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Abstract: One of the important topics in oceanography is the prediction of
ocean circulation. The goal of data assimilation is to combine the mathematical
information provided by the modeling of ocean dynamics with observations of
the ocean circulation, e.g. measurements of the sea surface height (SSH). In
this paper, we focus on a particular class of extended Kalman filters as a data
assimilation method: nudging techniques, in which a corrective feedback term is
added to the model equations. We consider here a standard shallow water model,
and we define an innovation term that takes into account the measurements and
respects the symmetries of the physical model. We prove the convergence of
the estimation error to zero on a linear approximation of the system. It boils
down to estimating the fluid velocity in a water-tank system using only SSH
measurements. The observer is very robust to noise and easy to tune. The
general nonlinear case is illustrated by numerical experiments, and the results
are compared with the standard nudging techniques.
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Observateurs et nudging invariants: théorie et

application à un modèle shallow-water

Résumé : La prévision de la circulation des océans est un enjeu crucial
en océanographie. L’assimilation de données consiste à coupler l’information
mathématique provenant de la modélisation de la dynamique des océans avec
les observations de la circulation océanique, par exemple des mesures de hau-
teur d’eau (SSH). Dans cet article, nous étudions une méthode particulière de la
classe des filtres de Kalman étendus: le nudging, consistant à ajouter un terme
de rappel aux données dans les équations du modèle. On considr̀e ici un modèle
shallow-water, et nous définissons un terme de rappel qui prend en compte les
données et qui respecte les symétries du modèle physique. Nous démontrons la
convergence de l’erreur d’estimation vers 0 sur une approximation linéaire du
système. Cela prouve la possibilité de reconstruire l’état complet du système
à partir de données SSH uniquement. L’observateur ainsi construit est très ro-
buste au bruit et facile à régler. Le cas général (non linéaire) est illustré par
plusieurs expériences numériques, et les résultats sont comparés à ceux obtenus
à l’aide du nudging standard.

Mots-clés : Nudging, observateur, symétries, modèle shallow water, équations
aux dérivées partielles, estimation, assimilation de données.
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1 Introduction

Data assimilation consists in estimating the state of a system combining two
different sources of information via numerical methods: models, and observa-
tions. There is an increasing need for such methods in physical oceanography, as
the monitoring of the ocean provides crucial information about climate changes
[21], and the models, although very complex, need to be combined with the
observations of ever increasing quality. Notably, the amount of data available in
oceanography has drastically increased in the last years with the use of satellites.

This paper deals with data assimilation, focusing on a particular technique:
nudging. The standard nudging algorithm consists in applying a Newtonian
recall of the state value towards its direct observation [10]. From another point
of view, the principle of nudging is to use observers of the Luenberger, or ex-
tended Kalman filter type for data assimilation [16, 12]. The model appears
then as a weak constraint, and the nudging term forces the state variables to
fit as well as possible the observations. This forcing term in the model dy-
namics has a tunable coefficient that represents the relaxation time scale. This
coefficient is usually chosen by numerical experimentation so as to keep the
nudging terms small in comparison with the state equations, and large enough
to force the model to fit the observations. The nudging term can also be seen
as a penalty term, which penalizes the system if the model is too far from the
observations. The nudging method, or more generally observers, is a flexible as-
similation technique, computationally much more economical than variational
data assimilation methods [24, 15].

Observers of the Kalman filter type are designed to provide, for each time
step, the optimal estimate (i.e. of minimal error variance) of the system state,
by using only the previous estimates of the state and the last observations
[12, 9]. These filters alternate propagation steps (with the physical model) and
correction steps (using the observations) of the state and of its error statistics.
In the case of a non-linear physical model the extended Kalman filter only
yields an approximation of the optimal estimate. As the oceanographic models
have become very complex in the recent years, the high computing cost of
the extended Kalman filter can be prohibitive for data assimilation [21]. The
nudging techniques take advantage of the form of the Kalman filter, alternating
propagation and correction steps but the gain matrices (or coefficients) are often
chosen to be constant, and their expression requires very few (or no) calculations
[10, 23].

Most Kalman-type filters, or Luenberger observers [16] do not take into ac-
count the symmetries of the model. But the symmetries often contain useful
geometrical information on the model that can help for the design and improve
the performances. Indeed, there has been recent work on observer design and
symmetries for engineering problems when the model is of finite dimension and
when there is a Lie group acting on the state space [2, 1, 17, 7, 6]. Symmetries
provide a helpful guide to design correction terms based on the very structure
of the physical system. The only difference between the observer and model
equations comes from the correction term. When this term is bound to preserve
symmetries, the observer is called “invariant”, or “symmetry-preserving”. The
result is that the estimations do not depend on arbitrary choices of units or co-
ordinates, and the estimates share common physical properties with the system
variables (in the examples given in [7], estimated concentrations are automati-
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4 D. Auroux & S. Bonnabel

cally positive, estimated rotation matrices automatically belong to SO(3)). In
some cases, the error system even presents very nice properties (autonomous
error equation in [6]).

This paper is an extension to the infinite-dimensional case of the recent ideas
on observer design and symmetries for systems described by ordinary differential
equations (ODE) [7], in the particular context of nudging for data assimilation in
oceanography. The problem considered is the following: the ocean is described
by a simplified shallow-water model. The sea surface height (SSH) is measured
(with noise) everywhere by satellites. The goal is to estimate the height, and the
(not measured) marine currents. The model considered is invariant by rotation
and translation (SE(2)-invariance). In the case of problems described by infinite
dimensional partial differential equations (PDE), the design of observers based
on the symmetries of the physical system is new to the authors’ knowledge.

