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Modélisation Mathématique et Analyse Numérique

THE HALF-PLANES PROBLEM FOR THE LEVEL SET EQUATION

Stéphane Clain1 and Malcom Djenno Ngomanda2, 3

Abstract. The paper is dedicated to the construction of an analytic solution for the level set equation
in R

2 with an initial condition constituted by two half-planes. Such a problem can be seen as an
equivalent Riemann problem in the Hamilton-Jacobi equation context. We first rewrite the level set
equation as a non-strictly hyperbolic problem and obtain a Riemann problem where the line sharing the
initial discontinuity corresponds to the half-planes junction. Three different solutions corresponding
to a shock, a rarefaction and a contact discontinuity are given in function of the two half-planes
configuration and we derive the solution for the level set equation. The study provides theoretical
examples to test the numerical methods approaching the solution of viscosity of the level set equation.
We perform simulations to check the three situations using a classical numerical method on a structured
grid.

1991 Mathematics Subject Classification. 65M10.

.

1. Introduction

The interface tracking problem takes place in various fields like front flame propagation, crystal growth
in solidification process, fluid-structure interaction with moving solid boundary, computer vision, dynamics
bubbles or drops for example. The level set method (see [Set96] for an overview) consists in representing the
free boundary as the zero-level of a continuous function φ where the normal velocity F is a prescribed function.
Consider the Cauchy problem:

{
∂tφ(x, t) + F |∇φ(x, t)| = 0 in R

2 × [0, T ],

φ(x, t = 0) = φ0(x) in R
2,

(1)

where F (x, t) is a given Lipstick function on R
2 × [0, T ] while φ0 is a Lipschitz function on R

2. Existence and
uniqueness of the Lipschitz viscosity solution for problem (1) on R

2 × [0, T ] is proved (see [Bar94,Lio82]).
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Since φ is a Lipschitz function, vector U = ∇φ is a bounded vector-valued function and applying the gradient
operator to equation (1), we derive the Cauchy problem for the conservation law system associated to the level
set equation:

{
∂tU(x, t) + ∇(F |U(x, t)|) = 0 in R

2 × [0, T ],

U(x, t = 0) = ∇φ0(x) in R
2.

(2)

For the one dimensional situation, [Lio82] proves that the Lipschitz viscosity solution φ of equation (1)
corresponds to the bounded entropic solution U of equation (2) with U = ∂xφ. Such a result is not established
for higher dimension since we do not have the uniqueness of solution for the non-strictly hyperbolic system
(2) [CFN95]. Nevertheless, if we regularize equations (1) and (2) adding a diffusion term ε∆φ and ε∆U

respectively, the new solutions satisfy Uε = ∇φε. Passing to the limit assuming a L∞ convergence of φε toward
φ and a L1 convergence of Uε toward U , we have that U = ∇φ where φ is the viscosity solution and U the
entropy solution.

From a numerical point of view, the non-strictly hyperbolic system discretization using the finite volume
method leads to solve Riemann problems for each cell interface. The problem is reduced to a one dimensional
hyperbolic equation with a discontinuous flux function [CL83] making difficult a complete and explicit resolution.
We propose a different approach based on the following remark: a constant state for the non-strictly hyperbolic
problem (2) corresponds to a plane for the level set equation (1). Hence we propose to study an equivalent
Riemann problem in the level set equation context using two half-planes as an initial continuous condition
[Cla02,Dje07].

2. The two half-planes problem

For the sake of simplicity, we assume in the following that function F is reduced to a constant function. Such
an assumption is not restrictive since we usually solve Riemann problems using the normal velocity evaluated
at the interface midpoint.
Let π1 and π2 be two planes of the (x, z) = (x1, x2, z) ∈ R

3 space. We impose that the planes contain the origin
point and the plane equations write

z = φi(x) = Ui.x, i = 1, 2

where Ui are given vectors of R
2. Of course, when the two planes are equal, one has φ0(x) = φ1(x) = φ2(x)

as an initial condition and the solution is given by φ(x, t) = φ0(x) − F |UL|t with UL = U1 = U2 which
corresponds to a simple translation of the initial plane with velocity F |UL| (see figure (1)).



