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Selection of Biologically Relevant Genes with
a Wrapper Stochastic Algorithm∗

Kim-Anh Lê Cao, Olivier Gonçalves, Philippe Besse, and Sébastien Gadat

Abstract

We investigate an important issue of a meta-algorithm for selecting variables in the framework
of microarray data. This wrapper method starts from any classification algorithm and weights each
variable (i.e. gene) relative to its efficiency for classification. An optimization procedure is then
inferred which exhibits important genes for the studied biological process.

Theory and application with the SVM classifier were presented in Gadat and Younes, 2007 and we
extend this method with CART. The classification error rates are computed on three famous public
databases (Leukemia, Colon and Prostate) and compared with those from other wrapper methods
(RFE, lo norm SVM, Random Forests). This allows the assessment of the statistical relevance
of the proposed algorithm. Furthermore, a biological interpretation with the Ingenuity Pathway
Analysis software outputs clearly shows that the gene selections from the different wrapper meth-
ods raise very relevant biological information, compared to a classical filter gene selection with
T-test.
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1 Introduction

Performing a feature selection algorithm has several important applications
in the field of microarray data analysis. First, to determine which genes con-
tribute the most for the biological outcome (e.g. cancerous vs. normal cells)
and in which way they interact to determine this outcome. Second, to predict
the outcome when a new observation is presented. It is unlikely that thousands
of genes do explain the class membership of a microarray and it is hence wise
to use a dimensional reduction technique. This also provides practical aspects
with machine learning methods: it avoids the “curse of dimensionality” that
leads to overfitting when the number of variables is too large.

Features can generally be selected with two different approaches: either ex-
plicitly (filter methods) or implicitly (wrapper methods). The aim of the filter
methods is to measure the relevance of each gene. Variables are usually ordered
with statistical tests and microarrays are classified with the few good-ranked
selected variables. In this case, note that the selection is totally independent
from the classification method (Dudoit et al., 2000 and Golub et al., 1999).
The main advantages are robustness against overfitting and low cost compu-
tation, but these methods may fail to select the most “useful” features and
usually disregard the interactions between the features. On the other hand,
wrapper methods measure the usefulness of a set of features by exploring the
subsets space. This search can be performed either with heuristic or stochas-
tic techniques (e.g. simulated annealing, genetic algorithms). These methods
find the “useful” variables, but are prone to overfit. Moreover, when dealing
with numerous variables, an exhaustive subspace search is computationally
untractable. They generally yield greedy and costly algorithms since each it-
eration consists in selecting smaller and smaller subsets of variables (Guyon
et al., 2001, Diaz-Uriarte and Alvarez de Andrés, 2006).

These latter wrapper methods have been successfully applied on several
benchmarks but suffer from lack of mathematical justification. Furthermore,
they are all dedicated to one special baseline classifier that is used for con-
structing the decision rule. Gadat and Younes (2007) proposed a wrapper
approach which does not depend on the classifier and can numerically quan-
tify the efficiency of each gene. It uses stochastic approximations that still
cover a large portion of the search space to avoid local minima. This reaches
to subset selections of discriminative genes that hence hold useful information
on the microarray experiment.

The two main objectives of this paper are first to numerically compare the
performances of different wrapper methods by estimating the classification
error rate with the e.632+ bootstrap method (Efron and Tibshirani, 1997)
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and second, to provide a comparison of the different gene selections based on
their biological relevance. Note that we do not intend to optimize the size of
the gene subset. We rather focus on the biological interpretation of the 50 first
selected genes.

The optimal feature weighting procedure (ofw) from Gadat and Younes
(2007) was initially applied with the classifier Support Vector Machines (SVM:
Vapnik, 2000). We investigate the application of another classifier, Classifica-
tion and Regression Trees (CART) on public microarray data sets (Leukemia:
Golub et al., 1999, Colon: Alon et al., 1999 and Prostate: Singh, D. et al.,
2002). We compare the results from these two wrapper methods ofw+SVM
or ofw+CART to those obtained with other well known procedures: Recur-
sive Feature Elimination (RFE: Guyon et al., 2002), Random Forests, (RF:
Breiman, 2001) and l0 norm SVM (l0: Weston et al., 2003), as well as the
widely used T-statistics. The classification error rates are displayed for each
public data set and the biological relevancies of the gene selections are dis-
cussed with the Ingenuity Pathways Analysis software.

2 Method

We introduce the optimal feature weighting meta-algorithm (ofw) from Gadat
and Younes (2007) that treats several classification problems with a feature
selection task. In this section we explain the main theoretical derivations that
are necessary to fully understand the algorithm and its application.

