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Abstract

We analyze a macroscopic model with a maximal density cainstr
which describes short range repulsion in biological systeffihis system
aims at modeling finite-size particles which cannot ovedad repel each
other when they are too close. The parts of the fluid where #remal den-
sity is reached behave like incompressible fluids while losensity regions
are compressible. This paper investigates the transitawden the com-
pressible and incompressible regions. To capture thisitran, we study
a one-dimensional Riemann problem and introduce a pettarbproblem
which regularizes the compressible-incompressible itians Specific dif-
ficulties related to the non-conservativity of the problem discussed.

Keywords: Congestion, Riemann problem, incompressible-compriessén-
sition, clusters dynamics, gregariousness, steric cainssr
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1 Introduction

We consider a macroscopic model of self-driven particlescividescribes the
dynamics of a large number of social interactive agents. evipecifically, we
are interested in modeling short range repulsion effeatstduhe fact that finite-
size agents (e.g. sheep in a herd) cannot overlap (nonagyéng or steric con-
straints). To this aim, we derive a hyperbolic problem witteaisity constraint as
a limit of an unconstrained system with a repulsive forcealtiurns on suddenly
when the density becomes close to the maximal one. The limdainrequires
transmission conditions at the transition between an stetad region (where
the maximal density is not reached) and a clustered regraumdlustered regions,
the fluid is compressible while it becomes incompressiblthéclustered ones.
Therefore, this paper aims at providing a description o thansition between a
compressible and an incompressible fluid. Unfortunatbkyformal perturbative
approach which we implement does not directly provide imiation about these
transmission conditions. In order to retrieve this infotio@, we rigorously ana-
lyze special solutions of the perturbation problem: thenitien problem. These
solutions are explicitely known and allow us to carry outlthnét rigorously and to
recover the required transmission conditions. We posulsdt these conditions,
which are rigorously proven only for Riemann problem saa$, do extend to all
solutions. However, being non-rigorous for general sohgj these conditions are
stated as formal conditions in the "formal statement 1” ielyhich constitutes
the main result of the present paper. Still, the rigorousyaisaof Riemann prob-
lem solutions is quite technical and the proofs of many statés are deferred to
appendices.

The modeling of biological systems undergoing flocking ordiney dynam-
ics has been the subject of a vast literature. A first classarfats relies on the
alignement interaction between neighbouring self-priepgparticles. The sim-
plest of these models is an individual-based (or microsyapidel proposed by
Vicsek [44[2h]. A macroscopic version of the Vicsek modelesived in [Z]L] and
a collisional Vicsek model is proposed i [8]. A variant oétklicsek model has
been proposed by Cucker and Sm#lg [IB, 17] (see pl$p 2600 Bdent mathe-
matical results). By incorporating long-range attractivel short-range repulsive
forces to the Vicsek model, one obtains the three zones noddelki [fil, B9,[16],
originally devised to describe fish schools. Models withulsjye-attractive in-
teraction only (without alignement interaction) have betrdied in [3R[ 23, 14].
Such models have been used for pedestrian interacfionB4R80ther kinds of
macroscopic models of drift-diffusion type have been aredyin [2V[3[L[43,41]
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and different hyperbolic models are compared]n [5]. Fotdgial reviews, we
can refer to[[14, 33].

As outlined above, we focus here on the congestion constrammals or
individuals cannot overlap (steric constraint). As a cous®ice this congestion
constraint leads to the existence of a maximal densitywhich cannot be ex-
ceeded inside the flock. This problem has been analyzedebafai schemati-
cally two methods have been proposed. A first one consist®defing repulsion
through forces or diffusion termg [32]23| [4,31,43]. Howrin this approach, the
individuals are point particles and their finite size is nqblecitely described. So
the maximal density constraint is not explicitely takemiatcount. To explicitely
take this maximal density constraint inco account[in [30, the authors have de-
velopped an alternative approach: the particles are fidved freely over one
time step and then projected towards the "closest” admessibn-overlapping
configuration. This leads to non-local interaction betwéen particles which
contradicts the local character of the interactions in nhagbgical systems. By
contrast, we developped a third route inspired by multisgtfiows [10] and traf-
fic jam modeling [B[]7]. The repulsive force is modeled by alim@ar pressure
law p(p) which becomes singular as the density approaches the mledémsity
p*. Additionnally a small parameter allows to describe the fact that the regu-
larized pressure is very small of ordeas long as the density is smaller than
p* and turns on suddenly to a finite or even large value whdiecomes close
to p*. In the limit ¢ — O of this model, two distinct phases appear: a pressure-
less compressible phase which describes free motion irusteced regions and
an incompressible phase which describes the motion inB&leltsters. The ma-
jor difficulty is to find the transmission conditions betwee compressible and
incompressible phases.

The present paper is a multi-dimensional extension of théhoaelogy pre-
sented in[[I0}]g]7] for multi-phase flows or traffic. Howe\aan, additional diffi-
culty arises due to the non-conservative character of flgenat hyperbolic model.
Indeed, momentum is not a conserved quantity because thielgam the under-
lying particle system are self-propelled particles whi@vén constant (in-time)
and uniform (in-space) velocities. Therefore, the modeiciiis at the starting
point of this paper is a non-conservative hyperbolic systdnch as such presents
an ambiguity in the definition of weak solutions. We will shtivat this ambiguity
can be partly removed for one-dimensional Riemann problauotiens. We be-
lieve that the strategy developped in this paper to analgngestion effects can
apply to other systems such as bacteria populatjoris [36hamuic systems like
supply chaing[]2] or physical systems like granular make{izg,[4].
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The organization of this article is as follows. In sectionwg& present the
perturbation model and its limit. We also provide the cotio&cconditions be-
tween the compressible and incompressible phases of titeriodel, which are
the main result of the paper. A remark on collision of clusisralso formulated.
With these informations, we show that the available infdromais sufficient to
provide a well-defined dynamics at least in the case of a®iclglster. Section 3
is devoted to the study of the one-dimensional Riemann prolibr the perturbed
problem and the limits of its solutions as— 0. As stated above, this analysis
provides a strong support for (but not a proof of) the postalaransmission con-
ditions at the compressible-incompressible interfacectviare provided in section
2. Appendix A provides a formal derivation of the initial medrom an individ-
ual based model with long-range attractive and short-raggelsive interactions,
which describes the aggregation of gregarious animalsshiezp. Appendices B
to E provide proofs of technical lemmas and theorems neaddteianalysis of
the Riemann problem.

2 Model and goals

2.1 The model and its rescaled form

Our starting point is the following model, written in dimémsless form:

ap + DOz (pQ) =0, (2.1)
AQ+(Q-0xQ+ (Id—Q®Q)0p(p) = 0. (2.2)

wherep = p(Xt) is the particle density an@ = Q(X;t) is the particle velocity.
The problem is posed on the 2-dimensional plreRR? andt > 0 is the time.
The velocityQ(X,t) € R? is supposed to satisfy the normalization constraint

IQ(Xt)| =1, ¥R e R?, ¥t > 0. (2.3)

Therefore Q(X,t) € S, the unit sphere, at any point in space-time. The function
p(p) is an increasing function such thatp) ~ p¥ wheny < 1 andp(p) — +oo
whenp — p* wherep* is the so-called congestion density. In this paper, we will
consider

p(p) = oy (2.4)



for simplicity but any other function with similar behaviowould lead to sim-
ilar results. The operatoiidy- and (Q - Oy) are defined, for a vector field =
(A1, A2)(R), by

Oy - A= 0y, A1+ 04, A2, (2.5)
(Q-Ox)A = ((Q10x, + Q20x, )AL, (Qux, + Q204 )A2)T, (2.6)

whereT denotes the transpose operator. Findllg,— Q @ Q) is the projection
matrix onto the line spanned I6y-, whereQ- is the vecto rotated by the angle
m1/2. Alternatively, we have, for a vectéx.

(Id—QRQ)A=A—(Q-A)A (2.7)

where(Q-A) is the dot produc® - A = Q1A; + QoA
We show in appendiA that this model well describes the behaviour of a sys-

tem of particles subjected to long-range attraction andtsiaoge repulsion in
the spirit of a model proposed by Aok [1] or Couzin et[al][16f modelling gre-
gariousness and swarming. More precisely, in appeAdixe derive this system
from such a particle system through successive changeslefssga mean-field
and hydrodynamic theories. In the forfn {2.2), we have drdppe force term
describing I(lng-range attraction. Indeed, this force temould add the quantity

(Id— Q® Q)&, at the right-hand side of (3.2), with

T Ky - R0y

whereK, is a bounded positive kernel. This terms does not add angrdittial
operator and all the subsequent analysis will stay unalteyeadding this term.

Our main concern is the study of the congestion effects brblg the singu-
larity of p(p) near the congestion densijty. Indeed, a herd of animals can be
viewed, at large scales, as a domain of space where the ylenisitclose to the
saturation densitp*. Therefore, the geometrical domain occupied by the herd at
timet can be identified to a seét; = {x € R?|p* — dp < p(x,t) < p*} where the
parametedp > 0 must be suitably tuned. Therefore, with the initial mof#el],
(E2), the definition of a herd depends on an arbitrary paramd®, which makes
it ambiguous.

A way to unambiguously define the herd is to force the sysfed){(2.2) to
make clear-cut phase transitions from unclustgzed p* to clusteredo = p*
phases. In the spirit of the workf [6]20, 7] for traffic, themde achieved in an
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Figure 1: The "potential” for repulsive interactiqe(p) (left) andep(p) (right)
after scaling by a small parameter= 10-2, with y = 2 andp* = 1. From the
right picture, it is clear that the repulsive interactiomtsion only wherp is very

close top*

asymptotic regime which amounts to supposing that theresigiy no repulsive
interactions at all as long gs< p*, and that repulsive "pressure” forces turn on
suddenly wherp hits the congestion densify*. This can be done by rescaling
p(p) into ep(p) wheree <« 1 is a small parameter. In this way, repulsive in-
teractions aré(¢) as long agp < p*, but becomed(1) whenp = p* (see fig.
).

Biologically, this assumption amounts to saying that thenahs do not change
their directed motion by the presence of their neighbouteasthey touch them
and need to modify their trajectory to bypass them. The patams < 1 is re-
lated to the time scale at which this change of trajectoryuxand is therefore
supposed small. Let us also note that our model considetrsitrenimals move
with speed unity and never stop. Obviously the model williegjimprovements
by taking into account the fact that a certain fraction ohaels are steady, while
foraging or resting.

Therefore, our main concern in this paper is the study ofeleviing pertur-

bation problem:

ap® + Oy (p°Q°) =0, (2.8)
8.QF + (QF - ) Q% + £(1d — QF ® QF) Ogp(p%) = O, (2.9)
Q¢ =1. (2.10)

We will be interested in the formal limg — 0. A rigorous theory of this type
of problems is unfortunately still out of reach up to our kihesge. In the fol-

6



lowing section, we show that the limit— O leads to a phase transition between
compressible and incompressible regimes.

2.2 The singular limit € — O: transition between compressible
and incompressible motion

As e — 0, ep(p?) becomes significant only where the convergepce- p* is fast
enough. Therefore, in the limit, eithef — p < p* andep(p?) — 0 orp® — p*
andep(p?) — p with p possibly non zero. In other words, the equatipri —
p)p = 0 holds in the limit. If additionallyp < +o, straighforward inspection
shows that .

p*—pf =0(ev). (2.11)

Therefore, the formal limit — 0 of system [2]8)F(219)-(2.]10) is given by the
following system:

ap+0x- (pQ) =0, (2.12)
GQ+Q-0Q+ (Id—Q®Q)dgp =0, (2.13)
Q| =1, (2.14)
(p"—p)p=0. (2.15)

In the non-congested domain< p*, the system reduces to a pressureless com-
pressible gaz dynamics model with a speed constraint

ap+ Oy pQ =0, (2.16)
aQ+Q-0Q =0, (2.17)
Q=1 (2.18)

This system describes the behaviour of the system outsededigested region.
It is a compressible system. Biologically, it describeshibbaviour of dispersed
animals outside the herd. Mathematical studies of thisegysare outside the
scope of this article and the reader can refeflto [9] for steshgpressureless gas
dynamics models (without speed constraint). We note thatstystem exhibits
vacuum regions where = 0 as it will be seen below.

