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A proximal approach to the inversion of ill-conditioned

matrices

Pierre Maréchal∗ Aude Rondepierre†

Abstract

We propose a general proximal algorithm for the inversion of ill-conditioned ma-
trices. This algorithm is based on a variational characterization of pseudo-inverses.
We show that a particular instance of it (with constant regularization parameter)
belongs to the class of fixed point methods. Convergence of the algorithm is also
discussed.

1 Introduction

Inverting ill-conditioned large matrices is a challenging problem involved in a wide range of
applications, including inverse problems (image reconstruction, signal analysis, etc.) and
partial differential equations (computational fluid dynamics, mechanics, etc.). There are
two classes of methods: the first one involves factorization of the matrix (SVD, QR, LU,
LQUP); the second one involves iterative schemes (fixed point methods, projection onto
increasing sequences of subspaces).

The main purpose of this note is to show that a particular instance of the Proximal
Point Algorithm provides a fixed point method for the problem of matrix inversion. This
fact is based on the observation that the pseudo-inverse M † of a matrix M ∈ Rm×n satisfies
the fixed point equation:

Φ = ϕ(Φ) := BΦ + C, with B := (I + µM⊤M)−1 and C := (M⊤M + µ−1I)−1M⊤

where µ > 0. The corresponding fixed point iteration Φk+1 = BΦk + C is nothing but a
proximal iteration. We see that ϕ is a contraction and that, if M⊤M is positive definite,
then ϕ is a strict contraction. It is worth noticing that, in the proximal algorithm, µ may
depend on k, allowing for large (but inaccurate) steps for early iteration and small (but
accurate) steps when approaching the solution.
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The Proximal Point Algorithm (PPA) was introduced in 1970 by Martinet [5], in the
context of the regularization of variational inequalities. A few years later, Rockafellar [6]
generalized the PPA to the computation of zeros of a maximal monotone operator. Under
suitable assumptions, it can be used to efficiently minimize a given function, by finding
iteratively a zero in its Clarke subdifferential.

Throughout, we denote by ‖M‖F the Frobenius norm of a matrix M ∈ Rm×n and by
〈M, N〉F the Frobenius inner product of M, N ∈ R

m×n (which is given by 〈M, N〉F =
tr(MN⊤) = tr(N⊤M)). In Rm×n, we denote by distF (M,S) the distance between a
matrix M and a set S:

distF (M,S) := inf{‖M − M ′‖F |M
′ ∈ S}.

The identity matrix will be denoted by I, its dimension being always clear from the context.
The next theorem, whose proof may be found e.g. in [1], provides a variational char-

acterization of M †.

Theorem 1.1 The pseudo-inverse of a matrix M ∈ R
m×n is the solution of minimum

Frobenius norm of the optimization problem

(P) Minimize f(Φ) :=
1

2
‖MΦ − I‖2

F
over Rn×m.

2 The proximal point algorithm

The proximal point algorithm is a general algorithm for computing zeros of maximal mono-
tone operators. A well-known application is the minimization of a convex function f by
finding a zero in its subdifferential. In our setting, it consists in the following steps:

1. Choose an initial matrix Φ0 ∈ R
m×n;

2. Generate a sequence (Φk)k≥0 according to the formula

Φk+1 = argmin
Φ∈Rm×n

{

f(Φ) +
1

2µk

‖Φ − Φk‖
2

F

}

, (1)

in which (µk)k≥0 is a sequence of positive numbers, until some stopping criterion is
satisfied.

Equation (1) will be subsequently referred to as the proximal iteration of Problem (P).
The stopping criterion may combine, as usual, conditions such as

‖∇f(Φk)‖F ≤ ε1 and ‖Φk − Φk−1‖F ≤ ε2,

where the parameters ε1 and ε2 control the precision of the algorithm.
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Clearly, the function f : Φ 7→ ‖MΦ − I‖2
F
/2 is convex and indefinitely differentiable.