TITLE WILL BE SET BY THE PUBLISHER 3

t = 0

|UL|t

Figure 1: The trivial case when φ0 = φ1 = φ2. The solution representation in R
3 corresponds to the initial

plane translated following the Oz axis with velocity F |UL| = F |∇φ0| (we take F = 1 in the figure).

Now, we consider the nontrivial case when the two planes are different. To construct an initial condition φ0

for the Cauchy problem (1) we consider an arbitrary line δ ⊂ R
2 passing to the origin, an arbitrary normal vector

W ∈ R
2 and we define the left part PL and the right part PR of R

2 such that W goes from left to right (see
figure (2)). We then construct the initial condition by φ0(x) = φ1(x) if x ∈ PL and φ0(x) = φ2(x) if x ∈ PR.
Such a definition gives rise to a function which is not a priori continuous on δ and disqualify the construction
since we would like to handle continuous solutions. It results that the interface δ can not be arbitrary but has
to be defined such that we have a continuous connection between the two planes. To this end, we introduce the
two following continuous Lipschitz functions

φm
0 = min(φ1, φ2), φM

0 = max(φ1, φ2)

which are the unique function linking π1 with π2 continuously. Note that the particular case U1 = U2 corre-
sponds to a unique function φm

0 = φM
0 = φ1 = φ2.

Assuming U1 6= U2, we set

W =
U1 − U2

|U1 − U2|

and define the two half-planes PL and PR of R
2 by

PL = {x ∈ R
2; x.W < 0}, PR = {x ∈ R

2; x.W > 0}.

The line δc = PL ∩PR is orthogonal to W and we choose the unit vector V on δc such that the vectors {W,V}
form a direct orthonormal basis of R

2 (see figure (2)). Note that by construction W goes from PL to PR.
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Figure 2: Orientation and definition of PL and PR.

In R
3, the two planes π1 and π2 have an intersection line ∆c = π1 ∩ π2 ⊂ R

3 passing by the origin O and
δc ⊂ R

2 is the orthogonal projection of line ∆c ⊂ R
3 on the plane (x1, x2) (see figure (3)).

z

x

y

π2

π1

∆c

δc

Figure 3: Representation of function φm

0 in R
3. The two half-planes intersection provides the line ∆c which the

orthogonal projection on (x1, x2) corresponds to line δc.

We now aim to study the Cauchy problem (1) using φm
0 or φM

0 as an initial condition. In the hyperbolic
context, we have to consider Riemann problems (2) where the initial conditions are ∇φm

0 or ∇φM
0 with a

discontinuity situated on the line δc. Two cases arise whether we choose φm
0 or φM

0 as an initial condition.

• If φm
0 is the initial condition, definition of W yields that φm

0 = φ1 on the half-plane PL and φm
0 = φ2

on the half-plane PR. Indeed, we have W.W = 1 > 0 so (U1 − U2).W > 0 then U1.W > U2.W

which means that φ1(W) > φ2(W). Hence π1 is above π2 on PR while π1 is under π2 on PL. In the
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conservative law framework, we derive the following initial condition for the Riemann problem UL = U1

on PL and UR = U2 on PR.
• If we choose φM

0 as the initial condition, we deduce that UL = U2 on PL and UR = U1 on PR.

In the sequel, for any arbitrary couple of vectors U1 and U2 we choose φm
0 as the initial condition and we have

UL = U1 on PL and UR = U2 on PR oriented from left to right by

W =
UL − UR

|UL − UR|
. (3)

2.1. The one dimensional problem reduction

The objective is to determine the theoretical solution φ of the level set equation with φm
0 as an initial condition

using the solution U of the associated Riemann problem. To this end, we carry out the following change of
variable where we introduce the coordinates in basis {W,V} setting

x = ζW + ηV.

The transformation corresponds to a rotation in the new basis where

W =

(
1
0

)
, V =

(
0
1

)
.

