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Abstract: We study in this paper a new data assimilation algorithm, called
the Back and Forth Nudging (BFN). This scheme has been very recently intro-
duced for simplicity reasons, as it does not require any linearization, or adjoint
equation, or minimization process in comparison with variational schemes, but
nevertheless it provides a new estimation of the initial condition at each itera-
tion. We study its convergence properties as well as efficiency on a 2D shallow
water model. All along the numerical experiments, comparisons with the stan-
dard variational algorithm (called 4D-VAR) are performed. Finally, a hybrid
method is introduced, by considering a few iterations of the BFN algorithm as
a preprocessing tool for the 4D-VAR algorithm. We show that the BFN algo-
rithm is extremely powerful in the very first iterations, and also that the hybrid
method can both improve notably the quality of the identified initial condition
by the 4D-VAR scheme and reduce the number of iterations needed to achieve
convergence.
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Le nudging direct et rétrograde appliqué à un

modèle shallow-water: comparaison et

hybridation avec le 4D-VAR

Résumé : Dans cet article, nous étudions le nudging direct et rétrograde. Cet
algorithme a été récemment introduit pour des raisons de simplicité, comme
il ne nécessite ni linéarisation, ni état adjoint, ni minimisation, par rapport
aux méthodes variationnelles. Cet algorithme fournit toutefois une nouvelle
estimation de la condition initiale à chaque itération. Nous étudions les pro-
priétés de convergence et l’efficacité de cet algorithme sur un modèle shallow-
water 2D. Tout au long des expériences numériques, nous effectuons des com-
paraisons avec le 4D-VAR. Enfin, une méthode hybride est introduite dans cet
article, consistant à effectuer quelques itérations de l’algorithme BFN comme
préconditionnement de l’algorithme 4D-VAR. Nous montrons que l’algorithme
BFN est très performant dans les toutes premières itérations, et la méthode
hybride peut non seulement améliorer sensiblement la qualité de la condition
initiale identifiée par le 4D-VAR, mais aussi réduire la nombre d’itérations
nécessaires pour atteindre la convergence.

Mots-clés : Assimilation de données, modèle shallow-water, nudging direct
et rétrograde, méthodes variationnelles, hybridation, dynamique non linéaire
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1 INTRODUCTION

Data assimilation consists of estimating the state of a system by combining via
numerical methods two different sources of information: models, and observa-
tions. Data assimilation makes it possible to answer a wide range of questions
such as: the optimal identification of the initial state of a system, and then
reliable numerical forecasts; the systematic identification of error sources in the
models; the optimization of observation networks; the extrapolation, using a nu-
merical model, of the values of non observed variables. Thus, data assimilation
is increasingly used in the community of geophysical sciences, in relation with
mathematicians. There are two main classes of data assimilation methods, the
first based on estimation theory (sequential assimilation), and the other based
on optimal control theory (variational assimilation) [6, 12].

The most sophisticated variational method, currently used in many centers
of operational forecast (in oceanography and in meteorology), is the 4D-VAR
(four-dimensional variational) algorithm [13]. It consists of assimilating all the
available information (contained both in the model and the observations) dur-
ing the work (or assimilation) period. The problem of identifying the state of a
system at a given time can then be written as the minimization of a criterion
measuring the difference between the forecasts of the model and the observa-
tions of the system in the given time window. In general, the initial state of the
time interval is taken as the control variable for the minimization process. This
provides an advantage to the 4D-VAR algorithm is that for each time step, the
estimation of the state vector depends not only on the previous observations,
but also on the future observations. Propagative phenomena, such as waves, are
generally well represented by the 4D-VAR method. The disadvantages of the
4D-VAR algorithm are on one hand its quite difficult implementation, because
it requires both the adjoint of the physical model and a powerful minimization
algorithm, and on the other hand the lack of estimation of the errors in the as-
similated state. Contrarily to the 4D-VAR, the sequential methods only require
the physical model in the direct mode.

The spearhead of sequential methods, which are also operational (but more
marginally than 4D-VAR), is the Kalman filter. The Kalman filter is designed
to provide, for each time step, the optimal estimate (of variance of minimal
error) of the system state, by using only the estimates of the state and the
last observations. It alternates propagation steps (with the physical model) and
correction steps (using the observations) of the state and of its error statistics.
The main advantage of the Kalman filter is that it provides in real time an
estimation of the statistics of errors of the state, in addition to the state itself,
and thus it is able to provide a statistically optimal estimate of the state. Its
weakness is its inability to take into account future observations like the 4D-
VAR algorithm does. Extended forms of the Kalman filter are designed to
integrate future observations then to smooth the model trajectory [17, 9]; they
are called the Kalman smoothers. 4D-VAR and Kalman filter or smoothers can
be shown to be theoretically equivalent under certain hypotheses. However,
the assumptions necessary to implement them are usually different and the
equivalence is always lost in practice.

Nudging can be seen as a degenerate, oversimplified form of the Kalman
filter. Sometimes called the poor man’s assimilation method, it consists of ap-
plying a Newtonian recall of the state value towards its direct observation. In
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4 D. Auroux

spite of the differences, the term nudging is also sometimes used in the context
of statistical interpolation. The standard nudging algorithm, which initially
appeared in meteorology [11], is the first data assimilation method used in an
operational way in oceanography [15, 16, 14]. Some recent studies have shown
that it is possible to determine in a systematic way the optimal weighting co-
efficients of the recall force to the observations, and then nudging is equivalent
to the Kalman filter, or in a variational form, to 4D-VAR [18, 19].

