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Action Theory Revision in Dynamic Logic

Ivan José Varzinczak

IRIT — Université de Toulouse
Toulouse, France
i van. varzinczak@rit.fr

Abstract

Like any other logical theory, action theories in reason-
ing about actions may evolve, and thus need revision
methods to adequately accommodate new information
about the behavior of actions. Here we give a semantics
that complies with minimal change for revising action
theories stated in a version BDL. We give algorithms
that are proven correct w.r.t. the semantics for those the-
ories that are modular.

Introduction

In logic-based approaches to reasoning about actions; theo
ries are collections of statements of the form: ¢dntext
then effect after every executiorof actior’ (effect laws);

and “if precondition thenaction executable(executabil-

ity laws). For example, in Propositional Dynamic Logic
(PDL) (Harel, Tiuryn, and Kozen 2000), one could have the
law (—=p, A—p,) — [a]p;, saying that in every context where
—p; A—p, is the case, after every execution of actiome get

the effectp,; and(p, vV —p,) — (&) T, stating thap, Vv —p,

is a sufficient condition foa's executability.

These are examples of what we cadtion laws as they
specify the behavior of the actions of a given domain. Be-
sides that we can also have laws mentioning no action at
all (static laws). They characterize the underlying stitet
of the world, i.e., its possible states. For instance, t@vin
p, — P, as a static law would megn A —p, is a forbidden
state. Action theories will then be collections of laws,eac
of them seen as a global axiomRDL.

Well, it may happen that such descriptions have to be re-
vised due e.g. to new incoming information about the be-
havior of the world. In our example, we may learn that the
only valid states are those satisfyipgA p,, or that actiora
has always-p, as outcome ir-p,-contexts, or even tha
is enough to guarantexs executability. Here we are inter-
ested in this kind of theory change.

The contributions of the present work are as follows:

e What is the semantics of revising an action thediyy a
law ¢#? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?
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e How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

Logical Preliminaries
Action Theories in Dynamic Logic

Our base formalism i®DL without the x operator. Let
Act = {a1,a,...} be the set oktomic actionsof a do-
main. To eacta there is associated a modal operd#hr We
suppose our multimodal logic is independently axiomatized
i.e., the logic is a fusion and there is no interaction betwee
the modal operators (Kracht and Wolter 1991).

Prop = {p;, Py, - - .} denotes the set of gliropositional
constant®or atoms The set of literals i€it = {/1, (o, ...},
where eaclt; is eitherp or —p, for somep € Prop. In case
¢ = —p, we identify —=¢ with p. By |¢| we will denote the
atom in literal/.

By ¢, v, ... we denoteBoolean formulasexamples of
which arep, — p, and—-p; © p,. §mlis the set of all
Boolean formulas. A propositional valuatianis a maxi-
mally consistenset of literals. We denote |- ¢ the fact
thatv satisfiesp. val(p) is the set of all valuations satisfy-
ing ¢. ):CPLdenotes the classical consequence relation.

With IP(p) we denote the set girime implicant§Quine
1952) ofp. By m we denote a prime implicant, aradm()
is the set of atoms occurring in For given? andr, £ € «
abbreviates? is a literal ofr’.

We denote complex formulas (with modal operators) by
@, 0, ... (a)is the dual operator da], ((a)® =get —[a] D).
An example of a complex formula (@, A (py V —p3)) —
[@(=py V Ps)-

A PDL-modelis a tuple.#Z = (W, R) whereW is a set
of valuations, andR maps action constansésto accessibility
relationsR, € W x W. Given a model#, |{Zp (pistrue at
world w of model.Z) if w I p; %l[a]@ if %@foreveryw’
s.t. (w,w’) € Ry; truth conditions for the other connectives
are as usual. By we will denote a set oPDL-models.
A is a model of® (notedlz“”di) if and only if ){[sl) for all
w € W. . is a model of a set of formulas (noted):/”z)
if and only if |:/”§Z5 for every® € X. ¢ is aconsequence of



the global axioms: in all PDL-models (notect ):PDL
and only if for every.Z, if ):/”E, then):/”q’).

With PDL we can state laws describing the behavior of
actions. Following the tradition in the reasoning about ac-
tions community, we here distinguish three types of them.

) if

Static Laws A static lawis a formulapy € gml. It charac-
terizes the possible states of the world. The set of allcstati
laws of a domain is denoted 8.

Effect Laws An effect law for ais of the formy — [a]v,
whereyp, » € Fml. Effect laws relate an action to its effects,
which can be conditional. The consequeénts the effect
which always obtains whea is executed in a state where
the antecedenp holds. Ifa is a nondeterministic action,
theny is typically a disjunction. If) is inconsistent we have
a special kind of effect law that we call amexecutability
law. For example(—p, A p,) — [a]L says thag cannot be
executed (there is ntransition) in—p; A p,-contexts. The
set of effect laws of a domain is denoted&y

Executability Laws An executability law for dhas the form

» — (a)T, with p € Fml. It stipulates the context in which
ais guaranteed to be executable. PIDL, the operatota) is
used to express executabilitg) T thus readséd’s execution

is possible”.) The set of all executability laws of a domain
is denoted byX'.

Action Theories7 = S U £ U X is anaction theory

Given an actiora, &, (resp.X,) will denote the set of
only those effect (resp. executability) laws abautor the
sake of clarity, we here abstract from the frame and rami-
fication problems, and assurffecontains all frame axioms
(cf. (Herzig, Perrussel, and Varzinczak 2006) for a contrac
tion approach within a solution to the frame problem).

