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Estimation of depth on thick edges from
sharp and blurred images

Christophe Simon Frederique Bicking and Thierry Simon

Abstract—This article deals with the generaliza-

tion of a local depth estimation method using sharp

edges and blurred edges. This Depth from Defo-

cus method is explained and the theoretical relations

are defined. Improvements concerning the general-

ization and the noise sensitivity on the depth esti-

mation are developed and application conditions are

exposed. Some results on synthetic images are pre-

sented to illustrate the method efficiency.

Index Terms—depth map, depth from defocus,

thick edge, 3D primitives

I. Introduction

The depth, distance between the visible surface
of objects in a scene and the sensor of the camera,
is a useful indication for the computation of coor-
dinates of the points belonging to this surface in
a 3D-space of reference. Many methods have been
developed to obtain these coordinates. Some tech-
niques, appointed Depth From Focus (DFF) ([1],
[2], [3], [4]), search for patches of sharpness in the
image and link them to the depth by classic re-
lationships of the geometrical optic. They present
the major disadvantage of a long computing time to
obtain a depth map. Other methods called Depth
From Defocus (DFD) ([5], [6], [7], [8]), use the per-
ceptible optical blur on heterogeneous image patch
corresponding to edges or textures by using at least
two images of the same scene with only one point
of view. These images are acquired with different
parameters adjustments of the optical system. Our
technique uses only sharp and blurred images of the
same scene. The optical blur, characteristic of the
depth, is observed on gray level discontinuities in
the blurred image.

In DFD methods, a relationship between the
depth, the parameters of the camera and the op-
tical blur in images is searched. The physical ef-
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fect produced by the modification of the aperture
of the diaphragm on images characteristics is used
in order to establish this relationship. In the image
formation process, to an image plane with a fixed
distance and for a scene containing several depth
planes, only one plane gives a sharp or a focused im-
age. Points of objects belonging to the other planes
will form spots more or less blurred according to
their distance to the image plan. The formation
of the optical blur is linked to the optical transfer
function of the system ([9]) in the spatial domain
represented by its Point Spread Function (PSF).
Thus, a convolution relationship (1) is established
between the sharp image In (i, j), the blurred im-
age If (i, j) and the PSF (i, j) where i and j are the

coordinates of a pixel and
⊗
2D is the 2D convolution

operator.

If (i, j) = In (i, j)
⊗
2D PSF (i, j) (1)

The PSF depends on the properties of the optic
materials (indication of refraction) and on the geo-
metrical form of the lens (focal distance) as well as
on the parameters shot (distance of the plan object
to the main plan, aperture, lighting).

A realistic model taking into account both the as-
pects of the geometrical optic effects of the diffrac-
tion and the defaults of lens does not exist. Sev-
eral models have been proposed and we have se-
lected the model of distribution of luminance given
by a 2D-gaussian with a spread parameter σso

cor-
responding to a depth so (2).

PSFso
(i, j) =

1

2πσ2
so

e
− i2+j2

2σ2
so (2)

Thanks to a calibration procedure, values of σso

are directly associated to depths so by estimation
of the constants c and m that are characteristic of
a set of camera tuning parameters ([10]):

1

so

=
σso

m
− c

m
(3)

This article deals with the generalization of a
local depth estimation on edges. First of all the
estimation method of the amount of blur linked
with the depth using a couple of focused and de-
focused images is explained. More developments
can be found in ([11]). The theoretical relations
are exposed and improvement with introduction of
a generalized form is described. Therefore, a new
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relation to compute the spread parameter on sev-
eral points belonging to the edges is defined and al-
lows to reduce the noise sensitivity of the method.
Conditions of application are pointed out and lead
to new consideration such as constraints for fur-
ther development. Finally, some experiments are
carried out to highlight improvements of noise sen-
sitivity, importance of application constraints and
performances. Results on synthetic images are then
presented.