By construction of V and W we have UL ·V = UR ·V = ω0, thus, vectors UL and UR are defined in the new
base:

UL = ωLW + ω0V, UR = ωRW + ω0V,

with ωL = UL · W, ωR = UR · W.
Using the change of variables, the level set problem becomes





∂tφ(ζ, η, t) + F |∇ζ,ηφ(ζ, η, t)| = 0,

φ(ζ, η) = ωLζ + ω0η if ζ < 0, η ∈ R,

φ(ζ, η) = ωRζ + ω0η if ζ > 0, η ∈ R,

(4)

and the associated Riemann problem:





∂tU(ζ, η, t) + ∇ζ,η (F |U(ζ, η, t)|) = 0,

U(., 0) =

(
ωL

ω0

)
if ζ < 0, η ∈ R,

U(., 0) =

(
ωR

ω0

)
if ζ > 0, η ∈ R,

(5)

If U(ζ, η, t) is a solution of (5) then U(ζ, η + c, t) is also a solution of (5) for all c ∈ R thus U(ζ, η + c, t) =
U(ζ, η, t) hence ∂ηU = 0. It follows that

∂tU(ζ, t) ·
(

0
1

)
= 0

hence U ·
(

0
1

)
= ω0, ∀ η, ζ, t.
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On the other hand, let ω(ζ, t) = U ·
(

1
0

)
, the component of U following the direction W , function ω satisfy

the one-dimension scalar Riemann problem





∂tω(ζ, t) + F∂ζ

√
w2(ζ, t) + w2

0 = 0,

ω(ζ, 0) = ωL, ζ < 0,

ω(ζ, 0) = ωR, ζ > 0.

(6)

Note that the choice of W yields UL.W > UR.W hence ωL ≥ ωR.

3. Solutions for the Riemann problem

We first give the solution for the situation ω0 6= 0, case ω0 = 0 will be studied as the limit situation when ω0

tends to 0. We denote by f(ω) = F
√

w2 + w2
0, and a simple calculation provides

λ(ω) = f ′(ω) =
Fω√

w2 + w2
0

, f ′′(ω) =
Fω2

0

(w2 + w2
0)

3

2

.

We note that f ′ is an increasing function for F ≥ 0 while f ′ is a decreasing function if F ≤ 0. Since ωL > ωR

it result that λ(ωL) > λ(ωR) if F > 0 leading to an entropic shock configuration while λ(ωL) < λ(ωR) if F < 0
which corresponds to a rarefaction [LeV92].

3.1. The shock case F ≥ 0

We first assume ω0 6= 0. The Rankine-Hugoniot condition yields

σ =
f(ωL) − f(ωR)

ωL − ωR

= F
|UL| − |UR|
|UL − UR|

. (7)

ω = ωL

ω = ωL

ω = ωR

ξ = σt

Figure 4: Shock wave, case ω0 6= 0

We now consider the case where ω0 = 0 with ωL 6= ωR. Such a situation arises when vectors UL and UR

are colinear. Since ωL 6= ωR, then we can pass to the limit setting ω0 = 0 in relation (7) since f depends
continuously on ω0. The solution is still an entropic shock.
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3.2. The rarefaction case F < 0

We first assume that ω0 6= 0 and we seek for an autosimilar solution which satisfies

f ′(ω(ζ, t)) =
ζ

t
. (8)

Since f ′′(ω) < 0, we deduce that f ′(ω) is a one-to-one function mapping R onto ]F,−F [ and F < λ(ωL) <

λ(ωR) < −F since ωL > ωR. From relation (8), we deduce

F 2ω2 =

(
ζ

t

)2

(ω2 + ω2
0),

and we get an explicit expression of ω in the fan

ω(ζ, t) = −
ζ
t
|ω0|√

F 2 −
(

ζ
t

)2
,

ζ

t
∈]λ(ωL), λ(ωR)[. (9)

Three cases arise in function of the ωL and ωR signs that we display in figure (5).

(1) If ωL > ωR ≥ 0 then f ′(ωL) < f ′(ωR) ≤ 0: the fan is contained in the left half-plane PL and the flux
on interface δc is F |UR|.

(2) If 0 ≥ ωL > ωR then 0 ≤ f ′(ωL) < f ′(ωR): the fan is contained in the right half-plane PR and the flux
on interface δc is F |UL|.