One of the main disadvantages of the sequential data assimilation methods
is that they cannot, at a given time, take into account the future observations.
They do not improve the estimation of the initial condition of the system. A
simple idea, allowing at the same time the improvement of the estimation of the
initial condition and the assimilation of future observations, consists of applying
a second time the sequential method, but on the backward (in time) model,
using the estimation of the final state (obtained by the forward assimilation)
as a new initial guess. Thus, at the end of this process, one obtains a new
estimation of the system state at the initial time (which makes it possible to
use this estimation in a variational data assimilation method), and at each
time of the backward assimilation, the corrections actually use the previous
observations in the backward model, therefore future observations, to improve
the estimated states. The backward problems are generally very ill posed (the
Laplace equation, or heat equation, is a very good example), and it is not
a priori easy to apply a traditional data assimilation method to a backward
model. However, if one uses a degraded version of the Kalman filter for complete
observations of the system (in time and space), Auroux and Blum have shown
that it is possible to stabilize backward integrations thanks to the assimilation
corrective term [4, 5].

Auroux et al. proposed in [4] an original approach of backward and forward
nudging (or back and forth nudging, BFN), which consists of initially solving
the forward equations with a nudging term, and then using the final state thus
obtained as initial condition to solve the same equations in a backward direc-
tion with a feedback term (with the opposite sign compared to the feedback
term of forward nudging). This process is then repeated in an iterative way
until convergence of the initial state is achieved. The basic idea of the BFN
algorithm thus allows the use of a sequential data assimilation method (here,
nudging) while taking into account the future observations, as in 4D-VAR. On
the other hand, contrarily to 4D-VAR, the adjoint of the physical model and the
minimization algorithm are not needed. The implementation of the BFN algo-
rithm is thus vastly simplified in comparison with the 4D-VAR algorithm. This
can be of great value in the present context of more and more complex models
and increasingly diversified observations of the ocean or the atmosphere. Indeed
many research teams cannot support the human cost for the implementation of
traditional data assimilation methods such as the 4D-VAR.

In this article, we propose to study the behaviour of the BFN algorithm
on a 2D shallow water model, and then to compare it with the standard 4D-
VAR algorithm (or variational algorithm, as in some sense the problem is not
really 4D as there are only two dimensions in space) on several points such as
the observation errors, the model error, . . . . As the BFN algorithm provides an
estimation of the initial condition at each iteration, like all variational schemes, a
new idea is also studied, by considering a preprocessing of the 4D-VAR algorithm
with the BFN algorithm. Such a hybrid method may combine the advantages of
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the BFN scheme (high performance in the very first iterations) with the known
efficiency of the 4D-VAR, without any additional fastidious implementation.
We work on a shallow water model for simplicity reasons, as it is a quite light
model considered for simple numerical experiments in geophysics, but it mimics
quite well the evolution of geophysical flows. Moreover, it is possible to consider
observations of only one model variables, for instance the fluid height, and to
study the identification of all the model variables (fluid height and velocity).

This paper is organized as follows. We first detail in section 2 the shallow
water model we have considered in all the numerical experiments, by giving
the equations and the values of the model parameters. We also recall very
briefly the BFN algorithm, and we present its application to the shallow water
model equations. Then, we report in section 3 the results of extensive numerical
simulations with synthetic data. We first study the convergence of the BFN
scheme, and its comparison with the standard variational algorithm in the case
of perfect observations, and then with noisy observations. We introduce then
the new hybrid BFN-4DVAR method, by considering a preprocessing of the 4D-
VAR algorithm with a few BFN iterations in order to improve significantly and
very rapidly the quality of the initial condition. Then, we study the sensitivity
of these two schemes, as well as the hybrid method, with respect to the spatial
and temporal distribution of the observations, and we also study their efficiency
to assimilate data generated with a different model from the one used for the
assimilation. Finally, a few concluding remarks and perspectives are given in
section 4.

2 SHALLOW WATER MODEL AND BACK

AND FORTH NUDGING ALGORITHM

2.1 Description of the model

The shallow water model (or Saint-Venant’s equations) is a basic model, rep-
resenting quite well the temporal evolution of geophysical flows. This model is
usually considered for simple numerical experiments in oceanography, meteo-
rology or hydrology. The shallow water equations are a set of three equations,
describing the evolution of a two-dimensional horizontal flow. These equations
are derived from a vertical integration of the three-dimensional fields, assuming
the hydrostatic approximation, i.e. neglecting the vertical acceleration. There
are several ways to write the shallow water equations, considering either the
geopotential or height or pressure variables. We consider here the following
configuration:



















∂tu − (f + ζ)v + ∂xB =
τ

ρ0h
− ru + ν∆u,

∂tv + (f + ζ)u + ∂yB =
τ

ρ0h
− rv + ν∆v,

∂th + ∂x(hu) + ∂y(hv) = 0,

(1)

where the unknowns are u and v the horizontal components of the velocity, and
h the geopotential height (see e.g. [1, 7]). The initial condition (u(0), v(0), h(0))
and no-slip lateral boundary conditions complete the system. The other param-
eters are the following:
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6 D. Auroux

• ζ = ∂xv − ∂yu is the relative vorticity;

• B = g∗h +
1

2
(u2 + v2) is the Bernoulli potential;

• g∗ = 0.02 m.s−2 is the reduced gravity;

• f = f0 + βy is the Coriolis parameter (in the β-plane approximation),
with f0 = 7.10−5 s−1 and β = 2.10−11 m−1.s−1;

• τ = (τx, τy) is the forcing term of the model (e.g. the wind stress), with a
maximum amplitude of τ0 = 0.05 s−2;

• ρ0 = 103 kg.m−3 is the water density;

• r = 9.10−8 s−1 is the friction coefficient.

• ν = 5 m2.s−1 is the viscosity (or dissipation) coefficient.

We consider a numerical configuration in which the domain is a square of
2000 km ×2000 km, with a rigid boundary, and no-slip boundary conditions.
The time step is 1800 seconds (half an hour), and we consider an assimilation
period [0;T ] of 720 time steps (i.e. 15 days). The forecast period is [T ; 4T ],
corresponding to 45 prediction days. The spatial resolution is 25 kilometers.
The wind forcing is chosen constant in time, and set to a sine function which
induces a standard double gyre circulation. This numerical model has been
developed by the MOISE research team of INRIA Rhône-Alpes [8].