The main contribution of this paper is to derive a large class of observers
based on the SE(2)-invariance for this estimation problem. At first we are only
interested in the structure of the observers, and we do not check the validity
of the estimation. Then we pick a particular observer in this class. It has
several remarkable properties as the design is based on physical considerations.
The correction term does not depend on any non-trivial choice of coordinates.
Moreover, it is made of a smoothing term which ensures remarkable robustness
to white noise. The correction term consists in fact in a convolution of the
estimation error with a smooth isotropic kernel. The idea to derive systematical
smoothing terms based on physical symmetries is standard in image processing,
and was initiated by [3]. One of the simplest method consists in a convolution
with a smooth rotation-invariant kernel (isotropic diffusion based on the heat
equation). But in this paper we combine the smoothing term with a dynamical
model to provide an estimation of physical quantities which are not directly
measured, i.e. we build an observer. The second main contribution of the paper
is to yield a proof of convergence of the estimation error to zero on a simplified
shallow water model. The proof shows how to handle the convolution term via
a Fourier analysis. In fact we solve the following estimation problem: predicting
the velocity in a water-tank using (very) noisy continuous measurements of the
height everywhere at any time. Thus this paper can be viewed as a counterpart
in the observer field of the work on the controllability of a water tank, which
was raised by [8]. Finally, a noticeable fact is that the observer depends on a
small number of parameters, as the structure of the observer is imposed by the
structure of the system. All these parameters admit a physical interpretation.
So the observer gains are easy to tune, and the corresponding computing cost
is quite low, contrarily to the extended Kalman filter. This property is in fact
characteristic of symmetry-preserving observers [7]. The performances of the
observer and the low computational cost have been numerically tested.

The paper is organized as follows. In Section 2 we consider a bi-dimensional
shallow water model, often used in geophysics for ocean or fluid flow modeling.
We define a class of invariant observers in the case of SSH observations. Then,
we prove the convergence of the estimation error to zero on the first-order ap-
proximation of this system. Indeed we assume that the fluid motion is described
by linearized wave equations under shallow-water approximations. In Section 3,
we report the results of extensive numerical simulations on both the linearized
(and simplified) and nonlinear shallow water models. We show the interest of
invariant observers in these cases. These results are also compared with the

INRIA



Symmetry-preserving nudging 5

standard nudging technique, which can be seen as a particular situation of our
symmetry-preserving observers. We also show their remarkable robustness to
gaussian white noise on the observations. Finally, some conclusions and per-
spectives are given in Section 4.

2 Nudging and symmetries

In this section we consider a simplified oceanic model. The state of the ocean
is the SSH, and the horizontal speed of the marine currents. The choice of the
orientation and the origin of the frame of R

2 used to express the horizontal co-
ordinates (x, y) ∈ R

2 is arbitrary: the physical problem is invariant by rotation
and translation. Indeed from a mathematical point of view the Laplace operator
∆ is invariant by rotation and translation. The first term of any observer for
this problem is automatically invariant by rotation and translation, as it is a
copy of the equations of the physical system. There is no reason why the correc-
tion term should depend on any non-trivial choice of the orientation and origin
of the frame. It would yield correction terms giving more importance to the
values of the height measured in some arbitrary direction of R

2. In the general
case, without additional information on the model, it seems perfectly logical
indeed to correct the observer isotropically. This constraint suggests interesting
correction terms.

2.1 Shallow water model

The shallow water model (or Saint-Venant’s equations) is a basic model, rep-
resenting quite well the temporal evolution of geophysical flows. This model is
usually considered for simple numerical experiments in oceanography, meteorol-
ogy or hydrology [19]. These equations are derived from a vertical integration of
the three-dimensional fields, assuming the hydrostatic approximation, i.e. ne-
glecting the vertical acceleration. We consider here the shallow water model
of Jiang et al [11]. For deeper water, this model can be adapted into a multi-
layer model, each layer being described by a shallow water model, with some
additional terms modeling stress and friction due to the other layers.

The fluid is made of one layer of constant density ρ and with varying thick-
ness (or height) h(x, y, t), covering a deeper layer of density ρ+∆ρ. The domain
is rectangular: 0 ≤ x ≤ L and 0 ≤ y ≤ L, where x and y are the cartesian coordi-
nates corresponding to East and North respectively. Let ∇ be the corresponding
gradient operator:

∇ =

(

∂

∂x
,
∂

∂y

)T

.

The equations write:

∂(hv)

∂t
+ (∇ · (hv) + (hv) · ∇)v = −g′h∇h− k × f(hv) + (αAA∇2 −R)(hv) + αtauτ̃ i/ρ,

(1)

∂h

∂t
= −∇ · (hv), (2)

where hv = h(vxi+vyj) is the horizontal transport, with i and j pointing towards
East and North respectively, f = f0 + β(y− 0.5D) is the Coriolis parameter (in
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6 D. Auroux & S. Bonnabel

the β-plane approximation), k is the upward unit vector, and g′ is the reduced
gravity. The ocean is driven by a zonal wind stress τ̃ i modeled as a body force,
and τ̃ is known. Finally, R and A represent friction and lateral viscosity.

We assume that the physical system is observed by several satellites that
provide measurements of the SSH h(x, y, t) for all x, y, t. Within the framework
of data assimilation for geophysical fluids, the goal is to estimate all the state
variables v(x, y) and h(x, y) (velocity of the marine streams, and SSH respec-
tively) at any point (x, y) ∈ [0, L]2 of the domain. We finally consider that
all the other parameters are known. Note that the state space is of infinite
dimension.

2.2 Model symmetries

The unit vectors i and j are pointing East and North respectively. This choice
is arbitrary, and the equations of fluid mechanics do not depend neither on
the orientation nor on the origin of the frame in which the coordinates are
expressed: they are invariant under the action of SE(2), the Special Euclidean
group of isometries of the plane R

2. Let us prove this invariance. Let Rθ =
(

cos θ − sin θ
sin θ cos θ

)

be a horizontal rotation of angle θ. Let (x0, y0) ∈ R
2 be the

origin of the new frame. Let (X,Y ) be the coordinates associated to the new
frame R−θ(i, j) − (x0, y0). In this new frame, the variables read

(X,Y ) = Rθ(x, y) + (x0, y0), (3)

H(X,Y ) = h(x, y), (4)

V (X,Y ) = Rθv(x, y). (5)

and ( ∂
∂X ,

∂
∂Y ) = Rθ(

∂
∂x ,

∂
∂y ) which implies ∇H(X,Y ) = Rθ∇h(x, y). The equa-

tions in the new coordinates read the same with the notations K = k and
I = Rθi:

∂(HV )

∂t
+ (∇ · (HV ) + (HV ) · ∇)V = −g′H∇H − K × f(HV ) (6)

+(αAA∇2 −R)(HV ) + αtauτ̃I/ρ,

∂H

∂t
= −∇ · (HV ). (7)

The Laplace and divergence operators are unchanged by the transformation
as they are invariant by rotation (although they are usually written in fixed
coordinates, their value do not depend on the orientation of the chosen frame).
Note that the square domain D = [0, L]2 ⊂ R

2 has to be replaced by the square
(RθD + (x0, y0)) ⊂ R

2.

