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Adaptive sequential design for regression on Schauder

Basis

Serge Cohena, Sébastien Gadata

aInstitut de Mathématiques de Toulouse

Laboratoire de Statistique et Probabilités

Abstract

We present a new sequential algorithm to build both optimal design and model

selection in a multi-resolution family of functions. This algorithm relies on a lo-

calization property of discrete sequential D and A-optimal designs for Schauder

Basis. We use these property with a simulated annealing strategy to obtain our

stochastic algorithm. We illustrate its efficiency on several numerical experi-

ments.

Key words: Sequential Optimal Design, Model Selection, Stochastic

Algorithm
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1. Introduction

This paper presents a new algorithm for building optimal design to recover

an unknown signal f . The main interest of the work is included in the adaptive

nature of this algorithm which will be sequential. Following classical ideas of

multi-resolution analysis, we want to find both a design (ξ1, . . . ξn) and a family

of linearly independent functions in an optimal way to expand f .

A large amount of recent works deal with some model selection approaches

from a theoretical point of view often using L1 penalized strategy to obtain

sparse decomposition, and yielding for instance LASSO [8] or LARS [9] algo-

rithms and at last the Dantzig selector [10]. But to the best of our knowledge,

there does not exist some optimization method of the design dedicated to these

sparse model selection methods.

Regarding now the community of optimal design research, lot of works are

concerned with finding design represented as continuous measure and there exist

scarce explicit results to find a good design. Some explicit discrete designs can

be however found (see [5] and the reference therein) but most of time, good

designs are located using some numerical algorithms. Moreover, a large amount

of these numerical methods yields some continuous designs although discrete

designs are easier to handle from a practical point of view. At last, from an

optimal design point of view, there exists some advances in sequential methods

(see [16]). Although it seems natural to fit both the model and the design with
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sequential measures of an unknown signal, no approach with model selection

has been considered yet.

Our contribution is twofold, we first provide a new theoretical localization of

optimal designs for a multi-resolution family of functions (the Schauder Basis),

and these localization results can be tensorized to dimensions higher than one.

Then, we infer from this multi-resolution family an adaptive strategy to build

a model selection coupled with a sequential optimal design method.

This optimality remains to be properly defined and to obtain a precise math-

ematical criterion, we will quite naturally use some classical ideas of optimal

design theory (see e.g. [1],[2] for the main tool and we will use [4, 5] for general

ideas on optimal designs), adaptive regression [3] and multi-resolution analysis

[6, 7].

To clearly define our objective and settings, denote E the space where the

variable t is living , we assume the signal f to be expanded in a basis (Λj,k)j,k.

We want to successively select some measure points of the design ξi and some

element of (Λj,k)j,k to reach a correct approximation f̂ of f .

Our objective is twofold: first we want to recursively find an appropriate

design x = {ξ1, . . . , ξn} which will be adaptive to the sequential measurements

done on the unknown signal f . Secondly, our goal is to select an appropriate

subset of functions Λ to keep the variability of the reconstructed (approximated)

signal f̂ low and build thus a sparse representation of f̂ of the true unknown f .

To measure both well-suited designs and set of functions Λ, f̂ will naturally be

deduced from (f(ξi))i∈{1,...n} and Λ using a classical linear model. We will not

adopt a penalization approach as [8, 9, 10] since in this framework, the effect of

the chosen design x on the variance of the reconstructed f̂ is not explicit which

makes the first step of building an optimal x very hard, and moreover these

methods are not exclusively dedicated to recover f̂ using as less observations as

possible.

Our work is organized as follow: next section presents some definitions and

and classical considerations of optimal design theory and then describes the gen-

eral behavior of our adaptive algorithm (model selection and sequential design).

Section 3 gives some theoretical results on the localization of the sequential

optimal design and proves consistency of our method without model selection.

Section 4 precisely describes the stochastic algorithm which builds the model

selection. At last, Section 5 provides some experimental comparisons, especially

with L1-penalized approaches which are widely used now.

2. Model

2.1. Basis expansion

We will use the one dimensional framework but all our results can be ex-

tended to the multi-dimensional case. Denote E = [0; 1] the one-dimensional

space and x ∈ E, f is supposed to be expanded in the "triangle" Schauder Basis

defined by:

Λ0,0(t) =
1

2
−

∣
∣
∣
∣
x −

1

2

∣
∣
∣
∣

and Λj,k(t) = 2j/2Λ0,0(2
jt − k). (1)
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Some examples of Λj,k are plotted in figure 7.

Note here that we have chosen to normalize functions Λj,k so that ‖Λj,k‖2 =

1/4 but this choice will not have some important consequence. In this basis, the

unknown f is given by

f(t) =
∑

j,k

αj,kΛj,k(t)

︸ ︷︷ ︸

:=η(t)=E[f(t)]

+ǫ(t), (2)

where ǫ(t) is a Gaussian white noise N (0, σ2).

Remark 1. In this work, we have chosen to use the Triangle Schauder Basis
instead of a true multi-resolution wavelet basis for one main reason. Indeed,
finding optimal design using such basis will be almost explicit since we will de-
termine for each subset of functions (Λi)i∈I a finite set of points to build optimal
designs.

2.2. General description of the sequential algorithm

The objective is to build an "optimal" pair (x, I) where x denotes the design

of the linear model built whereas I is the index of functions used to build a linear

model with the design x. Indeed, as our framework is the classical statement

of optimal design, one must understand that the measurement of some f(xi)

is considered as a costly task and the searched algorithm will have to select a

few points among E to approximate well the signal f over E. Consequently,

it will be impossible to explore both all possible indexes I and n-sets x (and

thus to compute the associated f(ξi) for ξi ∈ x ) and to choose among them the

best fitted linear model. Thus, we will follow a sub-optimal strategy where we

will successively build the design xn and the set In recursively. Initialization

of (xn, In) will be detailed in the sequel. To build xn+1 from xn, obviously we

will not erase some points from xn in the design at step n + 1, because it has

been costly to evaluate f on the design xn. Hence it will be imperative to keep

the former points of xn in xn+1 so that xn+1 ⊂ xn.

To infer a criterion and an "optimality" for (xn, In), we will detail first some

classical element of optimal designs theory before we adapt them to our initial

motivation of finding both good adaptive designs and set of functions.

The number of observations will be fixed in the beginning of the algorithm.