2.1 Optimal Feature Weighting Model

The particularity of this algorithm is that it does not depend on the classifica-
tion procedure A used for classification. We consider a large set of genes G of
size N expressed on two biological conditions (or classes) {C1, C2}. G can be
either the total number of genes spotted on the microarray or a rather large
gene subset. These N genes describe a signal I. The optimization of any
given classification algorithm A (e.g. SVM, CART, Nearest Neighbors . . . )
is explored by passing through A different subspaces of genes to improve its
performance with time.

System energy

Let us define a positive weight parameter P on each of the genes in G. After
a normalization step, we can consider P as a discrete probability on the N
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genes. The goal is to learn a probability that fits the efficiency of each gene
for the classification of I in {C1, C2}, so that important weights are given to
genes with high discriminative power and lower weights to those that have a
poor influence on the classification task.

Denote p any small integer compared to N (e.g. p = 2%∗N), a gene subset
of size p has to be extracted from G. Next definition properly establishes how
to measure the goodness of P for the set of genes G and the two classes {C1, C2}.

Definition of system energy:
Given a probability P on G and ǫ(ω) the measure of classification efficiency
with any p-uple ω ⊂ Gp, the energy of the system at the point P is defined
as the mean classification performance when ω is drawn with respect to P

⊗p

(with replacement) in Gp, that is:

E(P) = EP[ǫ] =
∑

ω⊂Gp

P(w)ǫ(w) (1)

Note here that the energy E depends on the way we measure the classifi-
cation efficiency on ω, denoted ǫ(ω) all along this paper. Given any standard
classification algorithm A, ǫ(ω) will be the error of A computed on the training
set using the set of extracted features ω. For instance, if A is a SVM with a
linear kernel, ǫ(ω) will be the classification error of a linear SVM using only
genes in ω to describe the signal in the training set.
The computation of the sum (1) is untractable since one cannot enumerate all
subsets ω of Gp, but we will provide a stochastic algorithm to optimize E in
next section.

Remark The more P enables to hold a discriminative gene g for classifi-
cation (important weight on g and ǫ(ω) small each time ω contains this gene
g), the less E . Minimizing E with respect to P will thus permit to exhibit
the most weighted and thus the most discriminative genes. Hence, a natural
measure of variable importance ranking will be read on the weight distribution
P

⋆ minimizing E .

2.2 Stochastic optimization method

This part provides an efficient way to minimize the energy E with a stochastic
version of the standard gradient descent technique.

Remark first that the function E has to be minimized up to the constraints
defined by a discrete probability measure on G. Thus, the most natural way
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to optimize (1) is to use a gradient descent of E projected on the set of con-
straints. This leads to the next definitions.

Definitions:
We define the set S as the simplex of probability map on G. We also denote
by ΠS the affine projection of any point of R

N on the simplex S. This natural
projection ΠS of any point x can be computed in a finite number of steps as
mentioned in Gadat and Younes (2007).
The Euclidean gradient of E is:

∀g ∈ G ∇E(P)(g) =
∑

ω⊂Gp

C(ω, g)P(ω)

P(g)
ǫ(ω) (2)

where C(ω, g) is the number of occurrences of g in ω. The iterative procedure
to update P is then given by

Pt+dt = Pt −∇Ptdt (3)

Of course (2) is numerically impossible to calculate, as one cannot enumerate
all possible ω in Gp and a stochastic approximation is needed: the Euclidian
gradient expression (2) can actually be seen as an expectation. Then, to
deal with such gradient, a computable Robbins-Monro algorithm can be used,
which gets similar asymptotic behavior as (3) (see for instance Gadat and
Younes (2007), Kushner and Clark (1978)). With this stochastic method, the
updated formula of Pn becomes:

Pn+1 = ΠS

[

Pn − αn

C(ωn, .)ǫ(ωn)

Pn(.)

]

(4)

where ωn is any set of p genes sampled with respect to Pn, and αn = K/(n+1)
for any positive constant K > 0 is the step of the algorithm. Note that the
last expression is always defined since when Pn(g) = 0, we cannot draw this
gene in ωn and C(ωn, g) vanishes.

Under mild conditions on the energy E , one can show that this stochastic
approximation algorithm converges to a critical point of E . One can also prove
the asymptotic normality result:

Pn − P∞√
αn

→ N (0, V ),

where the covariance matrix V depends on the energy function E . Further
details can be found in (Benveniste et al., 1990).
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2.3 Detailed algorithm

Let G = (δ1 . . . δ|G|), µ ∈ N
∗ and η the stopping criterion.