2.3 Symmetry-preserving nudging

An observer for the system (1)-(2) (nudging estimator) systematically writes :

∂(ĥv̂)

∂t
+ (∇ · (ĥv̂) + (ĥv̂) · ∇)v̂ = −g′ĥ∇ĥ− k × f(ĥv̂) + (αAA∇2 −R)(ĥv̂)

+αtauτ̃ i/ρ+ Fv(h, v̂, ĥ), (8)

∂ĥ

∂t
= −∇ · (ĥv̂) + Fh(h, v̂, ĥ), (9)

INRIA



Symmetry-preserving nudging 7

with ĥ = h on the boudary of the domain, and where the correction terms
vanish when the estimated height ĥ is equal to the observed height h:

Fv(h, v̂, h) = 0, Fh(h, v̂, h) = 0.

No additionnal condition is required on Fv and Fh at this stage. They are
functionals, and they can be for instance differential or integral operators of the
space variables. The next step is to consider correction terms that respect the
underlying physics of the system in the sense that they are invariant under the
action of SE(2). Indeed why the quality of the estimation should depend upon
the choice of orientation and origin of the frame when the physical system under
consideration does not at all? Let us search the correction terms in the large
class of SE(2)-invariant differential and integral terms.

Invariant correction terms

We look for three types of invariant correction terms: scalar, differential, and
integral. Let us first focus on the former two. Note that Fv is a vector and Fh

a scalar. To find Fh, we use the standard result (see e.g. [22]), which states
that any SE(2)-invariant scalar differential operator writes Q(∆), where Q is a
polynomial and ∆ is the Laplacian.

In our case, the coefficients of this polynomial can be invariant functions
of the estimated state (ĥ, v̂) and measurement h. Note that v̂ is the unique

vectorial function amongst these variables. The scalar variables h and ĥ are
SE(2)-invariant when transformed accordingly to (4). Thus any scalar invari-

ant function of (h, ĥ, v̂) must depend on v̂ only via an invariant function of v̂,
typically |v̂|2. Indeed, using polar coordinates it is clear that it is the unique
quantity that does not depend on the angle between v̂ and the (arbitrary) axis
of the frame (see e.g. [18, 7] for the construction of a complete set of scalar
invariants). But since differential terms are allowed, and the gradient ∇ is a
vectorial differential operator which rotates under the action of SE(2), one can
get some rotation-invariant scalar terms from the scalar product between the
gradient of invariant quantities, and the only vectorial function at our disposal
v̂. Eventually, we get a complete family of scalar terms Fh :

Fh = Q1(∆, h, |v̂|2, ĥ− h) + ∇
(

Q2(∆, h, |v̂|2, ĥ− h)
)

· v̂ + fh, (10)

where Q1 and Q2 are scalar polynomials in ∆, and fh is an integral term defined
below. More precisely, for i = 1, 2, we have

Qi(∆, h, |v̂|2, ĥ− h) =

N
∑

k=0

ai
k(h, |v̂|2, ĥ− h) ∆k

(

bik(h, |v̂|2, ĥ− h)
)

, (11)

where ai
k and bik are smooth scalar functions such that

ai
k(h, |v̂|2, 0) = bik(h, |v̂|2, 0) = 0. (12)

For the vectorial correction term Fv, we use the vectorial counterpart:

Fv = P1(∆, h, |v̂|2, ĥ− h) v̂ + ∇
(

P2(∆, h, |v̂|2, ĥ− h)
)

+ fv, (13)

RR n° 6677



8 D. Auroux & S. Bonnabel

where P1 and P2 are polynomials in ∆, like Q1 and Q2.
Let us now find the integral terms fh and fv that are invariant by rotation

and translation. They can be expressed as a convolution between the previous
invariant differential terms and a two-dimensional kernel ψ(ξ, ζ). The previous
terms being invariant by rotation, the value of the kernel should not depend on
any particular direction, and so ψ must be a function of the invariant ξ2 + ζ2

(isotropic gain). So if we let φv and φh be two real-valued kernels, the integral
correction terms write:

fv(x, y, t) =

∫∫

φv(ξ
2 + ζ2)

[

R1(∆, h, |v̂|2, ĥ− h)v̂

+ ∇
(

R2(∆, h, |v̂|2, ĥ− h)
)]

(x−ξ,y−ζ,t)
dξdζ, (14)

fh(x, y, t) =

∫∫

φh(ξ2 + ζ2)
[

S1(∆, h, |v̂|2, ĥ− h)

+ ∇
(

S2(∆, h, |v̂|2, ĥ− h)
)

· v̂
]

(x−ξ,y−ζ,t)
dξdζ, (15)

where the polynomials Ri and Si are defined like the Qi’s.
The support of φv (resp. φh) is a subset of R. Its characteristic size defines a

zone in which it is significant to correct the estimation with the measurements.
The radial term ξ2 + ζ2 makes the observer independent of any arbitrary choice
of orientation (invariance by rotation), and the use of a convolution makes the
observer independent of the origin of the frame (invariance by translation). The
integral formulation is actually quite general: if φv and φh are set equal to Dirac
functions, one obtains the differential terms.

Such integral correction terms make the observer robust to noise. Indeed
if the kernels are smooth, the correction terms take into account the measure-
ments, but are automatically smooth even if the measurements are not. The
high frequencies in the signal are thus efficiently filtered.

2.4 Convergence study on a linearized simplified system

As it seems very difficult to study the convergence on the full non-linear system,
we are going to simplify the system (1)-(2) in this section, and then linearize
it around the equilibrium position h = h̄ and v = v̄. In our experiments, the
equilibrium is characterized by h̄ equal to a constant height, and v̄ = 0. The
observer gains are designed on this latter system, and then we prove at the end
of this section that they ensure the strong asymptotic convergence of the error.