(3) At last, if ωL > 0 > ωR then f ′(ωL) < 0 < f ′(ωR), the fan crosses the line δc and the flux on the
interface line δc is F |ω0|.
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ω = ωL

ω = ω(ξ, t)

ω = ωR
ξ = λ(ωL)t

ξ = λ(ωR)t

(a)

ω = ωR

ω = ω(ξ, t)

ω = ωL

ξ = λ(ωL)t
ξ = λ(ωR)t

(b)

ω = ωR

ω = ω(ξ, t)

ω = ωL

ξ = λ(ωL)t ξ = λ(ωR)t

ω = ω(ξ, t)

(c)

Figure 5: Rarefaction situations with ω0 6= 0. Three cases arise in function of ωL and ωL signs: ωR > 0 (a), 0 > ωL (b),
ωL > 0 > ωR (c).

We now consider the situation when ω0 vanishes. For all parameters ω0 6= 0, function f ′(ω;ω0) = λ(ω;ω0) is
a one-to-one function of ω from R onto ]F,−F [ and the rarefaction takes place between λ(ωL;ω0) and λ(ωR;ω0).
For ωL and ωR fixed, we take the limit ω0 → 0 and we have

lim
ω0→0

λ(ωi, ω0) = −F, if ωi < 0, lim
ω0→0

λ(ωi;ω0) = +F, if ωi > 0

with i = L, R. In addition, relation (9) says

lim
ω0→0

w(ζ, t) = 0, ∀ζ ∈]F,−F [, t > 0.

Three cases again then arise.

(1) If ωL > ωR > 0 then lim
ω0→0

λ(ωL, ω0) = lim
ω0→0

λ(ωR, ω0) = +F < 0 and the rarefaction is reduced to a

contact discontinuity moving with the velocity σ = +F (see figure (6-a)).
(2) If 0 > ωL < ωR then lim

ω0→0
λ(ωL, ω0) = lim

ω0→0
λ(ωR, ω0) = −F > 0 and the rarefaction is reduced to a

contact discontinuity moving with the velocity σ = −F (see figure (6-b)).
(3) At last, if ωL > 0 > ωR then lim

ω0→0
λ(ωL, ω0) = +F, lim

ω0→0
λ(ωR, ω0) = −F and the rarefaction is

reduced to the null solution in the cone F < ζ
t

< −F (see figure (6-c)).
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ω = ωR

ω = ωL

ξ = Ft

(a)

ω = ωR

ξ = −Ft

ω = ωL

(b)

ω = ωR

ω = 0

ω = ωL

ξ = Ft ξ = −Ft

ω = 0

(c)

Figure 6: The rarefaction degenerates into a contact discontinuity when ω0 = 0. Three situations arise in function of
ωL and ωR signs: ωL < 0 (a), 0 < ωR (b), ωR < 0 < ωL (c).

Remark 3.1. Two other cases arise whether ωL = 0 case (i) or ωR = 0 case (ii). This particular situation
is similar to case (c) but the rarefaction cone is reduced to the left half-cone ]F, 0] in case (i) and the right
half-cone [0,−F [ in case (ii).

4. Solution for the level set equation

Based on the solution obtained with the Riemann problem, we build the solution for the level set equation.
We distinguish the cases whether F is positive or negative.

4.1. The shock: case F > 0

For t ≥ 0, we define the line δc(t) parallel to δc(0) = δc moving with the velocity

σ = F
|Ug| − |Ud|
|Ug − Ud|

.

i.e. δc(t) = {x ∈ R
2; W.x = σt}. We then consider the two half-planes situated on the left and right side of

δc(t) (see figure 7)

PL(t) = {x ∈ R
2; x.W < σt}, PR(t) = {x ∈ R

2; x.W > σt}.
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From section 3.1, the solution U(x, t) of the Riemann problem (2) is given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t).

We then define

φ(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ(x, t) = x.UR − F |UR| t, x ∈ PR(t).

We easily check that φ is a continuous function thanks to the shock velocity definition and ∇φ = U. Function
φ is the viscosity solution which satisfies the Cauchy problem (1) with φ0 = φm

0 as an initial condition.

z

x

y

πL

πR

PL(t)

δc(t)

PR(t)δc

(a)

PL(t)

δc(t)

PR(t)

(b)

Figure 7: Solution for the half-planes problem: the shock case

4.2. The rarefaction: case F < 0 with ω0 6= 0

Since ω0 6= 0, solution U of the Riemann problem (2) is a rarefaction situated in the cone λL < ζ
t

< λR with

λL = λ(ωL) = F
ωL

|UL|
, λR = λ(ωR) = F

ωR

|UR|
.

