
Maximal Group Membership in Ad Hoc Networks

Mamoun Filali, Valérie Issarny, Philippe Mauran, Gérard Padiou, Philippe

Quéinnec

To cite this version:

Mamoun Filali, Valérie Issarny, Philippe Mauran, Gérard Padiou, Philippe Quéinnec. Maximal
Group Membership in Ad Hoc Networks. 6th International Conference on Parallel Processing
and Applied Mathematics : PPAM 2005, 2005, Poznan, Poland. pp.51-58, 2006. <inria-
00415110>

HAL Id: inria-00415110

https://hal.inria.fr/inria-00415110

Submitted on 10 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50542886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00415110

Maximal Group Membership in Ad Hoc
Networks

Mamoun Filali1, Valérie Issarny2, Philippe Mauran3,
Gérard Padiou3, and Philippe Quéinnec3

1 IRIT-CNRS-Université Paul Sabatier
filali@irit.fr

2 INRIA-Roquencourt
issarny@inria.fr
3 IRIT-ENSEEIHT

{mauran, padiou, queinnec}@enseeiht.fr

Abstract. The notion of Group communication has long been intro-
duced as a core service of distributed systems. More recently, this notion
appeared with a somewhat different meaning in the field of mobile ad hoc
systems. In this context, we study the group membership problem. After
specifying the basic safety properties of such groups and a maximality
criterion based on cliques, we propose a group membership algorithm.
Lastly, with respect to this criterion, we compare our algorithm with
two group membership algorithms for ad hoc environments. Moreover,
a formal description in TLA+ has been programmed and verified by
model-checking for small networks.

1 Introduction

The notion of Group communication has long been introduced as a core service
of distributed systems [1]. More recently, this notion appeared with a somewhat
different meaning in the field of mobile ad hoc systems. We introduce group
communication protocols in the classical setting. Then, we present the features of
mobile ad hoc systems that motivate the design of new definitions and protocols
for group communication.

Group Communication Protocols. Group communication services have emerged
from two domains : asynchronous distributed systems for fault-tolerant purposes
[1, 3, 6] and (distributed) multi-agent systems (MAS) for agent coordination pur-
poses [8]. They have been extensively studied from a formal as well as from a
practical standpoint, in the field of distributed computing systems [3] in which:

– the number of connected nodes can be sizeable, but (typically) is not huge.
– the connection of a node to the system remains relatively stable (which does

not rule out unexpected failures or disconnections).

In this setting, the group communication service appears as a fundamental
service, which allows to multicast messages to a set of nodes (or group members),
in order to build (more easily) fault-tolerant distributed systems, or to manage
the consistency of the group members’ interactions, at the application level.

R. Wyrzykowski et al. (Eds.): PPAM 2005, LNCS 3911, pp. 51–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 M. Filali et al.

Group communication is based on the definition of groups, i.e. sets of nodes.
Messages sent to a group are dispatched to each member of the group. Such a
group communication layer is particularly relevant and useful for fault tolerance
based on the replication of services or data, or for some classes of applications,
such as groupware. Its implementation rests on two basic services:

– a group membership service, which maintains a list of current group mem-
bers, or, more precisely, a representation (a view) of this list for each group
member. The main problem is to ensure the coherence of each member’s
view. Changes in the group composition, due to members leaving, or fail-
ing, or to new members joining, can be taken into account by the notion of
primary view, which defines consistency rules for group evolution [4].

– a reliable multicast service which delivers messages to each group member.
This level allows to schedule message delivery, depending on the application
level requirements in terms of cost and consistency.

Group Communication Protocols in Mobile Ad Hoc Systems. Pervasive comput-
ing, which has received an increasing attention during the last decade, brings
quite a different setting for distributed systems and applications:

– The ability for any node to join (or quit) the system anywhere, at any time, a
priori rules out asymetrical (centralized) protocols in the vein of client/server
patterns.

– Scalability becomes a key factor, due to the potentially huge and highly
transient set of nodes that make up the system.

– Whereas the design of classical group communication protocols relies on
point-to-point communication, local broadcast is a natural and often appro-
priate communication pattern in pervasive computing environments.

– In the same way as networks, groups are not a priori defined. They are rather
built up “on the fly”, in an ad hoc manner, depending on the requirements
and availability of interacting sites at a given time, in a given area.

– Lastly, requirements on autonomy and resource consumption lead to favor
robustness and locality, to the detriment of determinism and synchronism,
which meets up with the stress layed on scalability.