We briefly describe the numerical schemes used for the resolution of equa-
tions (1) and we refer to [8] for more details. We consider a leap-frog method
for time discretization of equations (1), controlled by an Asselin time filter [3].
The equations are then discretized on an Arakawa C grid [2], with N ×N points
(N = 81 in our experiments): the velocity components u and v are defined
at the center of the edges, and the height is defined at the center of the grid
cells. Then, the vorticity and Bernoulli potential are computed at the nodes
and center of the cells respectively.

The initial conditions are u = v = 0 and h = 500 meters. The spin-up
phase lasts nearly 6 years, after which the model simulates a double-gyre wind-
driven oceanic circulation. This approximate model reproduces quite well the
surface circulation at mid-latitudes, including the jet stream and ocean bound-
ary currents. In our experiments, the water depth varies from roughly 265 to
690 meters, its mean being 500 meters, and the maximum velocity (in the jet
stream) is roughly 1.1m.s−1, the mean velocity being 0.1m.s−1. Figure 1 shows
the height h and longitudinal velocity u at the reference state (see section 2.3).

2.2 BFN algorithm applied to this model

The back and forth nudging (BFN) algorithm, introduced in [4], consists of
repeatedly performing forward and backward integrations of the model with
relaxation (or nudging) terms, using opposite signs in the direct and inverse
integrations, so as to make the backward evolution numerically stable. The
aim of the nudging term (or feedback to the observations) is also to assimilate
the data. After each iteration (consisting of one forward and one backward
numerical integrations), one obtains an estimation of the initial condition of the
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Figure 1: Height h (in meters) and longitudinal velocity u (in m.s−1) of the
ocean at a reference state.
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8 D. Auroux

system. We repeat these forward and backward integrations (with the feedback
terms) until convergence of the algorithm. We refer to [4] and [5] for more
details about this algorithm.

The application of the BFN algorithm to the previous shallow water model
equations leads to the integration of the following set of equations, for k ≥ 1:



































∂tu
k − (f + ζk)vk + ∂xBk =

τ

ρ0hk
− ruk + ν∆uk,

∂tv
k + (f + ζk)uk + ∂yBk =

τ

ρ0hk
− rvk + ν∆vk, 0 < t < T,

∂th
k + ∂x(hkuk) + ∂y(hkvk) = K(hobs − Hhk)δobs,

(uk(0), vk(0), hk(0)) = (ũk−1(0), ṽk−1(0), h̃k−1(0)),

(2)



































∂tũ
k − (f + ζ̃k)ṽk + ∂xB̃k =

τ

ρ0h̃k
− rũk + ν∆ũk,

∂tṽ
k + (f + ζ̃k)ũk + ∂yB̃k =

τ

ρ0h̃k
− rṽk + ν∆ṽk, T > t > 0,

∂th̃
k + ∂x(h̃kũk) + ∂y(h̃kṽk) = −K ′(hobs − Hh̃k)δobs,

(ũk(T ), ṽk(T ), h̃k(T )) = (uk(T ), vk(T ), hk(T )),

(3)

with the initialization (ũ0(0), ṽ0(0), h̃0(0)) = (ub, vb, hb), where we denote by
(ub, vb, hb) the background estimation of the initial condition. The Bernoulli
potentials Bk and B̃k, and the vorticities ζk and ζ̃k are defined as in the standard
direct model (see previous subsection). Finally, H is the observation operator,
and δobs is a time Dirac function, corresponding to the observation time steps:
when there are no available observations at a given time, then there is no nudging
correction.

Equations (2) are discretized by the same numerical scheme as the one used
for equations (1) (see previous subsection). The only difference between these
two sets of equations is indeed the feedback term in the height equation. Thus,
we need to assume that the observations hobs are available at the same locations
as the height hk, which is the case here, as we consider twin experiments (see
next subsection). Finally, the backward equations (3) are also discretized by
the same schemes.

As we assume that there are no observations of the velocity field, we do
not consider any correction terms in their corresponding equations. However,
from the algorithmic point of view, it is possible to correct the velocity with
the hobs − Hh term, or a linear function of this term (for instance, its partial
derivative). In the following, only the height equations are corrected.

As explained for instance in [5], we will consider the following nudging ma-
trices, for simplicity reasons:

K = kHT , K ′ = k′HT , (4)

where k and k′ are real positive scalars, and HT is the adjoint of the observation
operator. This choice is justified by the fact that HT allows the corrections
provided by the observations to be applied exactly at the observation locations.
Moreover, in the case of noisy observations, we will assume that the observation
errors are spatially uncorrelated and white gaussian distributed, with a constant
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variance. In these conditions, the covariance matrix of observation errors is
simply proportional to the identity matrix (of the observation space), and this
also justifies equation (4).

2.3 Experimental approach for the numerical studies and

comparisons with a 4D-VAR algorithm

In all the following numerical experiments, we will consider twin experiments:
a reference initial condition is set, and some data are extracted from the corre-
sponding trajectory. These data are then noised for some experiments (and not
for some others), and provided as observations to the BFN and 4D-VAR data
assimilation algorithms.

We assume that some observations hobs of only the height h are available,
every nt time steps and every nx grid points (in both longitudinal and transver-
sal directions). We can then easily define an observation operator H, from the
model space to the observation space, as an extraction of one every nx values
of the variable h in each direction. This operator is clearly linear, and allows us
to compare a model solution with the observations. Unless some other values
are given, the considered values of nx and nt are respectively 5 and 24.

In such a configuration, the model space (state variables (u, v, h)) is of di-
mension 19683, and the observation space (data variable hobs) is of dimension
289. The corresponding total number of observations all over the assimilation
period is 8959.

We will study different points, the first one being the convergence of the
BFN scheme. For this purpose, we will simply study the stabilization of the
BFN trajectories with the iterations.