2.3. Integrated mean square error (IMSE)

Following notations of [1], we call J the IMSE inferred from any design x

using a set of functions Λ indexed by a I:

J(x, I) =
Ω

σ2

∫

E

[

Ef̂x,I(t) − η(t)
]2

dt, (3)

where f̂x,I is the estimator of f based on a standard linear model computed on

x and f(x) using the linear combinations of
(
Λ(j,k)

)

(j,k)∈I
. In the last formula,

Ω is the volume of the domain E. More precisely, denote f(x) the column vector

given by the signal observed on the points of the design x of length l:

f(x) =







f(ξ1)
...

f(ξl)







,
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and use the notation ΛI(x) for the rectangular (p × l) matrix:

ΛI(x) =







Λ(j1,k1)(ξ1) . . . Λ(j1,k1)(ξl)
... . . .

...

Λ(jp,kp)(ξ1) . . . Λ(jp,kp)(ξl)







.

Then, the linear estimator f̂x,I is defined as

f̂x,I =
∑

(j,k)∈I

α̂(j,k)Λ(j,k),

where the vector α̂ = (α̂(j,k))(j,k)∈I is given by:

α̂ =
(
tΛI(x)ΛI(x)

)−1
ΛI(x)f(x). (4)

Finally, expanding the IMSE definition (3) yields the classical bias/variance

trade off:

J(x, I) =
Ω

σ2

∫

E

V ar[f̂x,I(t)]dt

︸ ︷︷ ︸

:=Vx,I

+
Ω

σ2

∫

E

(

E[f̂x,I(t)] − η(t)
)2

dt

︸ ︷︷ ︸

:=Bx,I

. (5)

Recall now that our goal is to find both design x and decomposition subset ΛI to

minimize (5). In the last equation, obviously, the bias term Bx,I is untractable

since it depends principally on η which is unknown for all t over E and which

is approximated by f(x) at the design points x. Thus, equation (5) is not good

enough to recover good pairs (x, I). Consequently, it will be necessary to slightly

modify and bound the "energy term" J(x, I) to get something one can expect

to minimize.

2.4. Energy term and the adaptive strategy

2.4.1. The bias term

We start pointing a first method to handle the bias term even if we will not

use this model to run our algorithm for computational reason.

Bias bound using discrepancy

As pointed in the last paragraph, we need to bound J(x, I) to yield numer-

ically tractable equation. It is possible to use the Koksma-Hlawka inequality

[11, 12] inferred from the discrepancy of x:

∫

E

(

E[f̂x,I(t)] − η(t)
)2

dt ≤
1

l

l∑

i=1

[

Ef̂x,I(ξi)] − η(ξi)
]2

+D∗
l (x)V

(

(Ef̂x,I − η)2
)

,

(6)

where D∗
l (x) is the so called star-discrepancy of x up to l, and V is a variation

of the function t 7→ (E(f̂x,I(t)) − η(t))2. However, equation (6) may not be

satisfactory again since we cannot really compute the variation! This is why it

may be natural to replace the last term involving η by a penalized term

∫

E

(

E[f̂x,I(t)] − η(t)
)2

dt ≤
1

l

l∑

i=1

[

Ef̂x,I(xi)] − η(xi)
]2

+ λID
∗
l (x) := B1(x, I).

(7)

In this last equation, λI is a penalization term replacing the total variation of

(Ef̂x,I − η)2. This last term may increase with the highest resolution of maps

composing ΛI .
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Remark 2. We provide this bound for theoretical sake of completeness. We
propose to simply consider the case λI = 0 instead for numerical reasons since
the solution of our optimization step will be almost explicit.

Fast approximation of the bias term

Recall that the bias term expression is

B(x, I) =

∫

E

(

E[f̂x,I(t)] − η(t)
)2

dt.

In the sequel, we will need to control the power of bias reduction of each function

ΛI . To do so, we will simply approximate this term and his derivatives by an

empirical mean. The section 3 will detail the use of such approximations.

2.4.2. The Variance term

Following standard argument of optimal design theory, V (x, I) can be com-

puted from the definitions of α̂ given in equation (4) and f = η + ǫ. Immediate

computation (see [13] for instance) yields

Vx,I =

∫

E

σ2 V ar
[

tΛI(t)
[
tΛI(x)ΛI(x)

]−1 tΛI(x)
]

dt = σ2Tr
(

µ1,1(I)M−1
x,I

)

.

Let’s recall that in the last formula, Mx,I is the information matrix of the design

x with the basis function ΛI stated as

Mx,I = ΛI(x)tΛI(x),

where tA is the transposed of A, and µ1,1(I) is the first moment matrix given

by

µ1,1(I) =

∫

E

tΛI(t)ΛI(t)dt.

To sum up the two last paragraphs, we obtain naturally the energy term

E(x, I) = Tr
(

µ1,1(I)M−1
x,I

)

+
1

σ2

1

l

l∑

i=1

[

Ef̂x,I(ξi)] − η(ξi)
]2

. (8)

Some further investigations will be necessary to handle a more general setting

with λI > 0 and we will give some statistical idea of many open questions

concerning some future developments.

2.4.3. The adaptive strategy

In our adaptive framework, we need to choose successively some new points

in the design x while we can decide or not to update the set ΛI . As pointed in the

introductory paragraph, we do not delete points of the design x. Consequently,

the algorithm is necessarily of the following form:

Step 0 • Fix any initial set of functions ΛI0
. For instance in a one dimensional

setting with E = [0; 1], we can choose naturally I0 = {(0, 0); (1, 0); (1, 1)}

since we do not have any prior on the unknown function f .

• Compute the optimal design x0 which minimizes the Variance term:

x0 = arg min
x

Tr
(

µ1,1(I)M−1
x,I0

)

.

Note that this choice implies immediately that x0 minimize E(., I0).
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Step n • Update the set of functions ΛIn
to minimize E(xn, .). We will describe

a suboptimal strategy below. Note that this suboptimal strategy will

build ΛIn+1
from ΛIn

with and addition of one son of one of the maps

in ΛIn
or deleting one map of ΛIn

.

• Choose the optimal design xn+1 deduced from xn with an addition of

one point ξn+1

xn+1 = xn ∪ {ξn+1},

using the former set of functions ΛIn+1
previously computed.

The next section will describe how one can fix a fast algorithm to run both

steps of each iteration of the algorithm.

3. Optimization steps

In the last algorithm, two steps are needed to be detailed, the first is the

update of the optimal design and the second is how can we deduce to modify or

not the set of functions ΛIn
.

3.1. Scheme of the variance minimization

This paragraph is dedicated to the iteration xn 7→ xn+1 and will use stan-

dard argument of optimal design theory. Recall that one has to determine the

optimal ξ such that xn ∪ ξ will generate a minimum variance term in E while

the set In is fixed:

ξn+1 = arg min
ξ

Tr(µ1,1(In)M−1
x∪ξ,In

) (9)

Note that this last optimization procedure does not depend on any computation

of f on any new point. The simplest natural way to find ξn+1 is using a simulated

annealing algorithm, but in the very particular case of triangle Schauder basis

functions, this minimization step always yields very special solution as shown

in the one dimensional figure 7.