2.3 Study of the congested region

The congested part of the flow is defined as the region whereothgestion con-
straintp = p* is reached. Biologically, it defines the domain of space pmaliby
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the herd. Its connected components will be called "clusténshe congested do-
main, system[(2.12)J-(2.]15) turns into an incompressiblietrsmodel with speed
constraint:

Og-Q =0, (2.19)
AQ+Q-0Q+ (Id—Q®Q)0zp=0. (2.20)
Q| =1, (2.21)
p=p", (2.22)

We first note that smooth incompressible vector fields of tortsiorm inR?
have a very special structure which is outlined in the foltayv

Proposition 2.1 Let Q(x) be a smooth vector field on a domanC R? with
values inS! and which satisfies the incompressibility constraigt Q = 0. Then
the integral lines ofQ " are straight lines and is constant along these lines
(whereQ* is rotated by an angle afi/2) and the integral lines of2 are parallel
curves to each other.

The proof of this proposition simply results from introdogithe angled so that
Q(X;t) = (cogO(X1)),sin(8(X t))) and noting thab satisfies the "transport equa-
tion”

dXze - (tane)dxle - O

This property implies that the knowledge Qfon the cluster boundaries suffices
to knowQ everywhere inside the clusters.

The integral curves d® provide a mathematical description of the animal files
in the herd. These curves being parallel to each other, tlgegansistant with the
intuition and the observation of animal files in a herd (sedd)g

The pressurg satisfies an elliptic equation. Indeed, by taking the digamp
of the equation[(2.20) and after easy computations, we get

Og- (1d—Q® Q) Ogp) = Tr((0gQ)(0zQ) ), (2.23)

where Tr is the trace of a matrix and the exponEmtenotes the transpose opera-
tor. This equation can be equivalently written:

—(Q*+ Og)?p— (Og- QM) (QF - Og)p= —Tr((0xQ)(0xQ)T), (2.24)

and only involves the operatdf" - Oy) applied top. Since the integral lines of
Q" are straight lines, equatiop (2}24) is just a one-dimerasiehiptic problem
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p<p*

Figure 2: Left: schematic figure of a congested zone, wherattows design the
vectorsQ. Right: picture of a sheep herd.

for p posed on this straight line. Knowing the boundary valueg afhere this
straight line meets the boundary of the cluster allows tomatep everywhere on
this lines and consequently inside the cluster (seg]fig. hcl, onc& is known
inside the cluster, the resolution of this equation onlyuress the knowledge of
the boundary conditions fqu at the boundaries of the cluster.

To close the system, i.e. to determine how the solution irctregested do-
main evolves, we need to determine these boundary conslitidrey are not given
by the formal limit and, in order to determine them, we needxplore another
route. For this pupose we look at the solutions of the Rienpoblem for the
perturbed and limit systems. Note that if we abandon thetcains of constant
norm|Q| = 1, the non conservative ter® ® Q)Oyp in the momentum conser-
vation equation[(2.13) drops out, and we recover a conseevaiodel expressing
mass and momentum equation. Then, the Rankine-Hugonialitcmms across
the boundary between the compressible and incompressgiens provide the
boundary conditions for the pressure at the cluster boynddre constant norm
constraint prevents from using this strategy. Therefoeeneed to find a different
route to specify these boundary conditions.

2.4 Conditions at the boundary of the clusters

To find the boundary conditions on the cluster boundaries)eeel to extract more
information from the perturbation systefn (2.8)-(2.10)thiae mere limit system
(B-I2)-(2.Ih). As such, this system is underdetermine@. skhategy is to extract



Q Q,
/ o A/Qr
X1

pr < p* pr=p*

Figure 3: Notations at the interface.

such information by passing to the lindt— 0 in some special solutions of this
system. To underline the difficulty resulting from the namservativity, let us
first look at the Rankine-Hugoniot conditions. We have tHefang proposition.

Proposition 2.2 1. If p andQ are smooth on both sides of a dicontinuity line
I, then we have

p(Q-A—0)]r =0, (2.25)
whereni is the normal td” and o is the speed df.

2. If Q is smooth (i.e &) acrossl” and p is smooth on both sides bf then
we have

[Pl (Q-1i") =0, (2.26)
whereft- is a unit vector tangent tb.

The proof of this proposition is omitted. The second relapoovides us informa-
tion when the mean velocity is not tangent to the clusterhis ¢ondition, if the
mean velocity is continuous, the pressure is also contiswibhis implies that the
pressure is zero on a cluster boundary if the mean veloattynsinuous. This fact
will be supported by the forthcoming analysis. However,aggards the interface
dynamics, such an analysis is incomplete because the secuation supposes
thatQ is continuous.

So as to capture the correct boundary conditions for thesprep and the
velocity Q at a cluster boundary whepgandQ may be discontinuous, we con-
sider a one dimensional problem in the normal directido this boundary (cf.
figure[3). In order to justify this simplication, we introduthe coordinate system
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(x1,%2) in the normal and tangent direction to the boundary. Theeafids de-
fined so thaQ(X,t) = (cogO(X,t)),sin(6(X,t))) in this basis. Systenj (2.8)-(R.9)
then becomes (the indexis omitted):

0P + 0y, (pcosh) + dy, (psind) =0, (2.27)

(0.0 + (cosB0x, 6+ sinB0y,0) + (—sinBdy, p(p) + cosBy, ep(p))] < —siné

cosf )2_'_26)

We suppose that all quantities have locally smooth vamatia the direction tan-
gent to the boundary and we focus on the possible sharp ieasadr discontinu-
ities in the normal direction. To analyze this situation, pegform a coordinate
dilation in thex direction and in timex; = dxy, X, = dXp, t’ = ot, with & < 1. In
these new variables, alf andt derivatives are multiplied by /. Lettingd — 0,
we are led to the following one-dimensional system wiith= x:

o:p + x(pcos) =0, (2.29)
360 + cosfd0 + £ sir? Bdxep(p) = 0. (2.30)

Hyperbolic systems likg (Z.29)-(Z2]30) have analyticalisohs which are those of
the Riemann problem. These solutions are associated i@l icvinditions which
consist of a discontinuity between two constant states. Weanstruct the so-
lutions of the Riemann problem for systefmn (2.209)-(R.30) andlyze their limits
ase — 0. This analysis will give rise to jump conditions at the ¢erdoundaries
for these solutions. We will then postulate that these juonpdions are generic
and valid for all solutions of the limit problenf (Z]12)-(3)1

As underlined above, the non-conservative form of sys{e@9§2(2.3D) in-
duces a lack of information about the jump conditions acedssundary. In order
to waive the ambiguity, we have to make further assumpti@me of them is to
consider the following conservative system as a way to sdlscontinuities

0P+ dx(pcosb) =0, (2.31)
' W(cog0)) + dx(P(cosd) +ep(p)) =0. (2.32)

whereW(cosf) = —In|tan(8/2)| and®(cosO) = —In|sind|. It is the simplest
conservation form that systern (2.29)-(2.30) can take. dhisined by dividing
(E-30) by sif 6. The functions¥ and® satisfy:

1 d cosb
site’ dg o) = gog

11
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Other conservative forms of (2]29)-(2] 30) do exist (seesagx[B) but we con-
sider this form because it is the simplest. Note that thiseorative form is not
equivalent to the original form{ (Z.29)-(2]30) becadiecosb) is an even func-
tion of 8. Hence it does not provide information on the sigrBofHowever, this

information will easily be recovered at the end. We reminat thf all conser-

vative forms are equivalent for smooth solutions, theyedifor weak solutions.
Therefore, the choice of a particular conservative formtrbesnade on physical
considerations. Such physical considerations are noladaihere. In front of
this lack of information, the choice of the simplest of thesaservative forms
seems to be the most natural one.

Classical hyperbolic system theory will enable us to sdheeRiemann prob-
lem for (Z.31)-[2.32) and to take the limit— O of these solutions. The limit
solutions will satisfy some jump relations which we will asse generic of all
solutions of the limit problem[{Z.]12)-(Z]15). We now pretstre result of this
analysis for such generic solutions. We call "unclustenesdjion (UC) the do-
mains where G p < p*, by contrast to vacuum (V) whege= 0 or clusters (C)
wherep = p*.

Formal Statement 1 The boundary conditions at cluster boundaries or vacuum
boundaries of syster (Z]17)-(4.15) are as follows:

¢ Interface (C)-(UC). The pressure jump is given by
_ [W(cosB)][pcosb]

(p] = [P(cosh)] (2.34)
o]
and the shock speed is given by the Rankine-Hugoniot relatio
o =[pcog8)]/[p], (2.35)

where the angle brackets denote the jumps across the interfd/e note
that puc = 0 and that specifyingp] actually specifies the boundary value
of p at the cluster boundary.

e Interface (UC)-(V). The interface speed is equal to the fluid normal
speedo = cosf = Q- at the boundary of the (UC) region

o = (cosO)yc, (2.36)

and the pressure is identically zero.
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¢ Interface (C)-(V). The interface speed is equal to the normal spees® =
Q -1 at the cluster boundary and the boundary valug @ zero

o= (cosb)c, pc=0. (2.37)

¢ Interface (UC)-(UC). This is a contact discontinuity between two regions
of differentp. The normal velocity is continuous and equal to the speed of
the discontinuity
[cosf] =0, o =cosf, (2.38)

and the pressure is identically zero.

We note that all these statements are consistent with pitapoR.2. Sectior]3
provides the detailed analysis which leads to these raatid’he dynamics of
the interface between two clusters (C)-(C) does not folloomf the analysis of
the Riemann problem. We provide a separate analysis of ihtsgducing the
so-called cluster dynamics.

We note that (C)-(UC) interfaces or contact discontingi{igC)-(UC) may
incorporate a flip of the sign d in the velocity jump. This has no influence on
the boundary values gf at the cluster boundary which is the quantity we wish to
determine by this analysis. The Formal Statenjignt 1 is iétistl in figurg4.

2.5 Clusters dynamics

We now focus on the interface (C)-(C), i.e. a collision of telosters. The proce-
dure using limitss — 0 of the Riemann problem does not lead to any conclusion
since the pressure becomes infinite. Note that this is alscdke when dealing
with the same limit in the standard Euler problem. Therefare have to find
another strategy than using the Riemann problem. We turratbention to the
collision between two clusters of finite size and we show thatpressure in-
volves a Dirac delta at the time of the collision. Such an ysialis inspired by
the sticky block solutions presented [n][10].

Consider two one-dimensional clusters which collide atreeti. (see fig.[).
Before collision, the left (resp. right) cluster at tirhe t; extends betweeay(t)
andby(t) (resp.a;(t) andby(t)) and moves with speed

cosf, = ay(t) = bj(t) (resp. co$ = a;(t) = bj(t)), (2.39)

After the collision, the two clusters agregate and form a okister at time > t.
extending betweea(t) and b(t) and moving with speed cés= &' (t) = b/(t).

13
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Figure 4: Interfaces
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Therfore,p and@ are given fort < tc by

P=0"Lam) b0 TP Lam b 6 =00+ Lo

and fort > t; by

P =P Lan by 0= OLjaw o)
wherel,; denotes the indicator function of the interVdl.e. 1,(x) = 1if xe | and
0 otherwise). We denote i = by(t;) = a (tc) the collision point. We look for
a pressure written gs(x,t) = m(x)o(t —t¢). The following proposition provides
conditions for such type of solutions to exist.

