ,T ∅) = PI(T ∅ ∧ϕ) (by definition of NewCons(.)).

3. |=
CPL

(T ∅ ∧ϕ)↔ (T ∅ ∧ NewCons(ϕ,T ∅)) (from 1 and 2)

4. If PI(ϕ) |=
CPL

χ, then there is χ ′ ∈ PI(ϕ) such that χ ′ |=
CPL

χ [82, Proposition 3.4].

Proof of Theorem 7.3

Let Simp* be the output of Algorithm 7.1 on input Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉. Then

Da satisfies Postulate PS if and only if Simp* = ∅.

Let Da = 〈LPDL, |=
;

,S ∪ Ea ∪X a ∪Ia〉 be an action theory for a, and let ϕ→ 〈a〉⊤ ∈

X a, Ca = Ea ∪ Ia, and Ĉa ⊆ Ca. We define:

ϕĈa =
∧

{ϕi : ϕi→ [a]ψi ∈ Ĉa}

ψĈa =
∧

{ψi : ϕi→ [a]ψi ∈ Ĉa}

Moreover, let indepa = {¬ℓ : a 6; ℓ}.

149
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Lemma C.1

Let indep ′
a ⊆ indepa. S ∪ {ψĈa} ∪ indep ′

a |=
CPL

⊥ if and only if S ∪ NewCons(ψĈa ,S ) ∪

indep ′
a |=

CPL
⊥.

Proof:

S ∪ {ψĈa} ∪ indep ′
a |=

CPL
⊥

if and only if

PI(S ∪ {ψĈa}) ∪ indep ′
a |=

CPL
⊥ (by Property 1)

if and only if

PI(S ) ∪ NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥ (by Property 2)

if and only if

S ∪ NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥ (by Property 1).

Lemma C.2

Let indep ′
a ⊆ indepa. If S ∪ NewCons(ψĈa ,S ) ∪ indep ′

a |=
CPL

⊥, then there exists χ ∈

NewCons(ψĈa ,S ) such that S ∪ {χ} ∪ indep ′
a |=

CPL
⊥.

Proof:

S ∪ NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥

if and only if

PI(S ) ∪ NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥ (by Property 1)

if and only if

PI(S ∪ {ψĈa}) ∪ indep ′
a |=

CPL
⊥ (by Property 2)

if and only if

PI(S ∪ {ψĈa}) |=
CPL

¬
∧

{¬ℓi : ¬ℓi ∈ indep ′
a}

if and only if

PI(S ∪ {ψĈa}) |=
CPL

∨
{ℓi : ¬ℓi ∈ indep ′

a}
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if and only if there exists χ ∈ PI(S ∪ {ψĈa}) such that

χ |=
CPL

∨
{ℓi : ¬ℓi ∈ indep ′

a} (by Property 4)

if and only if

{χ} ∪ indep ′
a |=

CPL
⊥

if and only if

S ∪ {χ} ∪ indep ′
a |=

CPL
⊥.

Lemma C.3

Let indep ′
a ⊆ indepa. If we have both S ∪ {ϕ,ϕĈa } ∪ indep ′

a 6|=
CPL

⊥ and S ∪

NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥, then there exists χ ∈ NewCons(ψĈa ,S ) such that

S ∪ {χ} ∪ indep ′
a |=

CPL
⊥.

Proof:

By Lemma C.2 and classical logic.

Lemma C.4

Let indep ′
a ⊆ indepa. If we have both S ∪ {ϕ,ϕĈa } ∪ indep ′

a 6|=
CPL

⊥ and S ∪

NewCons(ψĈa ,S ) ∪ indep ′
a |=

CPL
⊥, then there exists χ ∈ NewCons(ψĈa ,S ) such that

both S ∪ {ϕ,ϕĈa } ∪ indep ′
a 6|=CPL

⊥ and S ∪ {χ} ∪ indep ′
a |=

CPL
⊥.

Proof:

Trivially, by Lemma C.3.

Lemma C.5

Let indep ′
a ⊆ indepa. If χ ∈ NewCons(ψĈa ,S ) is such that S ∪ {ϕ,ϕĈa } ∪ indep ′

a 6|=
CPL

⊥

and S ∪ {χ} ∪ indep ′
a |=

CPL
⊥, then both S ∪ {ϕ,ϕĈa } ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL

⊥

and S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

⊥.

Proof:

Let S ∪ {ϕ,ϕĈa } ∪ indep ′
a 6|=

CPL
⊥ and χ ∈ NewCons(ψĈa ,S ) be such that S ∪ {χ} ∪

indep ′
a |=

CPL
⊥.

If χ = ⊥, the result is trivial. Otherwise, we have the following cases:

• If atm(χ) 6⊂ atm(indep ′
a), then the premise is false (and the lemma trivially holds).

• If atm(χ) = atm(indep ′
a), the lemma holds.
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• Let atm(χ) ⊂ atm(indep ′
a). Then, from

S ∪ {ϕ,ϕĈa } ∪ indep ′
a 6|=CPL

⊥ (the hypothesis)

it follows

S ∪ {ϕ,ϕĈa } ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥.

From

S ∪ {χ} ∪ indep ′
a |=

CPL
⊥ (hypothesis)

and because

S ∪ indep ′
a 6|=CPL

⊥,

it follows

S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

⊥.

Lemma C.6

If χ ∈ NewCons(ψĈa ,S ) is such that both S ∪ {ϕ,ϕĈa}∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥

and S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

⊥, then S ∪ {ϕ,ϕĈa ,¬χ} 6|=
CPL

⊥ and for all

ℓi ∈ χ, a 6; ℓi.

Proof:

From

S ∪ {ϕ,ϕĈa } ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥

we conclude

S ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥.

From this and the hypothesis

S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

⊥,

it follows

S ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

¬χ.

If S |=
CPL

¬χ, then S ∪ {ψĈa} |=
CPL

¬χ, and because χ ∈ NewCons(ψĈa ,S ), we have

χ |=
CPL

¬χ, a contradiction. Hence S ∪ {χ} 6|=
CPL

⊥.

Suppose now that there is a literal ℓ ∈ χ such that ¬ℓ /∈ {¬ℓi : ℓi ∈ χ and a 6; ℓi}.
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Then, the propositional valuation in which χℓ←true satisfies

S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi},

and then

S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥.

Hence there cannot be such a literal, and then for all ℓi ∈ χ, a 6; ℓi.

Now, from a 6; ℓi for all ℓi ∈ χ, we have |=
CPL

∧
{¬ℓi : ℓi ∈ χ and a 6; ℓi} ↔ ¬χ.

From this and the hypothesis

S ∪ {ϕ,ϕĈa } ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=
CPL

⊥

it follows S ∪ {ϕ,ϕĈa ,¬χ} 6|=
CPL

⊥.

Proof of Theorem 7.3

We are about to prove that Da satisfies Postulate PS if and only if Simp* = ∅.

(⇒): Suppose Simp* 6= ∅. Then at the first step of the algorithm there has been

some ϕ → 〈a〉⊤ ∈ X a and some Ĉa ⊆ Ca such that for some χ ∈ NewCons(ψĈa ,S ),

Da |= ¬(ϕ ∧ ϕĈa ∧ ¬χ) and 〈LCPL, |=CPL
,S〉 6|= ¬(ϕ ∧ ϕĈa ∧ ¬χ). Hence Da does not

satisfy Postulate PS.