Then, for both BFN and 4D-VAR algorithms, we will study the error on
the identification of the initial condition. As we only work with simulated data
(extracted from a reference trajectory), it is easy to compare the identified
solutions with the true state, by considering the relative error:

‖hk(0) − htrue(0)‖

‖htrue(0)‖
, (5)

where ‖ . ‖ represents here the standard discrete L2 norm in space, and hk(0)
represents the initial height identified by either the BFN or the 4D-VAR schemes
after k iterations. By considering the forecast trajectories corresponding to this
initial condition, we will also study the relative difference at time t between
the forecast solution associated to the identified initial condition and the true
forecast solution. We will also consider similar quantities for the velocity u and
v.

We now give some details about the 4D-VAR algorithm we have used for the
numerical comparisons [13]. We consider an incremental 4D-VAR, in which the
control vector is the increment to the background state:

J(δu0, δv0, δh0) =
1

2
‖(δu0, δv0, δh0)‖

2

B−1 +
1

2

∑

i

‖hobs(ti) − Hh(ti)‖
2

R−1 , (6)

where (ti) represent the observation times, and B and R are the covariance
matrices of background and observation errors respectively. The adjoint state
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10 D. Auroux

provides the gradient of this cost function, and the minimization is performed
by a BFGS quasi-Newton algorithm [10].

For the comparisons between the 4D-VAR and BFN schemes, we will con-
sider either a similar number of iterations, or consider the solutions at conver-
gence. The first approach is justified by a comparable numerical cost for both
algorithms, as one BFN iteration consists of one forward and one backward
integration of the model equations (with a nudging term), and one 4D-VAR
iteration also consists of one forward integration (direct model equation) and
one backward integration (adjoint equation). This will give an idea about the
efficiency of the schemes, for a given computational cost. The second approach
will on the contrary provide the efficiency of the schemes when convergence is
achieved, but also the corresponding time needed to reach convergence.

The background initial condition, used for the initialization of both the 4D-
VAR and BFN schemes, is the true state of the ocean but two weeks before,
to which we added a small bias and a white gaussian noise of small relative
variance. The covariance matrix B of observation errors is set accordingly to
the geostrophic projection [7]:

B−
1

2 (u0; v0;h0)
T =

(

u0 −
g

f

∂h0

∂y
; v0 +

g

f

∂h0

∂x
;h0

)T

. (7)

We recall that R is simply set proportional to the identity matrix, as the
observations are independently noised.

Finally, the backward nudging coefficient k′ is usually chosen to be the small-
est coefficient that makes the numerical backward integration stable [5]. In the
standard configuration of observation density (nx = 5, nt = 24), the minimal
value is of the order of 10−6 s−1. We have then set k′ = 10−5 s−1 in all the cor-
responding numerical experiments. In the case of sparse observations, k′ must
be increased in order to stabilize the backward integrations. For instance, in the
sparsest case (nx = 20, nt = 72), we have set k′ = 5 × 10−4 s−1. The forward
nudging coefficient k has to be non-negative in order to keep the continuous
forward equations stable. However, note that the discretized model remains
stable only if k is not too large. We set k = k′ in all the following numerical
experiments.

3 NUMERICAL EXPERIMENTS

3.1 Convergence of the BFN with perfect observations

We first study the numerical convergence of the BFN algorithm on the shallow
water model, with perfect observations. We recall that the observations are
available every 5 gridpoints and every 24 time steps.

Figure 2 shows the relative difference between the height of the BFN iterates
and the true height versus time, for the 5 first iterations. The height of the
background state (used for the initialization of the algorithm) has a relative
error of 37.6% with the true height at initial time. We can see that the first
correction, provided by the observation at initial time, induces some oscillations
in the solution. This is due to the fact that the observation operator is simply
a restriction of the space dimension. Consequently, the trajectory is corrected
(or perturbed) on every 5 gridpoints, and nowhere else. But after the first or

INRIA



Back and forth nudging algorithm on a shallow water model 11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  100  200  300  400  500  600  700

R
M

S
 e

rr
or

Time steps

h

Figure 2: Relative difference between the BFN iterates (5 first iterations) and
the true solution versus the time steps, for the height h.

two first corrections with the observations, there are no more oscillations. The
error decreases with time during the first forward integration, and reaches 5.99%
at the end of the assimilation period. Then, the backward integration is not
only stabilized, but also makes the error to decrease. After one iteration (one
forward and one backward integration), the relative error is equal to 4.13%.
Then, the second iteration begins, and the error still decreases, both in the
forward and backward numerical integrations. The fourth and fifth iterates are
the same, for both the forward and backward trajectories. The relative error
at initial time is 37.6% for the initialization, 4.13% after one iteration, 0.69%
after two iterations, 0.51% after three iterations, 0.45% after four iterations,
and 0.44% after five iterations. We can then consider that the algorithm has
reached convergence, in 5 iterations.

Figure 3 shows similar results, for the two other variables: u and v. The
global behaviour of the solution is the same, both versus the time steps and
versus the iterations. The relative error of the background state is respectively
21.7% for u and 30.3% for v. After convergence (5 iterations), the relative
error on the initial condition is 1.78% and 2.41% respectively. This is extremely
noticeable, as there are no correction terms in the BFN velocity equations.
Moreover, the presence of diffusion in these two equations should be a problem
for the numerical backward integrations. But of course, the convergence of the
height towards the true solution and the coupling between all the variables make
the velocity equations stabilized and the variables u and v corrected.

These two figures show that the BFN algorithm reaches convergence is 5
iterations, and that it is an extremely efficient data assimilation method, as
the error on the initial condition is divided by 6 to 10 in a very small number
of iterations. We will then compare it with the 4D-VAR algorithm in various
numerical experiments.
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Figure 3: Relative difference between the BFN iterates (5 first iterations) and
the true solution versus the time steps, for the velocity u and v.
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Figure 4: Norm of the gradient of the 4D-VAR cost function versus the number
of iterations.