Therefore, solutions of the proximal iteration (1) are characterized by the relationship
∇f(Φk+1) + µ−1

k
(Φk+1 − Φk) = 0 i.e.,

(I + µkM
⊤M)Φk+1 = Φk + µkM

⊤. (2)

Since M⊤M is positive semi-definite and µk is chosen to be positive for all k, the matrix
(I + µkM

⊤M) is nonsingular and the proximal iteration also reads:

Φk+1 =
(

I + µkM
⊤M

)−1 (

Φk + µkM
⊤
)

. (3)

The iterates Φk could be computed either exactly (in the ideal case), or approximately,
using e.g. any efficient minimization algorithm to solve the proximal iteration (1). In that
case, we need another stopping criterion and we here choose the following one suggested
in [4]:

‖Φk+1 − A(Φk + µkM
⊤)‖F ≤ ǫk min{1, ‖Φk+1 − Φk‖

r

F
}, r > 1 (4)

where ǫk > 0 and the series
∑

ǫk is convergent. Notice that the larger r, the more accurate
the computation of Φk+1. Notice also that, in the case where µk = µ for all k, each
proximal iteration involves the multiplication by the same matrix A := (I + µM⊤M)−1,
and that the latter inverse may be easy to compute numerically, if the matrix I + µM⊤M
is well-conditioned.

We now turn to convergence issues. Recall that our objective function f is a quadratic
function whose Hessian M⊤M is positive semi-definite. Nevertheless, unless M⊤M is
positive definite, the matrix I − (I + µM⊤M)−1 is in general singular and the classical
convergence theorem for iterative methods (see e.g. [2]) is not helpful here to prove the
convergence of our proximal scheme. The following proposition is a consequence of Theo-
rem 2.1 in [4]. For clarity, we shall denote by M the linear mapping Φ 7→ MΦ, by L the
linear mapping Φ 7→ M⊤MΦ and by A the linear mapping Φ 7→ AΦ = (I + µM⊤M)−1Φ.

Proposition 2.1 Let α1 be the smallest nonzero eigenvalue of L and let E1 be the corre-

sponding eigenspace. Assume that µk = µ for all k and that Φ0 is not 〈·, ·〉F -orthogonal to

the eigenspace E1. Then,

‖A(Φk+1 − Φk)‖F

‖Φk+1 − Φk‖F

→
1

1 + α1µ
and

Φk+1 − Φk

‖Φk+1 − Φk‖F

→ Ψ1 as k → ∞,

in which Ψ1 is a unit eigenvector in E1. Moreover the sequence (Φk) generated by the

proximal algorithm, either with infinite precision or using the stopping criterion (4) for

the inner loop, converges linearly to the orthogonal projection of Φ0 onto the solution set

S := argmin f = M † + kerM.

Proof. Step 1. The error ∆k+1 := Φk+1 −Φk (at iterate k + 1) satisfies: ∆k+1 = (I +
µM⊤M)−1∆k. The latter iteration is that of the power method for the linear mapping A.
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Clearly, A is symmetric and positive definite. Consequently, its eigenvalues are strictly
positive and there exists an unique eigenvalue of largest modulus (not necessarily simple).

Notice now that the eigenspace E1 associated to the eigenvalue α1 is nothing but the
eigenspace of A for its largest eigenvalue strictly smaller than 1, namely, 1/(1 + α1µ). We
proceed as in [7, Theorem 1] to obtain the desired convergence rate via that of the iterated
power method.