(⇐): Suppose that Simp* = ∅. Therefore for all ϕ ′ → 〈a〉⊤ ∈ X a and for all subsets

Ĉa ⊆ Ca, we have that

for all χ ∈ NewCons(ψĈa ,S ), if S ∪ {ϕ ′, ϕĈa ,¬χ} 6|=
CPL

⊥,

then there exists ℓi ∈ χ such that a ; ℓi
(C.1)

From (C.1) and Lemma C.6, we get

for all χ ∈ NewCons(ψĈa ,S ), if S ∪ {ϕ,ϕĈa }∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥,

then S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥
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From this and Lemma C.5, it follows that

for all χ ∈ NewCons(ψĈa ,S ), if S ∪ {ϕ ′, ϕĈa } ∪ indep ′
a 6|=CPL

⊥,

then S ∪ {χ} ∪ indep ′
a 6|=CPL

⊥

This and Lemma C.4 gives us

if S ∪ {ϕ ′, ϕĈa } ∪ indep ′
a 6|=CPL

⊥, then S ∪ NewCons(ψĈa ,S ) ∪ indep ′
a 6|=CPL

⊥

From this and Lemma C.1, it follows that for all indep ′
a ⊆ indepa, for everyϕ ′ → 〈a〉⊤ ∈

X a and all Ĉa ⊆ Ca,

if S ∪ {ϕ ′, ϕĈa } ∪ indep ′
a 6|=CPL

⊥, then S ∪ {ψĈa} ∪ indep ′
a 6|=CPL

⊥. (C.2)

Now, suppose 〈LCPL, |=CPL
,S〉 6|= ϕ for some propositional ϕ. We will build a

model M such that M is a model for Da that does not satisfy ϕ.

Let M = 〈W,Ra〉 be such that W = valuations(S ), and Ra be such that for all

w,w ′ ∈ W, wRaw
′ if and only if

• |=
M

w′
ψi for every ϕi→ [a]ψi ∈ Ca such that |=

M

w
ϕi; and

• |=
M

w′
¬ℓ for all ℓ such that a 6; ℓ and |=

M

w
¬ℓ.

We have that M is a ;-model, by the definition of Ra. By the definition of W, M is a

model of S . We have that M is a model of Ea and Ia, too: for every ϕi → [a]ψi ∈ Ca

and every world w ∈ W, if |=
M

w
ϕi, then, by the definition of Ra, |=

M

w′
ψi for all w ′ ∈ W

such that wRaw
′. Moreover, M is also a model of X a: for every ϕi → 〈a〉⊤ ∈ X a and

every world w ∈ W, if |=
M

w
ϕi, then

Ea(w) = {ϕi→ [a]ψi ∈ Ea : |=
M

w
ϕi}, and indepa(w) = {¬ℓ : a 6; ℓ and |=

M

w
¬ℓ}

are such that S ∪ {ϕi, ϕEa(w)} ∪ indepa(w) 6|=
CPL

⊥, where

ϕEa(w) =
∧

{ϕi : ϕi→ [a]ψi ∈ Ea(w)}
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From this and (C.2), we have S ∪ {ψEa(w)} ∪ indepa(w) 6|=
CPL

⊥, where

ψEa(w) =
∧

{ψi : ϕi→ [a]ψi ∈ Ea(w)}

As W is maximal, there existsw ′ such that |=
M

w′
ψEa(w) ∧ indepa(w). As Ra is maximal by

definition, we have wRaw
′. Hence there exists at least one w ′ such that wRaw

′, and

|=
M

w
〈a〉⊤.

Hence, M is a model of Da. Clearly 6|=
M
ϕ, by the definition of W. Hence Da 6|= ϕ.

Therefore Da satisfies Postulate PS.

Proof of Theorem 7.5

Let Ia
imp be the output of Algorithm 7.2 on input Da = 〈LPDL, |=

;

,S ∪ Ea ∪ X a ∪ Ia〉. If Da

satisfies Postulate PS, then Da satisfies Postulate PI if and only if Ia
imp = ∅.

Let Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉 be an action theory for action a. For every

Êa ⊆ Ea we define:

ϕÊa =
∧

{ϕi : ϕi→ [a]ψi ∈ Êa}

ψÊa =
∧

{ψi : ϕi→ [a]ψi ∈ Êa}

Moreover, let indepa = {¬ℓ : a 6; ℓ}.

Lemma C.7

If S ,Ia 6|=
PDL

(ϕÊa ∧ indep ′
a) → [a]⊥ and S ∪ {ψÊa} ∪ indep ′

a |=
CPL

⊥, then there is χ ∈

NewCons(ψÊa ,S ) such that S ,Ia 6|=
PDL

(ϕÊa ∧ ¬χ)→ [a]⊥ and a 6; ℓi for all ℓi ∈ χ.

Proof:

Let S ,Ia 6|=
PDL

(ϕÊa ∧ indep ′
a) → [a]⊥. Then there is a PDL-model M = 〈W,Ra〉 such

that |=
M
S ∧ Ia and 6|=

M
(ϕÊa ∧ indep ′

a)→ [a]⊥. This means that there is a possible world

v ∈ W such that |=
M

v
ϕÊa ∧ indep ′

a and 6|=
M

v
[a]⊥. From |=

M

v
ϕÊa ∧ indep ′

a, it follows

S ∪ {ϕÊa } ∪ indep ′
a 6|=CPL

⊥ (C.3)

From hypothesis S ∪ {ψÊa } ∪ indep ′
a |=

CPL
⊥ and Lemma C.1, we get

S ∪ NewCons(ψÊa ,S ) ∪ indep ′
a |=

CPL
⊥
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and from this and Lemma C.2 we have that there is χ ∈ NewCons(ψÊa ,S ) such that

S ∪ {χ} ∪ indep ′
a |=

CPL
⊥ (C.4)

From (C.3), (C.4) and classical logic, there is χ ∈ NewCons(ψÊa ,S ) such that

S ∪ {ϕÊa } ∪ indep ′
a 6|=CPL

⊥ and S ∪ {χ} ∪ indep ′
a |=

CPL
⊥

From this and Lemma C.5 it follows that there is χ ∈ NewCons(ψÊa ,S ) such that

S ∪ {ϕ,ϕÊa } ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} 6|=CPL
⊥

and

S ∪ {χ} ∪ {¬ℓi : ℓi ∈ χ and a 6; ℓi} |=
CPL

⊥

This and Lemma C.6 gives us that for all ℓi ∈ χ, a 6; ℓi.

Now, because M above is such that |=
M

v
ϕÊa ∧ indep ′

a, from this and S ∪ {χ} ∪

indep ′
a |=

CPL
⊥, we have that |=

M

v
ϕÊa ∧ ¬χ. Because 6|=

M

v
[a]⊥, we therefore have

S ,Ia 6|=
PDL

(ϕÊa ∧ ¬χ)→ [a]⊥.

Proof of Theorem 7.5

We are about to prove that if Da satisfies Postulate PS, then Da satisfies Postulate PI

if and only if Ia
imp = ∅.

(⇒): Straightforward, as every time Da |= ϕ → [a]⊥, we have 〈LPDL, |=
PDL

,S ∪ Ia〉 |=

ϕ→ [a]⊥, and then Ia
imp never changes.

(⇐): Suppose that Ia
imp = ∅. Therefore for all subsets Êa ⊆ Ea, we have that

for all χ ∈ NewCons(ψÊa ,S ), if S ,Ia 6|=
PDL

(ϕÊa ∧ ¬χ)→ [a]⊥,

then there exists ℓi ∈ χ such that a ; ℓi
(C.5)

From (C.5) and Lemma C.7, it follows that for all Êa ⊆ Ea,

if S ,Ia 6|=
PDL

(ϕÊa ∧ indep ′
a)→ [a]⊥,

then S ∪ {ψÊa} ∪ indep ′
a 6|=CPL

⊥.
(C.6)

Suppose 〈LPDL, |=PDL
,S ∪ Ia〉 6|= ϕ → [a]⊥ for some ϕ ∈ Fml. Then there exists a
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PDL-model M = 〈W,Ra〉 such that |=
M
S ∧ Ia and 6|=

M
ϕ→ [a]⊥. This means that there

is a possible world v ∈ W such that |=
M

v
ϕ and 6|=

M

v
[a]⊥.

(We are going to build a model of Da, and hence conclude that Da 6|= ϕ→ [a]⊥.)