Elementary Atoms and Prime Valuations
Giveny € gml, E(p) denotes the elementary atomstu-
ally occurring inp. For exampleE(—p; A (—p; V py)) =
{p:, P2 }. An atompis essentiato  if and only if p € E(¢’)
for everyy' such that,, » < ’. Forinstancep, is es-
sential to—p; A (—p; V p,). E!(¢) will denote the essential
atoms ofyp. (If ¢ is not contingent, i.e., it is a tautology or a
contradiction, thet!(p) = (.)

For o € gml, @x is the set of ally’ € Fml such that
¢ Fep ¥ @ndE(¢") C EX(y). Forinstancep; V p, ¢ p;*,
asp; Fep P1 V P, bUtE(p, vV py) Z El(p,). Moreover
E(px) = El(p*), and whenevetz, ¢ < ¢, El(p) =
El(¢’) and alsopx = ¢'x.
Theorem 1 (Least atom-set theorem (Parikh 1999))
e ¥ < Aw*, and Bpx) C E(¢) for every ¢’ s.t.
FepL = @'
Thus for eaclp € Fmlthere is a unique least set of elemen-

tary atoms such thgt may equivalently be expressed using
only atoms from that sét.

1The dual notion (redundant atoms) is addressed in (Herzlg an
Rifi 1999), with similar purposes.

Given a valuatiorv, V' C vis asubvaluation ForW a set
of valuations, a subvaluation satisfiesp € Fml modulowW
(notedV' Ii;, ) if and only if v I ¢ for all v € W such that

V' C v. A subvaluatiorv essentially satisfies (moduloW),
notedv 'V/! @, if and only if v I, ¢ and{[¢| : £ € v} C

El(p). Ifv Iw ©, we callv anessential subvaluatioof ¢
(moduloWw).

Definition 1 Lety € Fmland W be a set of valuations. v is
!
a prime subvaluationf ¢ (modulo W) if and only if ww %)

and there isnovC vs.t. v I{;\/! ®.

Prime subvaluations of a formujaare the weakest states
of truth in whichy is true. They are just another way of
seeing prime implicants af. By bas€y, W) we denote the
set of all prime subvaluations gf moduloW.

Theorem 2 Lety € gmland W be a set of valuations. Then
forallw € W,w Ik g ifand only ifw I- \/\ cpaseewy Avey ¢-

Closeness Between Models

When revising a model, we will perform a change in its
structure. Because there can be several different ways of
modifying a model (not all of them minimal), we need a no-
tion of distance between models to identify those that are
closest to the original one.

As we are going to see in more depth in the sequel, chang-
ing a model amounts to modifying its possible worlds or
its accessibility relation. Hence, the distance betweemn tw
PDL-models will depend upon the distance between their
sets of worlds and accessibility relations. These herebaill
based on theymmetric differencbetween sets, defined as
XY =(X\Y)U(Y\X).

Definition 2 Let.# = (W,R) be a model.7’ = (W,R)
is as close to# as.#" = (W’',R"), noted.#' < 4 4",
if and only if

e either W-W C W-W'
e or W-W =W-W and R-R C R-F’

(Notice that other distance notions are also possible, like
e.g. considering theardinality of symmetric differences.)

Semantics of Revision

Contrary to action theory contraction (Varzinczak 2008a),
where we want the negation of some law to becwats-
fiable in revision we want to make a new lavalid. This
means that one has to eliminate all cases satisfying its hega
tion. This depicts the duality between revision and contrac
tion: whereas in the latter one invalidates a formula by mak-
ing its negation satisfiable, in the former one makes a for-
mula valid by forcing its negation to be unsatisfiable pror t
adding the new law to the theory.

The idea behind our semantics is as follows: we initially
have a set of model$1 in which a given formulap is (po-
tentially) not valid, i.e.,® is (possibly) not true in every
model in M. In the result we want to have only models of
&. Adding #-models toM is of no help. Moreover, adding



models makes us to lose laws: the corresponding resulting
theory would be more liberal.

One solution amounts to deleting frawl those models
that are notp-models. Of course removing only some of

world. If no arrow arrives at this new world, what about the
intuition? Do we want to have an unreachable state?

All this discussion shows how drastic a change in the
static laws may be: it is a change in the underlying struc-

them does not solve the problem, we must delete every such ture (possible states) of the world! Changing it may have as

a model. By doing that, all resulting models will be mod-
els of @. (This corresponds ttheory expansionwhen the
resulting theory is satisfiable.) However Aff contains no
model of®, we will end up with). Consequence: the result-
ing theory is inconsistent. (This is the main revision prob-
lem.) In this case the solution is Bubstituteeach model
. in M by its nearest modification/Zj that makes true.
This lets us to keep as close as possible to the original mod-
els we had. But, what if for one model it there are several
minimal (incomparable) modifications of it validatidgp In
that case we shall consider all of them. The result will also
be alist of modelsM;, all being models of.

Before defining revision of sets of models, we present
what modifications of (individual) models are.

Revising a Model by a Static Law

Consider the model depicted in Figure 1, and suppose we
want to revise it by the Boolean formupg V p,, i.e., we
want such a formula to be a static law.

Figure 1: A model where.p, A —p, is satisfiable.