Indeed, the minimization step always yields solutions that are dyadic points

λ = k
2j , whose resolutions j are bounded by the maximal resolution of the

maps in ΛI . This important fact clearly improved the numerical resolution of

the equation (9). We will show some theoretical supporting proof in the next

paragraph.

3.2. Theoretical study of the variance minimization for the Schauder Triangle

Basis

In optimal design theory, there classically exists three optimality criteria of

experimental designs. All these optimality are based on the information matrix

Mx, the D-optimal design is based on the minimization of

Φ0(Mx) = det M−1
x

,

while A-optimal design or E-optimal design are based on the maximization of

Φ1,C(Mx) = Tr
(
CM−1

x

)
and Φ∞(Mx) = sup

λ∈Sp(Mx)

|λ|.
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Obviously, in most cases, these three criteria does not yield equivalent de-

signs. In our work, we have mainly focused on the two first criteria (D and A

optimal designs). Note here that we do not handle some continuous measure on

the design because our goal is to identify optimal "points" to measure f . Thus

it is not possible to easily recover classical results on D and A optimal design ap-

plying some classical equivalence theorems [2, 13, 14] since our parameterization

is not a convex function of the points of the design. In the next two paragraphs,

we are studying the localization problem for optimal designs dedicated to the

Schauder Triangle Basis defined by (1). Of course these properties may be false

in a more general multi-resolution basis even if the adaptive algorithm principle

remains unchanged.

3.2.1. First optimal design criterium

We provide first a study concerning the D-optimal design criterion. In our

approach, we need to fix the first elements of the design x and find a point the

location of ξ ∈ E such that x ∪ ξ is D-optimal. Next theorem shows that in

fact, ξ is necessarily a dyadic point which is the maximum of one of the map of

ΛI . The proof of this theorem is deferred to the appendix.

Theorem 1. Let x be any fixed design and ΛI be any finite subset of functions
extracted from the Schauder triangle basis, then

arg min
ξ∈E

det M−1
x∪ξ(ΛI) ⊂

⋃

i∈I

arg max
t∈E

Λi(t)
⋃

i∈I

∂Supp(Λi)

︸ ︷︷ ︸

:=E

,

where Supp(f) is the support of f.

This theorem is very useful following our adaptive strategy to build xn+1 at

step n + 1 while adding a new point to the design xn at step n. Indeed, it is

sufficient to explore the small finite number of dyadic points E , described above

and select the point which maximizes the D-criterion. We also provide a result

which generalizes the last theorem regarding the D-optimal design criterion for

LASSO regression.

Theorem 2. Let x be any fixed design and ΛI be any finite subset of functions
extracted from the Schauder triangle basis, then the

arg min
ξ∈E

det (Mx∪ξ(ΛI) + αId)
−1 ⊂ E .

3.2.2. The trace optimal design criterion

We give here some element of the study of A-optimal design criterion, but

this study is not complete yet since one of the key point remains open. We

search ξ which maximizes the criterion given the last observations x. Remark

first that one can re-write the A-optimal design criterion using the equation

(16):

Tr
(

µ1,1M
−1
x∪ξ

)

= Tr

(

µ1,1M
−1
x

−
µ1,1M

−1
x

Λt
IΛIM

−1
x

1 +t ΛIM
−1
x ΛI

)

= Tr
(
µ1,1M

−1
x

)
−

tΛIM
−1
x

µ1,1M
−1
x

ΛI

1 +t ΛIM
−1
x ΛI

.
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Thus, the location of the optimal point ξ at step n + 1 is deduced from step n

minimizing the second term of the last equation and from a numerical point of

view, optimization of this last term is thus performed easily.

Remark 3. From a theoretical point of view, we provide to the best of our
knowledge, two unsolved conjectures which has always numerically been checked
in our experiments. Note that the second one is stronger than the first one.

Conjecture 1. For any non negative t, we have the following localization prop-
erty

arg min
ξ∈E

det
(

tId + M−1
x∪ξ(ΛI)

)

⊂
⋃

i∈I

arg max
t∈E

Λi(t)
⋃

i∈I

∂Supp(Λi).

Conjecture 2. For any symmetric positive matrix C and non negative t, we
have the following localization property

arg min
ξ∈E

det
(

tC + M−1
x∪ξ(ΛI)

)

⊂
⋃

i∈I

arg max
t∈E

Λi(t)
⋃

i∈I

∂Supp(Λi).

These two conjectures allow us to assert the next property which locate the A
optimal designs for the Triangle Schauder Basis.

Theorem 3. If the conjecture (1) is true, then

arg max
ξ∈E

Tr
(

M−1
x∪ξ(ΛI)

)

⊂
⋃

i∈I

arg max
t∈E

Λi(t)
⋃

i∈I

∂Supp(Λi).

If the conjecture (2) is true, then

arg max
ξ∈E

Tr
(

CM−1
x∪ξ(ΛI)

)

⊂
⋃

i∈I

arg max
t∈E

Λi(t)
⋃

i∈I

∂Supp(Λi).

3.2.3. Convergence in the case of fixed basis I

We detail here the convergence of the parameter estimate α̂ while following

the strategy of sequential optimal design detailed in the last paragraphs when

the basis I remains fixed. As both of the two previous criterion yield same

optimal design, we are only concerned by the study of sequential strategy:

xn+1 = xn ∪ ξn+1 and ξn+1 = arg max
ξ

det(Mxn∪ξ),

while α̂ is classically given by

α̂n = M−1
xn

ΛI(xn)f(xn).

This asymptotic behavior is detailed in the next theorem whose proof is defered

to the appendix

Theorem 4. Let f and η be given as in (2) with a fixed basis I, then the
sequential optimal design is consistent: α̂n → α a.s. Moreover, there exists a
positive constant C such that

‖αn − α‖∞ ≤ C

√

log n

n
.

Remark 4. The last theorem ensures the consistency of α̂n provided that the
signal η is decomposed in the good basis function ΛI . Note that when η /∈
Span(ΛI), the convergence to the natural projection of η into Span(ΛI) also
holds.
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4. Stochastic Model Selection

This section presents a stochastic algorithm to update In to build a coupled

model selection with the sequential design strategy. For this, we need first some

tool to estimate the efficiency of each function in In. This is done looking at

the Bias term of (5).

4.1. Bias Optimization

This paragraph is dedicated to the optimization of the bias term defined

through the bound (6). As pointed above, this term B(x, I) is replaced by the

sum of the empirical L2 loss. We provide here some heuristics to update the

basis functions (Λi)i∈In
. The first problem is to measure the efficiency of each

Λi, i ∈ In and we detail this measurement in the next paragraph. Then, we

are facing the difficult problem to decide either to add, delete some functions in

In+1 or leave In unchanged. The paragraph will then provide some hints coming

from classical acceptation-reject procedures of Metropolis stochastic algorithms.