For givenw ∈ W, we define:

Ia(w) = {ϕi→ [a]⊥ ∈ Ia : |=
M

w
ϕi}

Because Da satisfies Postulate PS, we can extend M to a big model M ′ = 〈W ′,R ′
a〉

such that W = valuations(S ), and R ′
a is defined such that for all w,w ′ ∈ W ′, wR ′

aw
′ if

and only if

• |=
M ′

w′
¬ℓ for all ℓ such that a 6; ℓ and |=

M ′

w
¬ℓ;

• |=
M ′

w′
ψi for every ϕi→ [a]ψi ∈ Ea such that |=

M ′

w
ϕi; and

• Ia(w) = ∅.

By definition, M ′ is a ;-model. We also have |=
M ′

S , by the definition of W ′. M ′ is

a model of Ea, too: for every ϕi → [a]ψi ∈ Ea and every w ∈ W ′, if |=
M ′

w
ϕi, then

|=
M ′

w′
ψi for all w ′ ∈ W ′ such that wR ′

aw
′. Clearly M ′ is also a model of Ia: for every

ϕi → [a]⊥ ∈ Ia and every w ∈ W ′, if |=
M ′

w
ϕi, then Ia(w) 6= ∅ and R ′

a(w) = ∅. M ′ is a

model of X a, too: for every ϕi→ 〈a〉⊤ ∈ X a and everyw ∈ W ′, if |=
M ′

w
ϕi, then

Ea(w) = {ϕi→ [a]ψi ∈ Ea : |=
M

w
ϕi}, and indepa(w) = {¬ℓ : a 6; ℓ and |=

M

w
¬ℓ}

are such that S ,Ia 6|=
PDL

(ϕEa(w) ∧ indepa(w))→ [a]⊥, where

ϕEa(w) =
∧

{ϕi : ϕi→ [a]ψi ∈ Ea(w)}

The justification is that S ,Ia |=
PDL

(ϕEa(w) ∧ indepa(w)) → [a]⊥ would imply Da |=

(ϕEa(w) ∧ indepa(w)) → [a]⊥, and as long as ϕi → 〈a〉⊤ ∈ X a, Da |= ¬(ϕi ∧ ϕEa(w) ∧

indepa(w)). As by hypothesis Da satisfies PS, ¬(ϕi∧ϕEa(w)∧ indepa(w)) ∈ S , and then

w /∈ W ′.

Hence, from S ,Ia 6|=
PDL

(ϕEa(w) ∧ indepa(w)) → [a]⊥ and (C.6), it follows that

S ∪ {ψEa(w)} ∪ indepa(w) 6|=
CPL

⊥, where

ψEa(w) =
∧

{ψi : ϕi→ [a]ψi ∈ Ea(w)}

As W ′ is maximal, there exists w ′ such that |=
M ′

w′
ψEa(w) ∧ indepa(w). As R ′

a is maximal
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by definition, we havewR ′
aw

′. Hence there exists at least onew ′ such thatwR ′
aw

′, and

then |=
M ′

w′
〈a〉⊤.

Therefore, M ′ is a model of Da.

Looking at v ∈ W ′, we must have S ,Ia 6|=
PDL

(ϕEa(v) ∧ indepa(v)) → [a]⊥, because

otherwise Ra(v) = ∅, against the hypothesis that 6|=
M

v
[a]⊥. Hence, from (C.6) it follows

that S ∪ {ψEa(v)}∪ indepa(v) 6|=CPL
⊥, and then there exists at least one v ′ such that vR ′

av
′,

and then |=
M ′

v′
〈a〉⊤. From this it follows that Da 6|= ϕ → [a]⊥. Therefore Da satisfies

Postulate PI.



Appendix D

Long Proofs of Chapter 8

Proof of Theorem 8.3

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfy Postulate PS*. D satisfies Postulate PI* if and

only if Da = 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉 satisfies Postulate PI for all a ∈ Act.

(⇒): Suppose that Da |= ϕ → [a]⊥, i.e., S , Ea,X a,Ia |=
;

ϕ → [a]⊥. By monotonicity,

S , E ,X ,I |=
;

ϕ → [a]⊥, too. Now suppose that 〈LPDL, |=PDL
,S ∪ Ia〉 6|= ϕ → [a]⊥, i.e.,

S ,Ia 6|=
PDL

ϕ → [a]⊥. Then there exists a possible worlds model M = 〈W,Ra〉 such

that |=
M

S ∧ Ia and there is a possible world v ∈ W such that |=
M

v
ϕ and 6|=

M

v
[a]⊥. Let

M ′ = 〈W ′,R ′〉 be such that W ′ = W, and R ′
a ′ = ∅, for all a ′ 6= a, and R ′

a = Ra. Then

|=
M ′

S ∧ I , and then S ,I 6|=
PDL

ϕ→ [a]⊥. Hence D does not satisfy PI*.

(⇐): Suppose that D does not satisfy Postulate PI*. Then there exists ϕ ∈ Fml such

that D |= ϕ→ [a]⊥ and 〈LPDL, |=PDL
,S ∪ I〉 6|= ϕ→ [a]⊥.

Claim: Da |= ϕ→ [a]⊥.

(Proof of the claim): Suppose Da 6|= ϕ → [a]⊥, i.e., S , Ea,X a,Ia 6|=
;

ϕ → [a]⊥. Then

there exists a ;-model M = 〈W,Ra〉 such that |=
M
S ∧ Ea ∧ X a ∧ Ia and 6|=

M
ϕ→ [a]⊥.

This means that there is a possible world v ∈ W such that |=
M

v
ϕ and 6|=

M

v
[a]⊥, i.e., there

is v ′ ∈ W such that Ra(v) = v ′.

(We extend M to all other actions D speaks of and obtain a model of D .)

Given w ∈ W, for each ai ∈ Act we define:

Iai (w) = {ϕj→ [ai]⊥ ∈ Iai : |=
M

w
ϕj}

X ai (w) = {ϕj→ 〈ai〉⊤ ∈ X ai : |=
M

w
ϕj}

Let M ′ = 〈W ′,R ′〉 be such that W ′ = W, and R ′ = Ra ∪
⋃

a ′ 6=a Ra ′ , where for each

a ′ 6= a and every w,w ′ ∈ W ′, wRa ′w ′ if and only if

159
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• |=
M ′

w′
¬ℓ for all ℓ such that a ′ 6; ℓ and |=

M ′

w
¬ℓ.

• |=
M ′

w′
ψi for every ϕi→ [a ′]ψi ∈ Ea ′

such that |=
M ′

w
ϕi; and

• Ia ′

(w) = ∅;

By definition, M ′ is a model of the dependence relation ;. Because, by hypothesis, D

satisfies PS*, there is no implicit static law, i.e., for every ai ∈ Act and every w ∈ W ′,

if Iai (w) 6= ∅, then X ai(w) = ∅. Then, as W ′ = valuations(S ), M ′ is a model of S .

We have that M ′ is a model of E , too: it is a model of Ea, and given a ′ 6= a, for every

ϕi → [a ′]ψi ∈ E and every w ∈ W ′, if |=
M ′

w
ϕi, then |=

M ′

w′
ψi for all w ′ ∈ W ′ such that

wRa ′w ′. Clearly M ′ is also a model of I : it is a model of Ia, and given a ′ 6= a, for every

ϕi→ [a ′]⊥ ∈ I and every w ∈ W ′, if |=
M ′

w
ϕi, then Ia ′

(w) 6= ∅ and Ra ′(w) = ∅. M ′ is a

model of X , too: besides being a model of X a, for every a ′ 6= a and all worlds w ∈ W ′

such that X a ′

(w) 6= ∅ there is a world accessible by Ra ′ , because Ra ′(w) = ∅ in this

case would preclude X a ′

(w) 6= ∅, and otherwise w /∈ W ′, which is impossible as long

as PS* is satisfied. Thus |=
M ′

S∧E∧X ∧I , but if this is the case, S , E ,X ,I 6|=
;

ϕ→ [a]⊥,

hence we must have S , Ea,X a,Ia |=
;

ϕ → [a]⊥, and then Da |= ϕ → [a]⊥. (End of the

proof of the claim.)