• For n = 0 define P0 as the uniform distribution on G

• While |P(n+µ) − Pn|∞ > η:

– extract ωn from Gp with respect to Pn,p = P
⊗p
n

– construct Aωn
and compute ǫ(ωn)

– compute the drift vector dn = C(ωn, ·)ǫ(ωn)/Pn(·)
– update Pn+1 = ΠS [Pn − αndn]

– n = n + 1

3 Application

We first provide a short description of the two supervised algorithms we apply
ofw to: Support Vector Machines (SVM) and Classification And Regression
Trees (CART). We next shortly describe other feature selection methods that
we compare to our approach.

3.1 Two baseline classifiers are applied to ofw

Support Vector Machines

SVM (Vapnik, 2000) is a binary classifier that attempts to separate the mi-
croarrays into C1 and C2 by defining an optimal hyperplane between the 2
classes up to a consistency criterion. Linear kernel SVMs are used here be-
cause of their good generalization ability compared to more complex kernels.

Classification And Regression Trees

CART (Breiman et al., 1984) is a multi-category classifier that is constructed
through a recursive partitioning routine. It builds a classification rule to pre-
dict the class label of the microarrays based on the feature information follow-
ing the Gini criterion. To avoid overfitting, trees are then pruned using a cross
validation procedure. Note that CART is naturally unstable: a slight change
in the features can lead to a very different construction of the tree.
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3.2 Comparisons with existing ranking methods

We briefly present here the several algorithms we performed to compare our
OFW approach with. Each of these methods follows the classical framework
of feature selection algorithm. A training set is used to compute the rank (or
relevancy) of each feature (or gene) and the error of the obtained gene selection
is then computed on a test set. Thus, the input of each of these algorithms is
simply the training set in our case.

Recursive Feature Elimination

RFE (Guyon et al., 2002) is a feature selection technique exclusively dedicated
to SVM. It consists in computing a ranking criterion for all features using the
SVM previously computed. Genes with the smallest ranking criterion are then
recursively removed (with more than one feature per step for speed reasons).
The idea is to construct several stacked feature subsets Gm ⊂ Gm−1 ⊂ . . . ⊂
G1 = G and find Gm that is optimal (on the basis of error rates metrics) and
that leads to the largest margin of class separation. In this paper we will only
focus on the gene ranks that are output from this method and not on the
optimal size of the subset so as to compare the different methods. Indeed,
all the presented methods do not necessarily give a stopping criterion for an
optimal selection size.

l0 norm SVM

Weston et al. (2003) proposed to minimize the l0 norm of the normal vector
from SVM to provide a way of selecting features and to minimize the training
error in one step. As the problem is NP-hard, an approximation of the l0
norm is proposed. This feature selection method has rarely been used yet in
the context of microarray.

Random Forests

RF is a CART aggregation technique. The idea of Breiman (2001) was to
introduce two sources of randomness. First with bagging: each unpruned tree
is constructed on a bootstrap sample. Second, for each partition building step
of the tree, the best variable is chosen among a fixed number of randomly
selected variables. Trees are then aggregated by majority vote. There is
also an internal importance measure of the variables given by the forest that
determines which predictors (i.e genes) are the most discriminative. Here we
choose the “Mean Decrease Accuracy” measure that consists for each tree in
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randomly permuting the genes values that are not in the bootstrap sample
(called “Out-Of-Bag” data) and computing the resulting classification error
rate.

Diaz-Uriarte and Alvarez de Andrés (2006) proposed a backward feature
selection procedure using RF that has not been applied here as the selection
is often extremely small with no redundant genes.

Univariate filter method

One of the aim of this paper is to compare the gene selection using T-statistics
to the ones resulting from the multivariate classification methods that were
presented above. Note that the False Discovery Rate that controls the number
of false positive genes was not applied here as we are selecting a fixed number
of genes.

3.3 Public microarray data sets

We present the results obtained on three well known public data sets. Leukemia

(Golub et al., 1999) compares two different types of leukemia (Acute Myeloid
and Acute Lymphoplastic, ALL vs. AML) with 3860 genes and 72 microar-
rays. Colon (Alon et al., 1999) was obtained from cancerous or normal colon
tissues with 2000 genes and 62 microarrays and Prostate (Singh, D. et al.,
2002) also compared normal vs. cancerous prostate tissues with 102 microar-
rays and 12600 genes. These data sets will be refered as Leukemia, Colon and
Prostate along this paper. We assumed the data sets correctly normalized.

3.4 Error rate assessment

We compared the error rates of all methods on each data set with the e.632+
bootstrap error estimate from (Efron and Tibshirani, 1997) that is adequate
for small sample size data sets (Ambroise and MacLachlan, 2002) . The e.632
estimator is defined as e.632 = .368R + .632B where R is the resubstitution
error rate and B the ouf-of-bag bootstrap error rate. When the number of
genes is much larger than the number of samples, the prediction rule usually
overfits (R often equal 0). Efron and Tibshirani proposed the e.632+ estimate

e.632+ = (1 − w)R + wB

with w = .632
1−.368r

, r = B−R
min(B,γ)−R

, γ =
2

∑

i=1

pi(1−qi) where r is an overfitting

rate and γ the no-information error rate, pi the proportion of samples of class
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Ci, qi the proportion of samples assigned to class Ci with the prediction rule
and i = 1, 2.