3.2 Comparison between BFN and 4D-VAR with perfect

observations

In this section, we compare the BFN and 4D-VAR schemes, still with perfect
observations, available every 5 gridpoints and 24 time steps. We first consider
the convergence of the 4D-VAR scheme, as we have already observed the con-
vergence of the BFN algorithm in a previous section. The initialization vector
of the 4D-VAR algorithm is the background state, which means that in the
incremental approach, the starting point is 0 (no increment to the background
state). As the observations are perfect, we impose a large weight on the obser-
vation part of the cost function and a relatively small one on the background
feedback. This choice will lead to a fair comparison, because if we consider a
standard equilibrium between these two terms, as the background is not equal
to the true state whereas the observations are perfect, the solution identified by
the 4D-VAR would not be very close to the true state, but at some intermediate
point between the true state (true observations) and the background state.

Figure 4 shows the evolution of the gradient norm of the 4D-VAR cost func-
tion during the minimization process. This figure clearly shows the convergence
of the 4D-VAR algorithm. The minimization stopped after 30 iterations (in the
minimization process), and 31 simulations (number of gradient computations),
and then the algorithm was unable to find a better minimum. Moreover, in less
than 30 iterations, the norm of the gradient has been divided by more than 105.
We now consider the decrease of the gradient nom of 104 as a stop criterion for
the convergence of the 4D-VAR. We will then study the solution identified by
the 4D-VAR, after both 5 iterations (in order to have a comparable computing
time with the BFN) and after 18 iterations in this case (when convergence is
reached, with the 104 gradient decrease criterion.).
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Relative error h u v

Background state 37.6% 21.5% 30.3%
BFN (5 iterations, converged) 0.44% 1.78% 2.41%
4D-VAR (5 iterations) 0.64% 3.14% 4.47%
4D-VAR (18 iterations, converged) 0.61% 2.43% 3.46%

Table 1: Relative error of the background state and various identified initial
conditions for the three variables.

Table 1 gives the relative error of the background state (i.e. relative differ-
ence with the true initial condition), the BFN identified initial condition (after
5 iterations, as convergence is reached), and the initial conditions identified
by the 4D-VAR (after 5 iterations, and after 18 iterations when convergence
is reached). The first two lines recall the values given in the previous subsec-
tion. It is interesting to see that the solution identified by the BFN after only
5 iterations is nearly as close to the true state as the solution identified at con-
vergence. This shows that after 5 iterations, the solution is not very far from
the local minimum identified at convergence. Another point is that the initial
condition identified by the BFN at convergence is better than the 4D-VAR one.
This point can be explained by the error on the background state. On one
hand, the BFN only works with the observations, the background begin used
only for the initialization. But on the other hand, the 4D-VAR cost function
to be minimized has a background term, and even if it is small compared with
the observation term (as there are no observation errors), it cannot be set too
small for computational reasons. In this case, the identified solution is still a
compromise between the observations and the wrong background state.

Another way to study the efficiency of the scheme is to consider the forecast
evolution of the identified solution, as the quality of the initial condition itself
is not very important in some sense. For instance, figure 5 shows on the top
the relative difference between the true solution and the forecast solution corre-
sponding to the initial condition identified by the BFN scheme after 5 iterations.
We recall that the assimilation period lasts 720 time steps (or 15 days), and the
forecast period ends 2880 time steps (or 2 months) after the initial time. Dur-
ing the assimilation period, the error on the height remains constant. In fact, it
decreases a little bit during 300 iterations, and then increases a little bit after.
The error on the velocity variables has a similar behaviour: first decreasing and
then increasing in time. The stability of the error is interesting, and shows that
the identified solution remains close to the true state all long the assimilation
period. Then, the error increases more quickly, particularly on u and v. After 2
months, the relative error is 1.06% on h, 5.22% on u and 6.88% on v. It is nearly
2 to 3 times the error on the initial condition, but the most interesting point
is that it is still many times smaller than the background error. The fact that
the error does not increase too much with time shows that it will be possible to
use this forecast solution as a good background state for data assimilation on a
later period.

A similar experience on the 4D-VAR identified solution is shown on the
bottom of the same figure. The forecast solutions have a similar behaviour, and
the error at the end of the prediction period is nearly 2.18% for h, 9.73% for u
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Figure 5: Relative difference between the true solution and the forecast trajec-
tory corresponding to the BFN (top) and 4D-VAR (bottom) identified initial
conditions at convergence, versus time, for the three variables.
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Relative error h u v

BFN (converged, t = 0) 3.34% 9.51% 13.6%
4D-VAR (converged, t = 0) 1.26% 7.12% 10.2%
4D-VAR (5 iter., t = 0) 1.83% 11.3% 16.4%
BFN (converged, t = T ) 2.15% 6.74% 10.1%
4D-VAR (converged, t = T ) 1.93% 9.20% 12.8%
4D-VAR (5 iter., t = T ) 2.68% 13.5% 18.9%
BFN (converged, t = 4T ) 3.67% 17.0% 24.1%
4D-VAR (converged, t = 4T ) 4.69% 21.9% 25.9%
4D-VAR (5 iter., t = 4T ) 5.60% 25.9% 30.9%

Table 2: Relative error of the forecast solutions corresponding to the BFN
(5 iterations, converged), 4D-VAR (16 iterations, converged) and 4D-VAR (5
iterations) identified initial conditions, for the three variables, at various times:
initial time, end of the assimilation period, and end of the prediction period.

and 13.3% for v. This is still much less than the background error. The error on
the initial condition is nearly 1.5 times the error of the BFN state, and the error
at final time is nearly twice the corresponding error of the BFN. This confirms
the efficiency of the BFN algorithm. But of course, as previously explained, the
efficiency of the 4D-VAR algorithm is quite degraded by the background error,
and in the case of perfect observations, it is not possible to consider only the
observation part of the cost function as it would lead to a very bad (an ill-posed)
minimization. We will then consider now noisy observations, with a quite large
level of noise, in order to compare the two algorithms in a more realistic and
fair situation.