4.1.1. Ranking criterion

We propose in the sequel to use one of three ranking criterion for functions

of In into a stochastic simulated annealing like algorithm.

The ANOVA ranking. We detail here how we can measure the efficiency of

each Λi where i ∈ In. The first natural idea is to use the ANOVA (Analysis of

Variance) strategy. For each i ∈ In, compute the ratio

qanova(i) =

∑

x∈xn

[

f̂xn,In\{i}(x) − f(x)
]2

∑

x∈xn

[

f̂xn,In
(x) − f(x)

]2 .

qanova is classically related to the efficiency of each Λi to predict the unknown

η, qanova(i) is weak when Λi is not relevant, and high when Λi is important for

the linear model. Thus, the several ratio in qanova provide a natural hint to

rank the functions of Λi.

The LASSO ranking. We detail very briefly the LASSO procedure to rank vari-

ables in linear regression. The model introduced in [8] is to find (ai)i∈In
solution

of the penalized l1 least square problem:

at = arg min
‖a‖1≤t

∑

x∈xn

[
∑

i∈I

aiΛi(x) − f(x)

]2

, (10)

where t is a non negative control parameter. Such optimization problem is well

known to produce some sparse solutions of at (see [8, 9] for instance), the amount

of sparsity in at is highly dependent on the value of t, sparse representations

occurring for small values of t. Moreover, solutions of (10) satisfy the nice

property:

∀(h, t) > 0 at
i 6= 0 =⇒ at+h

i 6= 0.

Since we recover the standard linear model estimate when t goes to infinity,

we can thus rank variables by decreasing order of importance by increasing t

yielding the classical Forward Stagewise linear Regression selection.

9



The empirical gradient ranking. We propose here to use a direct approximation

of the bias gradient by an empirical approach, B is given by

B(xn, In) =

∫

E

(

E[f̂xn,In
(t)] − η(t)

)2

dt,

and we can decompose Ef̂xn,In
(t) in our basis

Ef̂xn,In
(t) =

∑

i∈I

α̂iΛi.

Now, compute each partial derivative to measure the power of each Λi

∂B(x, I)

∂âi
=

∣
∣
∣
∣
2

∫

E

Λi(t)
[

Ef̂xn,In
(t) − η(t)

]

dt

∣
∣
∣
∣
.

Obviously, the exact computation of this last term is intractable, we approx-

imate this term using naturally the former points in the design x:

qbias(i) =

∣
∣
∣
∣
∣
∣

∑

ξ∈xn

|Supp(Λi)|Λi(ξ)
[

f̂xn,In
(ξ) − η(ξ)

]

∣
∣
∣
∣
∣
∣

.

We will present in our experiments results based on this last empirical Bias

criterion. We have also used the ANOVA or the LASSO ranking but we do not

have found some significant differences with the approach based on qbias.

4.1.2. Stochastic Learning of In with a Simulated Annealing dynamic

Following the last paragraph, it is possible to measure the efficiency of each

map Λi, i ∈ In since each element of I is described by an efficiency criterion

(qbias, qanova and at
i). We now propose a method to modify In. This algorithm is

largely inspired of classical stochastic methods of Metropolis-Hastings. Remind

first that

Eemp(x, I) = Tr
(

µ1,1(I)M−1
x,I

)

+
1

σ2

1

l

l∑

i=1

[

f̂x,I(xi)] − f(xi)
]2

.

To update In, we will use a Simulated Annealing strategy which is classi-

cally decomposed in a proposition step and an acceptation rule adapted to a

stationary measure criterion. We first recall some classical elements of Simu-

lated Annealing theory before. Then we will describe precisely our proposition

algorithm and the acceptation ratio.

Generality on Simulated Annealing algorithm. The Simulated Annealing proce-

dure produces an algorithm to optimize a non negative functional cost C. This

method involves simulating a non-homogeneous Markov chain whose invariant

distribution at iteration n is µn ∝ µ1/Tn where (Tn)n≥0 is a temperature de-

creasing cooling scheme such that Tn → 0. Under classical conditions (see [18]

for instance), µ∞ concentrates itself on the set of minima of C.

The situation is as follows: let Ω a measurable set with a measure m and let

µ be a measure on Ω with density (also denoted µ) w.r.t m. The S.A. method

with stationary distribution µ and proposal distribution q(I, I ′) works as follow:

• from state I ∈ Ω, first propose a state I ′ with probability q(I, I ′)

10



• then, accept the transition with a probability which is adjusted so that µ

is invariant.

We assume the following property: for all I ∈ Ω,

q(I, I ′) > 0 ⇐⇒ q(I ′, I) > 0.

The probability to accept the transition I to I ′ at iteration n is then defined as:

∀I ′ 6= I Qn(I, I ′) = min

{
µn(I ′)q(I ′, I)

µn(I)q(I, I ′)
, 1

}

. (11)

When µ corresponds to a Gibbs field associated to a cost function C (Eemp in

our case), this ratio is in fact given by

∀I ′ 6= I Qn(I, I ′) = min

{

e
C(I)−C(I′)

Tn

q(I ′, I)

q(I, I ′)
, 1

}

. (12)

Reversible Jump proposal. We propose to use as transition kernel q a reversible

MCMC [19]. The main difficulty is to ensure the weak reversibility condition

given in the former paragraph:

q(I, I ′) > 0 ⇐⇒ q(I ′, I) > 0.

In our framework, we start with I0 = {(0, 0} and we decide to use the

following dynamic for the set In 7→ In+1 based on

B: Birth of any element i /∈ In, which is associated to a function Λji,ki
,

provided that there exists an element i′ ∈ In such that Λji,ki
is a son or

the father of Λji′ ,ki′
. (The meaning of son and father is to be understood

with respect to the complete dyadic tree considered as a family tree.)

D: Death of any element i ∈ In provided that one of its son or its father is

still in In.

Please remark that the set of vertices in In are not connected in general in

the dyadic tree, it is a consequence of the reversibility condition. These moves

are defined by heuristic considerations, the only condition to be fulfilled is to

maintain the correct invariant distribution described in equation (12).

Remark 5. These moves are not so classical since basically one could make
evolving the set In using birth or deletion steps following the natural structure of
dyadic trees. This evolution would generate connected trees (from root to leaves)
but such trees are not consistent with a sparse representation of the signal. At
last, the necessary reversible jump condition is fulfilled provided the definition
of B and D.