Proposition 2.3 1- Supposing thap(x,t) = 11(x)d(t —tc) wheremis continuous
and zero outside the clusters, th@rand 1 satisfy

(W(cosB) —W(coshy))(m—a(te)) + (W(cosh) —W(cosb))(b(t) —m) =0,
(2.40)
(X)) = +(W(cosB) —W(cosh))(b(te) —m), ifxealte),m, (2.41)

(W(cosO) —W(coshy))(m—x)
|
{ (W(cosB) —W(cosh))(b(te) — x), if x € [m, b(tc)],

2 - Under conditions[(Z.40)-(Z.h1)p, 6, p) is a solution (in the distributional
sense) of[(2.31)-(2.B2).

The proof of this proposition is developed in apper{dix C.

2.6 Conclusion of the analysis

The underdetermined problem (3.10)-(2.15) must be comgéead with the For-
mal Statemerff]1 which determines the boundary valugsabfcluster boundaries
and by propositiofi 213 which determines the evolution of tlusters when they
meet. Strictly speaking, propositipn]2.3 only gives thdisioin dynamics of two
clusters in dimension 1. In dimension 2, clusters may hawvepticated shapes.
So, the collision dynamics of two clusters in dimension 2asiaplicated problem
which will be examined in a future work. At the present stggeblem [2.1pR)-
(E-T%) complemented with statem¢ht 1 fully determines theadhics of the limit
system as long as two clusters do not meet.

Arigorous theory of the well-posedness of systEm (2. [2)FPcomplemented
with statemenf]1 is outside the scope of the present papeusljast mention how
a time discretized version of the problem can be computegp&e thap"(x),
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Figure 5: Collision of clusters. In the filled domain: clustép = p*).
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Q"(x), p"(x) are approximations gd(x,t"), Q(x,t"), p(x,t") at timet" = nAt. We
solve the implicit system

prt—p" n+1AQn+1
QT (p"tQM =0, (2.42)
# +(Q"- TR Q™2 4 (Id — Q™2 @ Q™) 0™ = 0,(2.43)
with i -
Qi — % (2.44)

This form guarantees th&®™1(2 = |Q"[2 = 1 (by taking the dot product b®"*
and using thamn+%| =1). p"! is determined by solving the elliptic equation

~Og- ((Id— Q™2 QM 2)Ogp™ ) = Og- (Q"- Tg) Q™ 2). (2.45)

on every connected component of the cluster region defingihatt by {x €
R?|p"t1(x,t) = p*}. This equation must be supplemented with suitable bound-
ary conditions onp at the boundary of the cluster. These boundary conditions
are actually given by the Formal Statemfgnt 1, with rightehaies evaluated at
timet™?1. The resolution of this equation guarantees thaQ"*1 = 0 on every
connected component of a cluster, and showsghat = p" = p* on such a clus-
ter. Of course, the implicitness of the discretization ketda nonlinear stationary
problem, and the question of the existence of solutionsdohs problem is not
clear. However, intuitively, it seems that the prescriptad the boundary values

of p at cluster boundaries through the Formal Staterflent 1 leadsmell-posed
problem, at least as long as two clusters do not meet.

3 The one-dimensional Riemann Problem

3.1 Methodology

To find out jump relations satisfied by the solutions of theteys(2.12){2.15),
the strategy is to solve the Riemann problem of the one-déineal perturbation
system [2.31){(2.32) and to take the limit- O of its solutions. This strategy was
successfully adopted for a model of traffic jams[in [6].
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We note that the eigenvalues and eigenvectors of the hylesystem [2.3]1)-

[B.32) are

A (p,0)=cosb+\/ep(p)p|sinB|, T%(p,0)= < igl;(lg)@)) ) (3.46)

In this conservative system, the domairfa restricted to the interva0, ri|. But
this is not a problem since our main concern is to find the mgssonditions on
p at the cluster boundary, and these only depend on jump ¢onslias functions
of cosf.

3.2 Solutions to the Riemann problem for (Z-31)f(2:32).
3.2.1 Genuinely nonlinear fields

The Lax theorem provides the local entropic solutions ofRemann problem
provided that all the fields are totally genuinely nonlingak £ -4 # 0) or totally
linearly degeneratelA -4 = 0). Unfortunately, the following result implies
that the fields are genuinely nonlinear except on a one-dimeal manifold.

Proposition 3.1 1. The linearly degenerate séiff - ¢ = 0) consists of two
curvess’t (each of them corresponds to one characteristic field):

¢t ={(p,0), p€[0,p"[, cotard = FG*(p)}.

where

e .. 1 (P(PPp+3P(P)Pp (b -p)7
G(P)-—\/E (P(p)p)¥/2 N N

2. For y =1, the linearly degenerate set tends to the straight liiés= 0}
and{6 = m} as¢ tends ta0. For y > 1, €% (resp.¢¢) is a one to one, onto
mapping from(0, p*| to [71/2, 1] (resp. [0, 11/2]) for all &, called 85 , (P).
For a fixed6 €]0, 21, the inverse mapy; , () satisfies:p* — pg , (8) =

O(ev1).

The proof of this proposition is easy and is omitted. Thus, lthx theorem is
valid at least locally in the neighbourhood of all the starsept those which are
on the one-dimensional manifolds. The second part of theigue proposition
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shows that all the states have locally genuinely nonlinedddiase tends to O.
Indeed, even if the state converges to a congested state-&3, its convergence
is like O(e%Y) (cf. (Z11)), which is slower than the convergence of thediry
degenerate field whep> 1. Therefore, there exists$ such that for ale < ¢’ the
fields of the converging state are genuinely non-lineas #i$o trivially the case
wheny equals 1. According to standard nonlinear conservaticoryHgQ], (for €
small enough) the solutions of the Riemann problem conéist@simple waves
(shock waves and/or rarefaction waves) of the first and seclaracteristic fields,
separated by constant states.

3.2.2 Shock and rarefaction waves.

A shock wavebetween two constant statésy, 6,) and(pr, 6;) travelling with a
constant speed satisfies the Rankine-Hugoniot relations:

[pcog6)] = olp], (3.47)
[®(cog8)) +ep(p)] = o[¥(cog0))], (3.48)

where[f] := f; — f, denotes the difference between the right value and the left
value of any quantityf. By eliminatingo in these equations, we get a non-linear
relation between the left and right states:

He (o7, 61,01, 6r) = [®(cog8)) +ep(p)] [p] — [W(cog8))] [pcog8)] = 0.
(3.49)
With a fixed left state, the zero set HE is called the Hugoniot locus and repre-
sents all the admissible right states, connected to thistafe by a shock wave.

Proposition 3.2 The Hugoniot locus consists of two Hugoniot curvé$ asso-
ciated to the two caracteristic fields.

1. The Hugoniot curve7’® associated ta\ £ (resp. #f to A%) is strictly in-
creasing (resp. strictly decreasing) in the, 6)-plane. Let £ : ](h¢ )~1(0), i{—
[0,p*[and It :]0, (he)~1(0)[— [0, p*[ be the Hugoniot curves as functions
of 8 on their domains of definition.

2. The Hugoniot locus tends to the union of the straight li@s= 6,} and
{p=p"}.
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The proof of this proposition is developed in apperidix D.
A rarefaction waveis a continuous self-similar solutiqip($), 6(%)). It sat-
isfies the diffential equation

< p'(s) ) _ ri(p(s),n(9s))
OAL(p(s),n(s)-TE(p(s),n(3))”

wheren = W(coq0)) is the conservative unknown. Therefo(p, ) belong to
the integral curve of9. By changing the parametrization of the integral curve,

we obtain
p'==+plsinB|, 0" =—/ep(p)p|sing|,
and then the following integral equation

G—Gg:qt/:\/gp/u(u)du. (3.50)

It defines two integral curveg? issued from the statgo,, 6;). The following
proposition summarizes their main properties.

Proposition 3.3 1. The integral curvg’® of ré (resp. &% of r%) is strictly in-
creasing (resp. stricly decreasing) in the, 8) —plane. Letf :](i¢)~1(0), m[—
[0,p*[ and £ :]0, (i¥)~1 (0)[— [0, p*[ the rarefaction curves as functions
of 8 on their domains of definition.

2. For all y > 1, the rarefaction curves tend to the union of the straighein
{6 =6,} and{p = p*}. Moreover, for@ €]6,, | (resp. 6 €]0,6;[), p* —

i£(0)= O(ev%l) (resp.p*—i%.(0) = O(ev%l)).
3. Suppose that the statg is such thatp — p* andep(p;) — p;. For all
p < pg, (i) 1(p) satisfies:

(i€)X(p) — 6] < |(i)(0) — & = O(e).

The proof is developed in appendikx E.

Entropy conditions. In order to satisfy the Lax entropy condition, each
Hugoniot curvesZ’¢ is restricted to right states which have a smaller assatiate
eigenvalue than the left state.
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Proposition 3.4 The eigenvalu@ ? (resp. A%) is a decreasing function gf on
the Hugoniot curvesZ® (resp. an increasing function g on JZ¢) for 6 <

cotarr ! ((—l/w/ep’(p)p) (resp.6 > cotarr ! (1/\/ep’(p)p)).

Proof Letg: p € [0,0] — g(p) € [0, 1] be an arbitrary function. The variation
of A{ on the graph of is given by

Ag ( o ) — £(x%)(p)sin6 + g'(p)(— sind + x*(p) cosd).

wherex¢(p) = /ep'(p)p. Sincex’(p) is positive and the Hugoniot curya? )1
is increasingA £ is a decreasing function gf on this curve forf €]0, iif such
that(sin6 + x(p) cos@) > 0. Similarly, since the Hugoniot curvé® )1 is de-
creasingAf is a increasing function gb on this curve forf €]0, ri[ such that
(—sinB+ x&(p)cosB) > 0. .

So, in the limite — 0, the reachable right states are those belonging to the up-
per half-domain. We denote . = 72N {(p,0), AL(p,0) <A%(py,6,)} the
shock curves.

Concerning the integral curveg8?, the admissibility conditions select the
curves with increasing eigenvalues and so the curves onother Ihalf-space.
Therefore, the rarefaction curvB§ satisfyRy. ¢ 05 n{(p,0),6 €]0,6,[}. The
union of the shock and the rarefaction curves form the fodwaave curvélvi’s =
S. URE, while the union of their complementary sets form the backiweaave
curveWP = 728\ S U 08\ RE..