Thus differences appear on the one hand, in the purpose of groups : in clas-
sical group communication systems, the main goal is to determine whether sites
belong to a given (unique) group, whilst in the setting of pervasive computing
systems, the main issue is to build groups (which may be partitioned) out of
neighboring nodes, and, on the other hand, in the way groups evolve : in the
classical setting, view updates are incremental and no periodic installation of
new views occurs “from scratch”.

The notion of group has thus been revisited, in the light of these new con-
straints, by several recent systems. Our proposal comes within this scope. It is
based on the analysis of two existing proposals [2, 8], coming from different, but
complementary, fields and concerns, as regards the group communication service,
namely mobile ad hoc networks, and (embedded) multi-agent systems. Further-
more, we specify the properties of our protocol in the TLA+ formal framework
[5], in order to assess and compare this protocol to existing ones.

Maximal Group Membership in Ad Hoc Networks 53

2 Group Membership Properties in Ad Hoc Networks

In ad hoc networks, nodes and links continuously appear and disappear. In such
a context, group members must exhibit a high connectivity to meet robustness
and fault tolerance criteria. The most robust groups of processes of a given size
are those that correspond to cliques in the underlying interconnection topology
of the network.

Fig. 1. Partitions in cliques

A clique of a graph is any complete sub-
graph [7]. Figure 1 illustrates partitions in
cliques of a graph. Several maximality cri-
teria have been defined on cliques. With
respect to the group membership problem,
the left partition is better than the right

one: groups have more members (i.e. the partition has less cliques). However, two
cliques cannot be merged to form a bigger clique. We choose this non-extendible
property as a maximality criterion.

Cliques can be used to specify the basic properties of groups. Each grouped
process must eventually obtain an installed view that contains the members
of its current clique. Group membership algorithms should aim at computing
partitions of maximal cliques to assign a view to each node. A partition insures
that each process belongs exactly to one group and (maximal) cliques provide
the most robust groups.

A formal statement of these properties is given by the following definitions:
we consider a set of nodes Node, the vertices of the network graph. This graph
is specified as a set of pairs of nodes and installed views are subsets of Node.

Graph ⊆ Node × Node Views ∈ [Node → subset Node]

Communication properties in ad hoc networks lead to consider specific graphs.
More precisely, we assume that a node can send messages to itself and that if a
node p can communicate with q, then q can communicate with p. Therefore the
graphs we consider for ad hoc networks are reflexive and symmetric:

AdHocGraph Δ= Graph ∪{〈p, p〉 : p ∈ Node} ∪ {〈q, p〉 : 〈p, q〉 ∈ Graph}

In the remainder of this section, we assume the installed views are non
empty sets. Views must verify consistency properties: an installed view of node
p always contains p, views are cliques and views are disjoint sets.

View safety

∀p ∈ Node : p ∈ View [p]
∀p ∈ Node : View [p] × View [p] ⊆ AdHocGraph
∀p, q ∈ Node : (View [p] = View [q]) ∨ (View [p] ∩ View [q] = ∅)

54 M. Filali et al.

First, we specify a local minimal requirement for a group membership service.
Views with only one member (singleton set) should be avoided: for any couple
(p, q) of nodes, if their installed views are eventually reduced to a singleton set,
these nodes must not be neighbors. In other words, if a node eventually belongs
to a singleton set, its neighbors belong to non singleton cliques.

∀p, q ∈ Node : View [p] = {p} ∧ View [q] = {q} ⇒ 〈p, q〉 /∈ AdHocGraph

A stronger property specifies a maximal criterion : a view cannot be extended
with an other distinct view.

∀p, q ∈ Node : (View [p] × View [q] ⊆ AdHocGraph) ⇒ View [p] = View [q]

A restricted form of this property implies that a singleton view cannot extend
an existing view.

When all nodes have obtained an installed view, a final requirement states
that all views are a covering of the graph :

⋃
p ∈ Node View [p] = Node

From their mutually exclusive property, it follows that the set of views
{View [p] : p ∈ Node} is a partition of Node.

3 Group Membership Algorithm

The group membership algorithm aims at building non extendible cliques. Each
node has the same behaviour. Starting from a singleton state, a node performs
successive steps bounded by a timeout to reach a final grouped state. Figure 2
illustrates this sequence of phases. Such a sequence starts according to a classical
approach in distributed algorithms, namely, a diffusing computation. At least one
node performs a first local broadcast of a message (possibly after a timeout).
Other nodes enter the phase when they receive this message and propagate the
current phase by broascasting the same message type.

This sequence of phases is performed by a node until it enters the grouped
state. A node remains in a group for a while and repeats the group membership
protocol. The lifetime of a group is assumed to be much longer than the time
required to build a group. This periodic behavior allows to adapt to the dynamic
nature of the network.