For reasons of clarity, we first consider a simplified shallow water model
(Saint-Venant equations):

∂h

∂t
= −∇(hv), (16)

∂v

∂t
= −v∇v − g∇h. (17)

In order to avoid the amplification of the measurement noise by a differentiation
process, only the integral correction terms are kept: one sets Q1 = Q2 = P1 =
P2 = 0, R1 = S2 = 0, and R2 = S1 = h − ĥ, and the kernels φh and φv are
supposed to be smooth functions. Thus the correction terms are smooth, and

INRIA



Symmetry-preserving nudging 9

one can use the gradient of the output, as it is filtered. The symmetry-preserving
observer (8)-(9) for the simplified system (16)-(17) writes:

∂ĥ

∂t
= −∇(ĥv̂) +

∫∫

φh(ξ2 + ζ2) (h− ĥ)(x−ξ,y−ζ,t) dξdζ

= −∇(ĥv̂) + ϕh ∗ (h− ĥ), (18)

∂v̂

∂t
= −v̂∇v̂ − g∇ĥ+

∫∫

φv(ξ
2 + ζ2) ∇(h− ĥ)(x−ξ,y−ζ,t) dξdζ

= −v̂∇v̂ − g∇ĥ+ ϕv ∗ ∇(h− ĥ), (19)

where ϕh(ξ, ζ) = φh(ξ2 + ζ2) and ϕv(ξ, ζ) = φv(ξ
2 + ζ2).

Remark: Note that in the degenerate case where φh = Khδ0 and φv = Kvδ0
(Kh and Kv are positive scalars), we find the standard nudging terms:

∂ĥ

∂t
= −∇(ĥv̂) +Kh(h− ĥ), (20)

∂v̂

∂t
= −v̂∇v̂ − g∇ĥ+Kv∇(h− ĥ). (21)

Using exactly the same simplifications as [20] which considers the control prob-
lem and motion planning of system (16)-(17) with boundary control, we study
the first order approximation (or linearized approximation) of this system around
the steady-state (h, v) = (h̄, 0), where the equilibrium height h̄ is constant. We

only consider small velocities δv = v − v̄ ≪
√

gh̄ and heights δh = h − h̄ ≪ h̄.
Note that these approximations are consistent with the numerical experiments
of Section 3, in which the ratio δv (resp. δh) to

√

gh̄ (resp. h̄) is of the order
of 10−2 to 10−3. The linearized system is

∂(δh)

∂t
= −h̄∇δv, (22)

∂(δv)

∂t
= −g∇δh, (23)

and the estimation errors, h̃ = δĥ − δh and ṽ = δv̂ − δv, are solution of the
following linear equations:

∂h̃

∂t
= −h̄∇ṽ − ϕh ∗ h̃, (24)

∂ṽ

∂t
= −g∇h̃− ϕv ∗ ∇h̃. (25)

Eliminating ṽ and using ∇(ϕv ∗∇h) = ϕv ∗∆h yields a modified damped wave
equation with external viscous damping:

∂2h̃

∂t2
= gh̄∆h̃+ h̄ ϕv ∗ ∆h̃− ϕh ∗ ∂h̃

∂t
. (26)

We now define the kernels ϕv and ϕh. We choose

ϕv(x, y) = (f(x) ∗ f(x))(f(y) ∗ f(y)), (27)

ϕh(x, y) = (g(x) ∗ g(x))(g(y) ∗ g(y)), (28)

RR n° 6677



10 D. Auroux & S. Bonnabel

where f and g are smooth even functions. In order to respect the symmetries,
both ϕv(x, y) and ϕh(x, y) must also be functions of x2 + y2. The following
gaussians respect both conditions:

ϕv(x, y) = βv exp(−αv(x2 + y2)), (29)

ϕh(x, y) = βh exp(−αh(x2 + y2)), (30)

Theorem 1 If ϕv and ϕh are defined by (29) and (30) respectively with βv, βh, αv, αh >
0, then the first order approximation of the error system around the equilibrium
(h, v) = (h̄, 0) given by (26) is strongly asymptotically convergent. Indeed if we
consider the following Hilbert space and norm:

H = H1(Ω) × L2(Ω), ‖(u,w)‖H =

(
∫

Ω

‖∇u‖2 + |w|2
)1/2

, (31)

then, for every h̃ solution of (26),

lim
t→∞

∥

∥

∥

∥

(

h̃(t),
∂h̃

∂t
(t)

)

∥

∥

∥

∥

H

= 0 . (32)

This result proves the strong and asymptotic convergence of the error h̃ towards
0, and then it also gives the same convergence for ṽ. We deduce that the observer
(18)-(19) tends to the true state when time goes to infinity. Note that although
only the height is observed, all variables are corrected, and estimated.

A dimensional analysis can yield a meaningful choice of the gains. The
parameters α−2

v , α−2
h are expressed in m. They define the size of the regions of

influence of the kernels, i.e. the region around any point in which the measured
values of h are used to correct the estimation at the point. These value can be set
experimentally using the data from the physical system. Moreover, concerning
the tuning of βv and βh, one can use the following heuristics. The error system
(26) can be approximated by the following system, which corresponds to the
case α = +∞:

∂2h̃

∂t2
+ 2ξ0ω0

∂h̃

∂t
= (L0ω0)

2∆h̃. (33)

where L2
0ω

2
0 = gh̄+ h̄βv, 2ξ0ω0 = βh, as long as we impose L2

0ω
2
0 ≥ gh̄. βv and

βh can be chosen in order to control the characteristic pulsation ω0, length L0,
and damping coefficient ξ0 of the approximated error equation (33). These
quantities have an obvious physical meaning and can be set accordingly to
the characteristics of the physical system under consideration. Such heuristics
provide a first reasonable tuning of the gains.

Remark In the following proof, we only use the decomposition of the gain
functions given by the general formulation (27) and (28), with some additional
assumptions on f and g (see end of section 2.5). Thus, many other kernel
functions than those given in (29)-(30) lead to the same convergence result.
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Symmetry-preserving nudging 11

2.5 Proof of theorem 1

In this section, inspired by [14], we prove the strong convergence of the error
system in the Hilbert space H. Let ψv = gh̄δ0 + h̄ϕv. For simplicity reasons,
we assume that L = π. The error equation (26) can be rewritten as a modified
wave equation on a square domain with Dirichlet boundary condition:

∂2

∂t2u = ψv ∗ ∆u− ϕh ∗ ∂
∂tu in R

+ × Ω = R
+ × [0, π]2,

u = 0 on R
+ × ∂Ω,

u(0) = u0, ut(0) = u1 in Ω,

(34)

where u(t, x, y) represents the estimation error h̃. The Dirichlet boundary con-

dition comes from the fact that we set ĥ = h on the boundary.
We denote by (epq) the following orthonormal basis of H1

0 (Ω), composed of
eigenfunctions of the unbounded operator ∆:

epq =
2

π
sin(px) sin(qy). (35)