From 〈LPDL, |=PDL
,S ∪ I〉 6|= ϕ → [a]⊥ it follows 〈LPDL, |=PDL

,S ∪ Ia〉 6|= ϕ → [a]⊥.

Putting all the results together, we have that Da does not satisfy Postulate PI.

Proof of Theorem 8.5

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → [a]ψ if and only

if 〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 |= ϕ→ [a]ψ.

(⇒): Let D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfy Postulate PS*, and also suppose that

〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 6|= ϕ → [a]ψ, i.e., S , Ea,Ia 6|=
;

ϕ → [a]ψ. Then there exists a

;-model M = 〈W,Ra〉, such that |=
M

S ∧ Ea ∧ Ia and 6|=
M
ϕ → [a]ψ. This means that

there is a possible world v ∈ W such that |=
M

v
ϕ and 6|=

M

v
[a]ψ, i.e., there is v ′ ∈ W such

that Ra(v) = v ′ and 6|=
M

v′
ψ.

(We will extend M to obtain a model of D and thus show that D 6|= ϕ→ [a]ψ.)

Given w ∈ W, for each ai ∈ Act we define:

Iai (w) = {ϕj→ [ai]⊥ ∈ Iai : |=
M

w
ϕj}

X ai (w) = {ϕj→ 〈ai〉⊤ ∈ X ai : |=
M

w
ϕj}
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Let M ′ = 〈W ′,R ′〉 be such that W ′ = W, and R ′ = Ra ∪
⋃

a ′ 6=a Ra ′ , where for each

a ′ 6= a and every w,w ′ ∈ W ′, wRa ′w ′ if and only if

• |=
M ′

w′
¬ℓ for all ℓ such that a ′ 6; ℓ and |=

M ′

w
¬ℓ.

• |=
M ′

w′
ψi for every ϕi→ [a ′]ψi ∈ Ea ′

such that |=
M ′

w
ϕi; and

• Ia ′

(w) = ∅;

By definition, M ′ is a model of the dependence relation ;. Because, by hypothesis, D

satisfies PS*, there is no implicit static law, i.e., for every ai ∈ Act and every w ∈ W ′,

if Iai (w) 6= ∅, then X ai(w) = ∅. Then, as W ′ = valuations(S ), M ′ is a model of S .

We have that M ′ is a model of E , too: it is a model of Ea, and given a ′ 6= a, for every

ϕi → [a ′]ψi ∈ E and every w ∈ W ′, if |=
M ′

w
ϕi, then |=

M ′

w′
ψi for all w ′ ∈ W ′ such that

wRa ′w ′. Clearly M ′ is also a model of I : besides being a model of Ia, given a ′ 6= a,

for everyϕi→ [a ′]⊥ ∈ I and everyw ∈ W ′, if |=
M ′

w
ϕi, then Ia ′(w) 6= ∅ and Ra ′(w) = ∅.

M ′ is a model of X , too: it is a model of X a, and for every a ′ 6= a and all worlds

w ∈ W ′ such that X a ′

(w) 6= ∅ there is a world accessible by Ra ′ , because Ra ′(w) = ∅ in

this case would preclude X a ′

(w) 6= ∅, and otherwise w /∈ W ′, which is impossible as

long as PS* is satisfied. Thus |=
M ′

S ∧E ∧X ∧I . Because there are v, v ′ ∈ W ′ such that

|=
M ′

v
ϕ, vRav

′ and 6|=
M ′

v′
ψ, we have S , E ,X ,I 6|=

;

ϕ→ [a]ψ, and then D 6|= ϕ→ [a]ψ.

(⇐): Suppose D 6|= ϕ → [a]ψ, i.e., S , E ,X ,I 6|=
;

ϕ → [a]ψ. Then there is a ;-

model M such that |=
M

S ∧ E ∧ X ∧ I and 6|=
M
ϕ → [a]ψ. Then, given a, we have

|=
M
S ∧ Ea ∧ X a ∧ Ia, and then |=

M
S ∧ Ea ∧ Ia. Hence S , Ea,Ia 6|=

;

ϕ→ [a]ψ, and then

〈LPDL, |=
;

,S ∪ Ea ∪ Ia〉 6|= ϕ→ [a]ψ.

Proof of Theorem 8.6

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ→ 〈a〉⊤ if and only

if 〈LPDL, |=PDL
,S ∪ X a〉 |= ϕ→ 〈a〉⊤.

(⇒): Let D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfy Postulate PS*, and suppose that

〈LPDL, |=PDL
,S ∪ X a〉 6|= ϕ → 〈a〉⊤, i.e., S ,X a 6|=

PDL
ϕ → 〈a〉⊤. Then there exists a

PDL-model M = 〈W,Ra〉, such that |=
M

S ∧ X a and 6|=
M
ϕ → 〈a〉⊤. This means that

there is a possible world v ∈ W such that |=
M

v
ϕ and 6|=

M

v
〈a〉⊤.

(We extend M to build a model of D and then conclude that D 6|= ϕ→ 〈a〉⊤.)

Given w ∈ W, for each ai ∈ Act we define:
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Iai (w) = {ϕj→ [ai]⊥ ∈ Iai : |=
M

w
ϕj}

X ai (w) = {ϕj→ 〈ai〉⊤ ∈ X ai : |=
M

w
ϕj}

Let M ′ = 〈W ′,R ′〉 be such that W ′ = W, and R ′ = Ra ∪
⋃

a ′ 6=a Ra ′ , where for each

a ′ 6= a and every w,w ′ ∈ W ′, wRa ′w ′ if and only if

• |=
M ′

w′
¬ℓ for all ℓ such that a ′ 6; ℓ and |=

M ′

w
¬ℓ;

• |=
M ′

w′
ψi for every ϕi→ [a ′]ψi ∈ Ea ′

such that |=
M ′

w
ϕi; and

• Ia ′

(w) = ∅.

By definition, M ′ is a model of the dependence relation ;. Because, by hypothesis, D

satisfies PS*, there is no implicit static law, i.e., for every ai ∈ Act and every w ∈ W ′,

if X ai (w) 6= ∅, then Iai(w) = ∅. Then, as W ′ = valuations(S ), M ′ is a model of S .

We have that M ′ is a model of E , too: it is a model of Ea, and given a ′ 6= a, for every

ϕi → [a ′]ψi ∈ E and every w ∈ W ′, if |=
M ′

w
ϕi, then |=

M ′

w′
ψi for all w ′ ∈ W ′ such that

wRa ′w ′. Clearly M ′ is also a model of I : it is a model of Ia, and given a ′ 6= a, for

every ϕi → [a ′]⊥ ∈ I and every w ∈ W ′, if |=
M ′

w
ϕi, then Ia ′

(w) 6= ∅ and Ra ′(w) = ∅.

M ′ is a model of X , too: besides being a model of X a, for every a ′ 6= a and all worlds

w ∈ W ′ such that X a ′

(w) 6= ∅ there is a world accessible by Ra ′ , because Ra ′(w) = ∅ in

this case would preclude X a ′

(w) 6= ∅, and otherwise w /∈ W ′, which is impossible as

long as PS* is satisfied. Hence |=
M ′

S ∧ E ∧ X ∧ I . Because there is v ∈ W ′ such that

|=
M ′

v
ϕ and 6|=

M ′

v
〈a〉⊤, we have S , E ,X ,I 6|=

;

ϕ→ 〈a〉⊤, and then D 6|= ϕ→ 〈a〉⊤.

(⇐): Suppose D 6|= ϕ → 〈a〉⊤, i.e., S , E ,X ,I 6|=
;

ϕ → 〈a〉⊤. Then there is a ;-

model M such that |=
M

S ∧ E ∧ X ∧ I and 6|=
M
ϕ → 〈a〉⊤. Then, given a, we have

|=
M
S ∧ Ea ∧X a ∧ Ia, and then |=

M
S ∧X a. Moreover, by definition, M is a PDL-model.