During the Discovering phase, a node acquires the list of its one-hop neigh-
bors. Then, each node broadcasts this list during the Publishing phase. When a

Fig. 2. Phases of the algorithm

Maximal Group Membership in Ad Hoc Networks 55

node has received all the lists of its neighbors, it has a complete knowledge of
its neighborhood at a 2-hops distance. With this knowledge, each node either
decides to wait an inclusion request from an other node or to compute a clique
and broadcast this view to target members. This decision relies upon a total
priority order defined on nodes. A node evaluates a new view if and only if its
priority is greater than all its 2-hops neighbors.

Fig. 3. Neighborhoods

Figure 3 illustrates a node with its neigh-
bors and 2-hops neighborhood. Node priority
is assumed to be equal to their identity. This
node of maximal priority will decide to build
a view including either the nodes {8,10,15} or
the nodes {7,11,15}. The clique {6,15} could
also be considered, but larger cliques should
be preferred.

The main idea for choosing the maximum
over the 2-hops neighborhood is that the same
node cannot be twice chosen to be a member
of two distinct views. If the same node could
be selected by two other nodes, then the distance between these two nodes should
be at most 2. It follows that the node will be selected by at most one of them
since the priority of a node that selects a view is greater than the priority of any
other node at distance 2.

Properties of such algorithms can only be specified under stability assumptions
on the underlying network during a bounded period. Henceforth, we assume that
the underlying network connections are stable from the beginning of the proto-
col until all nodes are grouped. However, if this stability condition does not hold,
the algorithm still guarantees the three view safety properties (See section 2), but
cannot guarantee any longer the maximality property (non extendible property).

3.1 State Transition Graph

Figure 4 describes the state transitions of a node. A transition is performed
when a message is received or a timeout occurs. During a phase, specific message
type(s) can be broadcast (!m) and/or received (?m).

Fig. 4. State transition graph

56 M. Filali et al.

There are three message types containing the sender’s identity: discovery,
neighbors and inclusion. A neighbors message also contains its sender neighbors
and an inclusion message contains the resulting view.

Each node maintains the following local variables: its current state, a set of
neighbors, the neighborhood of each of its neighbors and a view defined when
the node is grouped.

3.2 Message Handling

For a singleton node, the reception of a first discovery message or a timeout T0
occurrence triggers a transition toward the Discovering state and a broadcast
of a discovery message toward reachable nodes. The sending node is recorded
as a new neighbor and the current state remains or becomes Discovering. The
discovery process is propagated by broadcasting a discovery message. If the
node is already in the Discovering state, the same actions are performed but the
state remains unchanged.

In the Discovering or Publishing state, if a node receives a neighbors mes-
sage, its neighborhood is updated with the content of the message, namely the
neighbors of the sending node.

In the Expecting or Publishing state, if a node receives an inclusionmessage,
it accepts the content of the message as its current view and becomes grouped.

3.3 Timeout Handling

When a timeout occurs, according to the current state of the node, a transition
is performed. We assume the propagation time of a message to be the dominant
duration. Timeout choice rests upon the following constraints:

– Timeout T0: must be long enough to mask the asynchronous timing of phases
among nodes ; nodes acquire a weak synchronous behavior after the Discov-
ering phase and remain at most shifted from one phase.

– Timeout T1: in the Discovering state, a node has to broadcast its identity and
receive its neighbors. As neighbors broadcast their identity as soon as they
receive a discovery message, T1 must be at least longer than 2 broadcasts
(plus enough time for local processing) ;

– Timeout T2: same constraints as T1 in so far as the nodes have the same
behavior with respect to the neighbors messages.

– Timeout T3: in the Expecting state, a node has at most to wait for the choice
of a view and its broadcast. Therefore, T3 must be longer than this duration.

From the Singleton state, a timeout occurrence triggers a transition toward
the Discovering state and a local broadcast of a discoverymessage that contains
the sending node name.

From the Discovering state, a timeout occurrence triggers a transition to-
ward the Publishing state and a local broadcast of a neighbors message which
contains the current neighbors list of the sending node.

Maximal Group Membership in Ad Hoc Networks 57

From the Publishing state, a timeout occurrence either leads to evaluate a
new view if the current node has the maximal priority over its 2-hops neighbor-
hood and to enter the Grouped state or to wait for an inclusion message in the
Expecting state.

From the Expecting state, when a timeout occurs, the node returns into the
Singleton state.

Number of Messages. In the best case, the network itself is a clique, and one
iteration of the protocol is enough to build a group with all the nodes; if N is the
number of nodes, it needs N broadcasts (discovery message) + N broadcasts
(neighbors message) + 1 broadcast (inclusion message).

