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Abstract

Using a generalized curvature-dimension inequality and a new approach, we
present a differential inequality for an elliptic second order differential operator
acting on distance functions, from which we deduce volume comparison theorems
and diameter bounds without the use of the theory of Jacobi fields.

1 Introduction.

The classical volume comparison theorems in Riemannian geometry are among the basic
ingredients of the analysis on manifolds. They may be stated as follows. Assume that M
is an n-dimensional Riemannian manifold with Ricci curvature being bounded below by
some constant ρ. Choose an arbitrary point o in M and let V (r) denote the Riemannian
volume of the ball centered at o and radius r. On the other hand, let Vρ,n(r) denote the
volume of the ball of the Riemannian model with constant Ricci curvature ρ, that is a
sphere if ρ > 0, an Euclidean space if ρ = 0, and an hyperbolic space if ρ < 0. Then,
Bishop-Gromov comparison theorems assert that V ′(r)

V ′

ρ,n
(r)

is a decreasing function of r,

and, as a consequence, that V (r)
Vρ,n(r)

is also a decreasing function of r.
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The classical proof of this result relies on the theory of Jacobi fields, that is the
precise study of deformations of a geodesic ball along a geodesic.

The aim of this paper is to provide an elementary approach to these volume comparison
theorems using only basic differential inequalities on distance functions. In [6] the second
author proposed a method to devise a comparison theorem for distance functions using
the maximum principle for parabolic equations, but this approach worked only in the non-
negative Ricci case. The method presented in this article avoids the maximum principle
and the use of the theory of Jacobi fields. It extends the classical results to measures
which are different from the Riemannian measures. Also, with this approach, the lower
bound on the Ricci curvature may depend on the distance to the starting point o.

The basic tool is a curvature-dimension inequality associated to a generic second order
differential operator, which leads to differential inequalities on distance functions, and
therefore to information on diameter and on volumes of balls for the invariant measure
of this operator. This curvature-dimension inequality may as well be stated for operators
in dimension 1, and those 1-dimensional operators appear to be the natural objects to
compare with.

The case of Laplacians leads to the fundamental comparison theorem for Riemannian
measures [3], [4] and follows easily from our differential inequality.

On the other hand, it is well known that the comparison theorem for Laplacians implies
Myer’s estimate on the diameter of the manifold, and also yields the comparison theorem
for volumes. These results were proved in the literature via the theory of Jacobi fields,
or the variation formula for volumes. All comparison theorems have their origins in the
Sturm-Liouville theory, and Jacobi fields are used in the reduction from geometric
quantities to ordinary differential equations.

The approach in this paper presents a direct Sturm-Liouville type argument dealing
with the distance function under a lower bound of the Ricci curvature. There are obvious
advantages with this approach. First it applies to general elliptic second order operators,
not only Laplacians, not even symmetric operators, in which case one has very little
information about the invariant measure. Secondly, since we only use several basic facts
about complete manifolds, it may be adopted in the study of metric geometry. Also, the
one dimensional models provide a nice setting for comparison theorems with bounds on
the Ricci tensor depending on the distance.

2 Curvature-dimension inequalities.

Let M be a smooth manifold with dimension N and L be a second order elliptic differential
operator on M , with no 0-order term. In a local system of coordinates, L may be written
as
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Lf(x) =
∑

ij

gij(x)
∂2

ijf

∂xi∂xj
+

∑

i

bi(x)
∂if

∂xi
.

If we introduce the Riemannian metric g = (gij)(x) which is the inverse of the matrix
(gij)(x), then this allows us to rewrite L as

L = ∆ + X,

where ∆ is the Laplace-Beltrami operator associated with the metric g and X is a
vector field. Our basic assumption is that the manifold M is complete for this metric.
This is done for simplicity, but if it is not, one should assume at least that the boundary
is convex for the Riemannian metric. We shall not deal with this situation here.

We shall denote by µ an invariant measure for the operator L, that is a solution of
L∗(µ) = 0. By ellipticity, such an invariant measure has a smooth density with respect
to the Riemann measure dm.

When X is a gradient field, say for example X = ∇f , then we may choose dµ =
exp(h)dm, but no such simple formula is valid in the general case.

Introduce Γ(u, v) = ∇u · ∇v. It is worthwhile to observe that we may define Γ(u, v)
as

Γ(u, v) =
1

2
(L(uv) − uLv − vLu),

and this naturally leads to the following definition of the iterated squared field operator,
according to [1]:

Γ2(u, v) =
1

2
{LΓ(u, v) − Γ(Lu, v) − Γ(u, Lv)} .