Hence S ,X a 6|=
PDL

ϕ→ 〈a〉⊤, and then 〈LPDL, |=PDL
,S ∪ X a〉 6|= ϕ→ 〈a〉⊤.

Proof of Theorem 8.8

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → [a1; . . . ; an]ψ if

and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ Ia1,...,an〉 |= ϕ→ [a1; . . . ; an]ψ.

Lemma D.1

If D |= ϕ → [a1; . . . ; an]ψ, then there is ϕ ′ ∈ Fml such that D |= ϕ → [a1; . . . ; an−1]ϕ
′

and D |= ϕ ′ → [an]ψ.
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Proof:

Let D |= ϕ → [a1; . . . ; an]ψ. If D |= ϕ → [a1; . . . ; an]⊥, the result immediately fol-

lows. Then, given a model M = 〈W,R〉 of D such that |=
M

w
ϕ for some w ∈ W, if

|=
M

w
〈a1; . . . ; an〉⊤, there must be at least one w ′

n−1 such that |=
M

w′
n−1

[an]ψ. Take all such

w ′
n−1 and let ϕ ′ be ∨

|=
M

w′
n−1

[an]ψ

w ′
n−1

Then we have D |= ϕ→ [a1; . . . ; an−1]ϕ
′, and D |= ϕ ′ → [an]ψ.

Proof of Theorem 8.8

(⇒): The proof is by induction on the number of action operators.

Base: n = 1. As D satisfies Postulate PS*, the result follows from Theorem 8.5.

Induction hypothesis: for any k < n, if D |= ϕ → [a1; . . . ; ak]ψ, then 〈LPDL, |=
;

,S ∪

Ea1,...,ak ∪ Ia1,...,ak 〉 |= ϕ→ [a1; . . . ; ak]ψ.

Step: let D |= ϕ → [a1; . . . ; an]ψ. By Lemma D.1, there is a classical formula ϕ ′

such that D |= ϕ → [a1; . . . ; an−1]ϕ
′ and D |= ϕ ′ → [an]ψ. From the induction hy-

pothesis, we have that 〈LPDL, |=
;

,S ∪ Ea1,...,an−1 ∪ Ia1,...,an−1〉 |= ϕ → [a1; . . . ; an−1]ϕ
′

and 〈LPDL, |=
;

,S ∪ Ean ∪ Ian〉 |= ϕ ′ → [an]ψ. This gives us 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪

Ia1,...,an 〉 |= ϕ→ [a1; . . . ; an]ψ.

(⇐): Suppose D 6|= ϕ → [a1; . . . ; an]ψ, i.e., S , E ,X ,I 6|=
;

ϕ → [a1; . . . ; an]ψ. Then there

is a ;-model M such that |=
M

S ∧ E ∧ X ∧ I and 6|=
M
ϕ → [a1; . . . ; an]ψ. Then, given

a1, . . . , an, we have |=
M

S ∧ Ea1,...,an ∧ X a1,...,an ∧ Ia1,...,an , and then |=
M

S ∧ Ea1,...,an ∧

Ia1,...,an . Hence S , Ea1,...,an ,Ia1,...,an 6|=
;

ϕ → [a1; . . . ; an]ψ, and then 〈LPDL, |=
;

,S ∪

Ea1,...,an ∪ Ia1,...,an〉 6|= ϕ→ [a1; . . . ; an]ψ.

Proof of Theorem 8.9

If D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfies Postulate PS*, then D |= ϕ → 〈a1; . . . ; an〉ψ if

and only if 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪ X a1,...,an ∪ Ia1,...,an 〉 |= ϕ→ 〈a1; . . . ; an〉ψ.

Lemma D.2

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X ∪ I〉 satisfy Postulate PS*. If D |= ϕ→ 〈a〉ψ is the case,

then 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉 |= ϕ→ 〈a〉ψ.
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Proof:

Let D satisfy Postulate PS* and suppose 〈LPDL, |=
;

,S ∪ Ea ∪ X a ∪ Ia〉 6|= ϕ → 〈a〉ψ,

i.e., S , Ea,X a,Ia 6|=
;

ϕ → 〈a〉ψ. Then there exists a ;-model M = 〈W,Ra〉, such that

|=
M
S ∧ Ea ∧X a ∧Ia and 6|=

M
ϕ→ 〈a〉ψ. This means that there is a possible world v ∈ W

such that |=
M

v
ϕ and 6|=

M

v
〈a〉ψ.

(We extend M to build a model of D and then conclude that D 6|= ϕ→ 〈a〉ψ.)

Given w ∈ W, for each ai ∈ Act we define:

Iai (w) = {ϕj→ [ai]⊥ ∈ Iai : |=
M

w
ϕj}

X ai (w) = {ϕj→ 〈ai〉⊤ ∈ X ai : |=
M

w
ϕj}

Let M ′ = 〈W ′,R ′〉 be such that W ′ = W, and R ′ = Ra ∪
⋃

a ′ 6=a Ra ′ (we extend M to

all other actions D speaks of), where for each a ′ 6= a and every w,w ′ ∈ W ′, wRa ′w ′ if

and only if

• |=
M ′

w′
¬ℓ for all ℓ such that a ′ 6; ℓ and |=

M ′

w
¬ℓ;

• |=
M ′

w′
ψi for every ϕi→ [a ′]ψi ∈ Ea ′

such that |=
M ′

w
ϕi; and

• Ia ′

(w) = ∅.

By definition, M ′ is a model of the dependence relation ;. Because, by hypothesis, D

satisfies PS*, there is no implicit static law, i.e., for every ai ∈ Act and every w ∈ W ′,

if X ai (w) 6= ∅, then Iai(w) = ∅. Then, as W ′ = valuations(S ), M ′ is a model of S .

We have that M ′ is a model of E , too: it is a model of Ea, and given a ′ 6= a, for every

ϕi → [a ′]ψi ∈ E and every w ∈ W ′, if |=
M ′

w
ϕi, then |=

M ′

w′
ψi for all w ′ ∈ W ′ such that

wRa ′w ′. Clearly M ′ is also a model of I : it is a model of Ia, and given a ′ 6= a, for

every ϕi → [a ′]⊥ ∈ I and every w ∈ W ′, if |=
M ′

w
ϕi, then Ia ′

(w) 6= ∅ and Ra ′(w) = ∅.

M ′ is a model of X , too: besides being a model of X a, for every a ′ 6= a and all worlds

w ∈ W ′ such that X a ′

(w) 6= ∅ there is a world accessible by Ra ′ , because Ra ′(w) = ∅ in

this case would preclude X a ′

(w) 6= ∅, and otherwise w /∈ W ′, which is impossible as

long as PS* is satisfied. Hence |=
M ′

S ∧ E ∧ X ∧ I . Because there is v ∈ W ′ such that

|=
M ′

v
ϕ and 6|=

M ′

v
〈a〉ψ, we have S , E ,X ,I 6|=

;

ϕ→ 〈a〉ψ, and then D 6|= ϕ→ 〈a〉⊤.

Lemma D.3

If D |= ϕ → 〈a1; . . . ; an〉ψ, then there is ϕ ′ ∈ Fml such that D |= ϕ → 〈a1; . . . ; an−1〉ϕ
′

and D |= ϕ ′ → 〈an〉ψ.
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Proof:

The proof is by induction on the number of action operators.

Base: n = 2. Suppose D |= ϕ→ 〈a1; a2〉ψ. Then D |= ϕ→ 〈a1〉〈a2〉ψ. For every model

M = 〈W,R〉 of D and for every w ∈ W such that |=
M

w
ϕ, there is w ′ ∈ W such that

wRa1w
′ and |=

M

w′
〈a2〉ψ. Let ϕ ′ be

∧
{ℓ : ℓ ∈ w ′} and the result follows.

Induction hypothesis: for any k < n, if D |= ϕ→ 〈a1; . . . ; ak〉ψ, then there is ϕ ′ ∈ Fml

such that D |= ϕ→ 〈a1; . . . ; ak−1〉ϕ
′ and D |= ϕ ′ → 〈ak〉ψ.