Note that e.632+ does not dictate the optimal number of features to select.
The error rate estimates that are computed with respect to the number of
selected features are only a way to compare the performances of the different
methods. Remark at last that each algorithm needs to be learned on each
bootstrap sample of the e.632+ bootstrap method to avoid any selection biais
(Ambroise and MacLachlan, 2002). Concerning the performance assessment
of a T-test selection we used a linear SVM as classifier. We assumed that
although SVM is unrelated with this univariate method, it is well appropriate
for this two-class problem.

3.5 Computing the efficiency of classification ǫ

The theoretical part showed that the ofw algorithm can be run with any classi-
fier. However, computing the classification efficiency depends on the classifier.
For ofw+CART, because of the unstable nature of CART, one needs to aggre-
gate trees as in Breiman (1996) to reduce their variability. For iteration n, we
launched B trees on B bootstrap samples on different ωb

n drawn with respect
to Pn, where b = 1, . . . , B. We then defined ǫ as the mean classification error
rate on the out-of-bag samples.

No aggregation was needed with SVM, that is known to be very stable,
and hence for this case B=1.

3.6 Computational amendements

For ofw+CART a mean gradient was computed that improved the speed of
the algorithm

Gn =

n
∑

i=1

αid̄i

n
∑

i=1

αi

with d̄i =
B

∑

b=1

C(ωb
i , .)ǫ(ω

b
i )

Pi(.)

where αi = K/(i + 1), i = 1..n for any positive constant K > 0, as defined in
equation (4).
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P
P

P
P

P
P

P
PP

Prostate

Colon
ofwSVM RFE l0 ofwCART RF T-test

ofwSVM # 14 13 6 0 5

RFE 24 # 27 0 0 0

l0 21 39 # 1 0 0

ofwCART 4 4 4 # 16 16

RF 6 5 4 17 # 36

T-test 7 5 3 12 31 #

Table 1: Number of genes shared by the several feature selection algorithms on Colon
(upper triangle) and Prostate (lower triangle) for a selection of 50 genes.

H
H

H
H

H
H

Leukemia
ofwSVM RFE l0 ofwCART RF T-test

ofwSVM # 16 18 12 15 14

RFE # 27 10 12 13

l0 # 8 11 12

ofwCART # 33 25

RF # 32

T-test #

Table 2: Number of genes shared by the several feature selection algorithms on Leukemia
for a selection of 50 genes.

Furthermore, to accelerate the computations, the data set Prostate that
had a very high classification difficulty was filtered with a very large cut-off
T-test p-value (we kept the genes below the p-value 0.1, which corresponded
to 3584 remaining genes). Here we made the assumption that most genes are
noisy or uninformative and can be removed without affecting the biological
study. Indeed, only a very small subset of genes do explain the outcome.

4 Results and discussion

4.1 Numerical results

4.1.1 Comparison of several selections

Table 1 displays the number of shared genes with the different methods when
selecting 50 genes on the benchmarks Colon (upper triangular table) and
Prostate (lower triangular table).

9

Lê Cao et al.: Selection of Biologically Relevant Genes

Published by The Berkeley Electronic Press, 2007



It first underlined the fact that all gene selections depended on the per-
formed method as there were very few genes that were shared among all meth-
ods (less than 36 in Colon and 39 in Prostate). Furthermore, as expected, the
methods could be divided in three groups: group 1 and 2 used either the classi-
fier SVM (ofw+SVM, RFE and l0) or CART (ofw+CART and RF) and group
3 is composed of the method T-test on its own.

Methods in the same group shared an important number of selected genes
(for instance at least 13 genes in group 1 and 16 genes in group 2 for Colon).
Conversely, the number of genes shared in-between groups was very low (0 to
6 between groups 1 and 2 for Colon). Compared with group 3, more than half
of the genes selected with RF were differentially expressed (meaning signifi-
cant with the T-test) as well as about one third for the genes selected with
ofw+CART.

The group 1 did not select many differentially expressed genes (0 to 5 for
Colon). The difference is that SVM looks for non redundant genes which
lead to a linear separation between the classes C1 and C2. These genes are
not necessarily differentially expressed. On the other hand, when CART is
constructed, it searches genes with the largest difference mean between the
two classes. It was hence not surprising to find many differentially expressed
genes in group 2.