II. Initial method and theoretical
improvements

Classic depth estimation approaches use either
the spatial content of the image by geometrical
characteristics ([12], [5]) as well as the form of ob-
jects in the scene ([1]), or the frequency information
by a Fourier analysis ([7]).

Discontinuities of luminance expressed on the
edges of observed objects for which the blur effects
are easily perceptible, are used. The method is sim-
ilar to those proposed by Pentland where the acqui-
sition of a sharp image with a closed aperture and
a blurred image with an open aperture is retained.
The position of edges is detected with the Prewitt
operator. An estimation of the optical blur is ob-
tained from the module of the gradients of gray
levels. With the ratio of sharp and blurred images
magnitudes, it is possible to identify the spread pa-
rameter σso

and thus to estimate the depth so with
the relation (3).

This ratio can be expressed with the relation
(4) where |▽In (i, j)| and |▽If (i, j)| are respec-
tively the sharp image gradient magnitude and the
blurred image gradient magnitude.

R(i, j) =
|▽In (i, j)|
|▽If (i, j)| (4)

Let the sharp image In (i, j) present gray level
discontinuities in slope with a magnitude (b−a) and
a length ε under a single direction (θ = ±kπ/2). In
other direction, the sharp image does not present
gray level variations. The gray level function for
the sharp edge profile cn (x) can be expressed by
(5) where x is graduated in pixel and represents
one line or one column of this image:

cn (x) =







a
a +

(

b−a
ε

)

(x − x0)
b

x < x0

x0 ≤ x ≤ x0 + ε
x > x0 + ε

(5)

In order to compute ▽In(i, j), the Prewitt oper-
ator (▽p) is used.

Fig. 1. Sharp and blurred edge profiles
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For the direction θ = 0 ± kπ, In(i, j − 1) =
In(i, j) = In(i, j + 1) and (6) becomes equivalent
to (7):

|▽pIn(i, j)| =
∣

∣

∣

[

1 0 −1
] ⊗

2D In(i, j)
∣

∣

∣
(7)

For the direction θ = π/2 ± kπ, In(i − 1, j) =
In(i, j) = In(i+1, j) and (6) becomes equivalent to
(8):

|▽pIn(i, j)| =

∣

∣

∣

∣

∣

∣
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−1
0
1
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∣

(8)

Thus, for the direction θ = ±kπ/2, the 2D-1D
correspondence allows to use:

|▽pcn(x)| =
∣

∣cn(x) ⊗
[

−1 0 1
]∣

∣ (9)

where ⊗ is the 1D convolution operator. With this
2D-1D correspondence between the used image and
the sharp edge profile, the blurred edge profile is
obtained by the relation (10):

cf (x) = cn(x) ⊗ Pso
(x) (10)

where Pso
(x) is the monodimensional form of

the point spread function expressed by: Pso
(x) =

1√
2πσso

e
− x2

2σ2
so . Sharp and blurred edge profiles are

represented on figure 1. The gradient magnitude
for the blurred image is given by (11):
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|▽pcf (x)| = |▽pcn(x) ⊗ PSF (x)| (11)

Fig. 2. Sharp and blurred edge gradient profiles

The ratio given by (4) can be computed for sev-
eral values of ε at two particular points x0 and x0+ε
with R(x0) = R(x0 + ε):

For ε = 1, R (x0) =
σso

√
2π

1 + exp
(

−1

2σ2
so

)

For ε = 2, R (x0) =
σso

√
2π

1 + 2 exp
(

−1

2σ2
so

)

+ exp
(

−4

2σ2
so

)(12)

For ε ≥ 3, R (x0) =
σso

√
2π

1 + 2 exp
(

−1

2σ2
so

)

+ 2 exp
(

−4

2σ2
so

)

+exp
(

−9

2σ2
so

)

These relations linking the spread parameter σso

to the ratio value are numerically solved. The ratio
computed at the point x0 allows to find one value
for σso

and to obtain a value of the depth so by the
relation (3).