To describe the solution φ of the associated the Cauchy problem (1), we define the following lines and domains
(see figure (8))

δL(t) = {x ∈ R
2; x.W = λLt}, δR(t) = {x ∈ R

2; x.W = λRt},
PL(t) = {x ∈ R

2; x.W < λLt}, PR(t) = {x ∈ R
2; x.W > λRt},
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Pc(t) = {x ∈ R
2; λLt < x.W < λRt}.

The solution U for the Riemann problem is a continuous function given by

U(x, t) = UL = ωLW + ω0V, x ∈ PL(t),

U(x, t) = UR = ωRW + ω0V, x ∈ PR(t),

U(x, t) = ω(ζ, t)W + ω0V, ζ = x.W, x ∈ Pc(t)

where function ω(ζ, t) is given by relation (9).
On domains PL(t) and PR(t), function φ is then given by

φ = φL(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ = φR(x, t) = x.UR − F |UR| t, x ∈ PR(t).

To give the analytical expression of the solution on the band Pc(t), we use the change of variables ζ, η and

obtain a new function φ̃c(ζ, η, t) = φc(x, t) we have to explicit. On one hand, we have ∂ηφ̃ = ω0 while on the

other hand ∂ζ φ̃ = ω(ζ, t) and ∂tφ̃ = −F
√

ω2(ζ, t) + ω2
0 with

ω(ζ, t) = − ζ|ω0|√
t2F 2 − ζ2

,
ζ

t
∈]λL, λR[.

We consider the function γ(ζ, t) = |ω0|
√

t2F 2 − ζ2 and we claim that φ̃c(ζ, η, t) = γ(ζ, t) + ηω0 is the solution
of the problem.

We first easily check that relations ∂ηφ̃ = ω0 and ∂ζ φ̃c = ω(ζ, t) are well-satisfied. We now check that φ̃c satisfies
the level set equation

∂tφ̃ = −F |∇ζ,ηφ̃| = −F

√
ω2(ζ, t) + ω2

0 .

Indeed, the time derivative provides

∂tφ̃ = ∂tγ(ζ, t) = F 2 t|ω0|√
t2F 2 − ζ2

and, in addition, one has

F

√
ω2(ζ, t) + ω2

0 = F

√
ζ2ω2

0

t2F 2 − ζ2
+ ω2

0 = −F 2 t|ω0|√
t2F 2 − ζ2

.

At last, we provide the φc expression in function of the x variable:

φc(x, t) = |ω0|
√

t2F 2 − (x · W)
2

+ (x · V)ω0, x ∈ Pc(t).

To end the construction, we now prove that function φ is continuous on the whole domain, in particularly
on line δL(t) and δR(t). Noting that line δL(t) is characterized in the W,V basis by

ζ = ζL(t) := F
ωL

|UL|
t

and function φ̃L(ζ, η, t) is given by

φL(ζ, η, t) = ωLζ + ω0ζ − F |UL| t;
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πL(t)

πR(t)

PL(t)

PR(t)

δR(t)

δL(t)
Pc(t)

(a)

PL(t)

δL(t)

PC(t)

δR(t)

PR(t)

(b)

Figure 8: Solution for the half-planes problem: the rarefaction case with ω0 6= 0

we then have on the line δL(t):

φ̃L(ζL(t), η, t) − φ̃c(ζL(t), η, t) = ζL(t)ωL + ηω0 − F |UL| t − (−|ω0|
√

t2F 2 − ζ2
L(t) + ηω0),

= F
(ωL)2

|UL|
t − F |UL|t + |ω0|

√

t2F 2 −
(

Ft
ωL

|UL|

)2

,

= Ft

(
ω2

L

|UL|
− |UL| +

|ω0|
|UL|

√
|UL|2 − ω2

L

)
,

= Ft

(
ω2

L

|UL|
− |UL| +

ω2
0

|UL|

)
= 0.

We deduce that function φ is continuous on line δL(t) and the result also holds on line δR(t)

4.3. The contact discontinuity: case F < 0 with ω0 = 0

The rarefaction degenerates into a contact discontinuity when ω0 tends to 0 and three situations have to be
considered in functions of the ωL and ωR sign.