Step: let D |= ϕ → 〈a1; . . . ; an〉ψ. Then D |= ϕ → 〈a1; . . . ; an−1〉⊤. By the induction

hypothesis, there is ϕ ′ ∈ Fml such that D |= ϕ → 〈a1; . . . ; an−2〉ϕ
′ and D |= ϕ ′ →

〈an−1〉⊤. Because D |= ϕ → 〈a1; . . . ; an〉ψ, given a model M = 〈W,R〉 of D such that

|=
M

w
ϕ for some w ∈ W, there must be w ′

n−2 ∈ W such that |=
M

w′
n−2

〈an−1〉〈an〉ψ. Then we

can safely take ϕ ′ as
∧

{ℓ : ℓ ∈ w ′
n−2}. Now, D |= ϕ ′ → 〈an−1〉〈an〉ψ. By the base step,

there is ϕ ′′ ∈ Fml such that D |= ϕ ′ → 〈an−1〉ϕ
′′ and D |= ϕ ′′ → 〈an〉ψ. Putting all the

results together, we get D |= ϕ → 〈a1; . . . ; an−1〉ϕ
′′ and D |= ϕ ′′ → 〈an〉ψ, for some

ϕ ′′ ∈ Fml.

Proof of Theorem 8.9

(⇒): The proof is by induction on the number of action operators.

Base: n = 1. As D satisfies Postulate PS*, the result follows from Lemma D.2.

Induction hypothesis: for any k < n, if D |= ϕ → 〈a1; . . . ; ak〉ψ, then 〈LPDL, |=
;

,S ∪

Ea1,...,ak ∪ X a1,...,ak ∪ Ia1,...,ak 〉 |= ϕ→ 〈a1; . . . ; ak〉ψ.

Step: let D |= ϕ → 〈a1; . . . ; an〉ψ. By Lemma D.3, there is ϕ ′ ∈ Fml such that D |=

ϕ → 〈a1; . . . ; an−1〉ϕ
′ and D |= ϕ ′ → 〈an〉ψ. By the induction hypothesis, we have

〈LPDL, |=
;

,S ∪ Ea1,...,an−1 ∪ X a1,...,an−1 ∪ Ia1,...,an−1〉 |= ϕ → 〈a1; . . . ; an−1〉ϕ
′ and also

〈LPDL, |=
;

,S ∪ Ean ∪ X an ∪ Ian〉 |= ϕ ′ → 〈an〉ψ. Then, this gives us 〈LPDL, |=
;

,S ∪

Ea1,...,an ∪ X a1,...,an ∪ Ia1,...,an〉 |= ϕ→ 〈a1; . . . ; an〉ψ.

(⇐): Suppose D 6|= ϕ → 〈a1; . . . ; an〉ψ, i.e., S , E ,X ,I 6|=
;

ϕ → 〈a1; . . . ; an〉ψ. Then

there is a ;-model M such that |=
M

S ∧ E ∧ X ∧ I and 6|=
M
ϕ → 〈a1; . . . ; an〉ψ.

Then, given a1, . . . , an, we have |=
M

S ∧ Ea1,...,an ∧ X a1,...,an ∧ Ia1,...,an , and hence

S , Ea1,...,an ,X a1,...,an ,Ia1,...,an 6|=
;

ϕ → 〈a1; . . . ; an〉ψ. Then 〈LPDL, |=
;

,S ∪ Ea1,...,an ∪

X a1,...,an ∪ Ia1,...,an〉 6|= ϕ→ 〈a1; . . . ; an〉ψ.
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Appendix E

Long Proofs of Chapter 9

Proof of Theorem 9.1

LetΦ be a formula that has the form of one of the three laws. For all models M ′, if M ′ ∈ M
−
Φ

for some M = 〈W,R〉 such that |=
M
D , then |=

M ′

D−
Φ.

Let M be such that |=
M
D and let M ′ ∈ M

−
Φ. We analyze each case.

Suppose Φ is ϕ, for some propositional ϕ ∈ Fml. Then M ′ = 〈W ′,R〉, where

W ′ = W⊖valuations(ϕ). Because we have assumed the syntactical classical contraction

operator ⊖ is sound and complete w.r.t. its semantics, M ′ is a model of S−. As ; and

E have not changed, clearly M ′ remains a ;-model and a model of E . M ′ is also a

model of X−: for every w ∈ W ′ and every (ϕi∧ϕ)→ 〈a〉⊤ ∈ X−, |=
M ′

w
ϕi∧ϕ implies

Ra(w) 6= ∅, because |=
M

w
ϕi→ 〈a〉⊤. Hence |=

M ′

S− ∧ E ∧ X−, and then |=
M ′

D−
ϕ.

Let now Φ have the form ϕ → [a]ψ, for ϕ,ψ ∈ Fml. Then M ′ = 〈W,R ∪ R ′
a〉 such

that R ′
a ⊆ {(w,w ′) : |=

M

w
ϕ}. It is enough to show that M ′ is a model of E− and of

the new dependence relation ;
′. Clearly it is a model of ;

′, since it is a ;-model

and ;⊆;
′. Now, for all w ∈ W and every (ϕi ∧ ¬ϕ) → [a]ψi ∈ E−, if |=

M ′

w
ϕi ∧ ¬ϕ,

then |=
M ′

w
ϕi, from what it follows |=

M

w
ϕi, and because |=

M
E , |=

M

w′
ψi for all w ′ ∈ Ra(w).

Moreover, as 6|=
M ′

w
ϕ, we have 6|=

M

w
ϕ, and then R ′

a(w) = ∅. Putting both results together,

it follows |=
M ′

w′
ψi for all w ′ ∈ Ra(w), and then |=

M ′

E−. Hence |=
M ′

D−
ϕ→[a]ψ

.

Now let Φ be of the form ϕ → 〈a〉⊤, for some ϕ ∈ Fml. Then M ′ = 〈W,R \ R ′
a〉,

such that R ′
a ⊆ {(w,w ′) : wRaw

′ and |=
M

w
ϕ}. It suffices to show that M ′ is a model

of X−. For all w ∈ W and every (ϕi∧ ¬ϕ)→ 〈a〉⊤ ∈ X−, if |=
M ′

w
ϕi∧ ¬ϕ, then |=

M ′

w
ϕi,

from what it follows |=
M

w
ϕi, and because |=

M
X , there exists w ′ ∈ W such that wRaw

′.

Because 6|=
M ′

w
ϕ, 6|=

M

w
ϕ, and then R ′

a(w) = ∅. Putting both results together, it follows

|=
M ′

w
〈a〉⊤, and thus |=

M ′

X−. Hence |=
M ′

D−
ϕ→〈a〉⊤.
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Proof of Lemma 9.2

Let D = 〈LPDL, |=
;

,S ∪ E ∪ X 〉 be modular, and let Φ be a formula of the form of one of the

three laws. Then D−
Φ is modular.

We analyze each case.

LetΦ beϕ, for some propositionalϕ ∈ Fml, and supposeD−
ϕ is not modular. Then

there exists ϕ ′ ∈ Fml such that D−
ϕ |= ϕ ′ and 〈LCPL, |=CPL

,S−〉 6|= ϕ ′, i.e., S−, E ,X− |=
;

ϕ ′ and S− 6|=
CPL

ϕ ′. As the original X has been weakened and the syntactical proposi-

tional contraction operator ⊖ has been assumed to satisfy Katsuno and Mendelzon’s

postulate Cn(S ⊖ϕ) ⊆ Cn(S ), we must have S , E ,X |=
;

ϕ ′. Because D is modu-

lar, it holds S |=
CPL

ϕ ′. Then we have at least valuations(¬ϕ ′) ⊆ valuations(¬ϕ), for

S− 6|=
CPL

ϕ ′. This means S , E ,X |=
;

ϕ→ ϕ ′, and then ⊖ has not worked as expected.