Given any iteration n, an "optimal design" xn and a basis In, we use first

one of the three ranking criterion defined above to propose a new state. We

first fix a real pn ∈]0; 1[ which will be the probability to propose an addition

of one function to In. Conversely, the real qn will be the probability to delete

one element of In. At last, rn will be the probability of the birth of the initial

11



element Λ0,0. If this initial element belongs to In, we set rn = 0. Otherwise,

(pn, qn, rn) are chosen such that

pn + qn + rn = 1 pn > 0 qn > 0 rn > 0.

In the birth case, denote Ibirth
n the set of elements in In such that one of

their sons is not present in In. Then, propose the birth of a descendant of some

element Λi, i ∈ Ibirth
n where we sample i with a discrete probability pbirth which

is an increasing function of qbias or qanova. For instance, one can simply choose

∀i ∈ In pbirth(i) =
qbias(i)

∑

j∈In
qbias(j)

.

In the death case, denote Ideath
n the set of elements in In such that one of their

descendant or ascendant is in In and propose the death of one of the poorest

predictor using a decreasing function of qbias or qanova.

The resulting transition kernel of the simulated Markov chain is then a mix-

ture of the different transition kernel associated with the moves described above.

We choose now classically Tn = C1

C2+log(n) and this yields the transition kernel

q and the acceptation ratio Qn.

5. Experimental results

This section present two examples, each time an unknown signal η must

be recovered from as few observations as possible. The first example deals

with the approximation of some unknown functions that cannot be developed

in the triangle Schauder basis. The second example illustrates the database of

Motorcycle impact experiment ([20]). We will compare our method with some

other approximations obtained with regular designs, or model selection strategy

such as the LASSO. The numerical criterion to draw this comparison will be

the Integrated Mean Square Error Rate. As pointed in the section 3, if the

conjectures 1 and 2 are satisfied, designs obtained for standard linear model

or for LASSO models are equivalent since the several minimum of the variance

criterion are the same. Note that for all of our experiments, we normalize the

observations to get Ω = [0; 1].

5.1. Description of the data

We investigate first the approximation obtained when the function η is un-

known. We set first η1 to be a sinus cardinal type function, more precisely, we

get

∀x ∈ [0; 1] η1(x) = a ×
sin [k(x − 1/2)]

k(x − 1/2)
.

In addition, we define f1 as

∀x ∈ [0; 1] f1(x) = η1(x) + σw1(x), (13)

where (dw1(x))x∈[0;1] is a normal centered independent white noise model. The

parameters a and σ permit to modify the Signal to Noise Ratio.

We want to compare our regression method to recover η1 with a small number

of experiments. We finally initialize the triangle basis functions I0 to ΛI0 =

12



{Λ0,0; Λ1,0; Λ1;1}. This initialization ΛI0
is shown on figure 7 besides some

realizations of equation (13) are shown on figure 7.4.

The next synthetic function to be approximated is a mixture of localized

Gaussian kernel. This example will enable us to see whether our method is

good adaptive to the successive noisy measurements of f . For this, we set

η2 to be localized around some values of Ω, 0.25, 0.5 and 0.75, with different

amplitudes and frequencies.

∀x ∈ [0; 1] η2(x) = 5e−1000(x−0.25)2 + 5e−100(x−0.75)2 + 20e−100(x−0.5)2

In the last case, f2 is defined as

∀x ∈ [0; 1] f2(x) = η2(x) + σw2(x), (14)

and some realizations of equation (14) are shown on figure 7.5.

5.2. Methods

We run our algorithm setting C1 = 10, C2 = 1 and pn = 0.8, qn = 0.2 or

pn = 0.75, qn = 0.15 and rn = 0.1 (depending on Λ0,0 belongs to In or not).

Moreover, we assume that σ = 1.

To obtain a reliable integrated mean square estimation of the several meth-

ods, we repeat our experiments 1000 times and compute the IMSE between the

true signal η1 or η2 and our estimates f1 or f2. The next figures will show the

performance of the several methods used listed above:

• Method 1: linear model on "optimal" design xn with learned In.

• Method 2: linear model on regular design (i/n)i=1..n with learned In.

• Method 3: LASSO model on "optimal" design with learned In.

• Method 4: LASSO model on regular design with learned In.

• Method 5: LASSO model on "optimal" design with full Imax.

• Method 6: LASSO model on regular design with full Imax.

Each time, we plot the evolution of the IMSE with the number of experiments

n for the six methods, we also show the density of designs. Remark that all

methods except Method 6 are dependent on our algorithm (In or xn) and our

result will be compared to the standard Method 6. Moreover, we present Method

5 for sake of completeness even if our main contributions are Methods 1 to 4.

Note at last that the LASSO procedure has been run with a cross validation

procedure to compute the best sparsity parameter t.1.

1We use the implementation of the LASSO described in [8] downloadable at

http://www.applied-mathematics.net/download.php?id=45
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5.3. Results

Function η1. In figure 7.6 we put the histogram of the selected design points

when we run 1000 Monte Carlo simulations for 20 iterations. We choose to

restrict us to the first 20 iterations since we want to exhibit the most important

experiments performed to approach η1.

We can remark that our algorithm choose to measure the signal in the neigh-

borhood of the changing point 1/2 + mπ/2k of the Sinus Cardinal function η1

(m ∈ Z). The algorithm appears to localize the important "changing point" of

the signal.

Moreover, the next figures 7.7 and 7.8 illustrate the good behavior of our

method following the evolution of the Integrated Mean Square Error Rate. We

remark that in both cases of low or high variance (σ = 0.5 or σ = 2), the

quadratic loss is always decreasing with the number of experiments for Methods

1/3, this result was not so obvious since In can be modified each time n is

increased (for instance the IMSE of Method 6 can increase for some iteration).

We also remark that using an optimized LASSO (with k-fold cross validation)

based on the design xn and a basis defined via In has an equivalent IMSE.

This confirms the usefulness of the selection of functions in In to obtain good

interpolation results. Method 2 is completely outperformed by the Method 1

and 3. This is not surprising since a regular design may not be adapted to an

irregular structure of In. The linear model can be really bad-conditioned when

the resolution of some functions in In is high whereas the design is not adapted

to these high resolution functions.

The LASSO algorithm runs on our basis In with a regular design (Method 4)

is generally better than Method 2 since it solves the problem of bad-conditioned

linear models with an automatic deletion of the high resolution functions which

yield bad conditioned linear systems. But this point is false when we use a

LASSO algorithm on the full basis function (maximum resolution) on a non-

regular design. Indeed, Method 5 was the worse of the interpolation algorithms

we used. At last, the LASSO on regular design and full basis functions (Method

6) performs generally well when the number of experiment is not too small (at

last 60 experiments), but is completely outperformed by Method 1 or 3 for small

number of experiments.