In the worst case, the network is linear and nodes are placed according to their
priority (that is, nodes 1 and 2 are connected, nodes 2 and 3 are connected,. . .).
Then, each iteration builds only one group with the two highest priority nodes.
Then N /2 iterations and O(N 2) broadcasts are required.

4 Related Algorithms

With respect to the general group membership problem, our study is mainly
concerned by group construction algorithms in partitionable networks [9]. In
this section, we first make some general remarks about group construction al-
gorithms used in partitionable networks, then, we present the main features of
two algorithms: the first one is used in the context of ad hoc networks [2], while
the second is used in the context of multi-agent systems [8].

Views are close to the underlying network topology. A view is a connected
component: it contains processes that can be reached (through one or several
hops) from each other. However, this definition is usually strengthened: a view
contains processes that can reach each other in one hop, i.e., a view is a clique of
the underlying network. Moreover, initially, either a node knows its immediate
neighbors or has to discover them through a broadcasting primitive.

The algorithm of [2], the starting point of our study, concerns group man-
agement in mobile ad hoc networks. Although, the algorithm is also concerned
by security aspects as well as by application level aspects, we discuss here group
membership aspects only. First, in order to take into account the dynamic topol-
ogy of ad hoc networks and the resource consumption constraints of mobile ap-
plications group maintenance is periodic. Periodically, during a discovery phase,
a node builds dynamically its neighbors set. Once a node knows its neighbours1,
it sends to one of them (the maximal one) its set of neighbours. Then, nodes
which have received some sets of neighbors may choose to build a connected view.
This algorithm cannot avoid extendible views. However, it has good properties
with respect to the number of messages and the minimization of energy.

The algorithm of [8] concerns also group membership. This algorithm is based
upon the construction of a common knowledge amongst neighboring nodes. Each
node broadcasts the list of its neighbors which is assumed to be initially known.

1 Timeouts are used for bounding the discovery period.

58 M. Filali et al.

Then, each node gathers the neighborhood of its neighbors. Once this common
knowledge is built, the following stages differ from our algorithm, as this knowl-
edge is used to define views through a consensus: in the last stage of a loop
iteration, the participants have to agree on a common view. In order to avoid
cycles, clique choices have to be restricted over iterations and the algorithm tol-
erates extendible cliques to ensure the convergence of the loop. This algorithm
is more concerned by the complexity issues for computing cliques: basically, it
uses pre-specified thresholds over the size of cliques.

5 Conclusion

In this paper, we have been mainly concerned by group membership protocols
in ad hoc networks. After specifying its basic safety properties and a maximality
criterion about the installed views, we have proposed a group membership al-
gorithm. Lastly, with respect to this criterion, we have compared our algorithm
with two group membership algorithms. We have also specified the properties
of the algorithm as well as its description in the TLA+ formalism. Currently,
we have performed model-checking experiments with the TLC tool [5]. On small
size graphs (6 nodes), we have been able to automatically check the correctness
of our algorithm. We are now working on its formal correctness (any number of
nodes) through theorem proving techniques.

References

1. K. P. Birman. The process group approach to reliable distributed computing.
Communications of the ACM, 36(12):36–53, December 1993.

2. M. Boulkenafed, V. Issarny, and J. Liu. Group management for in-home ad hoc
networks. In ECRTS International Workshop on Real-Time for Multimedia - Special
Focus on Real-time Middleware for Consumer Electronics (RTMM), June 2004.

3. G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications :
A comprehensive study. ACM Computing Surveys, 33(4):427–469, December 2001.

4. R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-oriented
group communication service. In Proceedings of the 17th annual ACM Symposium
on Principles of Distributed Computing (PODC), pages 227–236, June 1998.

5. L. Lamport. Specifying Systems : The TLA+ language and tools for Hardware and
Software Engineers. Addison Wesley Professional, 2002.

6. S. Mishra, C. Fetzer, and F. Cristian. The Timewheel group communication system.
IEEE Transactions on Computers, 51(8):883–899, August 2002.

7. S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica, pages 215,217–218. Addison-Wesley, Reading MA, 1990.

8. P. Tosic and G. Agha. Maximal clique based distributed group formation for task
allocation in large-scale multi-agent systems. In Proceedings of the International
Workshop on Massively Multi-Agent Systems, Kyoto, Japan, December 10-11 2004.

9. Özapl Babaoğlu, R. Davoli, and A. Montresor. Group communication in parti-
tionable systems : Specification and algorithms. IEEE Transactions on Software
Engineering, 27(4):308–336, April 2001.

	Introduction
	Group Membership Properties in Ad Hoc Networks
	Group Membership Algorithm
	State Transition Graph
	Message Handling
	Timeout Handling

	Related Algorithms
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