3.2.3 Solutions to the Riemann problem

Given a left statép,, 6,) and a right statépr, 6;), an entropic solution is found
by intersecting the forward 1-wave curve' € issued from the left state and the

backward 2-wave curvwf’g issued from the right state (cf. fig] 6). In the fol-
lowing study, the curves indexed by - (resp. by +) are imflichose issued from
the left state (resp. from the right state). Because of theatumy of the shock
and rarefaction curves, we can classify the different smhstaccording to the
positions of the left and right states in tfe, 8)-plane. The following theorem
describes the solution of the Riemann problem for small0 and is illustrated
in figure[7.
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Figure 6: Wave curvedy "€ for the left statd py, 6y) = (0.8, 11/2) ande’s for the
right state(pr, 6;) = (0.6,271/3). In dashed green lines: the rarefaction curves. In
continuous red lines: the shock curves. In dotted blaclslitiaearly degenerate
sets.p*=1,y=2.
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Theorem 3.5 Considering a left statéo,, 6,) and a right state oy, 6;), and fore
small enough, the solution is given by one of the four folhgndases:

1. Case 6, = 6. If py < pr [resp. p, > pr], the solution consists of a 1-shock
[resp. 1-rarefaction] connectingpy, 6;) to (p, ) (with p € |py, pr[ and
0 > 6, = 6 [resp. p € |pr, Pl and 0 < 6, = 6;]) and then a 2-rarefaction
[resp. 2-shock] connectingp, 6) to (pr, 6). This is summarized in the
following diagram:

Sh_ng (P, é) rare@:)tlon (pr,6r) if pr < pr

(pr,6r)
rarefaction _ -~ shock
(pé; 66) B (p7 9) -

2. Case 6, > 6 (cost, < cos6r). The solution consists of a 1-rarefaction
connecting(py, 6;) to (0, 9) (with p p <pe,prand 0 ¢ 16r, 6,[) and then a
2-rarefaction wave connecting, 8) to (o, 6;). We get the following dia-
gram:

(pr,6r) if pe > pr

(01.6)) rare@tlon (0,5) vacuum (075) rare@:}tlon (0.6,

3. Case 6, < 6; (cosf, > cosb,). There are two sub-cases:

o if pf < (hf)71(6f) andpf < (hs )~1(6¢), the solution consists of a
1-shock connectinfpy, 6;) to (p, ) (with p > py, oy and 6 € 16, 6;[)
and then a 2-shock connectifg, ) to (pr, 6;). The diagram is:

(p€7 9/) (575) (prv er)

o if pf > (he)"1(6F) [resp. pf > (he)~1(6F)], the solution consists
of a 1-shock [resp. 1-rarefaction] connectirigy, 6;) to (p, ) (with
p €]ps, pr[ and 6 > 6 [resp. p €lpr,pe| and 6 < 6,]) and then a 2-
rarefaction [resp. 2-shock] connectin@, 8) to (pr, 6; ). The diagram

shock shock
— —

is as follows:
hock .. ~. rarefaction )
(0r,6) T (3,6) TS (pn6)  fpe<pr
rarefaction _ ~ hock )
(Pe, 6r) — 3,0) X (p,6)  ifp>p
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The detailed proof of this theorem is developed in appepdjx Eet us provide
some ideas of the proof. For finigg there exist four kinds of solutions depending
on what parts of the curves/' ande’s meet. So, for a fixed left state, the
state-space is divided in four subdomains. These subdsrdepends on the left
state. However, reminding that the limit of the Hugoniot amegral curves are
straight lines® = 6, or p = p* (cf. proposition$ 3]2 and 3.3) for all left states, the
four subdomains have the same behaviour as0 whatever the left state is.

3.2.4 The sign ofo

The conservative systerh (2131)-(2.32) does not deterrhiaesign ofo (if 0 is
supposed to be ih— m, 1[). As mentioned above, this is not important since our
main goal is to provide connection conditions prbetween the left and right
states. However, it is desirable to determine it in the presealysis, for the
sake of completeness. For this goal, we cannot pise](2.32ube¥(cosb) is

an even function oB. Again, we are facing an indetermination due to the non-
conservative character of the system. One possible soligit introduce a con-
tact discontinuity from@ to —6 with propagation speed césin the domains
wherep is constant and cdsis continuous. If we add such a contact wave, there
is only one possible construction given by the following:

Proposition 3.6 Suppose thal,, 6, € [—, 17 and ,, 6, have different signs.

1. In the subcasesos6, = cosf; andcosf, > cos6; of theoren{ 315, the only
one possible contact wave in the domains of constaand continuous
cosb is located inside the intermediate state and the propogasipeed
equalscosb.

2. Inthe subcaseost, < cosb,, the possible contact waves are those located
in the vacuum domain. There is no uniqueness of the propaysgpieed but
since this contact discontinuity occurs in the vacyam 0 region, we may
consider tha is not defined in this region.

The proof of this proposition can be found in appendi¥ F.2.0Teases of the
Riemann problem witlf, < 0 < 6, are represented in Fifj. 8. Note that the position
of the contact wave does not depend&nSo their limits ass goes to zero are
easily obtained.
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Figure 7: Solutions to the Riemann problem for snaati O.
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Figure 8: Some solutions to the Riemann problem for s;allo and—m < 6, <
O<f <m

3.3 The solutions of the Riemann problem in the limite — 0

In order to study the limie — 0, we introduce converging sequences of left and

right states
(<p€€,9€£),<p;€,9r€)) Q) ((p679£)7(pr,9r))

and we look for the limits of the solutions of the associatéehinn problems.
There are three cases to consider: either none of the twasgtids to the con-
gested stateg(, pr < p*), or one of the two doegp( < p*, pf — p*) or both of
them do p/,pf — p*). The cased] — p*,pr < p*) is obtained by symmetry
from the cased, < p*,pf — p*): the left and right quantities have to be ex-
changed and the arrows have to be flipped (like in the first ohdeeoren{3]5).
Since the solutions of the Riemann problem are bounded amdtoiaous, all the
sequences belong to a bounded subs&\fR) and consequently, to a compact
subset ofLL (R). So we only need to prove the uniqueness of the limit of con-
verging sequences to prove the convergence of the wholesegwand we can
consider that the convergence is in the almost everywheseqep to the extrac-
tion of a subsequence).

As a guideline, we mention that, compared with the systerh finite &, the
limit Riemann problem has two additional properties: thpesgyance of clusters
which corresponds to the saturation of the constrairt p* and the disappear-
ance of rarefaction waves and their transformations inttam waves. In the
subsequent statements, the term "limit” is a short-handliimit of the solution
to the Riemann problem of (Z]31)-(2.32)" as- O.
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3.3.1 Caseqy < p*,pr < p* (see fig[P)
Proposition 3.7 (Case p; < p*, pr < p*) There are only three cases:

() Subcase 6, = 6;,. The limit consists of only one contact wave connecting

(¢, 6;) to (pr, 6):
(¢, 6r) contact

The travelling speed is equal tmso,.

(Pr,6r).

(b) Subcase 6, > 6;. The limit consists of two contact waves connecting the two
states to a vacuum state:

contact Vacuum contact

(e, 6)

The travelling speeds are respectively equat@ef, andcosb;.

07 9/) 07 er) (pr,er)~

(c) Subcase 6, < 6;. The limit consists of two shocks connecting the left state

(pe, 6;) to a congested statg*, 8, p) and then connectingo*, 8, p) to the
right state(pr, 6;):

shock . = shock
(p€79€) B— (p 797@ — (pryer)-

wheref is the unique solution of

W(cog6))], “"ﬁ% ~ [W(cos))],

0 € [min(6,, 6;),max 6,6 )],

peos0)], f
o= [(CotO)

andp is given by

[W(cog6))],[pcog )], [W(cog6))]; [pcog6)],
[l ],

The shock speeds are given by the Rankine-Hugoniot conflitidhe density

B4D).

Note that in clustered region, sinpe= p*, the state is determined by the values
of 8 and p. This is why we add a third component giving the valuepab the
vector defining the state in the clustered region.

—[®(cog0))], =

p= —[®(cog0))]; -
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Figure 9: Limit solutions of the Riemann problem #o& 0 andp,, pr < p*.

In this proposition, the quantitig$], := f — f, [f], := f — f, denote the dif-
ference between the intermediate value and the left (otf)ngiue of the quantity
f and[f], := f; — f, denotes the difference between the right and left values of
the quantityf.

This proposition covers several kinds of interfaces descrin Formal State-
ment[]: the case (a) is an occurence of an interface (UC);(th€)case (b) of
an interface (UC)-(V) and the case (c) of an interface (G¥UMoreover, the
proposition implies thaf is continuous inside (UC) domains.

Note that all the intermediate states are explicitly givemm@ solutions of a
non-linear equation and so, are explicitly computable. pio®f of this proposi-
tion is given in appendik G.1.

3.3.2 Casey < p*,pr = p* (see fig[IP)

This case is typical of the situation at a cluster boundamythis case, the main
new feature is the appearance of declustering waves as lohthe rarefaction
waves. These declustering waves are instantaneous il of the pressure.
The following lemma details this statement:

Lemma 3.8 (Limit of rarefaction waves, declustering wave) Lpf, 6;) be a se-
quence of right states such thaf — p* and ep(pf) — pr > 0. Introduce a
converging sequence of states, 55) lying on the rarefaction curves issued from
the right states, such that < p.

If p =limpé& < p*, then the rarefaction wave tends to the combination of a
contact wave between the stdie 6;) and (p*, 6;, pr) with speedcost, = A,
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and a declustering wave, i.e. a contact wave with infiniteedpghich cancels the
pressure, which provides a transition betwéeri, 6, p;) and (p*, 6;,0).

If p =lim p& = p* then the rarefaction wave tends to a shock wave with infinite
speed between the statgs’, 6, p) and (p*, 6, pr ), wherep = lim £p(p?).

The proof of this lemma is developed in appendiX G.2.
The next proposition provides the solutions of the limitiR&n problem and
figure[I) schematically describes them.

Proposition 3.9 (Case p; < p*, pr = p*) There are only three cases:

(a) Subcase 6, = 6;. The limit solution consists of one contact wave connecting
the left state(py, 6;) to an intermediate congested stdig", 6;, p = 0) and
then a cluster contact (with infinite speed):

contact, declust., .
(p€79€> E— (p 791'70) - (p 76|’75>-

(b) Subcase 6, > 6;. The limit solution consists of one contact wave connect-
ing the left state to vacuum, and then another contact waveexting the
vacuum to a congested and pressureless $fatef;, 0) and finally a cluster
contact connectingp*, 6;,0) to (p*, 6, p):

(01, 6)) cc&tact(q 6) vaﬂum(o, &) ccﬁgct(p*, 6,0) dec_l)ust.(p*, 6. p).

(c) Subcase 6, < 6;. The limit solution consists of one shock wave connecting the
left state(py, 6;) to an intermediate congested stdf&", 6, p) and one con-
tact wave with infinite propagation speed connectipg, 6;, p) to the right

state(p*, 6, p):

shock, = contact, .,
(p€79€> B (p 79€7® B (p 791'75)7

where the intermediate pressupds equal to

p=[W(cosh)], peoss, ?S]Sf]é -

The shock speed is given by the Rankine-Hugoniot conditiothé density

B.4D).

[®(cosf)],.
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Figure 10: Limit solutions of the Riemann problem foe= 0 andp; < p*, pf —
p*.

In practice, when instantaneous waves occur (i.e. withitefpropagation speed),
it means that the initial data of the Riemann problem doesponhtaneously ap-
pear during the dynamical evolution of the limit problem eYinave to be ignored.

Like proposition[3]7, this new proposition covers seveiatk of interfaces
described in the Formal Statemépt 1: cases (a) and (c) ateevmes of inter-
faces (C)-(UC), the left wave of case (b) is an occurence aft@nface (UC)-(V)
whereas the right wave of the case (b) is an interface (C)-(V)

The proof of this proposition is in appendix §.3.

3.3.3 Casgy =pr =p*,p; < pf (see fig[I]1)

We assume in addition thap(p/) andep(pf) have finite positive limits, denoted
by p; > 0 andp, > 0. FigurgI]L provides a sketch of the solutions.