Note also that on the example of the Sinus Cardinal signal, the variance

term σ does not seem to have a real influence on the ranking of the methods.

Of course, the IMSE is better when σ is small, but methods 1 and 3 seem to be

the best among all the proposed algorithms.

Function η2. The same conclusions can be drawn following the results described

in figure 7.9.

Considering now the evolution of the IMSE (figures 7.10 and 7.11) with the

number of experiments, we remark here that in the low variance case, our algo-

rithm (method 1) may not be very relevant compared to LASSO interpolation on

regular design with a good basis function In. But in the case of larger variance

term, methods 1 and 3 appear to be the more reliable (see figures 7.12 and 7.13).

This is also illustrated considering the interpolation obtained in figures 7.12 and
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7.13. At last, the LASSO method computed on the full basis of functions and

a regular design remains good for sufficient number of experiment as pointed

in figure 7.13 (number of experiments greater than 50). One explanation of the

efficiency of methods 1 and 3 in the high variance case is that these methods

use a control on the real value of the variance although the LASSO method 4 on

regular designs, as all penalized methods, use a penalization heuristic to control

the variance term.

5.4. Motorcycle impact experiment

We end the simulation paragraph by using a real dataset of Motorcycle Im-

pact Experiment (see [20] for a brief description of the data). This experiment is

designed to measure the efficiency of crash helmets and especially the minimum

and the maximum values of the signal. Silverman [20] uses a spline smoothing

approach to estimate the underlying curve. One may ask whether the experi-

menters really need the 133 observations to interpolate the curve response well.

We decide to scale the 133 observations between 0 and 1 and we first compute

the kernel smoothing interpolation described in [20]. Moreover, we decide to

use this interpolation as the "true" response to compare our methods. Indeed,

this does not yield the true response but we use it as an indicator of the quality

of the design strategies. At last, we randomize the kernel interpolation by an

addition of a white noise. We find again a good performance of the methods 1

and 3 compared to other methods. We only show some examples of interpola-

tion obtained with 50 experiments. These results are plotted in figures 7.14 and

7.15. We remark that the results are satisfactory with methods 1 or 3 particu-

larly on the first slope of the signal. Other methods are visually outperformed,

when the IMSE is compared to the kernel smoothing approach: the estimated

IMSE appears to be around 54 for methods 1 and 3, around 65 for the whole

LASSO methods 4 and 6 and greater than 1000 for methods 2 and 5 in the high

variance case described in figure 7.15.

6. Conclusion

The adaptive method developed in this paper is working well on numerical

and real data examples compared to previous method in the literature. But, on

the theoretical side, many questions remain open.

First, it would be very fruitful to generalize the localization result to multi-

resolution set of smooth functions.

The problem to know how to handle the discrepancy term λIn
seems inter-

esting since one can imagine to decrease this penalization term should slowly

decrease with the number of experiments but increase when the resolution of

one map in In is increased as pointed in equation (6).

At last, some future work will address the difficult question of the nature and

rate of convergence of the stochastic coupled algorithm (In and xn evolving).

To do so, it is necessary to fix a precise cooling strategy to use the consistency

result of theorem 4.
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7. Appendix

We will denote l as the number of points in a fixed design x and p the

cardinal of I. We suppose for this the trivial assumption l + 1 ≥ p and denote

F the map given by F (ξ) = det (Mx∪ξ). We will show that F is a convex map

on every interval where she is differentiable. Assuming ξ to be suitably chosen

among differentiable points of ΛI , we will note the Λ′
I(ξ) the vector composed

of the differentiable maps of ΛI computed at point ξ and the squared matrix

M ′
ξ =

(
(Λi1Λ

′
i2 + Λ′

i1Λi2)(ξ)
)

i1,i2∈I
=

d
dξ

(Mx∪ξ) .

Using the standard euclidean scalar product on R
p, one can check immediately

that

∀U ∈ R
p M ′

ξU = 〈ΛI(ξ);U〉Λ′
I(ξ) + 〈Λ′

I(ξ);U〉ΛI(ξ).

First, we state some classical results on matrices whose proofs are based on

standard argument on matrices of rank 1. Some details can be found in [15] and

in chapter one of [13].

Proposition 1. Provided M−1
x∪ξ and M−1

x
are non-singular, they obey the rela-

tions

M−1
x

= M−1
x∪ξ +

M−1
x∪ξΛI(ξ)

tΛI(ξ)M
−1
x∪ξ

1 −t ΛI(ξ)M
−1
x∪ξΛI(ξ)

(15)

M−1
x∪ξ = M−1

x
−

M−1
x

ΛI(ξ)
tΛI(ξ)M

−1
x

1 +t ΛI(ξ)M
−1
x ΛI(ξ)

. (16)

Moreover, |Mx∪ξ| and |Mx| satisfies

detMx∪ξ

detMx

=
1

1 −t ΛIMx∪ξΛI
(17)

detMx

detMx∪ξ
=

1

1 +t ΛIMxΛI
(18)

We now establish two technical lemmas useful to establish our localization

theorem.

Lemma 1. For any symmetric matrix S, we have the relation

Tr(M ′
ξS) = Tr(SM ′

ξ) = 2〈SΛI(ξ); Λ
′
I(ξ)〉. (19)

Proof: Consider first the case where {ΛI(ξ),Λ
′
I(ξ)} are linearly independent in

R
p. A short calculus show that

M ′
ξSΛI(ξ) = 〈SΛI(ξ); ΛI(ξ)〉Λ

′
I(ξ) + 〈SΛ′

I(ξ); ΛI(ξ)〉ΛI(ξ),

and

M ′
ξSΛ′

I(ξ) = 〈SΛI(ξ); Λ
′
I(ξ)〉Λ

′
I(ξ) + 〈SΛ′

I(ξ); Λ
′
I(ξ)〉ΛI(ξ).

Since the rank of M ′
ξ is 2, we can find a basis adapted to the family (ΛI(ξ); Λ

′
I(ξ))

such that the endomorphism described by M ′
ξS in the basis is













〈SΛ′
I(ξ); ΛI(ξ)〉 〈SΛI(ξ); ΛI(ξ)〉 0 . . . 0

〈SΛ′
I(ξ); Λ

′
I(ξ)〉 〈SΛI(ξ); Λ

′
I(ξ)〉 0

... 0

0 . . . 0 . . . 0
...

...
...

... 0

0 . . . 0 . . . 0













.
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Thus in this case

Tr(M ′
ξS) = 2〈SΛI(ξ); Λ

′
I(ξ)〉.