3.3 Comparison between BFN and 4D-VAR with noisy

observations

The observations are now noised, with an additive white gaussian noise, with
a root mean square error between 20 and 40% of the observation norm. As
we know all levels of noise (on the observations and on the background state),
we can set the weights of the 4D-VAR cost function to their optimal (or most
realistic) values, in order to have the a priori best possible solution. From now
on, we will only show figures on the forecast evolutions, as it gives both the
estimation error on the initial condition, and the forecast error.

Figure 6 shows the time evolution of the forecast error corresponding to the
BFN (top) and 4D-VAR (bottom) solutions when convergence is reached, in
the case of noisy observations. The first point is that the quality of the results
is degraded, in comparison with the case of perfect observations. Recall that
the relative level of observation noise is more than 20%. The initial condition
identified by the 4D-VAR algorithm is better than the BFN one, as shown in
table 2. The number of iterations needed to achieve convergence is respectively
16 for the 4D-VAR and 5 for the BFN. But the very interesting thing is that at
the end of the assimilation period, the BFN solution is better than the 4D-VAR
one, except for the height variable, as the 4D-VAR forecast error increased nearly
all the time, and the BFN one decreased also nearly all the time. The height
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Figure 6: Relative difference between the true solution and the forecast trajec-
tory corresponding to the BFN (top) and 4D-VAR (bottom) identified initial
conditions at convergence, versus time, for the three variables and in the case
of noisy observations.
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Relative error h u v

BFN-preproc. 4D-VAR (2 + 3 iter., t = 0) 1.39% 7.34% 10.4%
BFN-preproc. 4D-VAR (converged, t = 0) 1.24% 7.03% 10.4%
BFN-preproc. 4D-VAR (2 + 3 iter., t = 0) 1.98% 9.22% 12.8%
BFN-preproc. 4D-VAR (converged, t = 0) 1.95% 9.18% 12.9%
BFN-preproc. 4D-VAR (2 + 3 iter., t = 0) 4.92% 22.2% 25.8%
BFN-preproc. 4D-VAR (converged, t = 0) 4.92% 22.1% 25.6%

Table 3: Relative error of the forecast solutions corresponding to the BFN-
preprocessed 4D-VAR (2+3 iterations; and 2+6 iterations, converged) identified
initial conditions, for the three variables, at various times: initial time, end of
the assimilation period, and end of the prediction period.

identified by the BFN becomes better near time step number 850 (whereas the
end of the assimilation period corresponds to 720). Even if the quality of the
velocity starts degrading quite quickly in the middle of the forecast period, the
solution at the end is still better than the 4D-VAR one. The BFN height is
also closer to the true solution than the 4D-VAR one, as shown in table 2 or on
figure 6.

If for instance we stop the 4D-VAR after only 5 iterations, in order to have
a similar computing time with the converged BFN, the 4D-VAR results are not
as good, as shown in table 2. In this case, only the height at the initial time is
better identified, and at the end of the assimilation period, the error is larger
than for the BFN.

The fact that the BFN error decreases in time during the assimilation period
has already been observed in [5]. This phenomenon is explained by the fact that
the identified initial condition comes from a backward integration. During this
integration, the backward model has reduced the error along its stable modes,
but the stable modes of the backward model are exactly the unstable modes of
the forward model. This means that the identified initial condition probably
has a very small error along the unstable modes of the direct model. A direct
integration of the model will then reduce the error along the stable modes, as
there is nearly no error along the unstable modes.

3.4 Preprocessing of the 4D-VAR with the BFN algorithm

As the BFN algorithm (like all variational data assimilation schemes) estimates
the initial condition at every iteration, it is possible to consider a coupled algo-
rithm, in which the very first iterations are performed with the BFN, and then
the next iterations with the 4D-VAR. As the BFN algorithm converges very
quickly (in 5 iterations or less in all the experiments), we will consider a prepro-
cessing with only 2 iterations of BFN, and then standard 4D-VAR iterations.
We will study if the 4D-VAR convergence is reached more quickly, and if the
identification is improved after only 3 iterations of 4D-VAR (in order to have a
global cost of 5 iterations).

Table 3 shows the relative errors (as in the previous experiments) corre-
sponding to this hybrid method. In 5 iterations, the results are much better
than for the standard 4D-VAR (without any preprocessing). At convergence,
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Figure 7: Relative difference between the true solution and the forecast tra-
jectory corresponding to the BFN, 4D-VAR and BFN-preprocessed 4D-VAR
identified initial conditions, after 5 iterations, versus time, for the height vari-
able in the case of noisy observations.

the results are similar to what has been obtained without the BFN preprocess-
ing. But in this case, the improvement concerns the number of iterations, as
only 6 4D-VAR iterations are necessary to reach convergence, plus 2 preprocess-
ing iterations of BFN, instead of 16 previously. The computing time needed to
achieve convergence has been divided by 2, for almost the same results. And for
5 iterations only, the results obtained here correspond to what would have been
obtained in 11 or 12 iterations of the standard 4D-VAR. This result is extremely
noticeable, as it means that 2 iterations of BFN can save at least 5 iterations of
4D-VAR, or it can divide by 2 the computing time.