As f and g are smooth functions (C∞(Ω) for instance), we can consider their
Fourier series expansion. Moreover, as f and g are even functions, their Fourier
coefficients are real. If we denote by (f̂p) and (ĝp) the Fourier coefficients of f

and g respectively, then the Fourier coefficients of ψv are gh̄+ h̄f̂2
p f̂

2
q . Similarly,

the Fourier coefficients of ϕh are ĝ2
p ĝ

2
q . As all these coefficients are real and

positive, we denote them by f2
pq for ψv, and g2

pq for ϕh. The only assumption

that we need on f and g in the following proof is that f̂p > 0 and ĝp > 0, ∀p.
Note that this condition is satisfied if f and g are defined in a such way that ϕv

and ϕh are given by (29)-(30). We now need the following intermediate result:

Lemma 1 If u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω), then equation (34) has a unique

solution satisfying

u ∈ C(R;H1
0 (Ω)) ∩ C1(R;L2(Ω)). (36)

It is given by the series

u(t, x, y) =
2

π

∑

1≤p,q

upq(t) sin(px) sin(qy), (37)

with either

upq(t) = e
−g2

pq
2 t(Apq cos(ωpqt) +Bpq sin(ωpqt)), (38)

or

upq(t) = e
−g2

pq
2 t(Apq cosh(ω̃pqt) +Bpq sinh(ω̃pqt)). (39)

Moreover, the latter case appears at most for a finite number of indices, and

ω̃pq <
g2

pq

2 .

Proof: We rewrite equation (34) as

d

dt
U = AU, (40)
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12 D. Auroux & S. Bonnabel

where U = (u, ut) and A is the following unbounded linear operator on H:

A(u,w) := (w,ψv ∗ ∆u− ϕh ∗ w). (41)

From (41) and (35), we deduce that

Epq =

(

1
λ±pq

)

epq (42)

are eigenvectors of A associated to the eigenvalues λ±pq, solutions of

λ2
±pq + g2

pqλ±pq + f2
pq(p

2 + q2) = 0. (43)

Moreover, the family of eigenvectors (Epq) forms a Riesz basis of the Hilbert
space H. The discriminant of (43) is ∆pq = g4

pq − 4(p2 + q2)f2
pq. It can be

positive for a finite number of indices only, since g2
pq → 0 and f2

pq ≥ gh̄ when
p and q go to infinity. We found a Riesz basis of H formed by eigenvectors
of A, the eigenvalues have no finite accumulation point and their real part are
bounded. Thus all assumptions of theorem 3.1 of [14] are satisfied: the solution
U of (40) is given by the series

U(t) =
∑

p,q≥1

∆pq<0

(

Upqe
−g2

pq+i

√
4(p2+q2)f2

pq−g4
pq

2 t + U−pqe
−g2

pq−i

√
4(p2+q2)f2

pq−g4
pq

2 t

)

Epq

+
∑

p,q≥1

∆pq≥0

(

Upqe
−g2

pq+
√

g4
pq−4(p2+q2)f2

pq

2 t + U−pqe
−g2

pq−

√
g4

pq−4(p2+q2)f2
pq

2 t

)

Epq. (44)

Finally, the coefficients can be found using the Fourier series of the initial con-
dition. We have

Apq =
4

π2

∫

[0,π]2
u(0, x, y) sin(px) sin(qy) dxdy, (45)

Bpq =
4

ωpqπ2

∫

[0,π]2

(

ut(0, x, y) +
g2

pq

2
u(0, x, y)

)

sin(px) sin(qy) dxdy.(46)

�

All we have to prove now is that the solution, which represents the estimation
error, converges to 0 when time goes to infinity. Recall that the coefficients upq

are given by equation (38), except for a finite number of indices. Define

uN (t, x, y) =
2

π

∑

p+q≥N

e
−g2

pq
2 t(Apq cos(ωpqt) +Bpq sin(ωpqt)) sin(px) sin(qy).

(47)
Since u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω), Parseval’s theorem tells us that for any
ε > 0, there exists N such that

∥

∥

∥

∥

uN (t),
∂uN

∂t
(t)

∥

∥

∥

∥

H

≤ ε/2, ∀t ≥ 0. (48)
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Symmetry-preserving nudging 13

From (38) and (39), there exists T > 0 such that for any t ≥ T ,

∥

∥

∥

∥

(u− uN )(t),
∂(u− uN )

∂t
(t)

∥

∥

∥

∥

H

≤ ε/2. (49)

Finally, ‖u, ut‖H < ε for any t ≥ T . We proved equation (32), i.e. the strong
convergence of the linearized error system.

Note that this proves the result for any kernel functions defined by (27) and
(28), provided all Fourier coefficients g2

pq are strictly positive. Note also that
for N > 0 arbitrary large, from lemma 1, the truncated solution uN tends to 0
exponentially in time. Thus exponential convergence is expected in numerical
experiments.

3 Numerical simulations

In this section, we report the results of many numerical simulations on both the
linearized and non-linear shallow water models, in order to illustrate the interest
of such symmetry-preserving observers. The nonlinear observer is given by
equations (18)-(19), with gain functions ϕh and ϕv given by equations (29)-(30).
Although the gain design has been done on the simplified linearized system, the
gains are also implemented on the non-linear observer (on the full non-linear
shallow water model).

3.1 Linearized simplified system

We first consider a shallow water model, in a quasi-linear situation (small veloc-
ities, and height close to the equilibrium height) given by equations (16)-(17).
The corresponding observer is solution of equations (18)-(19).

3.1.1 Model parameters

The numerical experiments are performed on a square box, of dimension 2000
km×2000 km. The equilibrium height is h̄ = 500 m, and the equilibrium
longitudinal and transversal velocities are v̄x = v̄y = 0 m.s−1. We consider a
regular spatial discretization with 81× 81 gridpoints. The corresponding space
step is 25 km. The time step is half an hour (1800 seconds), and we have
considered time periods of 1 to 4 months (1440 to 5760 time steps).

The reduced gravity is g = 0.02 m.s−2. The height varies between 497.7
and 501.9 m and the norm of the transversal velocity is within the interval
±0.008 m.s−1. The approximations of the preceding section are valid since
v ≪

√
gh = 3 m.s−1 and δh≪ 500. The variations of the height and velocities

are indeed of the order of 2 meters and 0.01m.s−1 respectively. This kind of
linearized system with the typical values above is often considered in geophysical
applications, under the tangent linear approximation, for the estimation of an
increment (instead of the solution itself) [5].