Suppose now that {ΛI(ξ), Λ
′
I(ξ)} are linearly dependent, from this assumption

we get

〈SΛI(ξ); ΛI(ξ)〉Λ
′
I(ξ) = 〈SΛ′

I(ξ); ΛI(ξ)〉ΛI(ξ),

and applying the same argument as above with the endomorphism M ′
ξS whose

rank is one in this case, we also obtain

Tr(M ′
ξS) = 2〈SΛI(ξ); Λ

′
I(ξ)〉. ¤

For sake of simplicity, we will omit the parameter ΛI of the information

matrices M written in the next two proofs. If we denote by Com(M) the

matrix tcof(M), where cof(M) is the matrix of cofactors of A, we have the

following result.

Lemma 2. Assume ξ to be a regular point for the map ΛI , and that Mx, Mx∪ξ

are non-singular, then

Tr
(
tCom(Mx∪ξ)M

′
ξ

)
= Tr

(
tCom(Mx)M ′

ξ

)
.

Proof: Using lemma 1 applied first to S = M−1
x∪ξ, we get

Tr(M−1
x∪ξM

′
ξ) = 2〈M−1

x∪ξΛI ; Λ
′
I〉. (20)

Moreover, lemma 1 applied now to S = M−1
x∪ξΛ

t
IΛIM

−1
x∪ξ yields

Tr
(

M−1
x∪ξΛ

t
IΛIM

−1
x∪ξM

′
ξ

)

= 2〈M−1
x∪ξΛI

tΛIM
−1
x∪ξΛI

︸ ︷︷ ︸

=〈ΛI ;M−1
x∪ξ

ΛI〉

; Λ′
I〉.

Thus

Tr
(

M−1
x∪ξΛ

t
IΛIM

−1
x∪ξM

′
ξ

)

= 2〈ΛI ; M
−1
x∪ξΛI〉〈Λ

′
I ;M

−1
x∪ξΛI〉. (21)

From (15),(20) and (21), we get

Tr(M−1
x

M ′
ξ) = 2〈M−1

x∪ξΛI ; Λ
′
I〉 +

2〈ΛI ; M
−1
x∪ξΛI〉〈Λ

′
I ; M

−1
x∪ξΛI〉

1 −t ΛIM
−1
x∪ξΛI

= 2〈M−1
x∪ξΛI ; Λ

′
I〉

(

1 +
〈ΛI ; M

−1
x∪ξΛI〉

1 −t ΛIM
−1
x∪ξΛI

)

Tr(M−1
x

M ′
ξ) =

Tr(M−1
x∪ξM

′
ξ)

1 −t ΛIM
−1
x∪ξΛI

.

Now, use (16) and the relation A−1 =
t(Com(A))

det(A) to reach the conclusion of the

lemma:

Tr
(
tCom(Mx∪ξ)M

′
ξ

)
= Tr

(
tCom(Mx)M ′

ξ

)
. ¤

Proof of theorem 1: We will note F (ξ) = det (Mx∪ξ). Suppose first that Mx

is non-singular and ξ is not a dyadic point described by the set E . In this case,

classical differentiation used with lemma 2 yields

F ′(ξ) = Tr
(
tCom(Mx∪ξ)M

′
ξ

)
= Tr

(
tCom(Mx)M ′

ξ

)
.
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Finally, since Tr is a linear map, we immediately get

F”(ξ) = Tr
(
tCom(Mx)M”ξ

)
= Tr

(
tCom(Mx)Λ′

I
tΛ′

I

)
= tΛ′

I
tCom(Mx)Λ′

I ≥ 0.

Thus F is a convex function on each interval outside of E Consequently, its

maximum are located on some dyadic points of E . This is equivalent to the

assertion of the proposition.

Suppose now Mx is singular, we can find a sequence Mx,ǫn
= Mx + ǫnId

which is non-singular such that

lim
n7→+∞

Mx + ǫnId = Mx.

Consider now the function Fǫn
(ξ) defined as

Fǫn
(ξ) = det (Mx,ǫn∪ξ)

We can use the same arguments as before to conclude that arg max Fǫn
⊂ E since

these arguments only rely on a slight modification of lemma 2 which becomes:

F ′
ǫn

(ξ) = Tr
(
tCom(Mx,ǫn∪ξ)M

′
ξ

)
= Tr

(
tCom(Mx,ǫn

)M ′
ξ

)
.

Now, remark that E is a finite set which is not varying with ǫn and

∀ξ Fǫn
(ξ) ≤ max

x∈E
Fǫn

(x).

Taking the limit in the relation above yields the conclusion of the proof. ¤

Proof of theorem 3: Remark first that t 7→ det
(

tId + M−1
x∪ξ(ΛI)

)

is a poly-

nomial function of t whose degree p is the size of ΛI . This polynomial function

is developed in

det
(

tId + M−1
x∪ξ(ΛI)

)

= tp − Tr
(

M−1
x∪ξ1

(ΛI)
)

tp−1 + Qξ(t)

where deg(Qξ) ≤ p − 2. Now for ξ1, ξ2 ∈ E satisfying

Tr
(

M−1
x∪ξ1

(ΛI)
)

≥ Tr
(

M−1
x∪ξ2

(ΛI)
)

,

we can immediately check that for sufficiently large t, we have

det
(

tId + M−1
x∪ξ1

(ΛI)
)

≤ det
(

tId + M−1
x∪ξ2

(ΛI)
)

.

Consequently, the solutions of the trace maximization problem are the same as

the one deduced from the determinant minimization problem and this remark

ends the first point. To get the more general second conclusion, we just have to

apply in a similar way conjecture 2. ¤

Remark 6. To extend now the proof to higher dimensions with some tensorized
family of Schauder functions, one just have to remark that both lemma 1 and 2
are still valid. Then a similar argument to the one used in the proof of theorem
1 shows the convexity of F except in the neighborhood of dyadic points.

Proof of theorem 4: This proof is largely inspired from [16], himself directly

related to theorem 1 of [17] which states the almost sure convergence of α̂n to

α provided the two conditions
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C1 λmin [Mxn
] → ∞ a.s.

C2 log (λmax [Mxn
]) = o (λmin [Mxn

]) a.s.

where λmin(M) denotes the minimum eigenvalue of M and λmax(M) the maxi-

mum eigenvalue of M .