In such a model, we do not want the formulp, A —p,
to be satisfiable, so the first step is to remove all worlds in
which it is true. The second step is to guarantee that all
the remaining worlds satisfy the new law. Such an issue
has been largely addressed in the literature on propoaltion
belief base revision and update (Gardenfors 1988; Winslet
1988; Katsuno and Mendelzon 1992; Herzig and Rifi 1999).
Here we can achieve that with a semantics similar to that
of classical operators: basically one shall change thefset o
possible valuations, by removing or adding worlds.

The delicate point in removing worlds is that we may
lose some executability laws: in the example, removing
{-p,, Py} also removep, — (a)T. From a semantic
point of view, this is intuitive: if the state of the world to
which we could move is no longer possible, then we do not
have a transition to that state anymore. Hence, if thatitrans
tion was the only one we had, it is natural to lose it.

Similarly, one could ask what to do with the accessibil-
ity relation if new worlds are added (when expansion is not
possible): shall new arrows leave/arrive at the new world? |
no arrow leaves the new added world, we may lose an exe-
cutability law. If some arrow leaves it, we may lose an effect
law, the same holding if we add an arrow pointing to the new

consequence the loss of an effect law or an executability law

The tradition in the reasoning about actions community
says that executability laws are, in general, more difficult
to state than effect laws, and hence are more likely to be
incorrect. By adding no arrow to the resulting model we here
comply with that and postpone correction of executability
laws, if needed (cf. (Herzig, Perrussel, and Varzinczal6200
Varzinczak 2008a)).

The semantics for revision of one model by a static law is
as follows:
Definition 3 Let.# = (W,R). .#' = (W,R)) € . if
and only if:
o W = (W\ val(—p)) Uval(p)
e RCR

Clearly Iz/”/cp for each.#’ € .. The minimal models

resulting from revising a model/ by ¢ are those closest to
A AR

Definition 4 revisg.#, o) = Jmin{.Z, < »}

Revising a Model by an Effect Law

Let our language now have three atoms and consider the
model.# in Figure 2.

Gn) )

Figure 2: A model where, A (a)p, is satisfiable.

(Notice thatli” p, — P; B ps.) Suppose we want to revise
A by p, — [a—p,. This means that we should guarantee
the formulap, A (a)p, is satisfiable in none of its worlds. To
do that, we have to look at the worlds satisfying it (if any)
and either make, false, or makga)p, false by removing
a-arrows leading tg,-worlds.

In our example, the worlds{p,,—p,,—p;} and
{pP:1, Py, —P3} satisfyp, A (a)p, and both have to change.
Flippingp, would do the job but also has as consequence the
loss of a static law: we would violafg, — p, ©p;. Here we
think that changing action laws should not have as sideteffec
a change in the static laws. Given their special statusgthes
should change only if explicitly required (see above). is th
case, each world satisfying, A (a)p, has to be changed
so that(a)p, is no longer true in it. In our example, we

should remove the arrom§p,, —Ps, Ps}, {—P1,P2:P3})
and({p;, P> ~P3}; {P1> P2; =Pz })-



The semantics of one model revision for the case ofanew  When pointing a new arrow leaving a world we want

effect law is: to preserve as many effects as we had before doing so. To
Definition 5 Let.# = (W,R). .#' = (W,R) € .4* achieve this, it is epqugh to preserve old effects onlwn
it and onlv if- p—laly (because the remaining structure of the model remains un-
Itand only it changed after addinthis new arrow). The operation we
o W =W must carry out is to observe what is true«dnand in the
e RCR candidate target world’:
o If (w,w') € R\R, then)://[go and )://{ﬁw e What changes fromw to v’ (w' \ w) must be what is
p w w obliged to do so.
e p—[aly e What does not change fromto w’ (wNw’) must be what
The minimal models resulting from the revision of a is either obliged or allowed to do so.
model.# by a new effect law are those that are closestto  This means that every change outside what is forced to
MW 2 g change is not an intended one. In our example, when putting
Definition 6 Let.# be amodel ang — [a]y an effectlaw. ~ thea-arrow from {p,, =p,} to {-p;,p,}, —p, becomes a

possible effect ofa. As far as—p, is never caused by,
there is no justification for having it in a target world of

Revising a Model by an Executability Law {py, P }. Similarly, we want the literals preserved in the
Let th del depicted in Fi 3 and ‘1 target world to beat mostthose that either are consequences

et the model depicted In FIgure 5 and SUppose we Wantto o some effect or are usually preserved in that context. Ev-
revise it by the new executability lap; — (a)T.

ery preservation outside those may make us lose some law.
For instance, when putting the nesarrow from{p, , —p, }

: ‘ to {—p;, P2}, 7P, is preserved. Because, is not a nec-

essary effect o and is moreover never preserved aci@ss

execution (in.#), there is no reason to preserve it in this

newa-transition.

This looks like prime implicants, and that is where prime
subvaluations play their role: the worlds to which the new
arrow shall point are those whose difference w.r.t. the depa
ing world are literals that are relevant, and whose sintilari
w.r.t. it are literals that we know do not change.