Step 2. We now establish the linear convergence of the sequence (Φk). First, the
solution set S is clearly nonempty since it contains M †. Moreover, let (Φk) be a sequence
generated by the PPA algorithm using the stopping criterion (4). Let us prove that

∃a > 0, ∃δ > 0, ∀Φ ∈ Rm×n,
[

‖∇f(Φ)‖F < δ ⇒ distF (Φ,S) ≤ a‖∇f(Φ)‖F

]

, (5)

which is nothing but Condition (2.1) in [4, Theorem 2.1], in our context. Let Φ ∈ Rm×n

and let Φ̄ be the orthogonal projection of φ over (kerM)⊥. It results from the classical
theory of linear least squares that distF (Φ,S) = ‖Φ̄−M †‖F . Since M⊤MΦ̄−M⊤ = ∇f(Φ̄)
and M⊤MM † − M⊤ = 0, we also have: ∇f(Φ) = M⊤M(Φ̄ − M †). Moreover, Φ̄ − M † ∈
(kerM)⊥ = (kerL)⊥, so that

‖∇f(Φ)‖F = ‖M⊤M(Φ̄ − M †)‖F ≥ α1‖Φ̄ − M †‖F .

It follows that (5) is satisfied with a = 1/α1. The conclusion then follows from [4, The-
orem 2.1]: the sequence (Φk) converges linearly with a rate bounded by a/

√

a2 + µ2 =

1/
√

1 + µ2α2
1 < 1.

Step 3. By rewriting the proximal iteration in an orthonormal basis of eigenvectors
of L, we finally prove that the limit of the sequence (Φk) is the orthogonal projection of
Φ0 onto argmin f .

A complete numerical study, which goes beyond the scope of this paper, is currently in
progress and will be presented in a forthcoming publication. Let us merely mention that
our proximal approach makes it possible to combine features of factorization methods (in
the proximal iteration) with features of iterative schemes. In particular, if M if invertible,
it shares with iterative methods the absence of error propagation and amplification, since
each iterate can be regarded as a new initial point of a sequence which converges to the
desired solution.

3 Comments

Tikhonov approximation. A standard approximation of the pseudo-inverse of an ill-
conditioned matrix M is (M⊤M + εI)−1M⊤, where ε is a small positive number. This
approximation is nothing but the Tikhonov regularization of M †, with regularization pa-
rameter ε. It is worth noticing that the choice Φ0 = 0 in the proximal algorithm yields the
latter approximation for ε = 1/µ after one proximal iteration.

Trade-offs. At the k-th proximal iteration, the perturbation of the objective function f
is, roughly speaking, proportional to the square of the distance between the current iterate
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and the solution set of (P), and inversely proportional to µk. In order to speed up the
algorithm, it seems reasonable to choose large µk for early iterations, yielding large but
inaccurate steps, and then smaller µk for late iterations, where proximity with the solution
set makes it suitable to perform small and accurate steps. This is especially true in the
case where M is invertible, since the solution set then reduces to {M−1}. Moreover,
numerical accuracy in early proximal iteration may be irrelevant, since the limit of the
proximal sequence is what really matters. A trade-off between a rough approximation
of the searched proximal point and an accurate and costly solution must be found. As
suggested in [3], one may use the following stopping criterion for the proximal iteration:

f(Φk+1) − f(Φk) ≤ δ〈∇f(Φk+1), Φk+1 − Φk〉F .

This criterion is an Armijo-like rule: the algorithm stops when the improvement of the
objective function f is at least a given fraction δ ∈ (0, 1) of its ideal improvement.

Inversion versus linear systems. It is often unnecessary to compute the inverse of
a matrix M , in particular when the linear system Mx = d must be solved for a few
data vectors d only. In such cases, of course, the usual proximal strategy may be used to
compute least squares solutions. It is important to realize that, although the regularization
properties of the proximal algorithm are effective at every proximal iteration, perturbations
of d may still have dramatic effects on the algorithm if M is ill-conditioned. In applications
for which no perturbation of the data must be considered, accurate solutions may be
reached by a proximal strategy. We emphasize that, in the minimization of Φ 7→ ‖MΦ −
I‖F , the data I undergoes no perturbation whatsoever.

References

[1] L. Amodei and J.-P. Dedieu, Analyse Numérique Matricielle. Collection Sciences Sup,
Dunod, 2008.

[2] P.G. Ciarlet. Introduction to numerical linear algebra and optimisation. Cambridge
Texts in Applied Mathematics, Cambridge University Press, 1989.
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