Proposition 3.10 (Case p; = pr = p*, pf < pf) There are only three cases:

() Subcase 6, = 6;,. The limit solution consists of a uniform constant state
(p*7 967 56)

(b) Subcase 6, > 6;. The limit solution consists of two contact waves and two
cluster contact with infinite travelling speed:

(p*7 957 56) dﬂSt-(p*7 957 O) C%Ct<07 eﬂ) Vaﬂ;lm(oy er) Cmd(p*? 9r70) dﬂSt(p*? 9!’7 ﬁ)?
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(c) Subcase 6, < 6. The limit solution consists of two shock waves with infinite
propagatign speed connecting the left st 6,, py) to (p*,0,+) and
then(p*,8,+) to (p*, 6, pr):

— . shock shock

(p*76€7p€> - ( *7é7+°°) - (p*7el’75r)7

wheref is the only solution of

[W(cog8))]r[cog0)]r (@)%, (3.51)

[W(cog(6))]i[cog0)];  \ pr

These solutions display only one kind of interface amongéhdiscussed in the
Formal Statemerfi 1: the case (b) is an occurence of an io&e{@)-(V). Accord-
ing to the cases (a) and (c), the solution inside clustersngimuous. However
the case (c) does not provide a meaningful solution sincetbgsure becomes
infinite and this is why Formal Statemdihit 1 does not allow wdkewhat happens
at the interface (C)-(C), i.e. a collision of two clusternsséems to result from the
fact that in this case the Riemann problem models the amflisf two infinite one-
dimensional clusters. Sectipn]2.5 provides a descriptigheocollision between
finite-size one-dimensional clusters. We have seen thgirgesurep involves a
Dirac delta in time. Indeed, according to case (c), the itdipropagation speed
of the waves inside clusters implies the discontinuity @& fnction in time:

8 =06,+(6—-6,)H(t—tc), whereH denotes here the Heaviside function. Then,

equation[[Z2.32) leads to
(W(B) —W(60)3(t —te) = OxP, (3.52)

which justifies to look for a pressure with a dirac delta ing¢imThe Riemann
problem does not allow to take into account such a pressure.
The proof of the proposition is deferred apper{dix| G.4.

3.4 Connecting the Riemann problem analysis to the Formal
Statement[l

We remind that, by contrast with the finitesystem[(2]8){(2.10), which is a stan-
dard hyperbolic system, the limit systefn (2.1P)-(R.15)ileits two additional
characteristics:
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Figure 11: Limit solutions of the Riemann problem = 0 andp}, pf — p*,
Pi < pf-

() the appearance of clusters corresponding to the saiarat the constraint
p=p
(i) the appearance of vacuum.

The previous study helps in understanding the dynamicseointerfaces be-
tween unclustered states (UCx0Op < p*, vacuum (V)p = 0 and clusters (C)
p = p*. Up to now, no rigorous theory for the limg — O exists and so, we
cannot have access to these dynamics rigorously. Our méthodinvestigate
these dynamics through the inspection of the lienit> 0 of the solutions of the
Riemann problem of the finite system.

The first remark is that waves with infinite speed correspandrt instanta-
neous transition from the initial data to some differenugioh. To some extent,
this means that the corresponding initial datum is unstadole therefore, that
it will never appear spontaneously in the course of the e@imiwf the system.
Therefore, we can discard initial data which exhibit thigpbmenon, and replace
them by the one which is found after the infinite speed wavebkas applied.

The second remark is that the various solutions of the Rianpaoblem can
be grouped by situations corresponding to the four cagesllis the formal state-
ment[], i.e. interfaces (C)-(UC), (UC)-(V), (C)-(V) and (YQJC). As discussed
in the lines following statemept 3]10, the case (C)-(C) isawzessible by the Rie-
mann problem analysis because the collision dynamics ottusiers depend on
their size, and because the Riemann problem only allowsrtsider infinite size
clusters. This is why cluster collisions are analyzed sapéyr in propositiof 2] 3.
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However, cluster collisions is a complex phenomenon in 2@ @nopositior Z]3
only provides a one-dimensional analysis. The two-din@mraianalysis is still
in progress.

To highlight the link between the Riemann problem analysi the Formal
Statemenf]1, we point out which solutions of the Riemannlerolzorrespond to
which case in the Formal Statem¢ht 1:

Interface (C)-(UC): itappearsin

- prop. [3.Y, subcase (c): we see that the intermediate ctathstate is sep-
arated from the left and right states by two (C)-(UC) inteegl We notice that
(P-3%) and[(Z.35) are respectively the relations for thegaree and the shock speed
stated at prod. 3.7.

- prop. 3.9, subcase (c) (if ignoring the contact wave wifinite speed). We
can also view subcase (a) as a particular case where thetiedad (C) and (UC)
are equal (in which casp = 0 in the cluster and the interface moves with the
common velocity). Again, these two cases are consisteht@iB84) and[(Z.35).

Interface (UC)-(V): itappearsin

- prop.[3Y, subcase (b) as two contact waves between thestedd left and
right states and the vacuum intermediate state,

- prop. [3.P, subcase (b) where the first wave is a contact leetlee left
unclustered state and the vacuum middle state.

In both cases, the velocity of the interface is that of the-macuum states and,
of course, the pressure is identically zero. Thereforesituation is as depicted
in Formal Statemerft 1.

Interface (C)-(V): itappearsin

- prop.[3.9, subcase (b), where the second wave is a contaetlvesween the
vacuum middle state and the right clustered state. We nthtaten this case, the
clustered state must have zero pressure (otherwise, astlohg wave instanta-
neously relaxes the pressure to zero),

- prop.[3.ID, subcase (c), where the left and right clustsiaes are seperated
by a vacuum intermediate state. Again, in this case, thespresnside the clusters
is identically zero.

In both cases, the velocity of the (C)-(V) interface is thiathe cluster. There-
fore, the situation is as depicted in the Formal Stateifjent 1.

Interface (UC)-(UC): it appears in

- prop. [3.¥, subcase (a). We see that this situation is thatsténdard con-
tact discontinuity for the uncongested system. The va&sciin the uncongested
states are equal and equal to that of the interface, and o$epthe pressure is
identically zero. Therefore, the situation is again as clepiiis the Formal State-
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ment[]..

We feel that these observation provide a very strong sugpdtte Formal
Statemenf]1. As pointed out above, this statement allowdosedhe system
(B.12)-(2.Ib) at least until clusters meet. In the one-dish@nal framework,
propositiof 23 provides the cluster collision dynamicse Thvestigation of clus-
ter dynamics in the two-dimensional case is still work ingress.

4 Conclusion

In this paper, we have studied a continuum model describipgraicle system
with short-range repulsive and long-range attractiveradgon. This is a model
for the study of gregariousness among mammal species ftanices. We have
focused on the effect of the short-range repulsion and lbaké¢he regime where
the interaction is turned on suddenly when the local dertséiyomes close to
some limit associated to congestion. We have modeled tfestdfy introduc-
ing a perturbation parameterand studied the limig — 0. We have shown that,
in the limit regime, the congested regions are domains wtierdélow is incom-
pressible. The complete determination of the limit systequires the knowledge
of the interface conditions at the boundaries of the comgestgions. We have
derived these conditions by looking at a model one-dimeraisituation (corre-
sponding to the normal direction to the interface) and anatythe solutions of
the Riemann problem for the perturbation model (with figife Taking the limit
€ — 0in the solutions of the Riemann problem allowed us to previt missing
conditions at the interfaces.

The perspectives of this work are, at the theoretical legety to provide more
solid justifications to these interface conditions and t@lre the cluster collision
dynamics, which is not accessible by the Riemann problemth&tnumerical
level, we will seek numerical methods to solve this conetrdihyperbolic prob-
lem and we will perform numerical comparisons between th&inaum model
and the more fundamental particle system.
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A Derivation of a macroscopic model of short-range
repulsive and long-range attractive interactions

A.1 Individual Based Model with speed and congestion con-
straints.

We consideN particles inR? labeled byk € {1,..,N}. These particles are discs
of radii d. The motion of the particles is described by the time evolutf their
positionsX, and velocity vectors). Like in the Vicsek algorithm[[44, 2L 116],
the velocity magnitude of each particle is the same, is eonsh time and sup-
posed equal ta > 0. The velocity directioriy belongs to the unity circl&! =
{6) eR2|®? = 1}. This is a usual assumption in the modeling of several bi-
ological systems like flocks of bird¢][3], schools of figh][P2] or herds of
sheep[[3d,37].

We start with a simple continuous-in-time model of a pagtgystem subject to
attractive-repulsive binary interactions which descthmaggregation of particles
with occupation constraints. The evolution of the possiand velocities is given
by:

dX ,

d—fk = (A.53)
d_’ — — =g —

d—at)K = (Id—ax® &) (Vicdk — Vkék)» (A.54)

where vﬁ‘f a and v&f " are the attractive and repulsive forces respectively. The
matrix (Id — &y ® @) is the orthogonal projector onto the plane orthogonahto

It is applied to both forces in order to keep the magnitudéhefdpeed constant
in time. .?a andfr are the local centers of mass of the particle distributicidie
interaction discs centered ¥t with radii respectively equal tB, andR;

DI Y X=X
K y o1 K 1
j.[Xj— X <Ra Jo[ X=X <R

v@ and v} are scaling factors which provide the intensities of theedst The
repulsive force radiuR; is supposed much smaller than the attractive force radius
Ra. The resulting force attracts the particles towards thdéereof mass of the

35



particle distribution at large distances and repels themfthe center of mass of
the particle distribution at short distances. To some éxieis an implementation
of the attractive-repulsive scheme proposed by Coyzin [16]

Finally, we suppose that, is a constant and, depends on the local density
inside the repulsive interaction disc:

i 2% % <Re 1

R :
where v, is an increasing function. The functian prevents the local density
from exceeding the maximal densjty which corresponds to the case where all
particles are in contact with their neighbours. Clegplyjs the ratio of the maxi-
mal occupied surface in a disk of radiRs by disks of radiid and is of the order

of unity. Therefore, the functiom, tends to infinity asp; — p*. We defer the
explicit choice of the functiomw, to the end of the section.

a I I [
Vi =Va, W=Vr(o), Px=

A.2 Mean-field model, hydrodynamic limit and macroscopic
model

The goal of this appendix is to provide a model for large systef interacting
particles according tq (A.53)-(A.p4) at large time and spscales. For this pur-
pose, we will perform a sequence of rescalings. The firsal@graims at taking
into account the large number of interacting particles:eéds to the so-called
mean field model. Assuming that the system is included in a fiba, the limit

N — 4o implies that the areard? occupied by each particle tends to 0 likéNL

in such a way that the total arélrm? occupied by the particles remains constant.
We denote byr = limyn_.. N71d? the fraction of the surface occupied by the par-
ticles. The second rescaling is a hydrodynamic scaling @laege time and space
scales are considered. Both scaling are classical and dirdetailed in [TB[IP].
They have been applied to swarming model[i [ZL[1]L, 26].

A.2.1 Formal derivation of the mean-field model

We refer to [4R] for classical references on the mean-figtitliWwe consider the
empirical distributionfN (X, @,t) defined by

=

O(X— Xk (1)) 3( @, &x(1))-

Mz

1
N @,t) ==
N

k=1
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5(X) denote the Dirac delta dR?, while &(@, Gy) denotes the Dirac delta ¢t
centered aty (i.e. 6(@, dy) is the probability measure supported o }). Itis
an easy matter to check thell satisfies the following kinetic equation

& N+ cw-OgfN+ 04 ((F —FV) V) =0,

whereFN andFN are the attractive and repulsive forces, given by

FENR &) —va(ld— @ @&, FNR o) =wNId—ae@)E
with
EN ) = KO- NT-Rp yt)dy gn g o JKT-R) (X" (T.)dy

JKa(y—X)pN(5.0)dy TKG=0pNTHd
- (MR 07),

JKe (Y=X)(¥,t)dy

wherepN(X,t) = [o.q1 TN(X,Q,1)dQ is the local density anH, (resp.K;) is the
indicator function of the disc of radiuR, (resp. R;). Here, it is clear that more
general kernelk&,, K, can be used.

The formal mean-field limitN — +o of this model is (we recall thatr =
lIMN_ 400 NTT02):

& f +ci-Ogf +0g- (FamFr) f) =0, (A.55)
Fa(X,00,t) = Va(ld — D@ @), R (X0,t) = v (Id— 0® @)&, (A.56)

JKal§=R(F=0pF0E 7 o [K(I=NT=X)pT, NG,
e e T o 1 A Ay B 1P AOT s

(K (I—R)p(F.t)dy - o
Vr = Vr( o [ K (y—X)dy ),p(i,t) _/f(i,w,t)dw. (A.58)

Rigorous justifications of this limit are outside the scopé&he article.