Before giving a formal definition for that, we need to con-
sider two important issues: First, when checking satisfac-
tion of these two conditions, looking just at what is true in
the model.# we want to modify is not enough. It can be
a model in which a contingent, i.e., not true in all models
formula is true. Hence we shall consider all the models in
M. Second, ifais never executable iw, i.e., Ry(w) = 0
for every.# = (W,R) € M, then lots of effects foa triv-
ially hold in w, and then not all of them should be taken into
account in deciding what has to be changed or preserved. In
this case, one should instead look at the effects that hold fo
those worldsw such thatR,(w) # @ (because everything

Thenrevise#, ¢ — [a]y) = Umin{.Z_ ,, 2.4}

Figure 3: A model where, A [a].L is satisfiable.

Observe that(p, — (@) T) is satisfiable in#, hence we
must throwp, A[a] L away to ensure the new formula is true.
To removep, A [a] L we have to look at all worlds satisfying
it and modify.# so that they no longer satisfy the formula.
Given world{p,, —p,}, we have two options: change the in-
terpretation ofp; or add a new arrow leaving this world. A
guestion that raises is ‘what choice is more drastic: change
world or an arrow’? Again, here we think that changing the
world’s content (the valuation) is more drastic, as the-exis
theennccee(gsssuucnf: :dvrg gg \;vsa ;St T: ’rﬁztlaeesnst\)la/esr? g]/z isrtlfagrcnig\alo?]nsuls_th_at holds in t.h_ese worlds also holds trivially in those wlerl
porting the contrary (see above). Thus we shall add a new With no transition bya).
a-arrow from{p,, —p,}. Having agreed on that, the issue Definition 7 Let.# = (W,R) be a modelw, w" € W, M
now is: to which world should the new arrow point? Four a set of models such tha#Z € M, andy — (@)T an

options show up: point the arrow §p,, Py}, {—P;:Ps} executability law. Them’' is a relevant target world ofv
{=py, 7Py} Or {p;, P, } itself. The resulting model is such ~ w.r.t.o — (a)T for .# in M if and only if:
that the unwanted formula is unsatisfiable gnd— (a)T R ':///
holds in all its worlds. w ¥

Whereas all these options make the new law true in e Ifthereis.Z’ = (W,R) € M such that B(w) # 0:
the resulting model, not all of them comply with minimal — forall £ € w' \ w, there isy’ € Fmls.t. thereis e
change. To witness, putting asarrow from {p,, —p,} basdy’,W) s.t. V C ', ¢ € V, and for every.#; €
to {-py, Py} or {p;, Py} makes us lose the effect law M )://! [y’
—-p, — [a]py; and pointing it to{—p,, p,} also deletes from "lw . .
the modelp, — [a]p,. Note that these laws are preserved ~ — forall £ € wnw’, either there is)" € gml s.t. there

if we point the arrow to{p,, p,}. What would support the isV € bas/§/¢/7VV) stV cw' €V, and for all
choice for the latter? AMi € M, = [aly’; orthereis.Z; € M s.t. F{ [a]—¢



o If R (w) = 0 forevery.#' = (W,R) € M:
— forall ¢ € w' \ w, there is#; = (W;,R;) € M s.t.
there isu,v € W; s.t. (u,v) € Randl € v\ u
— forall ¢ € wnuw', there is.#; = (W;,R;) € M s.t.
there isu,v € W; s.t. (u,v) € Rz and? € unw,
or for all . #; = (W;,R;) € M, if (u,v) € Ry, then
-L¢v\u
By RelTgtw, » — (&) T, .#, M) we denote the set of all
relevant target worlds ofo w.r.t. ¢ — (a)T for .Z in M.

The semantics of one model revision by a new executabil-
ity law is given by:

Definition 8 Let .# = (W,R). .#' = (W,R) €
M aT if and only if:

o« W :W

e RCFR

o If  (w,w') € R \ R, then €

RelTgtw,» — (@) T,.#, M)

° ':/” p— <a)T
The minimal models resulting from revising a mod#!
by a new executability law are those closestow.r.t. < _:

Definition 9 Let .# be a model andp — (a)T be
an executability law. Then reviseZ, o — (@)T)

Umin{ /g 12 =.a)-

Revising Sets of Models

Now we are ready to define revision of a set of models
by a new lan®:

Definition 10 Let M be a set of models arbla law. Then

e { M\ {2 By, ifthereis. € M st X @
@Z

U_gen revisd.#, @), otherwise
Observe that Definition 10 comprises bakpansionand
revision in the first one, simple addition of the new law
gives a satisfiable theory; in the latter a deeper change is
needed to get rid of inconsistency.

Syntactic Operators for Revision

We now turn our attention to the syntactical counterpart of
revision. Suppose we have an action theband a lawd we
want to reviseZ with. If 7U {&} is satisfiable, adding to

7 (expansion) will do the job. Otherwise, TfU {9} |5, L,

then we have to modify the laws ifito accommodate with
the new incoming law (proper revision). Our endeavor here
is to perform minimal change at the syntactical level. By

we denote the result of revisirgwith &.

Revision by a Static Law

Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law
may conflict with the executability laws: some of them may
be lost and thus have to be changed as well. The approac

old possible states. To do that, we look at each possible

pdenote thente$+)q, ...,
here is to preserve as many executabilities as we can in the

valuation that is common to the neSvand the old one. Ev-
ery time an executability used to hold in that state and no
inexecutability holds there in the new theory, we make the
action executable in such a context. For those contexts not
allowed by the oldS, we makea inexecutable (cf. the se-
mantics). Algorithm 1 deals with thaiS(x ¢ denotes the
classical revision of by ¢ using any standard method from
the literature (Winslett 1988; Katsuno and Mendelzon 1992;
Herzig and Rifi 1999)).