First, assume that ωR < ωL < 0, we denote by δc(t) the parallel line to δc given by

δc(t) = {x ∈ R
2; x.W = −Ft}

and the two half-planes

PL(t) = {x ∈ R; x.W < −Ft}, PR(t) = {x ∈ R; x.W > −Ft}.
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Solution U(x, t) is given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t).

and the viscosity solution φ is the continuous Lipschitz function defined by

φ(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ(x, t) = x.UR − F |UR| t, x ∈ PR(t).

The case where 0 < ωR < ωL can be treated in the same way.
We now consider the situation where ωR < 0 < ωL, with F < 0. We define the lines

δL(t) = {x ∈ R
2; x.W = Ft}, δR(t) = {x ∈ R

2; x.W = −Ft}

and the domain

PL(t) = {x ∈ R
2; x.W < Ft}, PR(t) = {x ∈ R

2; x.W > −Ft},

Pc(t) = {x ∈ R
2; Ft < x.W < −Ft}.

πL(t)

πR(t)

PL(t)

PR(t)

δR(t)

δL(t)
Pc(t)

(a)

PL(t)

δL(t)

PC(t)

δR(t)

PR(t)

(b)

Figure 9: Solution for the half-planes problem, the rarefaction case with ω0 = 0 and ωR < 0 < ωL.

The solution U for the Riemann problem is a piecewise constant function given by

U(x, t) = UL, x ∈ PL(t),

U(x, t) = UR, x ∈ PR(t),

U(x, t) = 0, x ∈ Pc(t)
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and the viscosity solution φ is the continuous Lipschitz function defined by

φ = φL(x, t) = x.UL − F |UL| t, x ∈ PL(t),

φ = φR(x, t) = x.UR − F |UR| t, x ∈ PR(t),

φ = 0, x ∈ Pc(t).

The function is clearly continuous on the whole domain R
2 by definition of the lines δL(t) and δR(t).

Remark 4.1. The contact discontinuity solution comes from the monotony principle of the viscosity solution
for the Hamilton-Jacobi problem in one-space dimension, equivalent to the entropy condition applied to the
one-dimensional problem (6). The solution for ω0 = 0 is obtained as the uniform limit on R

2 × [0, T ] of a
Lipschitz function sequence (φω0

) where φω0
are the viscosity solutions of the level set equation with ω0 > 0.

5. Numerical tests

The goal of this section is to compare the analytical solution proposed in section 4 with numerical approx-
imations using the classical schemes on structured grids (see [Set96] for a survey). We focus our study on the
simple level set equation





∂tφ(x, t) + F |∇φ(x, t)| = 0 in Ω × [0, T ],

φ(x, t = 0) = φ0(x) in Ω,
∂φ

∂n
= 0 on ∂Ω × [0, T ].

(10)

where Ω = [a, b] × [a, b] with a < b, T > 0, F ∈ R and

φ0(x) = φm
0 (x) = min(U1.x,U2.x)

such that U1,U2 are two prescribed vectors of R
2.

5.1. Discretization on a Cartesian grid

Let I ∈ N
∗, we define a uniform mesh of Ω with space step ∆x =

b − a

I
and nodes

xi,j = (a + i∆x, b + j∆x), 0 ≤ i, j ≤ I.

Let N ∈ N
∗, we denote by (tn)n=0,...,L a subdivision of the time interval [0, T ], with ∆tn = tn+1 − tn the time

step (the subdivision is not uniform) and the maximum time step by

∆t = max
n=1,...,N

∆tn.

Let φn
i,j be an approximation of φ(xi,j , t

n) for all i, j = 0, ..., L at time tn, then we compute an approximation

at time tn+1 using the scheme (see [Set96]):

φn+1
i,j = φn

i,j − F
∆tn

∆x
(max(F, 0)∇+ + min(F, 0)∇−), i, j = 0, ..., I (11)
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where we define

∇+ =
(
max(φn

i,j − φn
i−1,j , 0)2 + min(φn

i+1,j − φn
i,j , 0)2+

max(φn
i,j − φn

i,j−1, 0)2 + min(φn
i,j+1 − φn

i,j , 0)2
) 1

2 ,

∇− =
(
min(φn

i,j − φn
i−1,j , 0)2 + max(φn

i+1,j − φn
i,j , 0)2+

min(φn
i,j − φn

i,j−1, 0)2 + max(φn
i,j+1 − φn

i,j , 0)2
) 1

2 .