Concerning the tuning of the gains, we have considered the convolution
kernels defined by equations (29)-(30). Recall that α−2

h and α−2
v represent the

characteristic size of the Gaussian kernel. We will always take α−2
h = α−2

v = α.
In most of the experiments below we have α = 1 m−2. Unfortunately the
weights βh and βv cannot be chosen too large for numerical reasons, in order to
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14 D. Auroux & S. Bonnabel

avoid stability issues. So we always take βh ≤ 10−6. Recall that heuristically
the error equation can be approximated by the damped wave equation (33) with
h̄βv = L2

0ω
2
0 − gh̄ and βh = 2ξ0ω0. The weights βh and βv have two different

units, and physical meaning, and (a priori) there is no physical reason why they
should have approximately the same magnitude. Nevertheless, for the numerical
values of βh considered in this paper, one can check that any value 0 ≤ βv ≤ βh

yields a fundamental frequency for the error system ω0

√

1 − ξ20 which is close to

the natural frequency
√

gh̄/L0 of the physical system (16)-(17). From now on
we will systematically set βv = 0.1 βh, which is acceptable from a physical point
of view, also ensures the convergence of the observer, and is the largest value of
βv which yields numerical stability. Finally, a truncated convolution integral is
used as an approximation of the complete convolution over the whole domain.
The truncation radius is set equal to 10 pixels in our experiments (further than
10 pixels away from its center the Gaussian can be viewed as numerical noise).

We consider two criteria for quantifying the quality of the estimation process:
the convergence rate of the estimation error, and the estimation error when
convergence is reached. The initialization of the observer is always

ĥ = h̄ (= 500), v̂ = v̄ (= 0).

In all the following results, the estimation error is the relative difference between
the true solution (h and v) and the observer solution (ĥ and v̂):

eh =
‖(ĥ− h̄) − (h− h̄)‖

‖h− h̄‖ , ev =
‖(v̂ − v̄) − (v − v̄)‖

‖v − v̄‖ (50)

where ‖ . ‖ is the standard L2 norm on the considered domain. With the previ-
ously defined initialization of the observer, the estimation error at initial time
is eh(0) = ev(0) = 1, corresponding to a 100% error on the initial conditions.
If we assume that the decrease rate is nearly constant in time, then the time
evolution of the estimation error is given by:

eh(t) = eh(0) exp(−cht), ev(t) = ev(0) exp(−cvt), (51)

where ch and cv are the corresponding convergence rates. In all the numerical
experiments that we have considered, the choice of the weighting coefficients
βh and βv does not modify the residual estimation errors at convergence. One
observes that the convergence rates are linearly proportional to βh (and to
βv = 0.1βh), provided it is not too large. This is explained by formula (37) as
the Fourier coefficients g2

pq depend linearly on βh.

3.1.2 Perfect observations

We first assume that the observations are perfect, i.e. without any noise. Figure
1 shows the estimation error (in relative norm) versus time (number of time
steps), for the three variables: height h, longitudinal velocity vx and transversal
velocity vy. The kernel coefficients are the following:

βh = 5.10−7 s−1, βv = 0.1βh = 5.10−8 m.s−2, αh = αv = 1 m−2.

This figure shows that the convergence speed is nearly constant in time, and
equation (51) is then valid. We can also deduce the corresponding convergence
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Figure 1: Evolution of the estimation error in relative norm versus the number
of time steps, in the case of perfect observations, with αh = αv = 1 m−2 and
βh = 5.10−7 s−1, and with a 100% error on the initial conditions, for the three
variables: height h, longitudinal velocity vx and transversal velocity vy.
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Figure 2: Evolution of the estimation error in relative norm versus the number
of time steps, in the case of perfect observations, with αh = αv = 1 m−2 and
βh = 2.10−6 s−1, for the three variables: height h, longitudinal velocity vx and
transversal velocity vy.

rates:

ch = 7.57 × 10−7, cvx
= 7.63 × 10−7, cvy

= 7.80 × 10−7.

Another interesting point is that, although only the variable h is observed,
the velocity v is also corrected, with a comparable convergence rate. This is
predicted by the theory above, but it is nevertheless extremely noticeable, as in
most data assimilation processes, only a few variables of the system are observed
[10, 23, 4]. This result shows (at least in the linear case) that all the variables
are observable indeed.

Figure 2 shows the results of a similar experiment using different kernel
coefficients (βh = 2.10−6 s−1, and still βv = 0.1βh, αh = αv = 1 m−2). The
decrease rate is constant: ch = 2.84 × 10−6, cvx

= 2.61 × 10−6 and cvy
=

2.91 × 10−6. The ratio between the decrease rate and βh is almost preserved
(the decrease rate has been multiplied by 3.5 to 3.75, and βh by 4), as explained
by formula (37). From now on, we will only give the decrease rate corresponding
to the following weight values:

βh = 5.10−7 s−1, βv = 0.1βh = 5.10−8 m.s−2.
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16 D. Auroux & S. Bonnabel

Size of the Decrease rate Estimation error at convergence
gaussian kernel (h, vx, vy) (h, vx, vy)

7.58 × 10−7 7.92 × 10−8

αh = αv = 1 7.63 × 10−7 2.11 × 10−4

7.80 × 10−7 4.71 × 10−5

2.49 × 10−7 1.02 × 10−7

αh = αv = 103 2.61 × 10−7 2.65 × 10−4

2.87 × 10−7 6.12 × 10−5

Table 1: Decrease rate and value at convergence of the estimation error, for the
three variables h, vx and vy, for two different sizes of the gaussian kernel.

In both experiments, the estimation error at convergence has comparable
(small) values:

eh = 7.92 × 10−8, evx
= 2.11 × 10−4, evy

= 4.71 × 10−5.

From a theoretical point of view, it should converge to 0. Several reasons explain
this difference with the theory. The numerical non-linear system considered is
not exactly described by its first-order approximation. Moreover the numerical
schemes and numerical noise do not allow the observer solution to reach exactly
the observed trajectory. Note that the small oscillations in the decrease of
the estimation error can be explained by the oscillatory behavior described by
(37). Numerically speaking, the fact that the model has nearly no diffusion (no
theoretical diffusion, and almost no numerical diffusion) can also contribute to
this oscillatory phenomena.

Finally, we compare our observer to the standard nudging algorithm, by
choosing a large value for αh and αv. Numerically we have set

αh = αv = 1000 m−2.