A.2.2 Hydrodynamic scaling

In order to select the relevant scales, we first rewrite oatesy in dimensionless
variables. We consider a space scajdtypically the rangeR; of the repulsive
force) and we choose a time scéle= Xp/c. The associated dimensionless time
and space variables are=t/tg andx = X/%o. We also introduce scaled collision
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kernelsKj  such thatka (XX ) = K., (%), scaled intensities, = vac/x§, Vi =
vrc/x3 and a scaled distribution functioff = af. In the case wher&s,, are
indicator functions of balls of radR, -, this amounts to rescaling the radii to new
vaIuesR;Lr = Rar/Xo. After removing the primes, the system in the new variables
and with the new unknowns is similar {o (A]5%)-(A.58) buthvit= 1 anda = 1.

To derive the large time and space dynamics, we introducdaiie@ving
change of variable® = nx, f = nt with n < 1. In the new variables, the dis-
tribution functionf (X, @,f) = (X, @,t) satisfies the following system (omitting
the tildes):

n(af"+ - Ogf") +0g- (R —F") 1) =0,

LK () 9-0)p7(9.t)dy
kg (5) en(r.dy
1JKI (%) 9-%)p"(5.0)dy
N Kl () p(y.t)dy
2K (5X) p(9.t)dy

vi =i [ 1 (”2}_2 ,p”(i,t):/f”(id)td@
Lk (LX) dy
whereKZ andK,! are the scaled interaction kernels arfd v/, the scaled inten-
sities.

We first suppose that the repulsive kerkgl and the repulsive intensity;!
are unchanged in the scaling’ = K;, v/ (p) = v;(p). This means that the range
of the repulsive force is supposed of orderTo analyze the limit) — 0, we first

need an expansion 6}” in terms ofn. The following lemma provides the result
for an isotropic kernekK; (K((Z2) =K (|Z))

Lemma A.1 Under suitable regularity assumptions pfi, we have the expansion

%/Kr (‘Y’%* ) P ()dy = ap (%) +o(n),

o n
&' a0 —n° 0 o),

(%168 () 5.0y
r L7k (%) oy
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where a= [K;(|Z))dz andB = [K(|Z)z®zdz= ([K:(r)r3drld).

The proof of this lemma is elementary and omitted. In the edsereK; is the
indicator function of the disc of radiug,, the coefficienta andB are equal to

a=nR? andB = n%ld. Now we consider the scaling of the attractive ketdg|

and attractive intensitys . We suppose that the attractive force remains non-local
asn tends to 0 and weaker than the repulsive force. To express gssumptions,
we suppose that the scaled attractive kekebnd intensitwyd are given by

K{(2)=Ka(n?). v]=n?va

For simplicity, we choos@, = 1. We also fix the space uni{g in such a way that
B/a=1. In particular, in the case whelg is the indicator of the ball of radius
R/, we can fixxg = R /2.

Under all these modelling assumptions and thanks to lemriathe system
can be written formally, in the limig — O:

af+@ Ogf+ 05 (Fa—F) f) = (A.59)
XG0 = (4 @k G- <IK}(IZ(|§|>XI) Sy PO
R (% @.1) = vr(p) (1d— B® B)&, &%) = D;‘(’)_Eit’;). (A.61)

A.2.3 Macroscopic model

The last step is to obtain the dynamics of macroscopic giesitassociated to
the flow. Here we will only consider the density and momentuve find that
under suitable regularity and decay assumption§,dghe densityp = [ fd@ and
momentumpQ = [ fadw satisfy the following system of mass and momentum
balance equations:

ap+0Og- pQ =0, (A.62)

ApQ + Dy (/f&)@ a)da)) _ </(Id—6)® G))fd&)) (fa—vrm)(i\)ss)

> [ JKa([y—=X)) (Y=X)p(¥,t)dy = _ Ogp(Xt)
E""(X’”‘( [Ka(y— ) p(y.1)dy ) SRO =" 57

To close systenj (A.$2)]-(A-$3), we assume that a monokinetic distribution:
f(X @,t) = p(X1)3(,Q(X1)), (A.65)

(A.64)
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with |Q(X;t)| = 1. This assumptions presupposes that a local equilibrineaished
where all particles are locally aligned. Although no justtion of this assumption
can be made at this point, the features displayed by thersystem meaningful
in view of gregariousness modelling. We find:

gp+0z-pQ = 0, (A.66)
& (pQ)+ g (pQ®Q) = p(ld—QeQ)(&—vi(p)&), (A67)

where&, andé; are given by[(A-84). Factoring owtin (A.67), using [A.6p), we
also get the following form of the system:

dp+Og-pQ =0, (A.68)
4Q+Q-0Q+v(p)(Ild—Q®Q)& = (Id— QR Q)&, (A.69)
z _ fKa(|Y—X|)(Y—X)p(V,t)dV) z _ Dxp(xt

a0 = (P aay ) Ex0=aaTo

A.3 Repulsive force intensity and macroscopic model

Let us return now to the choice of the functign This function tends to infinity
whenp — p*. Like in the traffic model devised ifi][6], we assume that thisdtion
behaves likepY whenp <« p* and tends to infinity whep — p*. The prototype
of such a function is

() = < : (A.71)

y7

»=3)
wherey > 1. We will keep this example constantly in the paper for sioil
but the results are valid for all functions having the sanapprties. We consider
thatv,(p) = pp'(p). In this way, we suppose that repulsion acts like a standard
presure force in a gas, but, when the density reaches theestioig densityp*,
the pressure tends to infinity. Since the equation(ois used instead of that
for pQ, the interpretation op in standard gas dynamics terms would rather be
that of an enthalpy (i.ep'(p) = P'(p)/p whereP is the actual fluid mechanical
pressure), but the results would be similar if we considénedequation fopQ
instead. Indeed, because of the constr@t= 1, the system is non-conservative
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in the projection ternld — Q ® Q). Finally, we get the following system

&p+Oy-pQ =0, (A.72)

GQ+Q- 00+ (1d- Qe Q)0p(p) = (Id— Qe Q)é&,  (A.73)

E(Rt) = (f Ka(|y—X|) (V—X’)p(v,wdx‘i) '
’ JKa([y—=|) p(y,t)dy

This system provides the starting point of the presentlartigince this paper
is focused on the treatment of congestion phenomena, weveethe non-local
attractive force. Indeed, this term is a zero-th order dirre term and does not
intervene in the jump relations across discontinuities.

(A.74)

B Conservative laws for the one-dimensional system

In this appendix, we are looking for conservative forms @& time-dimensional
system[[2.29)f(2.30). The most general conservative femwritten:

a9(p,0) +oxf(p,0) =0. (B.75)

whereg and f are smooth functions g and 6. The following proposition ex-
hibits an infinite set of such conservative forms.

Proposition B.1 If (g, f) is a conservative form of (Z.29)-(2]30), then their partial
derivatives are related by
a9

of  og .
36 =30 cosO — %psme. (B.76)

Jf dg 09 oy
dp_dpcose desm@p(p),

Moreover, if g is a function with separated variableggf) = u(6)v(p), then u
and v satisfy

pV'(p) =kp(p)v(p), (B.77)
u’(0) + (cotarB)u'(8) = ku(0), (B.78)

where Kk is a constant real number. Eack R gives rise to possiblég, f) pairs.

Proof Performing the chain rule if (B.Jy5) and usitig (2.99),(R.3@ easily get
(B.78). Then, using that differentiations with respecptand® commute,[(B.76)
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gives rise to an elliptic equation satisfied gyand inserting the hypothesis of
separated variables, we obtain (B.77),(B.78).

Equation [B.78) is the Legendre differential equation (atap coordinates).
The two-dimensional vector space of solutions of this eéquas spanned by the
Legendre functions of first and second species and each of ¢ixes rise to
possible(g, f) pairs. O

The solutions of [(B.17) exists for atle R. However, they have a priori no ex-
plicit expression exept fdk = 0. In this case, the 2-dimensional vector space of
solutions of [B.7]7) is spanned Wy, p} and for (B.78), is{1,¥(cosf)}. We can
actually check that the followingp, f) pairs

(9,f) = (p, pcost), (B.79)
(g, f) = (W(cosh),d(cosb) + p(p)), (B.80)
(g,f) = (pW(cosh), pcosB¥(cosh) +P(p)), (B.81)

whereP is an antiderivative opp/(p), are non trivial solutions. The conservative
form studied in this article corresponds to the pdirs (Bat®) [B.8P). The pairs
(B.79) and [B.8]1) form another such conservative system.

C Proof of proposition 23 (cluster collisions)

Proof 1- Letxp € [a(tc),m andh € €°(D”), whereD” is a neighbourhood of
in D (cf. figure[$). We apply the Green formula on the donain

< W(cosO) + dyPp(cosh),h > = —/ ®(cosh)oxh+ ¥(cosO)a:h dtdx
D//

= / h[(®(cosh),W(cosh)) - n|ds
oD”

Xo+

= (‘P(cos@)—W(cos@E))/ nh(tc,(x;oBQ)

Xo—n

where< .,. > denotes the duality brackets. Since we lookgox,t) = 11(X)d(t —
tc), we also have

_ _ Xo+1 Xo+1
— < okp,h>= // poxh dtdx:/ T1(X) Oxh(te, X)dx= —/ OxTT(X)h(te, x)dx
D" Xo—N -
(C.83)
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If (£.37) is satisfied, then we have
< &W(cosO) + dd(cosh),h >= — < dxp,h >, (C.84)
and equationg (C.B2) and (C|83) imply that
(W(cosh) —W(cogby))) = —dkT(X0).
The same arguments (for ar¥ [a(tc),b(tc)]) lead to

| (W(cosB) —W(coq6))), Iifxelalte),m],
—OT(x) = { (W(cosd) — W(cos8))). if xe [m.b(te)|

and (supposingr continuous) to

{ (W(cosB) — W(cog6;)))(m—x)

+(W(cosh) —W(cog b)) (b(tc) —m), if x € [a(te), M,
(W(cosB) —W(cog6)))(b(tc) —x), if x € [m,b(tc)],

Supposing thap and thernir equal zero outsidse the clusters, we get
n(a(te)) = (W(cosB) —W(cog6;)))(m—a(tc)) +(W(cos8) —W(cog &))) (b(tc) —m) = 0.

2 - Leth be a test function in the neighbourhobdof D (cf. figure[$). We
denoteD; = DN {t <tc} andDy = DN {t > tc}. Applying Green’s formula, we
obtain:

< Gp+x(pcosh),h>= —// p cosBdsh+- pdih dtdx
D

= /aDlh[(pcos,B,p)-n]dsqL /(;Dzh[(pcose,p)-n]ds

tc
o _5<—p*cos<e.>+bi’<t>p*>h<t,bi<t>>dt}

(X)) =

te+0
+ (—p*cosb +a(t)p*)h(t,a(t dt+/ h(te, X)
te

tet5
_/t (—p*cosB+ b/ (t)p*)h(t,b(t))dt

by (te) br (tc) b(tc)
= —p*/ h(te, x)dx— p* h(te, X)dx+ p* h(te, x)dx
a(te) ar (te) a(tc)
= 0.
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sincends= +(—1,X/(t))dt on the left and right sides of the domaig andD»
andnds= +(0,1)dxon theirs top and bottom sides. The last equality stems from
the identity

(be(te) — ay(te)) + (br(te) — ar(te)) = (b(te) —alte)).