We establish first the condition C1. Remark first that as the map (Λi)i∈I

are linearly independent, we can find ρ > 0 such that

B(0, ρ) ⊂ Conv(ΛI(t), t ∈ E) ∪ −Conv(ΛI(t), t ∈ E)
︸ ︷︷ ︸

:=G

,

where Conv denotes the convex hull of a set. Now, we have for any symmetric

positive definite M

max
y∈B(0,ρ)

tyM−1y = λmin(M)−1ρ2,

and since y 7→ tyM−1y is convex, we can state that

max
x∈E

tΛI(x)M−1ΛI(x) ≥
ρ2

λmin(M)
. (22)

Remark that all maps in ΛI are continuous and E is compact, thus

∃L > 0 ∀t ∈ E
∥
∥tΛI(t)ΛI(t)

∥
∥

2
≤ L,

where ‖A‖2 := supx∈B(0,1) ‖Ax‖, where we take the Euclidean norm in the last

definition. Now, the spectral radius satisfies the triangular inequality and

λmax

(
Mxk

k

)

≤

k∑

i=1

λmax(ΛI(ξi)
tΛI(ξi))

k
≤ L.

Defining Ik = Mxk
/k, the last inequality yields

λmax(Ik) ≤ L. (23)

Next define ρk = det(Ik) and dk(t) = tΛI(t)I
−1
k ΛI(t), from proposition 1

equation (18), we have

ρk+1 =

(
k

k + 1

)p (

1 +
dk(ξk+1)

k

)

ρk ≥ ρk

(
k

k + 1

)p

.

Thus, for any ǫ > 0, we can find K1 ≥ 1 such that

∀k ≥ K1 ρk+1 ≥ (1 − ǫ)ρk, (24)

and a simple induction shows that ρk ≥ (1 − ǫ)k−K1ρK1 . Let Ak = (1 −

ǫ)k−K1ρK1 , since Ak → 0 as k → ∞, we can find K2 ≥ K1 such that

∀k ≥ K2
ρ2

A
1/p
k

> 2p and

(
k + 1

k

)p

≤ 1 +
2p

k
. (25)

We show now by induction that ρk is bounded from below by (1− ǫ)AK2
for

sufficiently big k. This is obviously true for k = K2 + 1.
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Suppose now that ρk ≥ (1 − ǫ)AK2
. If ρk ≥ AK2

, in view of (24) we

immediately obtain ρk+1 ≥ (1 − ǫ)AK2
. We must thus study the case AK2

>

ρk ≥ (1 − ǫ)AK2
. From the definition of dk and (22), we have

max
x∈E

dk(x) ≥ k
ρ2

λmin(Mxk
)
≥ k

ρ2

det(Mxk
)1/p

≥
ρ2

ρ
1/p
k

.

From equation (25) and our assumption on ρk, we obtain

max
x∈E

dk(x) ≥
ρ2

A
1/p
K2

> 2p

Finally, the definition of ξk+1 yields

ρk+1 = ρk

(
k

k + 1

)p (

1 +
dk(ξk+1)

k

)

= ρk

(
k

k + 1

)p (

1 +
maxx∈E dk(x)

k

)

≥ ρk

This last inequality ends the induction and ρk is bounded from below by a

constant Γ. Now, remark that

λmin(Ik)λmax(Ik)p−1 ≥ det(Ik) ≥ Γ,

and we obtain from equation (23)

λmin(Mxk
) ≥ k

Γ

Lp−1
→ +∞ as k → +∞,

this last equation proves condition (C1).

Regarding condition (C2), simple algebra yields

λmin(Mxk
)

log (λmax(Mxk
))

≥
kΓ

Lp−1 log (kL)
→ ∞ as k → +∞,

and this last equation proves condition (C2).

With notation of theorem 1 of [17], take δ = 0 and apply now this theorem

to conclude that

‖α̂n − α‖∞ = O

([
log (λmax(Mxk

))

λmin(Mxk
)

]1/2
)

= O

(√

log n

n

)

¤
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Figure 7.1: Several functions Λj,k, here (j, k) equals to {(0, 0); (1, 1)(3, 1)(4, 6)}.
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Figure 7.2: Evolution with respect to ξ of the variance term while I =

{(0, 0); (1, 0); (1, 1); (2, 3)}.
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Figure 7.3: Several functions Λj,k, here (j, k) equals to {(0, 0); (1, 1)(3, 1)}.
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Figure 7.4: Function η1 with a = 10, k = 40 and some realizations of f1(x) with σ = 0.5

(crossed curve) or σ = 2 (dashed curve).
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Figure 7.5: Function η2 with and some realizations of f2(x) with σ = 0.5 (crossed curve) or

σ = 2 (dashed curve).
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Figure 7.6: Mean Design selected by our algorithm for the estimation of η1 (a = 10, k = 40)

among the first 20 iterations for σ = 0.5 (left) and σ = 2 (right).
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Method 4 (LASSO on Regular Design)
Method 6 (LASSO on Regular Design and complete basis)

Figure 7.7: Evolution of the IMSE for the estimation of η1 (a = 10, k = 40, σ = 0.5) with the

number of experiments for 5 of the 6 methods listed above method 5 is omitted).

20 40 60 80 100 120
Number of experiments

Method 1−3 (Optimal Design and Optimal Basis, LASSO on Optimal Design and Optimal Basis)
Method 2 (Regular Design and Optimal Basis)
Method 4 (LASSO on Regular Design)
Method 6 (LASSO on Regular Design and complete basis)

Figure 7.8: Evolution of the IMSE for the estimation of η1 (a = 10, k = 40, σ = 2) with the

number of experiments for 5 of the 6 methods listed above method 5 is omitted).
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Figure 7.9: Mean Design selected by our algorithm for the estimation of η2 among the first

20 iterations for σ = 0.5 (left) and σ = 2 (right).
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Method 4 (LASSO on Regular Design)
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Figure 7.10: Evolution of the IMSE for the estimation of η2 (σ = 0.5) with the number of

experiments for 5 of the 6 methods listed above method 5 is omitted).
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Figure 7.11: Evolution of the IMSE for the estimation of η2 (σ = 2) with the number of

experiments for 5 of the 6 methods listed above method 5 is omitted).
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Figure 7.12: Interpolation of the Mixture Signal η2 using the 6 methods and a low variance

term σ = 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 1 − Optimal Design and Optimal Basis
Experimental Measurement

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 2 − Regular Design and Optimal Basis
Experimental Measurement

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 3 − LASSO on Optimal Design and Optimal Basis
Experimental Measurement

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 4 − LASSO on Regular Design and Optimal Basis
Experimental Measurement

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 5 − LASSO on Optimal Design and Complete Basis
Experimental Measurement

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Omega

True Signal
Method 6 − LASSO on Regular Design and Complete Basis
Experimental Measurement

Figure 7.13: Interpolation of the Mixture Signal η2 using the 6 methods and a high variance

term σ = 2.
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Figure 7.14: Interpolation of the Motorcycle Signal using the 6 methods and a low variance

term σ = 5.
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Figure 7.15: Interpolation of the Motorcycle Signal using the 6 methods and a high variance

term σ = 10.
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