The decrease rate and estimation error at convergence are summarized in table
1 along with the previous results. The decrease rate of our observer is 2.7 to
3 times bigger. But assuming the solution (h, v) is constant (which is nearly
true), the convolution with a gaussian kernel of size 1 or with a dirac produces

the same effect, with a π factor (as
∫

R2 e
−(x2+y2)dx dy = π). Numerically, the

factor is a little bit smaller, as the solution is not constant. We also see that the
estimation error at convergence is a little bit larger for α large. Numerically,
the small difference can probably be explained by some numerical noise, which
is smoothed by the convolution.

3.1.3 Noisy observations

We now assume that the height h cannot be observed properly, and instead of
h, we observe h+ ε where ε represents the observation noise on h. We assume
that ε is gaussian with zero mean (white noise is standard in oceanography [9]),
and a standard deviation of 20 to 40% of the standard deviation of the height h.
Thus a 0.2 estimation error means that the estimated value ĥ is closer to the true
height h than to the observed height h+ ε. Figure 3 shows similar experiments
as previously described, in the case of noisy observations, for βh = 2.10−7 s−1
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Figure 3: Evolution of the estimation error in relative norm versus the number of
time steps, in the case of noisy observations (20% noise), with αh = αv = 1 m−2

and βh = 2.10−7 s−1, for the three variables: height h, longitudinal velocity vx

and transversal velocity vy.

Size of the Decrease rate Estimation error at convergence
gaussian kernel (h, vx, vy) (h, vx, vy)

1.49 × 10−6 4.43 × 10−3

αh = αv = 0.5 1.40 × 10−6 7.51 × 10−3

1.42 × 10−6 4.06 × 10−3

7.55 × 10−7 5.92 × 10−3

αh = αv = 1 7.44 × 10−7 1.04 × 10−2

7.44 × 10−7 5.53 × 10−3

2.45 × 10−7 1.70 × 10−2

αh = αv = 103 2.49 × 10−7 3.02 × 10−2

2.48 × 10−7 1.59 × 10−2

Table 2: Decrease rate and value at convergence of the estimation error, for the
three variables h, vx and vy, for three different sizes of the gaussian kernel, in
the case of noisy observations (20% noise).

and α = 1 m−2. The global behaviour of the solution is unchanged (constant
decrease until stabilization). The decrease rate and value at convergence of the
estimation error for α = 0.5 m−2, 1 and 103 are summarized in table 2.

There is still a ratio of nearly π between the decrease rate for α large and
α = 1 m−2. α = 0.5 m−2 seems to be an optimal value for the parameter α: it is
large enough to smooth efficiently the noise, and we checked that the decrease
rate is not much larger when we take smaller values of α. Thus we see it is
useless to correct the estimation at one point with values of h which are too far
away from this point. In comparison with the case of perfect observations, the
decrease rate is remarkably unaffected by the presence of noise.

The estimation error at convergence is much larger than in the case of perfect
observations. Nevertheless, all variables have been identified with less than 1%
of error. We see the interest of the convolution as the error at convergence is 3
to 4 times smaller with α ≈ 1 than with α = 1000. This is due to the fact that
the term ∇(ĥ− h) is very noisy when it is not directly filtered, as it is the case
in the standard nudging algorithm (or extended Kalman filter).
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Figure 4: Evolution of the estimation error in relative norm versus the number
of time steps, in the case of perfect observations, for βh = 5.10−7 s−1 and
αh = αv = 0.5 m−2, for the three variables: height h, longitudinal velocity vx

and transversal velocity vy.

3.2 Full nonlinear shallow water model

We now consider the full shallow water model, with the Coriolis force, friction,
lateral viscosity, and wind stress (see equations (1)-(2)). We also consider large
velocities and height variations, with still the same equilibrium point: h̄ = 500,
v̄x = v̄y = 0. The size of the domain and the time and space steps remain
the same as in the previous experiments (see section 3.1.1), the other physical
parameters being:

f0 = 7.10−5s−1, β = 2.10−11m−1.s−1, R = 9.10−8, A = 5m2.s−1, τ̃max = 0.05 s−2.

As we will see at the end of this section, this model reproduces quite well the
evolution of a fluid in the northern hemisphere (e.g. Gulf Stream, in the case of
the North Atlantic ocean, double-gyre circulation, . . . ), with realistic velocities
and dimensions [19].

3.2.1 Perfect observations

We consider the same convolution kernels as in the experiments on the approx-
imated system above, with the same reference parameters βh = 5.10−7 s−1

and βv = 0.1βh. Figure 4 shows the estimation error (in relative norm) ver-
sus time (number of time steps), for the three variables: h, vx, vy, with αh =
αv = 0.5 m−2. Similar curves have been obtained with other values of α. The
convergence speed for h, v are constant only at the beginning, and decrease
continuously to 0 after the error goes under some treshold.

Table 3 summarizes the decrease rates at the beginning and the residual
estimation error. The final estimation error is much larger than in the previous
experiments. Consequently, if the velocity is not well retrieved, the height can-
not be perfectly identified. Nevertheless the height estimation error is close to
1%, which is a very good result, considering the high turbulence of the model.
The velocity is partially identified (with 12 to 15% of error in the best situa-
tions). The convergence rates are a little bit larger than in the linearized case.
The behaviour between the standard gaussian convolution (α = 1 m−2) and the
Dirac convolution (α = 103 m−2) is comparable to the previous experiments.
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Size of the Decrease rate Estimation error at convergence
gaussian kernel (h, vx, vy) (h, vx, vy)

2.39 × 10−6 3.73 × 10−2

αh = αv = 0.5 1.79 × 10−6 2.68 × 10−1

1.48 × 10−6 3.47 × 10−1

1.29 × 10−6 8.99 × 10−3

αh = αv = 1 1.07 × 10−6 1.24 × 10−1

8.58 × 10−7 1.39 × 10−1

4.45 × 10−7 1.46 × 10−2

αh = αv = ×103 3.19 × 10−7 1.70 × 10−1

2.81 × 10−7 2.16 × 10−1

Table 3: Decrease rate and value at convergence of the estimation error, for the
three variables h, vx and vy, for three different sizes of the gaussian kernel.
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Figure 5: Evolution of the estimation error in relative norm versus the number
of time steps, in the case of noisy observations (20% noise), for βh = 5.10−6 s−1

and αh = αv = 103 m−2, for the three variables: height h, longitudinal velocity
vx and transversal velocity vy.

Note that the nonlinear model has a diffusion term, and hence regularizes much
more the solution than the linearized model without diffusion. It explains why
there are no oscillation as in the previous cases.