The density equatiorf (ZB1) is satisfied in the distribuil@ense.
If we now apply Green'’s formula with a test functibre 6:°(D), we obtain

< W(cosh) + oxP(cosh),h >= — // ®(cosh)dh+ W(cosO)ah dtdx
D

= /(9D h[(®(cosh),W(cosh)) - njds+ o h[(®(cosB),¥(cosh)) - njds

m b(tc)
_ / , (W(c0s8) — W(cost) it X+ / (W(cosh) — W(cos:))h(te, X)dx
a(te m
b(tc) _
= _/ Oxmh(te,X)dX= — < p,h> .
ate)
Eqg. (2.3R) is satisfied in the distributional sense. Note iinghis case, the test
function has a compact support i sinceW(0) is not defined in the vacuum

regionp = 0. ]

D Proof of proposition 322 (study of the Hugoniot
loci)

In this section, we provide a detailed study of the Hugoninves. Let(p,, 6;) €
10, p*[ % ]O, | be an arbitrary left state. We need to find the geometric bebav
of the Hugoniot loci associated to this left state. The atadsheory of nonlinear
conservation laws provides only information on the locdldgour of 7#’¢. Each
JCE, ¢ consists of a one-dimensional manifold tangent to the nategurves
of the right eigenvectors up to the second order. In(fhé(cosO))-plane, the 1-
Hugoniot curves#’¢ is thus locally decreasing and the 2-Hugoniot cus#e is lo-
cally increasing because of the direction of the veatbrs (£p [sinf|, /ep' (p)p).
In the (p, 6)-plane, the 1-Hugoniot curvez’® defines a locally increasing func-
tion 6 = (h¢)~(p) while the 2-Hugoniot curve’’¢ defines a locally decreas-
ing function® = (hg)~1(p). Actually, this property is global (i.e(h )~ (resp.
(hi)*l) is a globally increasing (resp. decreasing) functiop @r all p €]0, p*|).
To prove this, let us begin with a simple and useful lemma.
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Lemma D.1 For all u € [-1,1], the function §: v e] —1,1[— P(v) —u¥(v) is
convex and has a minimum at the point u. In particular, we have

W#£u, (P(v)—>d(u))—u(W(v)—W())= fy(v)— fy(u) > 0.

The proof is elementary and omitted. We now analyze the betaof 77f in
more detail wherg becomes small. Propositipn B.2 is an immediate consequence
of the following lemma.

Lemma D.2 The behaviour ob#¢, s#¢ does not depend on the left state. Let
(pe, 6y) be a left state. Then:

(i) Supposé; is fixed. The functiop, — Hg¢(py, 6/, pr, 6;) has at most two
zeros and there exists > 0 such that for alle < €, the functionp; —
He(pr, 61, pr, 6;) has only one positive zero. This zero tendpt@ase tends
to 0.

(i) Supposep; is fixed. Therve > 0O, the functiond, — H¢(py, 6;, por, 6;) has
two zeros, one lower and one larger th@n and both of them tend & as
¢ tends ta0.

The Hugoniot locus tends to the union of the straight lif@s= 6,} and{p = p*}.

Note that these results imply that the Hugoniot locus césisistwo monotonous

curves as functions g (otherwiseH with fixed 6, would have more than two
zeros). The local behaviour of the Hugoniot locus enabldée dstermine that the

increasing curve is associated to the first eigenvafuand the decreasing curve
to the second eigenvalug .

Proof (i) Let us fix the left statdp,, 6,) and the right anglé,. So as to get a
more readible proof, the functiqgm — H¢(py, 6y, pr, 6;) will be denoted byH but
its derivative will be denoted by a partial derivatidgH. We look for the zero set
of H in the interval0, p*[. We compute:

dzH / //

d—pz(Pr) =¢e(2p'(pr) +0"(Pr)pr) >0

:

As p and its first two derivatives are strictly positive (0 p*|, the functionH
is strictly convex and thus has at most two zeros. Moreober,value ofH at
pr = py is strictly negative,

H(pr) = —ps[W(cosB)] [cosh] <O,

45



if 6 is not equal tag,. Like the functionp, H tends to+c whenp, tends to the
maximal density*. ThenH has only one zero ifpy, p*[. We have

H(0) = pi (ep(pyr) + [W(cosB)] cost, — [®(cosh)]) .

Lemma[D.L implies that the second term of this expressiotristly negative
and thusH (0) becomes stricly negative for small Thanks to its convexity, we
deduce that there exist$ such that for alk < €', the functionH has no zero in
the intervallO, py|.

To show that the only zero i tends top*, let us rewriteH as follows

H(pr) = [ep(p)][p] +[P(cosB)] [p] —[W(cosB)] [p] cosb: — [W(cosB)] [cosb] oy,
and thanks to lemmaD.1, the zerotbfsatisfies

[ep(p)][P] — [®(cosB)] [p] +[¥(cosB)] [p] cog 6 ) +[¥(cosB)] [cosb] p
> [W(cosH)][cosH] p; > 0.

So we can easily conclude that the zerdHofends top*.
(i) Like in the first point, let us denote the functidh — H¢(py, 6/, pr,.) by
H. First, the value taken byl at 6, = 6, is positive:

H(6,) = €[p(p)] [p] > O.

Some easy computations leads to the following expressidheofirst (partial)
derivative ofH:

JoH 1
a6 (6r) = sinG
As p;, and p; are positive, the sign of the derivative is the same as the sig
[cosB]. ThusH is increasing on0, 6,] and decreasing of#,, 17. Moreover using
the fact that!(u) = ®(u) +log(1+ u), we can writeH as

H(6) = d(cosh) [p(1— cosh)| + log(1+ cosb; ) [pcosO] + A(g, pr, 6)

whereA is a bounded function. It implies that tends to—o when 6, tends to
0. In the same way and by using the identfyu) = —®(u) + log(1— u), we can
show thatH tends also te-c when 6, tends torr. We deduce thatl has exactly
two zeros.

Let us remark that

(pe[cosO] + [W(cosh)] pr Sir 6;) .

He = Hi—(1—¢)[p(p)][p]-

This implies thaH; 1(0) = H{l((l— €)[p(p)][p]) and then that the zeros bif
tend to6, ase tends to O. "

46



E Proof of proposition3-3 (study of the integral curves
of the right eigenvectors)

Proof 1. We easily check tha®’(p) = F/€p/(p)/p, leading to the result.
2. For a fixedp, the quantity

6° = (i) X(p) = ep:w( Tadd )

converges td), ase goes to 0. For a fixe@, the quantityy/e <f££ \/&u(”)du) =

6 — 6, is a constant. So as tends to 0, the integral term has to tend+to,
which implies the convergence pf = i% (60) to p*. Besides, the function inside

the integral behaves lik® (\/E(p* —u)*%l> whenp — p*. This leads to a

diverging integral foly > 1. Then the integral behaves Iiﬁb(\/E(p* — pg)*y%l)
and thus we gep* —i4(8) =0 (gkf—1>

3.Lete’ > 0andp < pg . From the rarefaction curve equatign (3.509,) ()
satisfies

15) er|</ VR d—f/p"’“ P

Assuming that the limit ok p(pf) is finite, we getp* — pf = 0(57). Thus, the
function inside the integral behaves lik& (p* — )—%1 whenp — p*. This leads
to a diverging integral foy > 1, and then the integral behaves Im({\/_(p pr)—yT>

and thus IlkeO(sTV). ]

F Proofs of theorem3-5 and proposition=316 (solu-
tions of the Riemann problem for & > 0)

F.1 Proof of theorem[ 3%

Proof Let (py, 6;) and(pr, 6;) be left and right states respectively and let us sup-
pose that the intersection of the 1-forward wave cOM/EE issued from the left
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state and the 2-backward wave cuWé’s issued from the right state reduces to
one point(p, 5) (in all the proof, the 1-wave will be implicitly relative tdhé
left state while the 2-wave curve will be implicitly relagéivto the right state).
The solution of the Riemann problem depends on which parttseofvave curves
meet: for instance, ifp, 0) is the intersection of the 1-shock curve with the 2-
rarefaction curve, then the solution will be the combinatida shock wave (with

a speed given by the Rankine-Hugoniot condition {|3.47)) anarefaction wave
separated by an intermediate constant state. To find whelatdrsection on the
shock curves is located, the main arguments will be the nomyoof the wave
curves given by propositiors B.2 apd]3.3 (independentlyheflbcation of the
states in thep, 8)-plane) and their convergence speed to their asymptotit. lim
The wave curves will be considered as function@ @i their domain of definition:

W JiE foree [(i8)71(0), 6/, W | e foree(o6],
“ | he for@e[6,mn, T ie for6el6,(i8)"10)],

wherew_ is an increasing function amd, is a decreasing function. The functions
h. andi are respectively defined in propositigng 3.2 3.3. Lekamne the
different cases suggested by the theorem success®edyeater or lower or equal
to 6;. For the reader’s convenience, the corresponding geanunfigurations
of the wave curves are illustrated in figurg 12.

Cased;, > 6 (Fig. L2, (a)). From propositiqn 3.8 ) ~%(0) (resp. (i€ ) ~(0))
tends to6;, (resp. 6;) ase goes to zero (and the third point of the same propo-
sition asserts that it is still the case whgntends top*). So, assuming that
there existsar such that(i%)~1(0) < (i£)~1(0), there exist$8 < a such that
6 < (i")2(0) = (i*)"1(0) < 6,. So, since the domains of definitionwf and
w, are respectively(i®)~1(0), ] and]0, (i¥)~1(0)], the only intersection point
of wﬁ andw? is the intersection of the 1 and 2-rarefaction curveéﬁa}*l(O).
As ¢ decreases, the intersection point disappears since thaidewi definition
are separated. However, the integral curves meef{he 0} axis at the states
(0,i¢(0)), (0,i%(0)) and these states are connected by vacuum.

Casef, < 6;. We suppose thal, is lower thanp,. For all g, the increasing
1-shock curve issued from the left state divides the dorf@ip*] x [6,,2m] (to
which the right state belongs) in two parts: the left domalrere the right state is
on the left side of the 1-Hugoniot curve issued from the l&ftes(pf < hf (6F))
and the right domain where the right state is on the right efdée 1-Hugoniot
curve issued from the left statp{ > hé (6F)).

- Assume that for al€ the right state is on the right side of the 1-shock curve
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Figure 12: Schematics of the intersections of the wave sufprof of theorem
B.9). Only the parts which meet are represented.
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(Fig. @2, (b)). We consider® —w£ on the interval[(i€ )~1(0), (i) ~1(0)], which
is the intersection of the domains of definitionvaf andw?, . The functionw® —
wé is increasing. We haveve —wg )((i€)~1(0)) = —(w;)((i-)~1(0)) < 0 and
(W& —wE)(6) =hE (6) —pr > 0. So the only zero of¥. —wZ_is in the interval
[(i¥)71(0), 6. So the intersection point of the two wave curves is the s@etion
of the 1-shock curve and the 2-rarefaction curve. This spoads to the second
subcase of the third case of the theorem. Note that the lintiteo1-shock curve
(propositiorT 3R) implies that the limit of this case shobédconsidered only i
tends top*.

- Assume that for alk the right state is on the left side of the 1-shock curve
(Fig. 12, (c)). Sincep, is lower thanpy, the left state is also on the left side of
the 2-Hugoniot curve issued from the right stag: < pf = h® (6f) < h% (6f).

We again consider the increasing functiwh —w? on its domain of definition
[(i£)71(0),(i%)~1(0)]. This function is negative &, and positive aB;. So the
intersection point of the two wave curves is the intersectb the two shock
curves ang > py, pr. This corresponds to the first subcase of the third case of the
theorem.

If py is greater thap,, the decreasing 2-shock curve issued from the right state
divides the domaitipr, p*| x [0, 6;] and the same arguments as before lead to the
result.