We shall denote Γ(u) and Γ2(u) instead of Γ(u, u) and Γ2(u, u) respectively.

In the case of the Laplacian L = ∆, the Böchner identity may be written as

Γ2(u) = |∇∇u|2 + Ric (∇u,∇u) .

We say that the operator L satisfies the curvature-dimension inequality CD(K, n) for
some n ≥ N and some function K, if, for any u ∈ C2(M), one has

Γ2(u)(x) ≥
1

n
(Lu) (x)2 + K(x)Γ(u)(x).

In the case of Laplacians, CD(K, N) means exactly that the Ricci curvature at point
x is bounded below by K(x), and the dimension n = N of the manifold is the least
possible value for which a CD(K, n) inequality may occur.
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For a general elliptic operator L = ∆ + X, with X 6= 0, then the CD(K,n) inequality
is valid if and only if n > N and if the tensor

Ric − K(x)g −∇SX −
1

n − N
X ⊗ X

is non negative, where g is the metric and ∇SX denotes the symmetric version of the
covariant derivative of the vector field X.

In dimension 1, if L(f) = f ′′ + a(x)f ′, then this boils down to

−a′(x) ≥ K(x) +
a2

n − 1
,

while the invariant measure µ is exp(a(x))dx, which says that, if V (x) denotes the vol-
ume (for the invariant measure) of the ball centered at 0 and radius x, then a(x) =
V ′′(x)/V ′(x).

In what follows, we shall denote by aK,n the solution of the Ricatti equation

−a′ = K(x) +
a2

n − 1

on (0,∞) such that limx→0 xa(x) = n − 1. It is easier to change K into (n − 1)K and to
write aK,n = (n − 1)θK , such that

θ′K = −(K + θ2
K).

We shall mainly consider this equation on R+, with initial condition at 0 described above.
If this equation explodes in finite time (this happens as soon as K is bounded below by
some positive constant), then we shall denote by δK the explosion point.

If K is constant, then this operator is exactly the radial part of the Laplace-
Beltrami operator of a sphere, a Euclidean or a hyperbolic space, according to the
sign of K. This operator will serve as a 1-dimensional model in our comparison theorems.

An important fact is that the CD(K, n) inequality has a natural self-improvement,
which is optimal for one-dimensional models. More precisely

Lemma 2.1. Let L satisfy the CD(K,n) inequality. Then, for any smooth u on M , one
has

(2.1) Γ2(u) ≥
1

n
(Lu)2 + KΓ(u) +

n

n − 1

(

Lu

n
−

Γ(Γ(u), u)

2Γ(u)

)2

on Γ(u) 6= 0.

For the one dimensional models described above, this inequality is an equality for any
smooth function u.
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Proof. — We shall not give the details (see [2] for a complete proof). In fact, if we write
Γ2(f)−KΓ(f)− 1

n
(Lf)2 with f = Φ(u), and if we use the chain rule formula for derivation,

we end up with a quadratic form in the two variables Φ′(u) and Φ′′(u). Therefore, the
CD(K, n) inequality gives that this expression is non negative. Since in any point, we
may choose independently Φ′(u) and Φ′′(u), the CD(K,n) inequality tells us that this
quadratic form is non negative, and the inequality in lemma 2.1 is nothing else than the
fact that it’s discriminant is non negative.

The last assertion of the lemma is a simple verification.

3 Fundamental inequality.

In what follows, we shall use the 1-dimensional models described above, and give a dif-
ferential inequality on the function L(ρ), for any function satisfying Γ(ρ) = 1 under a
curvature-dimension condition for the operator. This inequality is in fact an identity for
1-dimensional models.

For this, K being a C1 function defined on the real line (or on interval), we shall define
θK to be any solution to the equation

(3.2) θ′K = −(K + θ2
K)

on an interval (a, b) on which such a solution exists. We may as well set θK = σ′

σ
in which

case σ′′ + Kσ = 0. Then, let φK be a solution of

(3.3) φ′′

K + (n − 1)φ′

KθK = 1

on (a, b).

We are now in a position to state our main result.

Theorem 3.1. Let L = ∆ + X and ρ be a function which satisfies Γ(ρ) = 1 in an open
set Ω ⊂ M ,and that ρ2 is C2 in Ω. Suppose that L satisfies CD((n − 1)K(ρ), n). Let
F = LφK(ρ) − 1, where φK satisfies (3.3). Then, on Ω ∩ ρ−1((a, b)), one has

(3.4) F [F + (2 − (n + 1)φ′′

K(ρ))] ≤ − (n − 1) φ′

K(ρ)Γ(F, ρ) .