Let now Φ have the form ϕ → [a]ψ, for ϕ,ψ ∈ Fml, and suppose D−
ϕ→[a]ψ is not

modular. Then there existsϕ ′ ∈ Fml such that D−
ϕ→[a]ψ |= ϕ ′ and 〈LCPL, |=CPL

,S〉 6|= ϕ ′,

i.e., S , E−,X |=
;

′ ϕ
′ and S 6|=

CPL
ϕ ′.

Claim: If S , E−,X |=
;

′ ϕ
′, then S , E−,X |=

;

ϕ ′.

(Proof of the claim): Straightforward: suppose S , E−,X 6|=
;

ϕ ′. Then there exists a

possible worlds model M = 〈W,R〉 such that M is a ;-model, |=
M

S ∧ E− ∧ X , and

6|=
M
ϕ ′. Because ;⊆;

′, M is a ;
′-model, too. Hence, S , E−,X 6|=

;
′ ϕ

′. (End of the

proof of the claim.)

Claim: S , E ,X |=
;

S ∧ E− ∧ X .

(Proof of the claim): We show that there is no ;-model M such that |=
M
S ∧E ∧X and

6|=
M
S ∧ E− ∧ X . Let M = 〈W,R〉 be a ;-model such that 6|=

M
S ∧ E− ∧ X . Then there

exists w ∈ W such that 6|=
M

w
S ∧ E− ∧ X . If 6|=

M

w
S or 6|=

M

w
X , the result follows. Consider

6|=
M

w
E−. Then, there is some Ê− ⊆ E− such that

|=
M

w

∧

(ϕi∧¬ϕ)→[a]ψi∈Ê−

(ϕi∧ ¬ϕ)

and there exists w ′ ∈ W such that wRaw
′ and

6|=
M

w′

∧

(ϕi∧¬ϕ)→[a]ψi∈Ê−

ψi



169

Then

|=
M

w

∧

(ϕi∧¬ϕ)→[a]ψi∈Ê−

ϕi

Taking the obvious corresponding Ê ⊆ E , we get

|=
M

w

∧

ϕi→[a]ψi∈Ê

ϕi and 6|=
M

w′

∧

ϕi→[a]ψi∈Ê

ψi

Hence, 6|=
M

w
E , and then 6|=

M
S ∧ E ∧ X . (End of the proof of the claim.)

From S , E ,X |=
;

S∧E−∧X , and S , E−,X |=
;

ϕ ′, it follows S , E ,X |=
;

ϕ ′. Because

S 6|=
CPL

ϕ ′, D is not modular.

Now supposeΦ has the form ϕ→ 〈a〉⊤, for some ϕ ∈ Fml, and suppose D−
ϕ→〈a〉⊤

is not modular. Then there exists ϕ ′ ∈ Fml such that we have D−
ϕ→〈a〉⊤ |= ϕ ′ and

〈LCPL, |=CPL
,S〉 6|= ϕ ′, i.e., S , E ,X− |=

;

ϕ ′ and S 6|=
CPL

ϕ ′.

Claim: S , E ,X |=
;

S ∧ E ∧ X−.

(Proof of the claim): We show that there is no ;-model M such that |=
M
S ∧E ∧X and

6|=
M
S ∧ E ∧ X−. Let M = 〈W,R〉 be a ;-model such that 6|=

M
S ∧ E ∧ X−. Then there

exists w ∈ W such that 6|=
M

w
S ∧ E ∧ X−. If 6|=

M

w
S or 6|=

M

w
E , the result follows. Consider

6|=
M

w
X−. Then, there is some X̂− ⊆ X− such that

|=
M

w

∧

(ϕi∧¬ϕ)→〈a〉⊤∈X̂−

(ϕi∧ ¬ϕ)

and Ra(w) = ∅. Then

|=
M

w

∧

(ϕi∧¬ϕ)→〈a〉⊤∈X̂−

ϕi

Taking the obvious corresponding X̂ ⊆ X , we get

|=
M

w

∧

ϕi→〈a〉⊤∈X̂

ϕi

Because Ra(w) = ∅, 6|=
M

w
X , and then 6|=

M
S ∧ E ∧ X . (End of the proof of the claim.)

From S , E ,X |=
;

S∧E∧X−, and S , E ,X− |=
;

ϕ ′, it follows S , E ,X |=
;

ϕ ′. Because

S 6|=
CPL

ϕ ′, D is not modular.
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Ceci n’est pas un résumé

I love French wine, like I love the French language. I have sampled every

language, French is my favourite – fantastic – language, especially to curse

with. Nom de Dieu de putain de bordel de merde de saloperie de connard

d’enculé de ta mère ! You see, it’s like wiping your ass with silk, I love it.

— Merovingian, in Matrix Reloaded

Pourquoi on est là ?

Dans les approches de représentation de connaissances basées sur la logique, la con-

naissance concernant un domaine est habituellement décrite par des ensembles de for-

mules logiques (théories). Dans le raisonnement sur les actions nous nous intéressons

à des théories qui décrivent le comportement d’actions sur des propriétés du monde.

Nous appelons de telles théories théories d’action ou descriptions de domaine.

D’habitude, une théorie d’actions est un ensemble d’énoncés ayant la forme : “ si

contexte, alors effet après chaque exécution d’action ” ; et “ si pré-condition, alors action

exécutable ”. Le premier type d’énoncé est utilisé pour exprimer des lois d’effet, c’est-

à-dire des formules qui relient une action à son résultat, étant donné un contexte par-

ticulier. Le second type d’énoncé représente des lois d’exécutabilité, qui établissent les

conditions suffisantes sous lesquelles une action est exécutable. Leur dual fournit les

conditions nécessaires pour qu’une action soit exécutable : “ si pré-condition, alors ac-

tion impossible ”. Finalement, dans une représentation d’un domaine dynamique, nous

avons également des énoncés qui ne mentionnent aucune action. Ceux-ci représentent

des lois sur la partie statique du monde, c’est-à-dire les contraintes qui déterminent les

états possibles. Nous appelons ce type de contraintes les lois statiques du domaine.

Lorsque l’on décrit des théories d’action, l’objectif est de doter un agent de la

capacité à raisonner dans un domaine dynamique et d’agir de manière rationnelle.

Parmi les différents types de raisonnement qu’un agent peut avoir, nous identifions

la vérification de la consistance de sa théorie ; la prévision des effets des actions ;
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l’explication de l’observation d’un effet donné ; l’élaboration d’un plan pour accom-

plir un but ; la vérification de l’exécutabilité ou de l’inexécutabilité d’une action donnée ;

et la révision et mise à jour de ses connaissances sur le comportement d’une action.

A priori la consistance est le seul critère fourni par la logique formelle pour vérifier

la qualité des théories d’action. Dans ce travail, nous arguons que toutes les approches

existantes dans la littérature sont très libérales dans le sens où nous pouvons avoir des

théories d’action satisfiables qui sont intuitivement incorrectes. Donc une notion au-

delà de la consistance est nécessaire pour évaluer des descriptions de domaine.

Le modulaire c’est le bon

La modularité est devenue un des mots d’ordre de nombreux domaines en informa-

tique. C’est aussi le cas pour la représentation de la connaissance et le raisonnement,

où des descriptions monolithiques se sont montrées d’utilisation très complexes.

Les dernières années ont vue la parution de plusieurs travaux qui, de manière plus

ou moins implicite, abordent des concepts tels que module, intelligibilité, évaluation,

tolérance à l’élaboration, et d’autres. La plupart de ces termes sont empruntés de

l’ingénierie de logiciel, parfois sans une notion claire des impacts qu’ils peuvent avoir

quand ils sont transposés dans des domaines où leur emploie n’est pas une question

d’intuition, mais ils doivent plutôt s’accommoder avec des cadres formels bien établis.

Dans ce travail nous montrons que ce n’est pas une tâche simple, en particulier lorsque

la logique constitue le cadre formel dans lequel la connaissance est représentée.