Algorithm 1 Revision by a static law
input: 7, ¢
output: 7,
it TU{o} W, L
o0 =TU{s}
else
S§1=8xp, =&, X"
forall = € IP(S) do
for all A C atm(r) do

oa- = Apleﬂlwﬂ) p; A /\pleagﬂ(ﬂ) —P;
P
if S’ l?zL:pL bis /\ va) — L then
if S Jp (m A wa) — L then
if 7 ko (T Aga) — (@T and 8, ", X W,
—(m A pa) then
X ={(pi AT ANa) = (@T 1 i —

a

then

=0

@T €

else
E=E"U{(r Apa) —
=S'u&’'ux’

a] L}
T

Revision by an Effect Law

When revising a theory by a new effect law— [a]y), we
want to eliminate all possible executionsadtading to—)-
states. To achieve that, we look at @Hcontexts and every
time a transition to someuJ -context is not always the case,
i.e., 7 s, a)—), we can safely forcéa)y for that
context. (5n the other hand, if in such a context there is al-
ways an execution @&fto -4, then we should strengthen the
executability laws to make room for the new effect in that
context we want to add. Algorithm 2 below does the job.

Revision by an Executability Law

Revising a theory by a new executability law will have as
immediate consequence a change in the set of effect laws:
all those laws preventing the executionao$hall be weak-
ened. Besides that, in order to comply with minimal change,
we shall ensure that in all models of the resulting theory
there will be at mosbnetransition bya from those worlds

in which 7 precludedd’s execution.

Let 5%"L denote a minimum subset d&f, such that
|: ¢ — [aL. In the case the theory is modu-
Iar (Her2|g and Varzinczak 2005) (see further), intergotat
guarantees that this set always exists. Moreover, note that
there can be more than one such a set, in which case we
(E¢L),. Let

U &)

1<i<n

£ =



Algorithm 2 Revision by an effect law

Algorithm 3 Revision by an executability law

input: 7, ¢ — [ay
output: 7%, 44

it TU {p — [ali)} Koo, L then
Ty = TU{p — [@Y}
e

T =T
forall m € IP(S A ) do
for all A C atm(r) do
PAr = /\piem P; A /\Pﬁm P

p; EA pi A
if S Fp (m A oa) — L then
forall 7’ € IP(S A —¢) do
if 7' 5p, (A pa) — (a7’ then

(T"\x,) U
T = {(pi A(m Apa) — (@T :
wi — (@T € XL}

T =T U{(r A pa) — [t}
if 77 %DL(W A gpA) — [a]J_ then
T =T'U{(piATApn) = (@T : ;i — (T €

The effect laws in€; will serve as guidelines to get rid of
[a] L in eachy-world allowed by the theory: they are the
laws to be weakened to allow f¢a) T.

The idea behind our algorithm is as follows: to force
» — (a)T to be true in all models of the resulting theory,
we visit every possible-context allowed by it and make the
following operations to ensur@) T is the case for that con-
text: Given ap-context, if 7 not always precludea from
being executed in it, we can safely for@@ T without mod-
ifying other laws. On the other hand, afis always inexe-
cutable in that context, then we should weaken the laws in
&, . The first thing we must do is to preserve all old ef-
fects in all otherp-worlds. To achieve that we specialize the
above laws to each possible valuation (maximal conjunction
of literals) satisfyingp but the actual one. Then, in the cur-
rente-valuation, we must ensure that actamay have any
effect, i.e., from thigp-world we can reach any other pos-
sible world. We achieve that by weakening tmnsequent
of the laws in&; to the exclusive disjunction of all possi-
ble contexts inZ. Finally, to get minimal change, we must
ensure that all literals in thig-valuation that are not forced

input: 7,0 — (@)T
output: 7o _, o7
it TU{p — ()T} sy, L then
T =TU{p— (T}
se

T.=T
forall 7 € IP(S A ¢) do
for all A C atm(w) do
eat = N, i Pi AN Ny, camesy P

p; EA p; €A

if S Fep, (m A oa) — L then
if 7" k5p, (7 A @a) — [aL then

(T'"\&'3)U
{(pi A= A pa)) — [al9i
7= i — (@i €€ U
{(pi AT Apn) = [AD wrcpes) (T Apw)

. . /7 A Catm(w’)
@i — [alhi € €5}

forall L C gitdo
if S Fep (T A wn) — A, £ then
forall £ € L do
if 7 s £ — [aL or (T Ky £ — [a]—¢
and 7 |5, ¢ — [a]¢) then
T =T'"U{(mr ANpaAl) — [a]f}
T =T U{(m A pa) = (&) T}
Tom@r =T

in Figure 4. This means that the semantic revision produces
models (viz.#4 and.#4 in Figure 4) that are not models of
the revised theories.

a

2 A
M5 5

Figure 4: The model# of 7 and the semantic revision of

to change are preserved. We do this by stating a conditional .# by p, V ps.

frame axiom of the forn{yi, A ¢) — [a]¢, wherey;, is the
aboveyp-valuation.
Algorithm 3 gives the pseudo-code for that.