Of course, we shall apply this in particular to the distance function ρ to some point o
with Ω = M \ cut(o). Then, we shall specify the boundary behaviour of the functions θK

and φK . But this may apply as well to other function with gradient 1, such as distances
to submanifolds, for example. We made an assumption of smoothness on ρ2 instead of
ρ because distance functions satisfy this property outside the cut-locus (see lemma 4.1
below).

Proof. — The proof relies on Lemma 2.1. We shall write φ for φK and θ for θK , since
there is no possible confusion. Notice that φ(ρ) ∈ C2(Ω) as soon as ρ2 is C2 in Ω. In
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fact φ(ρ) ≃ ρ2/n as ρ → 0, thus φ(ρ) is smooth at o. Since Γ(ρ) = 1, Γ (φ(ρ)) = φ′2, and
applying (2.1) to φ(ρ) we obtain

Γ2(φ(ρ)) ≥
1

n − 1
(L(φ(ρ)))2 −

2

n − 1
φ′′L(φ(ρ))

+(n − 1)Kφ′2 +
n

n − 1
φ′′2 .

On the other hand, by definition

Γ2(φ(ρ)) = φ′′L (φ(ρ)) + φ′φ′′′ − Γ(Lφ(ρ), φ(ρ)) .

Since φ satisfies the differential equation (3.3),

φ′′′ = −(n − 1)θφ′′ + (n − 1)θ2φ′ + (n − 1)Kφ′

Therefore

Γ2(φ(ρ)) = φ′′L (φ(ρ)) + (φ′′ − 1) φ′′ +
1

n − 1
(φ′′ − 1)

2

+(n − 1)Kφ′2 − Γ(Lφ(ρ), φ(ρ)) .

The curvature-dimension inequality thus may be written as

− (n − 1) Γ(Lφ(ρ), φ(ρ)) ≥ (L(φ(ρ)))2 − (n + 1) φ′′L(φ(ρ))

+ (n + 1) φ′′ − 1 .

Since F = Lφ(ρ) − 1, the previous is thus equivalent to (3.4).

4 Diameter bounds and volume comparison theorems.

It remains to apply the fundamental inequality to the distance function ρ to some point
o ∈ M . We shall use very little of the information given by the basic result (3.1). The
first elementary ingredient is the following.

Lemma 4.1. Let o be a point in M , let ρ denotes the distance function from o and let
cut(o) denotes the cut-locus with respect to the point o. Then

1) M\cut(o) is a star domain, and there is an increasing sequence of pre-compact
domains Dn of D with smooth boundary ∂Dn such that D̄n ⊂ Dn+1 and ∪nDn = D.
Each Dn is again a star domain, i.e. for each point p on ∂Dn, the segment of the unique
minimal geodesic connecting o and p lies within Dn. Let ρ be the distance function from o.
Then ∂ρ/∂ν > 0 on ∂Dn for each n, where ν is the normal vector field pointing outward
on ∂Dn.

2) ρ is smooth on M\ (cut(o) ∪ {o}), ρ2 is smooth at o.

6



These basic facts in Lemma 4.1 can be verified by using the exponential maps. Part
1) is called Calabi’s Lemma.

Theorem 4.2. Let ρ be the distance function from o, and suppose that the operator
L = ∆ + X satisfies CD((n− 1)K(ρ), n). We define the function θK to be the solution of
equation (3.3) on (0, δK) with limx→0 xθK(x) = 1, and δK to be the explosion time of this
equation, if such exists.

Then

1. The diameter of (M, g) is bounded above by 2δK.

2. We have L(ρ) ≤ (n − 1)θK(ρ) on M\cut(o).

Proof. — Notice that, thanks to the definition of φK (equation (3.3)), the equation
L(ρ) ≤ (n − 1)θK(ρ) is equivalent to

(4.5) F = L(φK(ρ)) − 1 ≤ 0.

Once again, we write θ and φ instead of θK and φK . We choose the function φ on
(0, δK) satisfying equation (3.3) with boundary conditions φ(0) = φ′(0) = 0.

Let λ = (n + 1) φ′′. Then the differential inequality for distance functions may be
written as

F 2 + (2 − λ) F ≤ − (n − 1) φ′Γ(F, ρ) .