Previous works ([11],[13]) use a maximum length
ε set to 3, considering that no larger values occur
with optics of high quality. Using standard quality,
edges of length ε higher than 3 can be found. Thus,
it appears necessary to have specific relations of the
ratio R(x0) for each value of ε. To avoid a lot of
relations, we propose a general expression of R(x0).

The gradient of the sharp edge is: ▽pcn(x) =
(

b−a
ε

)

and the blurred one is: ▽pcf (x) = Pso
(0) +

Pso
(ε)+2

ε−1
∑

u=1

Pso
(u). They are represented on fig-

ure 2.
So, the general form of the ratio can be expressed

by:

R (xo, ε) =
1

Pso
(0) + Pso

(ε) + 2
ε−1
∑

u=1

Pso
(u)

(13)

This relation allows to estimate the spread pa-
rameter σso

for the points x0 and x0 + ε from the
values of the gradients magnitudes of the sharp and
blurred images at these two points. In presence of
noisy images, estimation will be corrupted. Thus,
the use of each point belonging to the edge give sev-
eral estimated values of σso

. The estimation results
will appear more robust.

The expression of the ratio for each point between
x0 and x0 + ε is given by (14):

R (x) =
2

Pso
(x − x0) + Pso

(x − (x0 + ε))

+2
ε−1
∑

u=1

Pso
(x − (x0 + u))

(14)

To reduce noise sensitivity, and thus to improve
the quality of the solution, ε + 1 estimations of the
spread parameter σso

are computed and a statisti-
cal value is attributed to the point x0 in the depth
map. That needs more computing time but the es-
timation obtained is better.

III. Experimental results

This paragraph deals with the results obtained
by the proposed method. In a first stage, we illus-
trate the efficiency of the method with two exam-
ples based on synthetic images with different pa-
rameters. Next, a comparison between results ob-
tained with the method applied only at the point
x0 and those obtained with the use of all points
x ∈ [x0, x0 + ε] are presented. The noise sensitivity
of the method is evaluated on noisy images with
different signal to noise ratios (SNR) by comparing
the estimated value to the true value of the spread
parameter. Finally, the orientation constraint in-
fluence on estimation is shown by experiments with
different orientation values.

A. Blur estimation for different parameters

In order to illustrate the efficiency of the pro-
posed method, the estimation results for a syn-
thetic image (fig.3a) blurred with a spread parame-
ter σso

= 3 (fig.3b) are shown on figure 3c. For this
image, the length of edges are fixed at 1 (ε = 1).
As it can be seen, the estimation of σso

gives good
results. However, estimation is corrupted for the
center of the image. It can be explained by the mu-
tual influence of closely related points. The nearest
contour points have some contribution on the points
in a small neighbourhood. The closer the edges are
and the more spread the PSF is, the more overval-
ued the spread parameter will be.

Figure 4 shows the estimation results for an im-
age with edges length fixed at 5 (ε = 5) and a spread
parameter σso

= 5. As it can be seen, the method
gives very good results with a total estimation error
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Fig. 3. Impact of closely related edges on the estimation of
σso = 3 and ε = 1

Fig. 4. Estimation results for ε = 5 and σso = 5

mean of 3.5 E−3%. In this case, the mutual influ-
ence of edges is not encountered. That’s why such
performances are obtained.

B. Exploitation of each point belonging to the edge

profile

Results obtained with the method applied only at
the point x0 and those obtained with the use of all
points x ∈ [x0, x0 + ε] are presented in tables I and
II respectively. The method was tested on synthetic
images presenting vertical discontinuities. As it can
be seen, for small values of σso

and high values of
ε, the estimation error is important. However, the
improvement of the blur estimation using all points
is significant in comparison with estimation results
obtained using point x0 only.