These latter methods also selected discriminative subsets that were differ-
ent from the T-test selection. The reason is that groups 1 and 2 take into
account interactions between variables, as opposed to filter methods like T-
test. The differences between these three groups are less striking in Table 2
on Leukemia as this data set seems more easy for the classification task (see
section below). Nevertheless, we can observe that RF and ofwCART shared
numerous genes that were also selected with T-Test.

4.1.2 Comparison of the error rate with selection

Figure 1 displays the e.632+ bootstrap error rates obtained with the different
methods on the three data sets with respect to the number of selected genes.
These graphs first showed the level of classification difficulty of the data sets:
for all methods and for a number of selected genes going from 20 to 50, the
e.632+ error rates varies from 1 to 6 % on Leukemia (a), from 10 to 30%
on Colon (b), and from 5 to 23% on Prostate (c). This variation is even
more accentuated as the methods do not have the same performance (Colon,
Prostate). Leukemia got similar error rates for all methods as it is known to
be relatively easy to classify.

The graphs showed that RF was the most stable and outperformed the
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Figure 1: e.632+bootstrap error of several algorithms with respect to the
number of genes on Leukemia (a) Colon (b) and Prostate (c).
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hhhhhhhhhCriterion
Method

T-test RF ofw
CART

ofw
SVM

l0
SVM

RFE

Number of networks 7 4 4 6 3 3
Cancer term frequency in networks 3 2 1 0 1 1
Hematological disease term frequency in networks 0 0 0 0 1 1

Rank of the ontological term in the function

list:
Cancer 9 19 7 17 18 19
Hematological Disease 1 17 9 2 2 13

Number of surface markers 6 20 15 17 9 10

Number of genes associated with the onto-

logical term:
Leukemia 5 15 15 4 6 4
Myeloid Leukemia 0 3 4 2 0 0

Myeloid leukemia gene name
CD33
SPI1
TOP2B

TOP2B
ITGB2
SPI1
CD33

TOP2B
ITGB2

Genes involved in the signaling pathways:

NfKappaB TRA@ TRA@ NFKBIA TRA@
IL4 STAT6 BLVRB
IL6 IL8 HSPB1
Wnt/Beta Catenin GNAQ TCF3 TCF3
JAK/STAT STAT6

Table 3: Analysis of gene selections resulting from several feature selection algorithms on
Leukemia data set. Comparisons of gene lists through IPA outputs with several criteria
assessing global or specific information.

other methods, except on Leukemia where it performs the worst. This can
be explained as the forest is constructed only on the most discriminative vari-
ables and is less affected by noisy variables. Hence e.632+ or any error rate
computation might not be appropriate to evaluate the performance of RF.

The T-test was not the most efficient as this univariate procedure elimi-
nates noisy genes but does not yield compact non-redundant genes sets. Con-
sequently, genes that are complementary but do not separate the data well are
missed.

On the other hand, our two methods were competitive on the more complex
data sets Colon and Prostate. On these data sets, ofw+CART gave better
performance as CART searches for a non linear separation between features,
which a linear SVM cannot perform. These graphs generally showed that a
gene selection gives statistical good results when the size of the selection is large
enough (greater than 10 genes, depending on the method) but not too large as
noisy variables might then enter the selection. It is actually well known that
it is impossible to achieve an errorless separation with a single gene. Better
results are obtained with a combination of several genes. Note that we did not
determine here one optimal gene subset. Only the biological interpretation
will give some clue about the relevance of the different selections.
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hhhhhhhhhCriterion
Method

T-test RF ofw
CART

ofw SVM
l0
SVM

RFE

Number of networks 4 4 6 4 4 5
Cancer term frequency in networks 1 3 2 1 2 1
Gastrointestinal disease term frequency in
networks

0 1 0 0 0 2

Rank of the ontological term in the

function list:
Cancer 11 17 6 4 11 15
Gastrointestinal disease 43 67 49 67 0 22
Tissue development 45 NA 36 2 2 2
Tissue morphology 1 1 37 39 35 26
Skeletal and muscular syst. dev. 3 2 35 40 5 6

Number of genes associated with the

ontological term:
Cancer 11 12 8 12 6 8
Tissue development 2 0 3 6 5 7
Tissue morphology 9 11 8 5 8 6
Skeletal and muscular syst. dev. 12 12 7 7 12 9
Colon Cancer 2 1 0 2 0 1