The behaviour of L(ρ) near 0 is easy to obtain and comparable to the Euclidean case;
therefore ρL(ρ) goes to N − 1 as ρ goes to 0. As φ′′(0) = 1/n, the fact that F < 0 near
0 boils down to the fact that n > N . In the case n = N , we may replace n by n + ǫ (for
any ǫ > 0) and rescale K accordingly. Therefore, we may choose r > 0 so small such that
F < 0 on (0, r]. (The boundary conditions on θ and φ at 0 are chosen just to satisfy those
properties, and insure that F < 0 near 0.)

We claim that F ≤ 0 still holds for any x ∈ Bo(δK) ∩ (M \ cut(o)). To see that,
consider the function F restricted on the geodesic line connecting o and x (denoted as I).
We may assume that ρ(x) > r, since there is nothing to prove otherwise. If we choose
ρ as the parameter along the geodesic, then the inequality for F on the line I may be
written as

F 2 + (2 − λ) F ≤ − (n − 1) φ′F ′ .

Any function satisfying this differential inequality on [r, δK), with F (r) < 0, may not
reach 0 before δK . In fact, if ρ0 ∈ (r, δK) is the first zero of F , then F < 0 on (r, ρ0), and
if we set G = 1/F (so that G explodes to −∞ at ρ0). The previous inequality becomes

1 + (2 − λ) G ≤ (n − 1) φ′G′
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which cannot explode to −∞ on (r, ρ0) as φ′ > 0 and φ′′ are bounded on compact subin-
tervals of (0, δK), a contradiction to the assumption that ρ0 ∈ (r, δK). Thus we have
proved Lφ(ρ) ≤ 1 on Bo(δK) ∩ (M \ cut(o)). That is

Lρ ≤ (n − 1)θK(ρ) on Bo(δK) ∩ (M \ cut(o)) .

Then we show that if x ∈ M such that ρ(x) = δK , then x ∈ cut(o). If this is not the
case, then choose y in Bo(δK) close to x. Then at y we have

(Lρ) (y) ≤ (n − 1)θK(ρ).

Since δK > 0 is the explosion point of θK , the right-hand side goes to −∞ as y → x.
Hence

lim
y→x

(Lρ) (y) = −∞

which is impossible as ρ is smooth at x. Thus the diameter of M is bounded by 2δK and
also proves part 2).

Finally, using integration by parts and Calabi’s lemma, it is easy to show that (4.5)
holds in distribution, that is, for all non-negative function ϕ ∈ C2(M) with compact
support

∫

M

(L∗ϕ) ρdµ ≤

∫

M

φ(n − 1)θK(ρ)dµ,

with L∗ the adjoint of L in L2(µ). Now, the invariant measure is entirely characterized
by the fact that, for any smooth compactly supported function g,

∫

M

L(g)dµ = 0.

applying this with a function Φ(ρ) shows that, if ν denotes the image measure of µ by
the function ρ, one has formally

∫

φ(ρ)L(ρ)dµ = −

∫

φ′(ρ)dν(ρ).

This shows that, if V (ρ) denotes the volume of the ball of radius ρ, in the distribution
sense, we do have V ′′/V ′(ρ) = E(L(ρ)/ρ), the expected value of L(ρ) given ρ under the
measure µ, or, in other words, we may identify it with the surface measure

V ′′/V ′(r) =

∫

ρ(y)=r

L(ρ)(y)dµS,

where µS is the surface measure on the surface {ρ(y) = r} normalized to be a probability,
that is the ordinary surface measure divided by V ′(r). This leads to the comparison
theorem V ′′(ρ)/V ′(ρ) ≤ (n−1)θK(ρ) in the distribution sense. This is exactly the content
of volume comparison theorems.
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To justify the computations, let Dn be one of the domains given by Lemma (4.1).
First, we have, for any smooth function Φ on the real line, and for the invariant measure
µ

∫

Dn

(Φ′(ρ)L(ρ) + Φ′′(ρ′))dµ =

∫

∂Dn

Φ′(ρ)
∂ρ

∂ν
dµS,

where ν is the exterior normal derivative on the boundary ∂Dn and dµS is the surface
measure on the boundary.

Setting Φ′ = φ, and using the upper bound for L(ρ) on Dn given by theorem (4.2),one
gets, for any non negative function φ,

∫

Dn

(φ(ρ)(n − 1)θK(ρ) + φ′(ρ))dµ ≥ 0.

Then we choose a compactly supported function φ and we let n go to infinity: the con-
clusion is the same, that is, for any smooth non negative compactly supported function
φ and for the image measure ν of µ through the function ρ, one has

∫

(φ(x)(n − 1)θK(x) + φ′(x))dν(x) ≥ 0,

which exactly the content of the volume comparison theorem.
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