Ainsi, la question qui émerge naturellement est “ comment pouvons-nous faciliter

la tâche de l’ingénieur de connaissances pour décrire un domaine ” ? Une réponse,

en suivant évidemment la tendance diviser-et-conquérir, est la “ modularisation de la

théorie d’action ”. Par contre, de même qu’en programmation orientée objet, mod-

ulariser une théorie d’action ne s’agit pas seulement de la découper en plusieurs

morceaux. Un tel découpage doit être fait de sorte à ce que la théorie résultante ait

des propriétés intéressantes. Dans cette thèse nous montrons que pour être considérés

comme de bons modules, ils doivent satisfaire certains desiderata.

Quoi, dinde immortelle ?!

Considérons un scénario où nous avons une dinde et quelqu’un qui peut la mettre

en marche ou bien lui tirer dessus avec un revolver. On peut formaliser ce scénario
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à travers des formules logiques qui disent que “ si la dinde est en marche, alors elle

est vivante ”, “ si l’arme est chargée, alors après tirer la dinde meurt ”, “ en attirant la

dinde elle se mets à marcher ”, “ si la dinde est morte, alors l’attirer ne la ressuscite

pas ”, et “ on peut toujours attirer la dinde ”.

Maintenant, du fait que “ attirer la dinde la fait marcher ” et “ une dinde qui

marche est vivante ” on conclut “ après attirer la dinde, elle est vivante ”. A partir

de ça et de l’information “ si la dinde est morte, alors l’attirer ne la ressuscite pas ”,

on déduit que “ si la dinde est morte, alors après l’attirer elle est à la fois vivante et

morte ”, c’est-à-dire une contradiction. Donc il n’est pas possible d’attirer une dinde

morte. De ça et étant donné que c’est toujours possible d’attirer la dinde, on déduit

que la dinde n’est jamais morte, c’est-à-dire, elle est immortelle !

Cet exemple, aussi simple soit il, illustre bien un problème important qui peut

arriver dans des descriptions de domaine en raisonnement sur les actions : des in-

teractions imprévues entre des formules. La présence de telles conséquences sont un

signe de que la théorie d’action n’a pas été bien spécifiée. Dans notre exemple, le

problème est dû au fait qu’on avait dit que c’était toujours possible d’attirer la dinde,

ou alors au fait qu’on n’a pas complètement spécifié le contexte où l’action d’attirer la

dinde la mets vraiment en marche.

Dans ce travail nous énonçons des postulats que toute théorie d’action doit sat-

isfaire pour éviter que des situations comme celle ci-dessus se produisent. En plus,

nous concevons aussi des algorithmes qui aident le concepteur du système à décider

si une description de domaine satisfait l’ensemble de postulats et lui permettent de

découvrir quelle partie de la théorie doit être modifiée pour la corriger.

Au delà du côté intuition, nous montrons aussi que des théories modulaires dans

notre sens possèdent des propriétés computationelles intéressantes.

Il faut bien pouvoir changer la théorie

Supposons une situation où un agent a toujours cru que si l’interrupteur est en haut,

alors il y a de la lumière dans la chambre. Supposons maintenant qu’un jour il observe

que même si l’interrupteur est dans la position supérieure, la lumière est éteinte. Dans

un tel cas, l’agent doit changer sa théorie au sujet de la relation entre les propositions

“ l’interrupteur est en haut ” et “ il y a de la lumière ”. Cet exemple est une instance du

problème de changement des bases de croyance propositionnelles, et il est largement

abordé dans la littérature sur la révision et la mise à jour de croyances.
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Ensuite, supposons que notre agent croit que chaque fois que l’interrupteur est en

bas, après l’avoir basculé, il y a de la lumière dans la chambre. Ceci signifie que si la

lumière est éteinte, dans chaque état du monde qui suit l’exécution de basculement

de l’interrupteur, la chambre est éclairée. Puis, pendant une panne, l’agent bascule

l’interrupteur et la chambre reste étonnamment dans l’obscurité.

Pour compléter les expériences de notre agent dans la découverte du com-

portement du monde, supposons qu’il a cru qu’il est toujours possible de basculer

l’interrupteur, étant donnée la satisfaction de certaines conditions comme être assez

proche de lui, avoir une main libre, l’interrupteur n’est pas cassé, etc. Cependant, un

beau jour l’agent découvre que quelqu’un a mis de la colle sur l’interrupteur et, par

conséquent, il n’est plus possible de le basculer.

Les derniers exemples illustrent des situations où le changement de croyances sur

le comportement de l’action de basculer l’interrupteur est obligatoire. Dans le pre-

mier, basculer l’interrupteur, d’abord vu comme étant déterministe, doit maintenant

être vu comme étant non déterministe, ou de manière alternative vu comme ayant des

résultats différents dans un contexte spécifique (par exemple, si la centrale électrique

est surchargée). Dans le deuxième exemple, l’exécutabilité de l’action considérée est

remise en question à la lumière d’une nouvelle information montrant un contexte in-

connu qui empêche son exécution.

De tels cas de changement de théorie sont très importants quand on manipule

des descriptions logiques de domaines dynamiques : il peut toujours arriver qu’on

découvre qu’une action a en fait un comportement différent de celui qu’on a toujours

cru qu’elle avait.

Jusqu’ici, le changement de théorie a été étudié principalement pour les bases de

connaissances dans les logiques classiques, en termes de révision et de mise à jour.

Dans ce travail nous faisons donc un pas vers le changement de lois d’actions et pro-

posons un cadre qui traite la mise à jour des théories d’action.

Or, qu’avons-nous fait ?

Notre contribution est double : générale, car nous présentons des postulats qui

s’appliquent à tout formalisme en raisonnement sur les actions ; et spécifique, car

nous proposons des algorithmes pour une solution existante au problème du décor.

Dans cette thèse nous avons identifié et fait une critique des approches principales

de la modularité pour des descriptions de domaine, en précisant leurs caractéristiques
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et en montrant pourquoi elles ne capturent pas complètement la modularité dans le

sens nécessaire aux descriptions en raisonnement sur les actions. Nous avons argué

que la modularité telle qu’utilisée usuellement en programmation ou définie dans

les travaux sur la logique formelle n’est pas appropriée dans le raisonnement sur les

actions. Dans le premier cas, ceci est en raison des restrictions d’expressivité. Dans le

second cas, c’est parce que la modularité des théories logiques est habituellement trop

forte et elle ne se montre pas très utile si la théorie est une description d’un scénario

dans le raisonnement sur les actions.

Nous définissons donc notre concept de modularité pour les théories d’action et

mettons en évidence les problèmes qui surgissent s’il n’est pas satisfait. En particulier,

nous arguons que la partie non-dynamique des théories d’action pourrait influencer

mais ne devrait pas être influencée par la partie dynamique.

Nous avons proposé quelques postulats, et en particulier nous avons essayé de

démontrer que lorsqu’il y a des lois implicites, alors on s’est planté en concevant la

théorie d’action en question. Comme montré, une solution possible découle de nos

algorithmes, qui peuvent nous donner quelques directives lors de la correction d’une

théorie d’action si nécessaire. Au moyen d’exemples, nous avons vu qu’il y a plusieurs

alternatives de correction, et choisir le bon module à modifier aussi bien que fournir

l’information intuitive qui doit être ajoutée est au concepteur du système.

Dans ce travail, nous avons illustré par quelques exemples ce que nous pouvons

faire pour rendre une théorie intuitive. Ceci implique la modification de la théorie.

Nous avons présenté une méthode générale pour changer une description de do-

maine, étant donnée une formule que nous voulons contracter.

Nous définissons donc une sémantique pour la contraction de théories et

présentons également sa contrepartie syntaxique à travers des opérateurs de contrac-

tion. L’adéquation et la complétude de tels opérateurs par rapport à la sémantique

ont été établies. En particulier, nous montrons que notre notion de modularité est une

condition suffisante pour qu’une contraction soit réussie.

Dans ce travail nous avons utilisé une version faible de PDL, mais nos notions et

résultats peuvent aussi bien s’appliquer à d’autres cadres logiques.
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“ Il en a rêvé, il l’a fait. ”