Figure 7 allows one to compare all these algorithms for the height variable.
These results correspond to 5 iterations of BFN, 5 iterations of 4D-VAR, and 2
iterations of BFN followed by 3 iterations of 4D-VAR. We can see that during the
assimilation period, the best solution is provided by the hybrid algorithm. Note
that it would have been improved a little bit by the 4D-VAR at convergence, but
we stop all algorithms after 5 iterations here. But during the forecast period,
it is still provided by the BFN algorithm, except at the beginning. The results
are comparable for u and v, except that the BFN gives a better solution a
little bit earlier. In all the experiments performed, with several levels of noise
and different background states, the hybrid method was the best during the
assimilation period, and sometimes it was also the best at the beginning of the
prediction period, but in most cases, the BFN solution is the best at the end.
We can deduce from these results that a very cheap and simple way to largely
improve the 4D-VAR algorithm is to perform a very few (2 or 3) iterations of
BFN before starting the 4D-VAR minimization process.
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3.5 Sensitivity of the BFN and 4D-VAR with respect to

the time and space distribution of the observations

We now study the impact of the time and space distribution of the observations
on the BFN algorithm. As the observations stabilize the backward integrations,
it is important to see if a weak space or time distribution of the observations
will degrade notably the performances or not. We still consider the noisy ob-
servations, as in the previous subsection. Recall that the standard distribution
(previously used) is every 5 gridpoints in space (in each direction) and every 24
time steps. This distribution provides 8959 observations during the assimilation
period (720 time steps), and the size of the control space (corresponding to the
initial condition) is 19683. From the results obtained in the previous paragraphs,
we will consider three different algorithms, stopped after 5 iterations: the BFN
algorithm, the 4D-VAR algorithm, and the hybrid BFN 4D-VAR method (with
2 iterations of BFN and then 3 iterations of 4D-VAR). In all the experiments
we have performed in this situation, the BFN reached convergence in at most 5
iterations, the 4D-VAR needed between 10 and 20 iterations to converge, and
the hybrid method was close to convergence in 5 iterations (it needed between
7 and 12 iterations to converge, but the solution after 5 iterations was close to
the solution at convergence).

Table 4 gives the relative errors between the true solution and the identified
solution, for the three algorithms (BFN, 4D-VAR and hybrid method) at the
initial time, the end of the assimilation period, and the end of the prediction
period. Several space distributions have been considered (from every gridpoint
to every 20 gridpoints) as well as several time distributions (from every 6 time
steps to every 72 time steps). The couple in the first column of the table is the
space and time frequency of the observations, the first row corresponding to the
standard values: every 5 gridpoints and every 24 time steps. The largest number
of observations corresponds to the (1; 6) couple, which represents 6561 observa-
tions at every observation time, and hence 793881 observations. The smallest
number of observations corresponds to the (20; 72) couple, with 25 observations
at every observation time, and 275 observations all over the assimilation period.
The ratio between the size of the control vector and the number of observations
varies from 1

40
to 71.

Several conclusions can be drawn from this table. First of all, the global
behaviour of each algorithm is relatively independent of the data distribution:
the 4D-VAR and hybrid errors still increase in time, whereas the BFN error has
a smaller value at the end of the assimilation period. The hybrid method is also
almost every time better than the 4D-VAR (not only for 5 iterations, but for any
number of iterations), and the convergence is usually reached 5 to 10 iterations
earlier than for the 4D-VAR algorithm. Concerning the BFN algorithm, it is
interesting to see that for a small amount of observations, the results are not
much worse than for a standard data distribution. But on the contrary, if the
number of observations increases (either with a better distribution in space or in
time), the results are really improved. In the best case, the solution is identified
with less than 0.5% error for the height and around 2% for the velocity. Recall
that the observations have 20 to 40% errors.

In some sense, the BFN algorithm is quite insensitive to a (relatively) small
number of observations, but on the other hand, it is extremely powerful with
many observations. The 4D-VAR is more uniformly sensitive to the number of
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t = 0 t = T t = 4T
h u v h u v h u v

BFN 3.34% 9.51% 13.6% 2.15% 6.74% 10.1% 3.67% 17.0% 24.1%
(5;24) 4D-VAR 1.83% 11.3% 16.4% 2.68% 13.5% 18.9% 5.60% 25.9% 30.9%

Hybrid 1.39% 7.34% 10.4% 1.98% 9.22% 12.8% 4.92% 22.2% 25.8%
BFN 0.94% 2.90% 4.03% 0.72% 2.67% 3.69% 1.69% 8.48% 11.8%

(5;6) 4D-VAR 1.57% 6.12% 9.91% 2.02% 11.4% 13.8% 5.11% 22.3% 29.5%
Hybrid 1.26% 4.94% 7.77% 1.88% 8.30% 11.4% 4.67% 19.5% 26.4%
BFN 3.27% 9.31% 13.4% 2.22% 6.61% 10.4% 3.89% 16.5% 26.0%

(5;72) 4D-VAR 2.26% 13.1% 18.7% 3.58% 16.8% 24.1% 7.67% 31.2% 42.3%
Hybrid 1.87% 7.72% 10.1% 2.58% 10.8% 14.0% 6.67% 23.1% 31.4%
BFN 3.51% 9.39% 13.0% 2.26% 6.90% 10.2% 3.96% 17.7% 22.6%

(20;24) 4D-VAR 2.13% 14.2% 19.3% 3.21% 18.2% 21.7% 7.25% 25.8% 32.1%
Hybrid 1.61% 6.94% 10.61% 2.39% 10.4% 13.7% 6.21% 23.9% 27.2%
BFN 3.62% 9.78% 12.3% 2.37% 6.67% 10.2% 4.05% 18.3% 24.5%

(20;72) 4D-VAR 3.02% 13.7% 16.4% 4.15% 17.2% 21.3% 9.54% 18.4% 24.8%
Hybrid 2.15% 6.41% 9.85% 2.95% 10.3% 14.2% 7.2% 24.2% 25.8%
BFN 1.04% 3.52% 5.05% 0.71% 2.84% 4.09% 1.86% 8.54% 10.9%

(1;24) 4D-VAR 1.41% 4.31% 5.04% 1.74% 7.34% 9.12% 4.01% 12.5% 15.2%
Hybrid 1.18% 2.81% 3.89% 1.52% 4.17% 7.21% 3.67% 10.5% 14.2%
BFN 0.49% 1.91% 2.75% 0.40% 1.85% 2.57% 1.16% 5.56% 7.15%

(1;6) 4D-VAR 1.14% 3.51% 4.12% 1.62% 4.02% 4.52% 3.51% 9.75% 13.4%
Hybrid 0.94% 2.40% 3.37% 1.36% 3.42% 4.98% 2.87% 7.21% 9.12%