C. Noise sensitivity

To investigate the performance of the depth esti-
mation method under noisy environment, we con-
sider a number of low grade images. The noisy im-

TABLE I

Estimation error in % with the method applied at

point xo

σ
ε 0.5 0.8 1 1.5 2 3 5 8

1 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 18.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 42.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0
4 64.1 3.7 0.0 0.0 0.0 0.0 0.0 0.0
5 82.7 14.2 0.0 0.0 0.0 0.0 0.0 0.0
6 99.6 24.7 1.2 0.0 0.0 0.0 0.0 0.0
7 115.1 34.4 7.5 0.0 0.0 0.0 0.0 0.0
8 129.6 43.5 14.8 0.0 0.0 0.0 0.0 0.0
9 143.2 52..1 21.6 0.0 0.0 0.0 0.0 0.0
10 156.1 60.1 28.0 14.6 0.0 0.0 0.0 0.0

TABLE II

Estimation error in % with the method applied at

all points x ∈ [x0, x0 + ε]

σ
ε 0.5 0.8 1 1.5 2 3 5 8

1 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 13.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 23.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0
4 31.2 1.5 0.0 0.0 0.0 0.0 0.0 0.0
5 36.4 4.7 0.0 0.0 0.0 0.0 0.0 0.0
6 42.1 7.1 0.3 0.0 0.0 0.0 0.0 0.0
7 46.8 8.6 1.9 0.0 0.0 0.0 0.0 0.0
8 51.9 10.1 3.2 0.0 0.0 0.0 0.0 0.0
9 56.3 11.4 4.3 0.0 0.0 0.0 0.0 0.0
10 61.1 13.1 5.1 2.6 0.0 0.0 0.0 0.0

ages are generated by adding independently, iden-
tically distributed Gaussian noise to the noise-free
images. The signal-noise-ratio (SNR) is computed
for each image. The SNR is defined by the classical
relation (15):

SNR = 10 log

(

I2
n (i, j)

n2 (i, j)

)

(15)

It is assumed that the noisy sharp image and the
noisy blurred image have the same SNR value.

The effect of noise is significant on image gray
levels. In order to evaluate the images grade, we
pay attention to the gray level variations (∆GL)
under SNR values. Table III shows this correspon-
dence.

Performance comparison is based on a synthetic
sharp image that presents vertical discontinuities.
The estimation method was applied with respect
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TABLE III

Gray level variation for different signal to noise

ratio

∆GL 2 3 5 8 16 26
SNR 55 50 45 40 35 30

to different values of SNR, edge length and spread
parameter.

TABLE IV

Estimation error in % for different values of SNR,

σ and ε

SNR (dB)
σ ε 30 35 40 45 50

1 1 4.19 1.17 1.49 0.77 0.30
2 7.91 6.44 1.98 1.08 0.11
3 4.35 11.22 2.39 12.32 3.09
4 1.65 18.86 3.94 11.52 3.48
5 8.31 8.45 3.98 0.80 2.75
6 21.79 16.46 34.96 15.74 8.37

2 1 3.69 1.57 0.03 0.10 0.30
2 2.08 2.11 0.20 0.32 0.36
3 4.26 2.94 1.38 0.03 0.48
4 17.34 2.06 2.31 0.96 0.60
5 2.50 15.51 8.20 11.87 5.21
6 7.54 12.47 9.42 8.25 7.13

3 1 4.28 1.95 0.40 0.59 0.13
2 0.84 0.76 0.78 0.30 0.20
3 5.42 0.30 0.65 0.36 0.09
4 4.55 3.10 0.92 1.02 0.32
5 10.32 7.06 3.33 0.34 0.80
6 9.51 4.61 1.19 0.53 0.87

Table IV illustrates the resulting estimation error
under noisy environment obtained by the proposed
method. When the noise level is low, the perfor-
mances of the method are satisfactory. With the
increase of the noise level, the estimation error in-
creases but remains still acceptable. Note that for
a SNR value of 30, the 26 gray level variation cor-
responds to a 10% variation on the gray levels of
the image.