Correctness of the Algorithms

Suppose we have two atorpsandp,, and only one action
a. Let the action theoryl; = {-p,,p; — [a]ps, ()T }.
The only model of7; is .# in Figure 4. Revising such a
model byp, V p, gives us the modelsz/, 1 < i < 3,in
Figure 4. Now, revising; by p; v p, will give us?’lgl\% =
{Py A =p,,p; — [alp,}. The only model offyj p, is .#]

The other way round, the algorithms may produce theo-
ries whose models do not result from the semantic revision
of some model of the original theory. As an example, con-
siderTy = {(p, vV py) — [aL, (&) T}, whose only model is
# in Figure 4. The revision of# by p, V p, is as above.
HoweverZy, 5, = {Py V Py, (P V ;) — [a]L} has a
model.Z" = <{{p1’ pz}’ {p17 ﬁp2}a {jpla p2}}7 0) that is
notin.zy vy, -

This happens because the possible states are not com-
pletely characterized by the static laws$h Fortunately



we get the right result by requirin§ to be ‘big enough’.
This is connected with the principle afiodularity (Herzig
and Varzinczak 2005):

Definition 11 (Modularity (Herzig and Varzinczak 2005))
T is modularif and only if for everyy € gml, if 7 5, ¢,

thenS =y, ¢

Under modularity, revision of models &f by a law @
in the semantics produces models of the output of the algo-
rithms7:

Theorem 3 Let7 be modular andP be a law. For all mod-

els.z', it . #' € M}, for someM = {4/ :|:“”T}, then
%/
E Ts.

Also under modularity, models @, result from revision
of models of7 by &:

Theorem 4 Let7 be modular andb a law. For every.Z’,
if ':/” Ty, then.z’ € M, for someM = {.# :%”7}.

In (Herzig and Varzinczak 2005) algorithms are given to
check whethefT satisfies the principle of modularity and
also to make7 satisfy it, if that is not the case.

Modular theories have other interesting properties (Herzi
and Varzinczak 2007): for example, consistency amounts to
that of S; deduction of effect laws does not need the exe-
cutability ones and vice versa; prediction of an effect of a
sequence of actiorss ; . . . ; a, does not need the effect laws
for actions other thamy, ..., a,. This also applies to plan
validation when deciding whethéa ; . . . ; a,, )¢ is the case.

Conclusion and Perspectives

Contrary to classical belief change, the problem of action
theory change has only recently received attention in the
literature, both in action languages (Baral and Lobo 1997;
Eiter et al. 2005) and in dynamic logic (Herzig, Perrussel,
and Varzinczak 2006; Varzinczak 2008a).

Here we have studied what revising action theories by
a law means, both in the semantics and at the syntactical

level. We have defined a semantics based on distances be-

tween models that also captures minimal change w.r.t. the
preservation of effects of actions. With our algorithms and
the correctness results under modularity we have establish
the link between the semantics and the syntax, and have also
shown that the modularity notion is fruitful. Since modular

ity is preserved across revision (see Lemma 1 in the appen-
dices), it has to be ensured only once during the evolution of
the action theory.

Here we presented the case for revision. In (Varzinczak
2008a) we also define the contraction counterpart of ac-
tion theory change. There we show that moreover our con-
structions satisfy all Katsuno and Mendelzon’s postulftes
contraction (Katsuno and Mendelzon 1992).

Our next step on the subject is to define a general frame-
work in which to revise a theory bwny formula of the
language and not only laws. We believe that such a def-
inition will use as basic operations semantic modifications
like those we studied here (addition/removal of arrows and
worlds). Hence our constructions will help us in better un-
derstanding what revision by a general formula means.
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Proof of Theorem 3
Let® be a law,.#' € M}, and letT; be the output of our

algorithms on input theory and law®.

If TU {®} Vs, L. then.#t’ € M\ {4 - &} and. '

is a model of7; = TU {&}.

LetTU {6} k5,

Let & be somep € Fml. Then.#’' = (W,R) where
W = (W\val(—¢))Uval(e) is minimal w.r.tWandR C R
is maximal w.r.tR, for some# = (W,R) € M.

1. We analyze each case.



As we have assumed the syntactical classical revision op-
eratorx is sound and complete w.r.t. its semantics and is

moreover minimal, we havg=" S % . BecauseR C R,

|:“”/E. Thus it is enough to show tha#’ is a model of the
added laws.
Given(gol AT App) = (@)T € T, for everyw € W, if

|: @i AT Apa, themw € W (because |, (TApa) — L).

Fromw I ©i andcpZ < )T € X,, we haveR,(w) # 0.
SupposeR,(w) = 0. As |: S *pU & andR is maximal,

every.Z" = (W’ R’) s.t. |: S*(pUE is s.t. R} (w
0, and thenS x o U E k5, (7 A ga) — [a] L. Because
T p (T Apa) = (@T, andS e, (7 A pa) — Land
Sk lep (TApa) — L, we getSxp, £, X 5 ~(TApa),
and then(p; A m A ga) — (@) T ¢ T,. HenceR,(w) # ()
andlzjl,(cpi AT Apa) — (@T.

If (m A ga) — [aL € TG, thenS Fep (M A pa) — L.

Thus, for everyw € W, if Ej 7 A pa, Ry(w) = 0 and the
result follows.

Let® now have the fornp — [a]v, for ¢, ¢ € Fml. Then
= (W,R) for some.#Z = (W,R) € M stW =W
andR C R, whereR is maximal w.r.t.R.

FromW = W, |:“” S. AsR C R ):/” £. Because
SUE C T, gy, it suffices to show thatZ’ is a model of
the added laws. |

By definition, )://[ v — [a]y, and ther’t:/” (m A pp) —
[a]y for everyr € IP(S A ).