Colon cancer gene name CDH3
GUCA2B

CDH3 CDH3
GUCA2B

GUCA2B

Genes involved in the signaling path-

ways:
PI3K/AKT Bcl2 PPP2R5 MEF2C

ERK/MAPK ETS2
PPP2R5

PPP2RC

p38/MAPK IL1R2,
MEF2

MEF2

Wnt/Beta Catenin CDH3 CDH3 CSNK2A2 CDH3 PPP2R5C

Table 4: Analysis of gene selections resulting from several feature selection algorithms
on Colon data set. Comparisons of gene lists through IPA outputs with several criteria
assessing global or specific information.

hhhhhhhhhCriterion
Method

T-test RF ofw
CART

ofw
SVM

l0 SVM RFE

Number of networks 6 8 7 7 9 14
Cancer term frequency in networks 3 4 1 3 3 6
Renal and Urological disease term fre-
quency in networks

0 0 0 0 0 0

Rank of the ontological term the in

function list:
Cancer 10 14 6 5 1 2
Renal and Urological Disease 49 0 33 59 0 0
Lipid Metabolism 25 28 27 36 17 15

Number of genes associated with the

ontological term:
Cancer 17 13 12 13 9 13
Prostate Cancer 4 3 3 1 1 4

Prostate cancer gene name
HPN SAT
NME1
TGFB3

HPN
TGFB3
GSTP1

FOLH1
HPN
CLU

FOXO1A SERPINB5

COX5A
HOXC6
PMAIP1
SERPINB5

Genes involved in the signaling path-

ways:
C21 steroid hormon metabolism HSD11B1
Androgen and Estrogen metabolism HSD11B1
Estrogen receptor signaling CDK7
Fatty acid metabolism CYP4F2 CYP4F2

Wnt/Beta Catenin TGFB3 TGFB3
WIF1
TLE4

PPP2R5E
TLE4

WIF1
PPP2R5E

Pyrimidine or Purine metabolism

NME1
GUCY1A3
ATPGV1G1
DPYSL2

NME1 AOX1 RRM1 RRM1

PI3K/AKT FOXO1A PPP2R5E

ERK/MAPK PPP2R5E
PAK1

PPP2R5E
PAK1

Table 5: Analysis of gene selections resulting from several feature selection algorithms
on Prostate data set. Comparisons of gene lists through IPA outputs with several criteria
assessing global or specific information.
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4.2 Biological interpretation and discussion

Bioanalysis strategy

In order to elaborate an accurate assessment of the biological relevancy of
the various tested methods, we analyzed all lists of 50 selected genes through
Ingenuity Pathways Analysis 1 (IPA). IPA was chosen for two main reasons,
first for its accuracy: IPA Ontology presents 25 times more classes than Gene
Ontology (GO) and 85 high level functions compared to 3 for GO; and sec-
ond because it supplies a more objective performance estimation compared
to manual curating. Hence, with this strategy, we will focus more on global
functions associated with a list of genes (integrative biology) than on a gene
function associated with one gene only. This might allow to identify relevant
genes present in a canonical pathway that were not selected with any statistical
method.

We explored three outputs from IPA to generate performance indicators of
a selected gene list: the networks that identify the interactions between the
genes, and the most significant functions and signaling pathways generated by
this gene list. This significancy is measured with a p-value of Fisher’s exact test
determining the probability that each biological function and disease assigned
to a gene network or to a gene list was due to chance only. Concerning the
canonical pathways, this significancy is furthermore measured by a ratio of the
number of genes that map to a given pathway divided by the total number
of genes that map to the canonical pathway generated by the gene list. More
documentation about IPA can be found online.

The subsequent procedure was followed. First, we uploaded gene identifiers
into the IPA application. Each gene identifier was mapped to its correspond-
ing gene object in the Ingenuity Pathways Knowledge Base (IPKB). These
genes, called “Focus Genes”, were overlaid onto a global molecular network
developed from information contained in the IPKB. Networks of these Focus
Genes were then algorithmically generated based on their connectivity. Next,
the functional analysis of a gene network identified the biological functions
and diseases that were the most significant for those given genes. We also
took into account the ranks of the most relevant biological functions and the
canonical pathways were also considered.

An important remark In this interpretation we do not propose new in-
formation for cancer cause as the molecular data set depends entirely on the
experimental setting that was chosen by the biologists. The aim of this section

1IngenuityrSystems, www.ingenuity.com
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is simply to check if our statistical results are not biologically aberrant and
therefore contain relevant information that would need further experimental
proof. The relevant selected genes can be called ”predictive” from a statistical
point of view (as they are selected on the basis of their predictive power), but
from a biological point of view we do not pretend that these genes predict a
cancer. The statisticians do hope that the selected genes might be predictive
but the biologists can only evaluate the informative characteristics of these
genes.

Leukemia data set

The aim of this data set was to select molecular markers distinguishing two
leukemia variants arising from lymphoid precursors (Acute Lymphoblastic
Leukemia, ALL) or from myeloid precursors (Acute Myeloid Leukemia, AML).
Table 3 displays the biological performance estimated for each gene selection
method.