D. Influence of edge orientation

The relation (14) was defined thanks to the defi-
nition of the equivalence between the expression of
the gradient image magnitude at x0 and the edge
profile at x0 using the correspondence 2D-1D de-
fined above. So, the relation (14) must be applied
when the object contour in the image respects this
equivalence established for a discontinuity orienta-
tion θ = 0+nπ

2
. Nevertheless, we also try to evalu-

ate experimentally the orientation influence on the
accuracy of the results in order to know if the rela-
tion (14) can be used for other orientations even if
approximated evaluation of spread parameter and
consequently error on depth estimation are gener-
ated. If the accuracy is not satisfactory the discon-
tinuity orientation will be integrated as an applica-
tion constraint.

TABLE V

Estimation error in % for different values of edges

orientation (degree), σ and ε

% ε
σso

θ 1 2 3 4 5 6

0.8 0 0.0 0.0 0.1 1.5 4.8 7.1
10 0.3 6.9 5.9 9.6 17.4 23.8
20 25.8 4.1 13.8 0.3 18.9 68.6
30 30.7 1.1 12.0 0.2 33.1 51.4
40 31.4 28.1 23.5 12.4 35.5 27.2
45 24.4 24.4 23.6 21.4 29.3 21.8

1 0 0.0 0.0 0.0 0.0 0.0 0.4
10 4.1 26.3 10.4 0.2 6.3 26.1
20 6.6 12.6 21.1 10.0 17.0 31.6
30 7.6 20.1 20.2 9.8 13.5 31.9
40 40.1 18.8 29.5 2.4 22.4 23.9
45 35.7 33.8 28.8 28.5 35.1 30.3

1.5 0 0.0 0.0 0.0 0.0 0.0 0.0
10 8.0 29.8 17.9 10.8 3.9 0.0
20 28.8 9.5 25.1 20.4 6.5 29.1
30 39.7 11.9 24.3 19.1 15.9 8.3
40 37.0 33.3 37.8 18.9 2.1 9.9
45 34.5 35.1 32.7 29.5 41.6 35.3

2 0 0.0 0.0 0.0 0.0 0.0 0.0
10 8.0 31.5 14.0 12.0 10.7 6.0
20 2.7 15.4 24.3 22.0 17.0 3.8
30 35.1 19.0 23.5 26.3 2.9 2.5
40 36.7 28.6 21.5 8.4 15.9
45 32.2 33.0 34.4 28.6 40.1 40.5

3 0 0.0 0.0 0.0 0.0 0.0 0.0
10 5.6 24.4 12.0 8.0 9.5 9.3
20 21.1 12.2 19.9 19.8 14.3 4.5
30 31.7 17.2 19.2 26.0 0.6 7.9
40 37.8 26.6 30.7 22.9 11.0 23.3
45 36.0 32.4 35.5 31.5 39.4 31.8

Experiments on synthetic images have been car-
ried out with some selected fixed edge directions θ
(in degree) and different values of edge lengths ε
and spread parameters σso

.

As it can be seen on table V, when the edge orien-
tation is θ = 0, the orientation condition is fullfilled
and the performance is very satisfactory. On the
contrary, when the edge orientation is moved away
from the value 0, the method presents important es-
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timation errors. So, we can conclude that the edge
orientation is a meaningful application constraint
and that the relation (14) will have to be adapted
for other orientations.

IV. Conclusion

A local depth perception method was presented
by focusing on two important generalizations. On
the one hand, mathematical relations were defined
to allow blur estimation on thick edges. On the
other hand, the theoretical improvement to esti-
mate the depth from all points of the edge profile
was defined. It allows to reduce the influence of
noise on image data. In addition, we have shown
that relationships allowing the estimation of the
depth were valid only for orientations θ = 0 ± nπ

2
.

The respect of this constraint strongly reduces the
number of points for blur estimation. In order to
obtain a dense depth map, the expression of the
ratio between the gradient magnitude of the sharp
image and the gradient magnitude of the blur image
has to be defined for other edge directions.
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