If (pi AmAwa) — (@T € T 5, then for every
we W, if wlkp; A A pa, we havew IF ;. Asw € W,
andp;, — QT € Xa, Ra(w) = 0. If R(w) = 0, then
w' I = for everyw € Ra(w). Thus as far as we added
(m A pa) — [y to T H[a]w' we must havel?, 14y Fp,
(m A @p) — [a] L. HenceR,(w

Let (i A /\ﬂﬁodwwoﬂaw ﬁ(” A ¢a)) - @T €
T (- For every w € W, if |:fl ©i A
/\ﬂTvDL(”M’A)—’<a>W =(m A @a), thenw I+ ¢;, and as
w € Wandy;, — (8T € X, we haveRa(w) # 0. If
R (w) = 0, because}:’” S A € andR' is maximal, every
A" = (W' R') s.t. |:“” SA€&isst.R(w) = 0. Then
S, € B Niewt — [@L. ButthenT |5 A, ¢ — [a] L,
andasp; — (@T € X, 7 sy, ~(Agew £ A i), and then

PDL
w ¢ W, a contradiction. Hencl, (w) # (.

Finally, let @ be of the formpy — (@) T, for somey €
gml Then.z’ = (W,R) for some.#Z = (W,R) € M s.t.
W =WandR = RUR? T, with

R§=T ={(w,w") : w' € RelTgtw, o — ()T, .#, M)}

such thaR' is mlnlmal w.rt.R.

FromW = W, ): S. AsR C R, |: "X. As far as
SUX C T, _ 4, itis enough to show thaw?” satisfies
the added Iaws

By definition,lz“”,cp — (a)T, and thert:“”, (m A pa) —
(@) T for everyr € IP(S A ).
If (i At A wa) — [&(W: VD 7 EIP(S) (7" N on)) €

A Catm(w’)

T, (a1 then for everyw € W, if w Ik @; AT A @n,

thenw IF ;. Becaus¢:"”gpi — [ayi, we have{:ﬁwi forall
w' € Ws.t.(w,w') € Ry, andthen:ff/t/;i for everyw’ € W

st (w,w') € R\ R&T. Now, given(w,w’) € R&T, we
have|:f{ D . crs) (7" A par), and the result follows.

A Catm(r/)

Let (¢i A /\ﬂfDL(mw)_)[a]t (T A ga)) — ,[a]wz- €
Ty For every w € W, if %ﬂ 0i N

p—
VA
/\ﬂfDL(ﬂ'/\‘PA)"[a]l _‘(ﬂ'/\(pA), thenw H7 iy and a% Qi —
[ ]wz, we havelz“”wZ forallw’ € Ws.t.(w,w') € Ra. Thus

|: "4 for everyw' € W sit. (w,w') € R, \ R&T. Now,
if wlf ¢, thenR&T = ) and the result follows. Other-
wise, if w I ¢, thenT oL (M A oa) — [a]L, and then
(pi A /\ﬂT:DL(TrwA)—»[a]L —(m A pa)) — [a]Y; has not been
putin7;,_, -, a contradiction.

Let now (m A ga A 0) — [a]¢ € T, 4. Forevery
we W, if %”/77 ApaNd, then|:“”/£ and thert:“”ﬁ From
(mApant) — [l e T, T,Wehaveﬂ: é—»[]

orT s, ¢ — [a~f andTl: — [a]L. In both cases,

|:w, ¢ for everyw’ € Ry(w), and ther‘%{lﬁ for everyw’ s.t.
(w,w’) € R\ R, It remains to show thettgf/é for every
w' € W s.t. (w,w') € R,

Suppos@éff/ﬁ. Then—¢ € w' \ w. From the construction
of 4", there isa" = (W' R") € M s.t. thereiqu,v) €
R, and—/ € v\u, i.e.,|:f{”£ and):fl”ﬁé. From(u,v) € R},
we do not havd’ ):PDLE — [a]L. From |:;” —¢, we do

not have7 |5, ¢ — | ]E Thus the algorithm has not put
(mANpaNl) — [ altin T, _, 1, a contradiction. [ |

Proof of Theorem 4

Lemmal Let® be alaw. If7is modularand7U{®} k5,
1, thenT} is modular.

Proof: Let & be nonclassical. Suppogg is not modular.
Thenthereis’ € §mis.t.73 5, ¢’ andS’ Fep ¢, Where
S’ is static laws inT}. Supposel’ FpL ¥+ Then we must
haveT; k5, ~¢" — [@L and7g 5, —~¢" — (@ T.

Suppose) has the formp — [a]v, for p, ¢ € Fml. Then
for all o A—y'-contexts, as far &8; 55, (P A-¢") — [a] L,
(pA=¢') — (@T ¢ Tg. ThenTy 5, ¢ if and only if
S' ¥ a contradiction.

Supposep is of the formy — (&) T, for p € Fml. Then
forall pA—¢'-contexts suchthdly 5, (pA—¢") — (@T,

T3 Fp (¢ A —¢') — [@ L is impossible as far a§; has



been weakened. Thefj;, |5, " if and only if S’ e @
contradiction.
Hence we havel” |5 ’. Because? is nonclassical,

S'=S. ThenT |5, ¢’ andS }%4,, ', and hencd is not
modular.