Case6, = 6; (Fig. [I2, (d)). Assume that, < p,. We again consider the in-
creasing functiom? —w#.. Itis positive atf = 6, and negative fof = (i€ ) ~1(0) <

6, (sinceh?. ((i¢)~1(0)) > pr > 0). Soitequals zero for a vale< 6,. So (b’, 5)

is the intersection of the 1-rarefaction curve and the Zklecarve, which leads to
the solution given in the first case of the theorem. The gasepy, is similar. =

F.2 Proof of proposition 36

Proof 1. Consider the domain whef{@ = p,}.
If the left state is connected to the intermediate state viarefaction wave,
then this rarefaction fan is contained between the spe&dscost, —\/ep'(pr) pr| sin|
andA€ = cosB — /ep/(p)P|sind|. SinceA£ < coshy, the domain{p = p,} can-
not contain the contact wave with speed 6os
If the left state is connected to the intermediate state \shaxrk wave, then
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we have co$ < cosb; andp; < p, which yields

~

s~ = cosb, + (cosf, — cosh)

—p
' _(cosB—cosf,) < cosb,

— cosO + -
P Pﬁ

So the domaifp = p,} cannot contain the contact wave with speed@os

So in both cases, the domafp = p,} cannot contain the contact wave with
speed co§,. The same arguments show that the dord@in- p; } cannot contain
the contact wave with speed dés

Finally, we easily check that a contact wave with propagesioeed co8 can
occur within the intermediate domajp = p}. Indeed, if the intermediate state is
connected to the left state (resp. to the right state) viaedaetion wave, then we
haveA® < cosf < )\S and if the intermediate state is connected to the left state
(resp. to the right state) via a shock wave tisen< cos (resp.s™ > cos@).

2. Like in the previous point, the contact wave can be locatelg in the
intermediate statép = O}. But the propagation speed is not unique: it can be all
the intermediate speeds between the two fans of rarefaction [

G Proofs of lemmar3:8 and propositions 31£,3.9 and
B-10 (limits of solutions of the Riemann problem)

We recall that the quantities indexed by - (resp. by +) ardititly those related
to the left state (resp. the right state). The charactersgieeds related to the

intermediate state will be denoted by .

G.1 Proof of proposition 377

Proof (a) Let us suppose that < pr (the opposite case is similar). According to
theoren{3]5 and propositin B.3, the intermediate state@igends tod; (since
p¢ belongs to the intervapy, pr[ for eache). In addition, it is easy to check that
the two speedgi andA, tend to co$; ase¢ tends to 0. So the rarefaction wave
turns into a contact wave with speed épsAs regards the shock wave, its speed
is given by

< p €CcosHt — Py COS6, _ cosf, + Bt cosg‘g — cos(957

P —py pPE—p¢
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and tends to ca® ase tends 0. Finally, the two waves coincide and make a single
contact wave.

(b) As in the first case, it is easy to check that the two ratefacvaves (cf.
theoren 3]5) turn into contact waves with speeds respéctepial to co$, and
cosb;.

(c) According to propositiofi 3.2 (pf) tends to6, < 6;. So, theoreni 35
implies that we are looking for the limit of the intersectipaint of the two shock
curves issued from the left and the right states. Thesene@iate statego®, 6%)
are the solutions of the non-linear systems

He (e, 6;,0°,6°) =0, He (P, 6%, 0r,61) =0, (G.85)
p = ma)<(p€7pl’>7 XS ]min(9€7 el’>7max(6£7 91’)[ (686)

From propositiorf 3]2, for ab € |min(6,, 6;),max 6,, 6;)], the largest zero of the
functionp — H¢(py, 6y, p, 0) tends top* ase — 0. Indeed, ifp? does not tend to
p*, ¢ simultaneously tend t6, and to6; (which is different fromé,), which is
absurd. Thereforgg® increases and tends pd. Besides, we have the equality

ep(p®)[p] = [W(cosh)],[pcosb], — [P(cosd)].[p], +p(p°) [P

which implies thak p(p?) is bounded as tends to 0 (becau@g is bounded too)
and we deduce thaip(p¢) converges to a non-zero valpeFinally, we can easily
check that the system given in is equivalent{fo ((.86). n

G.2 Proof of lemma[38

Proof Suppose that, = lim Xi is finite. Sinceep(pf) — pr > 0, thenep/'(pf) —
+o0 and consequently, — +oo. The limit rarefaction wave has a fan for speeds
sbelonging tgA.,+o[. The 2-rarefaction wave satisfies, for alt|A, +oo],

s=A1(p(8),0(s)) = cog0(s)) + Ve (p(s))p(8)SIN(B(s))|-

So, for a fixeds, p(s) — p* as€ — 0 and we havép* — p(s)) = O(sv%l). Thus,

ep(p(s)) (= O(el’val)) — 0 ase€ — 0. So the rarefaction wave tends to the

combination of a shock wave between the std@%,,0) and (p*, 6;,0) with
speed}\VJr and a declustering wave.

If p < p*, thenx+ equals 0 and the previous arguments apply. Let us look at
the case = p*. If X+ is finite, then in the previous conclusion the shock wave
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disappears since the two states on both sides of the shoekavavequal. And it
confirms thatp = lim ep(p¢) equals zero. Iﬁ+ is infinite like limA#, then the
rarefaction wave turns into a shock wave with an infinite ggestween the states
(p*,6r, pe) and(p*, 6, pr). u

G.3 Proof of proposition[3:9

Proof (a) We want to apply lemnia3.8. Here the intermediate stabeimtersec-
tion of the 2-rarefaction curve and the 1-shock curve. Thkergection state exists
for all € by the monotony of the two curves (cf.~propositi 3.2p@).3.et us
note that there is no reason to have a finite limid 6fsince the intermediate state
can tend tgp*. By a compatcness argument, we can restrict ourselves e e
uniqueness of the limit of convergent solutions. So let user several cases:

Case (i)p¢ — py. In this case, the 1-shock disapears and the solution isgive
by lemm&38.

Case (ii)p¢ — p € ]py, p*[. In this case, it is easy to check that the 1-shock
becomes a 1-contact and the limit of the 2-rarefaction ismlyy lemmg 3]8.

Case (iii)p¢ — p*. Now let us look at the limit oE p(p¢). We have

He(pr, 61,p%,6%) = [®(cosh) + ep(p)], [p], — [W(cosh)], [p cosB], = O.

Since cod tends to co$; (cf. third point of propositioth 3]3), the ternjg coso]
and|p] are bounded and taking the lingit— O, we get

[ep(p)l [Pl — O

So either[p], tends to 0 oep(p?) tends to 0. Thusp(p®) tends to 0. Finally
lemma[3:B applies and we conclude that the 2-rarefactiaistéma declustering
wave. Now let us look at the limit of the shock speed. It is tent

< _ p€ cosBE — p, cosh, — cosO, + 5 cosB¢ — cosh,
P —py ‘ pE—pr
and so tends to cdk. So the 1-shock tends to a contact discontinuity.
(b) The limit of the 2-rarefaction is given by lemmia]3.8 (wif = 0 and
A, = cos6;).The 1-rarefaction wave turns into a contact wave as before

(c) We first consider the case where the intermediate stdle igtersection
point of two shock curves (for ak, h® (6f) > pf): by the monotony of these
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curves,pf is larger tharpf and so tends tp* too. Besides, the intermediate state
(p%, 6%) satisfies

He (pr, 6, p%, 6) = [®(cosB) + ep(p)], [p], — [¥(cosh)], [pcosb], = O,
p* >maxps,pr), 6° €16, 61,

which implies thatsp(p¢) converges to a value denotgd By taking the limit
€ — 0in the Rankine-Hugoniot relatiop (3]48), we obtain

[W(cosh)], [pcosB]r = [®(cosh) +ep(p)], [P]r,

we obtain
[W(cosh)], [cosO]; =0

(6 is bounded andp], tends to 0), which implies thal equals6,. Finally, we

have 0
£p(p)e = [¥(cos8)] =0 — @(cost)).

If the limit [ep(p)]r iS non zero, then the propagation speed is infinite and if it is
zero, there is no discontinuity.

Consider now the case where the intermediate state is thes@ution of the
1-shock curve issued from the left state and the 2-rare@iacturve issued from
the right state (for alk, h& (6f) < pf). From propositior 3]3 (point 3), the inter-
mediate angl@f tends tof;. Besides, thanks to propositipn]3.2, the intermediate
densityp? tends top*. From (3.4P),ep(p¢) converges to a value denoted py
which is given by the limit Rankine Hugoniot relation. So thmit intermediate
state is(p*, &, p). Finally lemm&3]8 applies: the rarefaction turns into ackhe

G.4 Proof of proposition 310

Proof (a) Since the intermediate densi§ is comprised between the left and
right ones:p; < p® < pf (cf. theoren315) and singgf, pf — p*, we also have
p¢ — p*. For the intermediate ang@g, the previous proof shows that it tends
to 6. Let us note that the 2-rarefaction wave tends to a contaee {lzecause
Af,Af — +o0). Lets be the limit of the 1-shock speed and let us note #hat
lower than co$),. Like in prop.[3.D, subcase (c), the intermediate presswgqual
to



Now let us look at the limit of the shock speed. For finitethe shock speed is
given by:

< pt cosHt — Py COS6, _ cosg, + Bt cosHt — coseg'

P —py PE—pr

Sinceep(pf) — pr >0, we havee? = O(p*—pf) and there = O(p*—p*%). On
1
the other hand, from lemnja B.3 we hai®)~1(p) — 6, = O(¢%) and therefore

we get
cosf® — cosh, = —23in<6 + 9€> sin (6 6K> =0(¢

S

2 2 )

Thus, we easily get thaf tends to co$; and then that the pressupequalsp;.

(b) Here the proof is similar to the case where only one statgerges to the
congested state (see proof of prpp] 3.9).

(c) Consider the case where the solution is the limit of twacktwaves. By the
monotony of the shock curves, the intermediate densitygetehan the right and
left ones (cf. theorer 3.5) and so it tends to the congestesitydoo. Suppose
that the intermediate angle is not equalBio As regards the 1-shock speed, we
have _

[pcosh], (cosB, — cosb?)

[P pE —py
and so the limit 1-shock speed-iso. Besides, we have

= cosB% + py

ep(o)]s = [W(cos)], L _ (pcosgy,,

[Pl

which implies thatp(p¢) tends tot. Then we have

[pcosB;
[olr

Since the right hand side tends-teo, the 2-shock speed has to tenditoe too.
If the intermediate angle tends &, then it does not tend t6, and the same
arguments apply. The quantities

[ep(p)
lep(p)

[W(cosh)]r = [ep(p)]r + [P (cosO)]r.

[Pl

] [W(cosB)],[pcosb], — [®(cosh)].[p]e,
Jr[P] ]

cos6
[W(cosO)];[pcosh]; — [P(cosh)| [p]r
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are bounded. The limit of their quotient is

[ep(p)]rplr . [W(cosb)]r[cosb,
[ep(p)]e[ple e~0 [W(cosB)],[cosB],

Besides, it is easily checked that

ep(P)lelplr P—pc P —pr
[ep(p)]elP]e e-0 p—py e—0 p* — Py’

where the last equivalence results from the facttpat-p) = o(e%) sinceep(p) —
1 1
+ooand(p* —pyr) = O(eY), €Y = O(p* — pyr). Finally, we have

1 _ 1
P —pr _ <8p(pe>)VH (g)v.
p*—pe  \&p(pr) pr

Consider now the limit of a solution consisting of one shockve/ and one

rarefaction wave. From lemnfa B.8, the intermediate a@§léends to6, and
from the Rankine-Hugoniot relation, we have

[ep(p)]; [Pl = [W(cos)], [p cosB], — [®(cosB)], [p], -

So, sinced is bounded and the densitip§ < p* tend top*, the right hand side
tends to a non zero valup:* [W(cosB)], [cosB],. Becausép], tends to Ogp(p?)
has to tend too, which is absurd sincep(p®) < ep(pf). "
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