The maximum time step length is controlled by the Courant-Lax-Friedrisch condition (CFL) ∆t ≤ ∆x

|F | × cfl

where cfl ∈ [0, 1] is a parameter we use to reduce the time step.
The discrete L1-norm and L∞-norm at time tn are given by

ε1(tn) =
∑

i,j

|φn
ij − φe(xij , t

n)|∆x, ε∞(tn) = max
i,j

|φn
ij − φe(xij , t

n)|.

where φe
ij is the analytical solution.

All the numerical experiments have been carried out with Ω = [−1, 1]2 and five grids Tk of space step ∆kx =
21−k

10
, k = 1, ..., 5 have been employed to measure the convergence rate.

Let UL and UR be two prescribed vectors of R
2, we then evaluate vector W with (3) and the half-planes

PL, PR. We define the initial condition for the Cauchy problem

φ0(x) = min(UL.x,UR.x).

Note that by construction we have ∇φ0 = UL on PL and ∇φ0 = UR on PR.

5.2. The shock case: F > 0

We set F = 1 and consider two situations whether ω0 is null or not. We first choose UL =

(
−2
1

)
, UR =

(
1
1

)

then we have W =

(
−1
0

)
and ω0 = 1. The analytical solution of the problem (10) is given by

φ(x, y, t) =

{
−2x + y +

√
5t, −x <

√
5−

√
2

3
t,

x + y +
√

2t, −x >
√

5−
√

2
3

t.

For the second case, we choose UL =

(
−1
0

)
, UR =

(
2
0

)
then we have W =

(
−1
0

)
and ω0 = 0. The analytical

solution of the problem (10) is given by

φ(x, y, t) =

{
−x + t, −x < 1−

√
2

3
t,

2x +
√

2t, −x > 1−
√

2
3

t.

We display in figure (10) a comparison between the analytical solution and the numerical solution at time
t = 0.5 computing with mesh T3 both for the case ω0 6= 0 and the case ω0 = 0. The curves correspond to
the planar cut of φ in the W direction. Convergence rates in L1-norm and L∞-norm are given in table (1).
We observe that the numerical approximation suit well with the analytical solution and we obtain an effective
second-order convergence between the approximation and the exact solution.
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(a) ω0 6= 0
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Figure 10: φ curve in the W direction at time t = 0.5: the shock case with ω0 6= 0 (left) and ω0 = 0 (right).

(a) ω0 6= 0

∆x L1 error order L∞ error order
0.2 4.40 ×10−2 - 7.66 ×10−2 -
0.1 2.45 ×10−2 1.79 3.71 ×10−2 2.06

0.05 1.28 ×10−2 1.91 1.81 ×10−2 2.04
0.025 6.55 ×10−3 1.95 8.95 ×10−3 2.02

0.0125 3.30 ×10−3 1.98 4.44 ×10−3 2.01

(b) ω0 = 0

∆x L1 error order L∞ error order
0.2 3.06 ×10−2 - 5.18 ×10−2 -
0.1 1.70 ×10−2 1.80 2.60 ×10−2 1.99

0.05 8.97 ×10−3 1.89 1.28 ×10−2 2.03
0.025 4.58 ×10−3 1.95 6.32 ×10−3 2.02

0.0125 2.31 ×10−3 1.98 3.14 ×10−3 2.01

Table 1: Convergence rate for the shock cases: ω0 6= 0 (top) and ω0 = 0 (bottom).

5.3. The rarefaction case: F < 0 and ω0 6= 0

We set F = −1 and we choose UL =

(
1
0

)
, UR =

(
1
1

)
then we have W =

(
0
−1

)
and ω0 = −1. The

analytical solution of problem (10) is given by

φ(x, y, t) =





x + t, −x < t,

x + y +
√

2t, −x > t√
2
,√

t2 − x2 + y, t < −x < t√
2
.