Table 4: Relative error of the forecast solutions corresponding to the BFN,
4D-VAR and hybrid algorithms after 5 iterations, for the three variables, at
different times, and for several spatio-temporal (every x gridpoints and every y

time steps) distributions of observations.
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t = 0 t = T t = 4T
h u v h u v h u v

BFN 3.38% 7.26% 11.9% 2.92% 7.07% 9.70% 9.40% 21.7% 32.0%
4D-VAR 2.27% 12.1% 15.4% 4.01% 13.6% 17.4% 14.6% 29.5% 40.9%
Hybrid 1.92% 6.83% 9.04% 3.21% 8.93% 12.4% 10.1% 24.5% 35.8%

Table 5: Relative error of the forecast solutions corresponding to the BFN, 4D-
VAR and hybrid algorithms after 5 iterations, for the three variables, at different
times, and using a different model for the assimilation.

observations, with a better identification of the velocity when the observations
are more frequent in space.

3.6 Comparison between BFN and 4D-VAR with an im-

perfect model

We finally study the impact on the BFN algorithm of a model error. We assume
that the noisy observations that have been extracted from a model trajectory,
come from a real situation, and we will consider a different model for assimilating
the data. We will consider different values of the model coefficients, in order
to simulate different dynamics. The difference between the model used for
extracting data and the model used for assimilating the data is a simple way to
study the performance of a data assimilation scheme in a more realistic situation
than twin experiments, in which the model is the same for both the generation
of observations and assimilation process.

The coefficients of the assimilating model are the following:

r = 5.10−8 s−1, ν = 15 m2.s−1, τmax = 0.015 s−2.

Table 5 gives the corresponding relative forecast errors for the three algo-
rithms, using this different model coefficients for the assimilation, and also for
the predictions. The errors on the initial condition are globally larger than
before, and this is not surprising as the model used for assimilating the ob-
servations is not the same model that was used for their generation. But the
BFN algorithm is less sensitive to this modification, as the error on the velocity
is a little bit smaller than previously. The 4D-VAR and hybrid methods are
both perturbed by the model modifications, but the hybrid scheme also iden-
tifies quite well the velocity at the initial time, like the BFN. Then, the errors
decrease more or less at the beginning of the assimiltion period (more for the
BFN than for the two other schemes), and then they increase, particularly dur-
ing the forecast period. At time t = 4T , the errors are much larger than in the
previous experiments. This is also not very surprising, as the model used for the
predictions is not the same model as the one used for computing the reference
trajectory.

From this experiment, we can see that the BFN scheme is a little bit less
sensitive to model perturbations. By definition, the BFN scheme does not use
the standard model equations, but different ones, with nudging terms. In some
sense, the forward and backward feedback terms correct the model equations
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with the observations, and the model equations are no more strong constraints,
as in the 4D-VAR scheme. Like the other schemes with a weak model for-
mulation (e.g. 4D-PSAS algorithm), the BFN algorithm is quite efficient in
comparison with the 4D-VAR. Of course, we did not consider any model error
term to be controlled by the 4D-VAR cost function, but we also did not change
anything to the BFN scheme. For no additional cost, the BFN scheme is able to
correct (at least partially) the model equations from the observations. As in the
previous experiments, the use of a hybrid scheme, with a few BFN iterations be-
fore some 4D-VAR minimization iterations, improves notably the identification
process. Either the minimization is stopped after a given number of iterations
(like in many operational systems) and hence before convergence, and in this
case, the identified initial condition and the forecasts are much better (15 to
40% smaller error), or the convergence of the algorithms is reached, and in this
case, the hybrid scheme needs around 5 to 10 iterations (i.e. nearly half the
number of iterations needed to achieve convergence) less than the 4D-VAR.

4 CONCLUSIONS

In the framework of synthetic data assimilation on a simple geophysical model,
the back and forth nudging (BFN) algorithm appears extremely efficient. It
combines the two main advantages of being extremely easy to implement (no
linearization of the model equations, no adjoint state, no optimization algo-
rithm) and extremely efficient in the very first iterations, as it can divide the
estimation error on the initial condition by 10 in one or two iterations. Another
interesting point is that the nudging term allows us to stabilize the backward
numerical integration of the model equations, which are known to be ill-posed
and unstable from a physical point of view. But the feedback term simulta-
neously regularizes and penalizes the backward model equations, and force the
trajectory to stay close to the observations.

The BFN algorithm has been compared with the standard variational method
(4D-VAR) in various experiments, and we studied the impact of observation
noise, model error, and space/time distribution of the observations on these two
algorithms. It has been shown that the BFN algorithm does not identify very
well the initial condition, but the corresponding trajectory at the end of the
assimilation trajectory is much closer to the true state. The 4D-VAR usually
identifies a better initial state, but it is less efficient at the end of the assim-
ilation period, and the BFN scheme provides better forecasts. It is also less
sensitive to various perturbations on the observations or model.

All these results made us introduce a new hybrid scheme, in which a very
small number of BFN iterations are performed (2 or 3 for instance), before
providing the identified initial condition to the standard 4D-VAR algorithm.
By doing this, the convergence of the 4D-VAR is reached more quickly, as it
sometimes divides by two the number of iterations required. Also, for a fixed
given number of iterations (or for a given computation time), the quality of the
identified solution is significantly improved by this preprocessing (note that the
number of 4D-VAR iterations is decreased by the number of BFN iterations in
this scheme, in order to consider the same number of iterations in the standard
4D-VAR and the hybrid scheme).
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Several improvements can still be made on the BFN scheme (and hence
on the hybrid method). For example, the other model variables could also be
controlled by the nudging term on the height, by considering for instance the
geostrophic balance between the velocity and the space derivative of the height.
Moreover, these results have now to be extended to more realistic situations,
with a sophisticated ocean or atmosphere model and real satellite observations.
Finally, the use of the background error covariances in the BFN scheme is cur-
rently investigated from a theoretical point, and may lead to additional im-
provements.
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