In order to check the information quality from a selected gene list, several
parameters were defined with various accuracy degrees. The potential abun-
dance of information was first related to the number of networks. The more
numerous the generated networks, the more varied the suggested biological
clues. One gene list could also be considered as biologically relevant if on-
tological terms such as “Cancer” or “Hematological Disease” were linked to
the networks of interacting genes or found well positionned, according to the
p-values functions. We also focused on general leukemia molecular markers
and more specifically on AML or ALL markers (Carroll et al., 2006, Pui et
al., 2004), as well as surface marker gene families. These latter encode cell
surface proteins that would be useful in distinguishing lymphoid from myeloid
lineage cells as it was previously demonstrated for the CD33 gene (Drexler,
1987, Malask et al., 2006).

Canonical pathways did not reveal enough relevant differences between the
gene lists to compare the methods. Networks generated by IPA were more
numerous for the gene list selected by the filter method. It suggests that this
method chooses less biologically interconnected genes compared to the wrapper
methods. This could be explained by the fact that filter methods disregard
the interactions between the features.

When looking for ontological terms, representative of leukemia pathology
(“Cancer” and “hematological Disease”), no clear difference arose from any
method as they were all well ranked in IPA interacting gene networks or func-
tion lists. Surface gene markers found in the networks were mostly selected
with ofw+CART, RF and ofw+SVM, suggesting particular biological rele-
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vancy for those selected gene lists. Genes linked with “Leukemia” term or
more precisely with “Myeloid Leukemia” terms were mostly selected in the
lists given by the wrapper methods.

Compared to the wrapper methods, the filter method selected a poor num-
ber of general molecular markers linked to the leukemia pathology and surface
markers distinguishing AML from ALL. No gene that was linked to Myeloid
Leukemia was selected. On the other hand, wrapper methods gave very com-
plementary and relevant gene lists. Three particular methods, ofw+CART,
RF and ofw+SVM selected genes that are known to be involved in leukemia
pathology i.e. TOP2B, ITGB2, SPI1, CD33). This trend was confirmed when
we manually curated the gene lists proposed by all methods. ofw+CART, RF
and ofw+SVM selected a set of genes involved at different biological level of
the leukemia pathology (see for instance this non exhaustive list: CD33, ZYX,
CCND3, TOP2B, SPI1, ITGB2, CCNI, NFIC, KPNB1).

To sumarize, we found that the T-test gene selection brought very gen-
eral cancer-related information and much less information directly related to
leukemia pathology than the CART or SVM based wrapper methods. The
CART based methods proposed candidates that are linked to Myeloid Leukemia.

Colon data set

The objective of this data set was to select genes distinguishing tumor from
normal sample. This is a particularly challenging problem since initial compo-
sition of the two types of cells are very different. Indeed, the high composition
of tumor richness in epithelial cells and normal tissues in smooth muscle cells
produce an important biological parameter that biases cancer-related genes
tracking for tumor vs. normal cells (Guyon et al., 2002). Biological relevancy
of the gene selections was assessed in the same manner as for the Leukemia
data set with networks and function lists evaluation (Table 4). We chose
ontological terms specific to colon cancer pathology such as “Cancer” and
“Gastrointestinal Disease”. Ontological terms linked to initial cells composi-
tion were also exploited to explain the performances of all methods (“Tissue
Morphology”, “Skeletal and Muscular System Development and Function”).
Specific genes of colon cancer were also taken into account as well as specific
signaling pathways.

For this particular data set, the number of networks generated by IPA
for any gene selection method was similar. Principal differences arose from
ontological functions of those networks. Indeed, rich cancer-related networks
were generated from CART-classifiers methods as opposed to poor ones com-
ing from the other methods. For any gene selection, the rank of the ontological
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term “Gastrointestinal Disease” in the function list was surprisingly low (line
5 of Table 4). An explanation of this particular feature could lie under the
biological sample composition which is very rich (or too rich) in smooth mus-
cle cells for normal tissue or in epithelial cells for tumor tissue. Interestingly,
the ontological terms in IPA function lists “Skeletal and Muscular System De-
velopment and Function” or “Tissue Morphology” terms were always on top,
lowering the rank of the “Gastrointestinal Disease” term. This observation was
also reinforced by the larger number of genes linked with those last functions,
comparing to those linked with the “Cancer” term. Therefore, exploitation of
functions list analysis does not favor one method against another, as the sam-
ple biological composition bias precludes straightforward detection of specific
colorectal cancer genes.