We show in figure (11) a comparison between the analytical solution and the numerical solution at time t = 0.5
computing with mesh T3 where the curves correspond to the planar cut of φ in the W direction. Convergence
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rates in L1-norm and L∞-norm are given in table (2). Again, we observe a nice correspondence between
the numerical approximation and the analytical solution confirmed by the effective second-order convergence
between the approximation and the exact solution.

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

  Exact
  Numerical

(a) ω0 6= 0

Figure 11: φ curve in the W direction at time t = 0.5: the rarefaction case with ω0 6= 0.

(a) ω0 6= 0

∆x L1 error order L∞ error order
0.2 4.18 ×10−2 - 9.68 ×10−2 -
0.1 2.36 ×10−2 1.77 5.63 ×10−2 1.71

0.05 1.25 ×10−2 1.88 3.29 ×10−2 1.71
0.025 6.66 ×10−3 1.87 1.93 ×10−2 1.70

0.0125 3.86 ×10−3 1.72 1.13 ×10−2 1.70

Table 2: Convergence rate for the rarefaction (ω0 6= 0 case).

5.4. The contact discontinuity case: F < 0 and ω0 = 0

We set F = −1 and choose UL and UR such as ω0 = 0. Two cases arise whether ωLωR > 0 or ωLωR < 0.

We first choose UL =

(
1
0

)
, UR =

(
2
0

)
then we have W =

(
−1
0

)
and ωL = −1, ωR = −2, ω0 = 0. The

analytical solution of problem (10) is given by

φ(x, y, t) =

{
x + t, −x < t,

2x + 2t, −x > t.
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for the second case, we choose UL =

(
1
0

)
, UR =

(
−1
0

)
then we have W =

(
1
0

)
and ωL = 2, ωR = 1, ω0 = 0.

The analytical solution of problem (10) is given by

φ(x, y, t) =





x + t, 2√
2
x < −t,

−x + t, 2√
2
x > t,

0, −t < 2√
2
x < t.

We show in figure (12) a comparison between the analytical solution and the numerical solution at time
t = 0.5 computing with mesh T3 both for the case ωLωR > 0 and the case ωLωR < 0. The curves correspond
to the planar cut of φ in the W direction. Convergence rates in L1-norm and L∞-norm are given in table
(3). We obtain a very good approximation of the analytical solution confirmed by the effective second-order
convergences between the approximation and the exact solution.
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(b) ωLωR < 0

Figure 12: φ curve in the W direction at time t = 0.5: the contact discontinuity case with ωLωR > 0 (left) and
ωLωR < 0 (right).
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(a) ωLωR > 0

∆x L1 error order L∞ error order
0.2 2.80 ×10−2 - 5.18 ×10−2 -
0.1 1.95 ×10−2 1.43 4.39 ×10−2 1.17

0.05 1.18 ×10−2 1.62 2.56 ×10−2 1.25
0.025 6.54 ×10−3 1.74 1.26 ×10−2 1.17

0.0125 3.39 ×10−3 1.92 6.29 ×10−3 2.00

(b) ωLωR < 0

∆x L1 error order L∞ error order
0.2 4.23 ×10−2 - 1.11 ×10−1 -
0.1 2.67 ×10−2 1.68 5.50 ×10−2 2.01

0.05 1.45 ×10−2 1.71 3.26 ×10−2 1.68
0.025 7.63 ×10−3 1.82 2.30 ×10−2 1.41

0.0125 3.95 ×10−3 1.93 1.61 ×10−2 1.42

Table 3: Convergence rate for the contact discontinuity: case ωLωR > 0 (top) and case ωLωR < 0 (bottom).

6. conclusion

We have determined the analytical solution of Cauchy problem for the level set equation when the initial
data is composed of two half-planes. Such a problem corresponds to the Riemann problem in the hyperbolic
system context and may be helpful to test numerical schemes for level set equation. We show that we have three
configurations corresponding to the entropic shock, the rarefaction and the contact discontinuity which is the
limit case of the rarefaction with ω0 = 0. Numerical simulations have been performed using a classical method
on structured grids to compare with the analytical solution in the three cases and we obtain an effective second-
order convergence. Extension for the general Hamilton-Jacobi problem can be considered and a ”Riemann
solver” for level set equation based on the two half-planes problem may also be investigated.
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