Let now® be somep € Fml. Suppos€’, is not modular,
i.e., thereispy” € ImIst.T |5, ¢” andS’ = S x ¢ &,

"

FromS' |4, ¢”, thereisv € val(S’) s.t.v I ¢”.
If v evallS), asTis moduIar,Tk,ﬁDch”. From this and
T, B ¢ we must havely, & —¢” — [a]l and
T, kp. ¥" — (@T. From the latter, we geT 5,
—¢" — ()T, and from the first we hav@ 5, —¢" —
[a] L. Putting both results together we gBtis, ©”. As
S Wz ¥, we have a contradiction.

If v gé val(S), thenT, f5, —¢" — <6_\>—|—, as no ex-
ecutability for context-¢” has been put intd7,. Hence
T, W, ¥ s a contradiction. [ |

Lemma 2 If g = (Whig, Roig) i1s @ model of7, then

for every.# = (W,R) such that|:“” 7 there is a mini-
mal (w.r.t. set inclusion) extensiorl R Ryig \ R such that
A" = (val(S),RUR') is a model off.

Proof: See (Varzinczak 2008b). |
Lemma 3 Let7 be modular, and be a law. Therﬂ:PDLQS

if and only if every.#’ = (val(S),R) such that|:<W"R> T
and RC R is a model ofp.

pL?

Proof:

(=): Straightforward, ag” ):PDLdi implies ):/”45 for every

# such thatz“”T, in particular for those that are extensions
of some model of/.

(«<): SupposeT %5, . Then there is# = (W,R) such

thatE”Tandi;éfldi. As T'is modular, the big modeV,ig =
(Whig, Ruig) Of 7 is a model of7. Then by Lemma 2 there
is a minimal extensio® of R w.r.t. Ryig such that#’ =

(val(S),RUR) is a model of7. Becaus@éﬂ &, there is
w € Wsuch thatl;{l@. If @ is somep € gml or an effect
law, any extension#’ of .# is such thaﬂ;{l/ é. If dis

of the formy — ()T, then){[ ¢ andRy(w) = 0. As

any extension of# is such thatu,v) € R if and only if
u € val(S) \ W, only worlds other than those IW get a new

leaving arrow. Thu$RU R')a(w) = (), and therb{l/q’). ]
Lemma4 Let 7 be modular and® a law. If .7’ =
(val(§8"),R) is a model ofT}, then there is\t = {_.# =
Ty st € M.

Proof: Let.#' = (val(S’),R’) be such that:“”/ Ty If

):///T, the result follows. Suppos;é”lf We analyze each
case.

Let @ be of the formy — [a]y, for ¢, € Fml. Let
M =A{# : # = (val(S),R)}. As T is modular, by
Lemmas 2 and 3M is non-empty and contains only models
of 7.

Suppose/’ is nota minimal model of;, _, 5, i.e., there
is.#" such that#” <_, .#' for some.#Z € M. Then
A" and.#" differ only in the effect ofin a giveny-world,
viz. am A pa-context, for somer € IP(S A ¢) andpa =
N, camey Pi A Ny, ez —P; such thath C atm(r).

p; €A p; €A

Becausebé” (m A\ pa) — (@), we must havq://[
(m A pp) — (a)—p, and therbé” v — [a]y. HenceZ’ is
minimal w.rt.< 4.

When revising by an effect law§’ = S. Hence tak-
ing the rightR and R&:™ such that.# = (val(S),R)

andR = R\ R&™, for someRe™ C {(w,w') £

©, )%U/fﬁzp and(w,w’) € Ra}, we have# € M and then
M EM_ gy
Let @ have the formp — (@) T, for ¢ € Fml. Let M =
{AM : # = (val(S),R)}. As T is modular, by Lemmas 2
and 3,M is non-empty and contains only modelsDof
Suppose thatZ’ is not a minimal model of:;_,(a)T, ie.,

there is.#" such thalj:“” T @7 and.2" = 4 A" for
some.# € M. Then.#' and.#" differ only on the exe-
cutability ofa in a giveny-world, i.e., ar A pa-context, for
somer € IP(S A p) andpa = /\piem p; A /\piem —P;,

pj €A pi A
such thatA C atm(w). This means#” has no arrow leav-
ing thism A @a-world. Then|:“” (m A pa) — [@L, and
hencepé” ¢ — (a)T. Hence.Z' is a minimal model of
,‘ZT;*%&)T W.r.t. j%.

When revising by executability lawss’ = S. Thus
taking the rightR and a minimalR?:" such that.z =
(val(S),R) and R = R U RYT, for someR: T C
{(w,w") :){lcpandw’ € RelTgtw, o — (@) T, .4, M)},
we get.#Z € Mandthen#' € M7 _ . +.

Finally, let® be somep € Fml. Then.#" is such that
for everyw € W, if Rj(w) # 0, thenw € val(S) and
Ra(w) # 0 for every.# = (W,R) € M. Choosing the
right.# € M the result follows. [ |

Proof of Theorem 4

Let 75 be the output of our algorithms on input thedfy
and law. If 75 = TU {2}, thenTU{®} %, L, and hence

every.#’ such that:“”lf,; issuchthatz’ € M\{.# :bé”
@} and the result follows.

Suppose7 U {#} 5, L. From the hypothesis that

is modular and Lemma 17" is modular. Then#’' =
(val(§8"),R) is a model of7”, by Lemma 2. From this and
Lemma 3 the result follows. [ ]