When analyzing IPA canonical pathways, Wnt, MAPK and AKT signal-
ing pathways that were (or supposed to be) involved in colorectal cancer,
were mainly generated with gene selection involving SVM and CART meth-
ods (Oikonomou et al., 2006, Segditsas et al., 2006). Hence, SVM-classifiers
(followed by CART-classifiers) seemed to select biologically relevant genes or
signaling pathways, even in a data set that has a largely biased gene expression
profile.

To summarize, we found that all methods selected genes that were more
related to cell composition than to the pathology of interest. Very few colon
cancer genes were identified. Despite the important biological biais, the wrap-
per methods were able to select complementary and relevant genes associated
with relevant pathways.

Prostate data set

The identification of gene markers that might help to distinguish tumourous
prostate from healthy prostate samples was the main purpose of this third
data set. As for colorectal tumor, epithelial content of prostate tumor samples
was significantly higher than in normal samples (79 vs. 27 %). This results in
gene expressions correlated with epithelial content that may preclude cancer-
related gene efficient tracking (Singh, D. et al.). Results are displayed in
Table 5. We focused this time on the specific ontological terms “Cancer” and
“Urological Disease”. Prostate cancer specific genes and known deregulated
signaling pathways were also used to determine more precisely the relevancy
of the different selections.

All lists uploaded into IPA generated the same number of networks (except
for RFE that was much higher) and were all linked with the ontological term
“Cancer”. This term was very well ranked for all function lists whereas, as
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observed for the Colon data set, the specific “Urological Disease” term was
low ranked. When analysing ontological terms ranked in between, we noted a
prevalence for functions involving cell proliferation, regulation of gene expres-
sion, lipid metabolism and nucleic acids, i.e. biological cell functions that are
well known to be involved in prostate cancer disorders (Foley et al., 2004). The
number of genes linked with ontological term “Cancer” was the same in any
selection. When we focused on specific prostate cancer genes, all gene selec-
tion methods brought complementary information. For instance, CART-based
methods selected HPN, a gene coding for a transmembrane serine protease in-
volved in colony formation of prostate cancer cell lines (Dhanasekaran et al.,
2001). SVM-based methods l0 norm SVM and RFE selected SERPINB5, a
gene coding for a serpin peptidase inhibitor involved in binding of prostate
cancer cell lines Tahmatzopoulos et al. (2005).

IPA canonical pathways gave various information depending on the differ-
ent selections. With the SVM-based methods, we observed signaling pathways
involved in prostate cancer pathology (Terry et al., 2006) such as Wnt, MAPK,
AKT, pyrimidine and purine signaling pathway. In particular, l0 norm SVM
and RFE selections highlighted the Fatty Acid Metabolism and ofw+SVM
the Androgen Signaling Pathway that is actually targeted for prostate cancer
therapy (Singh, P. et al., 2002). Hence, SVM-based methods seemed to select
here more relevant signaling pathways than the other methods.

To summarize, the T-test and the wrapper methods selected very comple-
mentary sets of genes related to prostate cancer in spite of the cell composition
bias. All methods were also able to select complementary and relevant genes
associated with relevant pathways.

5 Conclusion

The analysis of these three public data sets was performed at two levels. Sta-
tistically, we showed that the stochastic algorithm from Gadat and Younes
could be applied to microarray data with two classifiers SVM and CART.
ofw+CART and ofw+SVM gave excellent results compared to other well known
wrapper methods. We also showed that the selected gene lists mostly depended
on the chosen classifier.

Biologically, we showed that the relevancy did not only depend on the cho-
sen method but also on the biological sample nature. Indeed, when applying
these methods on a simple data set Leukemia, ofw+CART, RF and ofw+SVM
proposed very relevant gene lists compared to the others. With a more com-
plex biological matrix like in Colon or Prostate, the expression pattern are
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mixed between constitutive gene expression (i.e. expression of a large ma-
jority of genes involved in physiological characteristics of a tumor or normal
cell) and cancer gene expression. In this setup, we rather observed a global
complementarity of the biological information brought by the different selec-
tions. However, SVM-based methods seemed to propose interesting signaling
pathways for Colon and Prostate data sets.

To summarize, we highlight the fact that the method statistically perform-
ing the best prediction does not necessarily give the most interesting biological
results. In fact, the application of different methods on the same data set can
highlight complementary relationships between the selected genes. Hence, to
bring more information, one should not only consider the common features
selected between the methods, but also the divergent ones. This means that
there is not only one single method that answers a biological question: com-
plementary approaches should be performed to analyze the data.

Availability

The code sources of ofw+SVM (in C++) and ofw+CART (in R2) are available
on the web site http://www.lsp.ups-tlse.fr/Biopuces/ofw/codesource/. An R
package is currently being implemented but can be available upon request to
the corresponding author.
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