3.2.2 Noisy observations

As in the linearized situation, h+ε is measured, where ε is assumed to be white.
In our experiments, the standard deviation of ε is nearly 20% of the standard
deviation of h (around the equilibrium state h̄ = 500).

The estimation error in the case of noisy observations is nearly 1.5 times
larger than for perfect observations, both for α = 1 m−2 and α = 103 m−2. This
confirms the relative insensitivity of the observer with respect to the presence
of observation noise, as the level of noise is 20%, and the estimation errors are
nearly 2% for h and 13 to 30% for the velocity. In this case, the best results have
been obtained for α = 1 m−2, improving the results of the nudging algorithm
(α = 103 m−2) of 33 to 50%. These results clearly show the interest of a gaussian
kernel applied to the correction term, in order to smooth the noisy observations
(or the numerical noise).
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Size of the Decrease rate Estimation error at convergence
gaussian kernel (h, vx, vy) (h, vx, vy)

2.74 × 10−6 1.71 × 10−2

αh = αv = 0.5 1.87 × 10−6 1.72 × 10−1

1.62 × 10−6 2.21 × 10−1

1.36 × 10−6 1.57 × 10−2

αh = αv = 1 9.65 × 10−7 1.30 × 10−1

8.38 × 10−7 1.59 × 10−1

4.42 × 10−7 2.26 × 10−2

αh = αv = 103 2.98 × 10−7 2.25 × 10−1

2.55 × 10−7 3.04 × 10−1

Table 4: Decrease rate and value at convergence of the estimation error, for the
three variables h, vx and vy, for three different sizes of the gaussian kernel, in
the case of noisy observations (20% noise).
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Figure 6: Identification process for the height, in meters: initial guess (ĥ(0) =
h̄); noisy observation at final time (h(T ) + ε, with T = 1440 time steps); iden-

tified height at final time (ĥ(T )); true height at final time (h(T )).
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Figure 7: Identification process for the velocity, in m.s−1: identified longitu-
dinal (resp. transversal) velocity at final time (v̂(T )); true longitudinal (resp.
transversal) velocity at final time (v(T )).
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Finally, figures 6 and 7 illustrate the identification process for both the height
and velocity in the case of noisy observations, for αh = αv = 1 (second case
of table 4). We do not use any a priori information, as the initial guess is

ĥ = h̄ = 500 meters (top left image of figure 6), and v̂ = v̄ = 0 m.s−1. Figure
6 shows on the top right the noisy observation h + ε of the height at the final
time T = 1400 time steps. It should be compared to the bottom right image,
showing the true height h at the same time. The difference between these two
images corresponds to the white Gaussian noise ε. Finally, the identified height
(i.e. the observer ĥ at final time T ) is shown on the bottom left image of figure
6. These images confirm both the very good identification of the height (as
previously seen in table 4) and the noise removal.

Figure 7 shows the identified and real components of the velocity. Note
that even if there are no observations of the velocity, the observer v̂ is very
close to the real velocity v at time T . This is usually not the case in standard
nudging techniques, where only observed variables are corrected [10, 23, 4]. The
main current (correponding to the Gulf Stream, in the case of the North Atlantic
ocean) is very well identified. This is extremely interesting, as in real geophysical
applications, there are also almost no observations of the fluid velocity, although
it has to be identified precisely [5]. From table 4, we have previously seen that
the error on the velocity is nearly 15% in this case, which is quite high. But
the main currents are very well identified, and this is a key-point for improving
the quality of the forecasts. In most geophysical data assimilation problems,
the non-observed variables are only corrected thanks to model coupling, and it
does not lead to such a nice identification [13].

4 Conclusion

In this paper, we have defined a class of symmetry-preserving observers for a
simplified and linearized shallow water model. We proved the convergence to
zero of the error (i.e. difference between the observer and real trajectories)
when time goes to infinity. Many numerical simulations show the interest of
such a choice of invariant gains. This paper gives insight in the field of non-
linear observers for infinite dimensional systems, where very few methods are
available.

The observer provides better results than the standard nudging, even on the
nonlinear system, as the error converges faster, the residual error is smaller, and
the observer is much more robust to noise. The correction terms used in this pa-
per are different from those of the usual extended Kalman filter-type estimators
(no integral over space is performed). Our observer has several advantages upon
the extended Kalman filter. First the computation cost is much smaller (as long
as the gaussian kernel is set equal to zero wherever its value is negligible, see
Section 3). This is important as in oceanographic data assimilation, the compu-
tation cost of the Kalman filter can be prohibitive, as well as the cost of optimal
nudging techniques [24]. Moreover the tuning of the gains of our observer is
very easy as they depend on a very reduced number of parameters which have a
physical meaning. It is precisely the use of the physical structure of the system
which allows us to reduce the degrees of freedom in the gain design. Finally, to
the author’s knowledge, there is no proof of convergence of the Kalman filter
for infinite dimensional non-linear systems. Note that we also showed, both on
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theoretical and numerical points of view, that thanks to an appropriate choice of
observer, it is possible to correct very well the non-observed variables with the
observed ones, which is still a challenge in oceanography (and more generally in
geophysics) [5].

Other types of correction terms could be used. In particular one could define
the correction term in order to get the following linearized error equation instead
of (26):

∂2

∂t2
h̃ = (gh̄δ0 + ϕv) ∗ ∆h̃− ϕh ∗ ∂

∂t
h̃+ ϕ∆

h ∗ ∆

(

∂

∂t
h̃

)

. (52)

Indeed an additional structural damping would drastically change the spectrum.
The use of such terms is generally prohibited by the presence of measurement
noise, but the convolution product with a smooth kernel would allow us to use
them. Another direction for future work would be to make numerical exper-
iments on back and forth nudging based on our observer. The observer can
easily be adapted in reverse time indeed, with ϕh 7→ −ϕh and ϕv unchanged
(see e.g. [4] for details about this data assimilation method). Finally, in this
paper we only considered time and space continuous measurements. Some ex-
periments will also be carried out in the case of sparse observations, both in time
and space. As a more general concluding remark, although this paper is only
concerned with examples, it shows a systematical way to take advantage of the
rotational invariance of the Laplacian, and yields a method for the convergence
analysis. This technique could be adapted to other estimation problems from
physics and engineering, where the models are based on the wave equation or
on the heat equation.
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[22] L. Schwartz. Opérateurs invariants par rotations. Fonctions
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